电力载波通信报告

电力载波通信报告
电力载波通信报告

任务书

熟练掌握单片机串行通信,设计硬件电路实现单片机之间的双机通信,两个独立的系统能处理自己的数据信息,并能将实时的数据信息传递给另一个系统。

要求:

1.单片机之间通信要有简单的通信协议,保证通信的畅通。

2.单个系统要有数据处理能力,之间的通信要简单明了。

3.要能人为控制信息的交流,之间的通信要收人为控制

在以上基础之上要实现电力载波通信,要将220V电力线作为通信介质,接受和发送单片机的数据信息。

要求自己设计电力载波通信,能够将单片机的信号耦合到电力线上去,并能保证在一定的距离内单片机能够畅通通信

绪论

随着单片机系统的广泛应用和计算机网络技术的普及,单片机的通信功能越来越显得重要。单片机通信是指单片机与计算机或者单片机之间的信息交流。

通信有并行和串行两种,在单片机系统以及现代单片机测试系统中,信息多是采用串行通信方式,串行通信也是单片机与外界信息交流的最基础的通信方式。

单片机串行通信能进行远距离传送,但如果在传输过程中不对数

据进行处理的话,那么数据信息会因为外界因素干扰而导致信息丢失,这时电力载波通信就是一种可行的方法,通过电力载波模块的作用,可以将单片机的数据信息耦合到电力线上去进行较远的距离传送。一般采用扩频编码的方式,抗干扰能力强,数据传输可靠,这样就克服单片机串行通信的缺点。

本课程设计模仿电力载波通信,要求能够实现电力线上数据传输,在单片机双机通信的基础上,介入单片机之后能在一定的距离内仍旧能实现双机通信。

一.方案论证

本单片机课程设计题目为《电力载波通信》,实现单片机之间的双机通信,并能将其之剑通信信息偶喝到电力线上去,在一定距离内实现单片机在电力线上的信息传输。

在双机通信部分,本课程设计采用的基于STC89C51单片机的串口通信,并且采用RS232进行双机通信。发送方的数据由串口TXD 段输出,经过电力载波模块的耦合,数据信息传送到电力线上去之后进行数据传输,接收端使用MAX232芯片进行电平转换,信号到达接收方串口的接收端。

在双方通信部分是实现全双工通信方式,双方能够实时的对数据进行处理显示,并且能够发送到另一方,并能进行显示,接收方在接收到信息之后要回馈一个信号给发送端,表示数据已经成功发送出去。

在软件通信部分,软件采取简单的通信协议,以确保短距离传送数据信息的时候出现错误。

最后附上简单的整体电路图。

二.方案说明

单片机之间的串口通信是单片机较为基本的功能,也是单片机与外界通信的常用方式,本设计是利用单片机的串口通信实现两篇单片机之剑的通信,,两个不同的系统之剑的信息交换。

与平时做实验时候的串口通信实验相比较,本设计增加了对数据的处理和发送的设置,每个单片机与外部相连三个按键,一个数码管和一个二极管。按键S1,S2是对本地数据进行处理,加一和减一,并在数码管上进行显示,而S3则是发送确认按键,只有按下S3本地进行处理之后的数据信息才能发送到帘外一个单片机上面,并且当数据发送成功之后另一个单片机还会反馈一个信号使本地发光二极管闪一下,表示确认本地数据已经成功发送给另外一个单片机。

电力载波部分采用的是“单相电力线载波调制解调器BWP08”,BWP08电力载波模块提供电力线上的通信功能,可以在220V/110V,50/60hz电力线上实现局域通信,也可用于直流线路或无

线导体。该模块可以自由配置电力线上数据通讯模式,有两种通讯模式供用户选择:固定字节传输及固定帧长度传输。该模块为用户提供了透明的数据传输通道,数据传输和用户协议无关,模块采用扩频编码方式抗干扰能力强没数据传输可靠,通讯过程中由用户通讯协议验证数据的传输的可靠性。在同一台变压器下,多个BWP08模块可连接在用一条电力线上,在主从通信模式下,模块分别单独工作,不会相互影响。

以上两部分组成本课程设计,电力载波通信的核心电路。三.硬件方案设计

图二.STC89C51单片机引脚图

1.STC89C51单片机的串口通信

计算机与外界的信息交换成为通信,常用的通信方式有两种:并行通信和串行通信。51单片机用4个接口与外界进行数据输入,输出就是串行通信,并行通信的特点就是传输信号的速度快,但所用的信号线多,成本高,传输的距离较近,串行通信的特点是用两根信号

线(一条信号线和一条信号回路)即可完成通信,成本低,传输的距离远。

51单片机的借口是全双工的接口,他可以作为UART(通用异步接收和发送器)用,也可以作为同步移位寄存器用。51单片机的串口结构如下;

1)数据缓冲器(SBUF)

接受或发送的数据都要先送到SBUF缓存。有两个,一个缓存,另一个接受,用同一直接地址99H,发送时用指令将数据送到SBUF即可启动发送;接收时用指令将SBUF中接收到的数据取出。

(2)串行控制寄存器(PCON)

SCON用于串行通信方式的选择,收发控制及状态指示,各位含义如下:

SM0,SM1:串行接口工作方式选择位,这两位组合成00,01,10,11对应于工作方式0、1、2、3。串行接口工作方式特点见下表

SM2:多机通信控制位。

REN:接收允许控制位。软件置1允许接收;软件置0禁止接收。

TB8:方式2或3时,TB8为要发送的第9位数据,根据需要由软件置1或清0。

RB9:在方式2或3时,RB8位接收到的第9位数据,实际为主机发送的第9位数据TB8,使从机根据这一位来判断主机发送的时呼叫地址还是要传送的数据。

TI:发送中断标志。发送完一帧数据后由硬件自动置位,并申请中断。必须要软件清零后才能继续发送。

RI:接收中断标志。接收完一帧数据后由硬件自动置位,并申请中断。必须要软件清零后才能继续接收。

(3)输入移位寄存器

接收的数据先串行进入输入移位寄存器,8位数据全移入后,再并行送入接收SBUF中。

(4)波特率发生器

波特率发生器用来控制串行通信的数据传输速率的,51系列单片机用定时器T1作为波特率发生器,T1设置在定时方式。波特率时用来表示串行通信数据传输快慢程度的物理量,定义为每秒钟传送的数据位数。

2.MAX232芯片

用89C51串行接口通信,如果两台单片机之剑的距离很近(不超过

1.5m),可以采用直接将两台单片机的串行接口相连,利用其自身的TTL电平(0-5V)直接传输数据信息。如果传输距离较远的话,由于传输线的阻抗与分布电容,会产生电平损耗和波形畸变,以至于检测不出数据或数据出错,此时可用RS232标准总线接口,将单片机输出的TTL电平转转换成RS232标准电平(逻辑电平1为-15V—+5V,逻辑0为+5V—+15V),用RS232可提高传输距离。

3.电力载波模块BWP08

电力载波模块BWP08的引脚图如图3所示。他是专门针对智能家居灯饰控制市场研发制作的,产品具有体积小,通讯可靠,通讯频点可调,功能可定制等特点,可以广泛用于智能家居灯饰控制家电控制等领域。

BWP08电力载波模块采用5—12V宽电压设计,载波波特率100bps到300bps可调,有多种接口方式可供选择,包括UART,SPI 等2种接口,可以方便的与单片机进行数据通讯,方便用户进行第二次开发,串行接口波特率可以由用户设定,共有四种波特率可以设置:1200bps,2400bps,4800bps,9600bps。

BWP08电力载波模块使用TTL电平串口与用户系统进行链接,并使用交叉连接方式进行连接,通讯采用收,发,地三线制方式,当用户系统为TTL电平串口时可直接与模块进行交叉连接进行通讯,无须RS232电平转换,所以用户可以直接使用单片机的串行接口(UART)与模块进行链接通讯,当用户系统为标准RS232借口时,

需要增加串口电平转换芯片进行电平转换,如:MAX232等芯片进行串口电平转换。

四.软件方案设计

通过简单的通信协议实现单片机全双工通信,每一个单片机即时数据信息的发送者也是信息的接受者,主机发送0X00给从机,并接受从机的回信,若不为0Xaa则主机一直停留在本地数据处理及显示这部分,若在某时认为按下发送按钮S3,则主机发送0Xaa给从机,从机若接到信息则跳出处理数据信息部分并回答主机0Xbb,主机接收到回答后,便开始把本地处理的数据传送给从机,从机接收到数据信息key之后在本地数码管上显示出来。

1.串行通信软件实现

1).串行口工作于方式一:用定时器1产生9600bit/s的波特率,工作于方式二。

2).功能:双方单片机能实时通信,并且能人为控制信息的发送,接收方的回馈信号,以确定收到数据。

3).通信协议:主机发送联络信号0Xaa,从机接收到联络信号后回答0Xbb表示好已经准备接收数据。

2.程序流程图

五.调试

按附录3,仿真三在proteus上接好的硬件图,然后将附录一中的程序在keil中编译成HEX文件下载到单片机中,有如下结果:仿真开始后。两片单片机系统中的数码管都显示“5”,两边有独立的按键“S1—当前数值+1,S2—当前数值-1,S3—将单前数值发送到两一个单片机系统”按下左边S1之后左边数码管显示“6”,然后按下右边S2,右边数码管显示“4”,按下左边的S3之后右边的数码管显示“6”,同理操作右边的按键之后显示也是一样的。

MAX232之间的引脚高低电平在不断变化,两个单片机系统之间在不断通信,进行数据通讯,只要人为对数据信息进行处理发送,两边便能保持通信。

六.技术小结

在写这个实验报告的时候单片机课程设计已经进入尾声经过繁忙而紧张的学习和查阅资料,最后做完了设计,最后都基本上大道了要求,但是在电力载波模块这方面还不是特别理想,仍然还是有时候会有点小问题,但是基本上已经实现了要求的功能。

在双机通信这方面,本课程设计较为成功,完全实现了双机通信所要求的全部功能,两片单片机之间能够完全按照人的意志进行通

信,并且很完美,没有错误,所要求的功能全部实现了。

总之通过这次单片机课程设计,再长时间的翻书和查阅资料之中,加深了单片机C语言程序设计的理解,特别是在单片机串行通信方面,更是受益颇深。

正如上面说的在这次课程设计之中也遇到不少问题,在实现双机通信之后,继续实现电力载波通信一直是一个大问题,在买到模块之后查阅各种资料,尝试各种方案都未能成功,最后网上通过询问最终解决问题,尽管走了不少弯路,但是最后成功了,心里还是蛮高兴的。

总之听过这次单片机课程设计,在单片机的学习之中学到了不少更是体验到学习单片机的乐趣,锻炼了自己的思考问题的方式和方法。

附录一

实验主程序:

#include

#define uint unsigned int

#define uchar unsigned char

sbit p1=P1^0;

sbit p2=P1^1;

sbit p3=P1^2;

sbit set=P1^6;

sbit led=P1^5;

uchar key;

uchar table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; void delay(uint xms)

{

uint i,j;

for(i=xms;i>0;i--)

for(j=110;j>0;j--);

}

void dis()

{

set=0;

P2=table[key];

}

void send(uchar k)

{

SBUF=k;

while(!TI);

TI=0;

}

void keydeal()//******

{

/* =========*/

if(p1==0)

delay(10);

if(p1==0)

{

key++;

if(key==10)

key=0;

}

while(p1==0);

/*===========*/

if(p2==0)

delay(10);

if(p2==0)

{

key--;

if(key==255)

key=9;

}

while(p2==0);

}

void main()

{

TMOD=0x20;

TH1=0xfd;

TL1=0xfd;

PCON=0x00; SCON=0x50;

TR1=1;

SM0=0;

SM1=1;

EA=1;

ES=1;

key=5;

led=0;

SBUF=0x00;

while(!TI);

TI=0;

while(!RI);

RI=0; while(1)

{

lable: if(p3==0)

delay(10);

if(p3==0)

{

SBUF=0xaa;

while(!TI)

TI=0;

while(!RI)

RI=0;

if(RI==0xbb)

send(key);

led=1;

delay(500);

led=0;

}

while(p3==0); do

{

if(p3==0) delay(10);

if(p3==0)

goto lable; keydeal();

dis();

SBUF=0x00;

while(!TI);

TI=0;

while(!RI);

RI=0;

}

while(SBUF!=0xaa);

//keydeal();

//dis();

SBUF=0xbb;

while(!TI);

TI=0;

while(!RI);

RI=0;

key=SBUF;

}

}

附录二

推挽驱动参考电路

仿真图

电力载波通信相关知识

一、电力载波通信相关知识简介 1、通信系统的组成 通信的目的是为了交换信息。一般通信系统的组成可用下图概括: 信源是信息产生的 来源,是一些可视或可闻的信息,这些信息通常都是些非电信号,要转换为电信号才能进行传输,这个工作通常由输入设备完成,如电话机、电报机、摄像机。交换设备是沟通输入设备和发送设备的接续装置,(在其他通信系统有可能不需要这一过程,电信号直接送入到发送设备进行调制)。 发送设备的任务是将各种信息的电信号经过处理(调制)使之满足信道传输的要求。 信道是信息传输的媒介,概括来讲分为有线和无线两种,其中有线传输包括:电力载波、光纤通信;无线传输包括微波、特高频等。 接收设备和输出设备与发送设备和输入设备的作用相反。 1.1载波通信系统的组成 载波通信系统的组成可以用下图表示: 上图中: 用户通常是电话机或远动设备专用的调制解调器; 交换机是接通电话用户的交换机接续设备,分人工和自动接续两种;载波机相当于通信系统的发送和接收设备,它的作用是把语音信号转换成适合线路传输的频率的信号。或将线路传输的高频信号还原成语音信号。 高频通道在电力系统中通常是指,由高频电缆、结合滤波器、耦合电容器、高压线路等组成的传输通道。 2、载波通信系统的类型和应用 在载波通信系统中,根据传输媒介的不同,载波通信可以分为以下几种类型:(1)架空明线载波通信 架空明线是指沿专用通信杆架设的金属线(铁线或铜线),90年代以前,架空明线载波通信在我国长途通信中曾被大量使用,目前,已被光纤通信取代。(2)对称电缆载波通信 对称电缆是埋在地下的一种电缆,电缆分缆芯和护层两部分,传输频带为12-252kHz,可传输60路电话。 (3)同轴电缆载波通信 同轴电缆可架设或埋地,根据同轴线缆的不同,最高传输频率可达60MHz,载波通信容量最高可达13200路。 (4)电力载波通信 电力载波通信是在工频为50Hz的电力输电线路上传输的一种载波通信。根据所使用的耦合方式的不同,分为相地结合和相相结合高频通道。通信所采用有载波通信为相地结合的高频通道、保护专用载波收发信机通常采用相相结合的高频通

PLC电力线通信技术简介

什么是PLC? 通常,我们上网的方式一般有:利用电话线的拨号?xdsl方式;利用有线电视线路的cable modem方式,或利用双绞线的以太网方式。 现在,我们又多了一种更方便,更经济的选择:利用电线,这就是plc!plc的英文全称是power line communication,即电力线通信。通过利用传输电流的电力线作为通信载体,使得plc具有极大的便捷性,只要在房间任何有电源插座的地方,不用拨号,就立即可享受4.5~45mbps的高速网络接入,来浏览网页?拨打电话,和观看在线电影,从而实现集数据?语音?视频,以及电力于一体的"四网合一"!另外,可将房屋内的电话、电视、音响、冰箱等家电利用plc连接起来,进行集中控制,实现"智能家庭"的梦想。目前,plc 主要是作为一种接入技术,提供宽带网络"最后一公里"的解决方案,适用于居民小区,学校,酒店,写字楼等领域。 plc的技术原理 plc利用1.6m到30m频带范围传输信号。在发送时,利用gmsk或ofdm调制技术将用户数据进行调制,然后在电力线上进行传输,在接收端,先经过滤波器将调制信号滤出,再经过解调,就可得到原通信信号。目前可达到的通信速率依具体设备不同在4.5m~45m之间。plc设备分局端和调制解调器,局端负责与内部plc调制解调器的通信和与外部网络的连接。在通信时,来自用户的数据进入调制解调器调制后,通过用户的配电线路传输到局端设备,局端将信号解调出来,再转到外部的internet。典型的plc网络如下图: plc的优点

1.实现成本低由于可以直接利用已有的配电网络作为传输线路,所以不用进行额外布线,从而大大减少了网络的投资,降低了成本。 2.范围广电力线是覆盖范围最广的网络,它的规模是其他任何网络无法比拟的。plc 可以轻松地渗透到每个家庭, 为互联网的发展创造极大的空间。 3.高速率 plc能够提供高速的传输。目前,其传输速率依设备厂家的不同而在 4.5m~45mbps之间。远远高于拨号上网和isdn,比adsl更快!足以支持现有网络上的各种应用。更高速率的plc产品正在研制之中。 4.永远在线 plc属于"即插即用",不用烦琐的拨号过程,接入电源就等于接入网络! 5.便捷不管在家里的哪个角落,只要连接到房间内的任何电源插座上,就可立即拥有plc带来的高速网络享受! plc的应用 1.可以为用户提供高速internet访问服务、话音服务,从而为用户上网和打电话增加了新的选择。 2.通过与控制技术的结合,为在现有基础上实现"智能家庭"提供有力支持。利用电力线路为物理媒介,可将遍布住宅各角落的信息家电、pc等连为一体,接入internet,实现远程、集中的管理控制。 3.不用额外的布线,就可将家中的多太电脑连接起来,组建家庭局域网。 4.实现远程水、电、气等的自动抄表,一张收费单就可解决用户生活中的所有收费项目。 5.利用plc的"永远在线"特点,构件防火、防盗、防有毒气体泄露等保安监控系统和医疗救护系统。 主要介绍PIC技术在智能家居系统中的运用,给出PLC网络化控制系统的结构.描述智能家居系统控制端设备和局端设备的设计方法.以厦设备的电磁兼容性。该系统实现了家电智能 控制、安防控制和上网功能。 目前,中国的智能家居系统以智能安防为主,正逐渐向家电的网络化控制延伸。如何更有效地解决安防、家电智能控制、上网等问题,逐渐成为研究的热点。电力线通信(Power Line Communication,PLC),是指利用中、低压电力线作为通信介质,实现数据、语音、图像等综合业务传输的通信技术。利用PLC实现智能家居的网络化控制无需架线,不破坏住宅结构,连接方便、快捷,是智能家居网络化控制的理想选择。本系统采用Intcllon公司的INT5200芯片作为电力载波芯片,网络数据由与家电设备相连的电力线传送,并通过HomePlug协议实现交互,采用OFDM(Orthogonal Frequency Division Multiplexing)正交频分复用技术进行调制解调,从而实现家电控制、PLC上网和家庭安防。

智能电网是未来电网发展的趋势

龙源期刊网 https://www.360docs.net/doc/5512282278.html, 智能电网是未来电网发展的趋势 作者:牛震 来源:《中国科技博览》2013年第29期 摘要:阐述了智能电网的概念和特征,并简单介绍了智能电网技术的国内外发展现状,对其重要技术进行了详细分析和讨论,指出了建设智能电网在网络拓扑、通信体系、分布式电源接入、智能调度、防护系统、电力电子设备、计量体系、需求侧管理等领域需要解决的关键技术问题,强调发展智能电网对中国的重要意义。 关键词:智能电网发展趋势发展意义智能调度 中图分类号:TU855 文献标识码:A 文章编号:1009-914X(2013)29-637-01 一、智能电网的概念 智能电网就是电网的智能化,它是建立在集成的、高速双向通讯网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,它可以改善电力传送和使用效率、提高电力系统的可靠性和安全性。其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。 二、国内外发展现状 2003年美国从自身的国家利益出发,提出了一个大胆的战略发展计划,它对电网的运行 模式进行了明确的界定,它考虑了多种能源的输入,可以进行多种能源的产出,进行多种能源之间的转换。主要考虑的问题是国家安全和可再生能源的利用。这些基本概念为“智能电网”的提出奠定了基础。三年后即2006年,美国IBM公司提出了“智能电网”解决方案,解决方案主要包括以下几个方面:一是通过传感器连接资产和设备提高数字化程度;二是数据的整合体系和数据的收集体系;三是进行分析的能力,即依据已经掌握的数据进行相关分析,以优化运行和管理。通过以上几个方面达到自动监控电网,优化电网性能、防止断电、快速恢复供电的目的。奥巴马上任后提出的能源计划,除了已公布的计划,美国还将着重集中对每年要耗费1200亿美元的电路损耗和故障维修的电网系统进行升级换代,建立横跨四个时区的统一电 网,重点研发可再生能源和分布式电源并网技术,发展智能电网产业,最大限度发挥美国国家电网的价值和效率,将逐步实现美国太阳能、风能、地热能的统一入网管理;全面推进分布式能源管理,创造世界上最高的能源使用效率。由此,可以看出美国政府的智能电网有三个目的,一是由于美国电网设备比较落后,急需进行更新改造,提高电网运营的可靠性;二是通过智能电网建设将美国拉出金融危机的泥潭;三是提高能源利用效率。

电力线载波通信---有线通信

电力线载波通信---有线通信

电力线载波通信---有线通信

抄表系统及其方法 本发明公开了一种抄表系统包括电力线宽带载 波通信单元、无线通信单元、时钟单元、控制单元以及存储单元;所述电力线宽带载波通信单元用于收发通过电力线载波方式传送的抄表信号;所述无线通信单元用于收发通过无线通信方式 传送的抄表信号;控制单元用于信道状况的侦测,根据侦测结果控制抄表系统在电力线宽带载波通信以及无线通信之间的信道自动切换,切换信道后进行自动组网,并将从电力线宽带载波通信单元以及无线通信单元接收到的抄表信号进 行格式转换生成电表数据。本抄表系统利用宽带载波通信可靠性高、数据传输率高、数据容量大、双向传输等特点,将无线通信方式以及电力线通信方式相互结合,使抄表布线等现场施工工作变得简便灵活。 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指35kV及

以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式 PLC = Power Line Carrier,电力线载波 电力线载波(PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。 近年来电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。 但是电力线载波通讯因为有以下缺点,导致PLC主要应用--“电力上网”未能大规模应用: 1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10 dB -30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和 60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交流波形同步不好控制,现代通讯数据帧又比较长,所以难以应用; 5、电力线对载波信号造成高削减。当电力线上负荷很重时,线路阻抗可达1欧姆以下,造成对载波信号的高削减。实际应用中,当电力线空载时,点对点载波信号可传输到几公里。但当电力线上负荷很重时,只能传输几十米。

智能电网的发展趋势

智能电网的发展趋势 摘要:随着电力系统运行环境的日趋复杂与电力体制改革的不断前进,传统电力网络亟待进一步提升,实现向智能电网的转变。智能电网为 电网的发展方向,它的内涵是由绩效目标、性能特征、关键技术与功 能实现等4个方面及其之间的关系综合体现的,它们分别规定了智能 电网的未来期望收益、应具备的特征性能力、为实现此能力而应当采用的关键性技术以及技术与具体业务需求的结合方式。通过对上述内容的详细阐述,描绘出未来智能电网的框架。 关键词:智能电网;自愈;分布式能源;电力市场 0引言 随着市场化改革的推进、数字经济的发展、气候变化的加剧、环境监管要求日趋严格与国家能源政策的最新调整,电力网络跟电力市场、用户之间的协调和交换越来越紧密、电能质量水平要求逐步提高、可再生能源等分布式发电资源数量不断增加,气候变化初露端倪,传统 网络已经难以支撑如此多的发展要求。为此人们提出了发展智能电网(SmartGrid)的设想,实现对传统电网基础上的升级换代。国外许多研究机构和企业正在积极推动智能电建设。例如知识电(IntelliGrid)、现代电网(ModernGrid)、网络智能(GridWise)与智能电网等,可是本 质内容基本相似。为了在智能电网领域寻求突破、加强联系与合作, 已形成了一个全球性联盟组织。 1智能电网概念 智能电网并非是一堆先进技术的展示,也不是一种着眼于局部的解 决方案。智能电网是以先进的计算机、电子设备和高级元器件等为基础,通过引入通信、自动控制和其他信息技术,从实现对电力网络的改造,达到电力网络更加经济、可靠、安全、环保这一根本目标。为了 理解智能电网,需要站在全局性的角度观察问题,综合考虑智能电网 的4个维度,即绩效目标、性能特征、技术支撑和功能实现。 2智能电网的绩效目标与性能特征

宽带电力线载波通讯和智能电网浅谈

宽带电力线载波通讯和智能电网 电力线载波通讯――PLC,是一种通过电线进行数据传输的通信技术。换句话说,PLC是利用现有电网作为信号的传递介质,使电网在传输电力的同时可以进行数据通讯。这种方式能够有效监测和控制电网中的电力设备、仪表以及家用电器。同时,电力线载波技术即插即用,大大提高了生产、工作和生活效率,在很大程度上节约了布线施工成本,而且其稳定、可靠、丰富的资源系统也易于获取。上述种种特点及优势使其相比较其它通讯方式更胜一筹。 目前,电力线载波技术日渐主导电力系统和民用生活的通讯方式。根据载波 频率、载波速率、载波调制方式,行业内部分为两大阵营: 低速窄带阵营采用1~500kHz的频段载波,速率通常在1.5~10Kbps之间,简单的OFDM扩频调制方式; 高速宽带阵营采用1~30MHz的载波频率,速率通常在1~200Mbps之间, 基于成熟的DMT的调制方式。近年来,国内外开始普遍向宽带高速率PLC转移,

表1 宽带载波和窄带载波技术比对表 宽带电力线载波的优势 宽带电力线载波之所以优于窄带电力线载波技术,可从表1的比对中获得一瞥。 不同于传统的OFDM方式,基于OFDM的DMT技术使用自适应载码算法瞬时计算所有子通道中的信噪比,根据其结果动态地为各信道添加负载(从0-bit负载~3或10~bit负载),同时预测下一瞬间的信噪分布并自行学习电网干扰概算,有效规避干扰,优化载波质量,并从根本上降低了宽带载波芯片的功耗,从而做到<0.9W。 基于宽带电力线载波的智能电网(BPL-AMI) 宽带电力线载波技术诞生伊始,其目的是为了解决最后一公里的问题,并提供高速的互联网接入服务,近年来主要趋向电力设备通信。随着公用事业部门对于信息化改革要求的日益挺进,智能电网的概念也不禁悄然出现。智能电网的应用非常广泛,包括AMR(远程抄表)、负载控制、变压器监控、电能质量远程测量、安全监视、分时费率(TOU)、动态计费和其它各种增值服务等,例如电力线电话和互联网信息服务。 尽管其它各种网络通讯技术在智能电网的实现过程中百家争鸣,但宽带电力线载波技术无论在可行性、最优控制、成本、铺设等诸多因素中更拔头筹。其中最令人瞩目的、也是最重要的一个原因就是宽带电力线载波技术仅仅使用电网中现有的基础网络作为构架,无需另外花费安装和租用线路和设备、主站和主站、中心和局部的网络通讯。同时,宽带电力线载波通信可实现庞大数据稳定可靠的双方向实时传输,为电力公司、甚至物业部门有效规划和管理各种服务提供了便利条件。此外,宽带电力线载波提供足够的带宽,不仅提高了通讯性能,同时确保大范围、全面整合覆盖电网中的节点和设备,在数据流量和稳定性方面,具有窄带电力线窄波不可比拟的优势。 基于宽带电力线载波(BPL)的远程抄表系统 AMR(远程抄表)是智能电网系统中最基本的应用,宽带电力线载波电能表是其实现过程中最重要的环节。 远程抄表(AMR)是把电能表以及其它接入电能表中的仪表(水、煤气)使用量通过电力线传输到数据库服务器,并进行计费和使用量数据分析,也就是说用电(水、煤气)收费将无需依靠人工上门、估算等原始落后的方法来实现。同时供需双方能更好地进行互动,进而提高服务质量,拓展业务渠道。另一方面实时精准的用电数据确保供电部门得到一手的、丰富的信息资料。例如,按使用时

智能电网的现状和和发展趋势

题目智能电网的现状和发展趋势 姓名卢乾坤学号2012416464 院系工学院 专业电气工程及其自动化 指导教师蔡彬职称教授 2014 年12 月12 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言(或绪论) (2) 一、中国智能电网的现状和发展趋势 (3) (一)中国智能电网产业研究的目的和背景 (3) 1.我国向智能电网发展的意义 (3) 2.我国开发智能电网的背景 (4) 中国智能电网技术的进展和趋势 (4) 二、国外智能电网的现状和发展趋 (4) (一)美国进行智能电网改造 (4) (二)欧盟智能电网的发展趋势 (5) (三)日本大力发展智能电网 (5) 致谢 (6) 参考文献 (7)

智能电网的现状和发展趋势 电气信息与自动化学生卢乾坤 指导老师蔡彬 摘要:从智能电网的概念和功能出发,简介我国发展智能电网的意义,发展智能电网的大背景和社会物质文化条件以及当前智能电网技术进展和趋势,要努力的方向;分别简单介绍美国、日本、欧盟对智能电网发展的重视,一系列政策的实施,以企业对智能电网的发展领域和方向以及相关科研单位对智能电网研究的方向和趋势。 关键词:智能电网、发展趋势、发展意义、技术 The Status Quo and Development Trend of the Smart Grid Student majoring in electrical information and automation LuQiankun Tutor CaiBin Abstract:Starting from the concept and function of the smart grid, the introduction, the significance of the smart grid development in China, the development of smart grid, the background and social material and cultural conditions as well as the current smart grid technology, progress and trends to direction; Simple introduction to the European Union to the attention of the smart grid development in Japan, a series of policy implementation, to enterprise and direction in the field of smart grid development, and related scientific research units of the smart grid research direction and trend Key words: smart power grids, development tendency, implication of development technique

单相智能电表之电力线载波通信.

单相智能电表之电力线载波通信 1、研究设计背景 1.1综述 低压电力线载波PLC(Power Line Carrier)通信是以低压配电线(380 V/220 V电力线)作为信息传输媒介进行数据或语音等传输的一种特殊通信方式。电力线网络是目前覆盖范围最广的网络,有着巨大的潜在利用价值。国外对此研究已有近百年的历史,在理论和技术上有着绝对的优势。我国电力网比较独特,直接利用国外先进技术和产品并不能取得令人满意的效果。目前国内参与低压电力载波通信研究的公司、高校及研究机构日益增多,已经在通信信道的特性分析和建模、关键的调制技术的研究、通信芯片及相应产品的研制和应用、市场化运营及相关法规制定等方面取得了一定的成果。 1.2发展历程及现状 1.2.1 国外发展情况 电力线是最普及、覆盖范围最为广阔的一种物理介质,因此,电力线载波通信作为上一世纪20年代的产物,现在利用电力线高速数据通信技术仍然是国内外许多大公司的热点。 97年英国的Norweb通讯公司和加拿大Nortel(北电网络)利用丌发的数字电力线载波技术,实现了在低压配电网上进行的1Mbit/s的速率数据传输的远程通信,并进行了该技术市场推广。 随后,许多国家研究机构纷纷开展了高速电力线通信技术的研究和开发,产品的传输速率也从1Mbit/s发展到2、14、24Mbit/s甚至更高。 国际各大公司纷纷推出PLC调制解调芯片,其中主要有美国Intellon公司的14、54、85和200Mbit/s芯片,西班牙DS2公司45和200Mbit/s芯片等等。其中以美国Intellon公司的14 Mbit/s芯片应用最为普遍,大部分电力线载波系统都是基于该芯片开发的。 目前,电力线载波通信在欧洲发展比较快,欧盟为促进电力线载波技术发展,在2004年启动了OPERA(Open PLC European Research Alliance)的计划,致力于制定欧洲统一的PLC技术标准,推动大规模的商业化应用,并将PLC作为实现信息化欧洲的重要技术手段。 美国也不甘示弱,在它倡导下成立了“家庭插电联盟”,致力于标准研究,

电力线通信(PLC)技术的应用及未来

电力线高速数据通信技术,简称PLC或PLT,是一种利用中、低压配电网作为通信介质,实现数据、话音、图像等综合业务传输的通信技术,不仅可以作为解决宽带末端接入瓶颈的有效手段,而且可以为电力负荷监控、远程抄表、配用电自动化、需求侧管理、企业内部网络、智能家庭以及数字化社区提供高速数据传输平台。 PLC按应用的配电网电压等级划分为低压PLC和中压PLC。低压PLC利用低压(220V/380V)电力线作为传输媒介,为用户提供Internet接入、家庭局域网、远程抄表、智能家居等应用。中压PLC 利用中压(10KV)电力线作为通信链路,为接入骨干网、配电网自动化、用户需求侧管理及农村电话等应用提供传输通道。 近10年,特别是2000年以来,由于人们对带宽需求的不断增长,包括ADSL、PLC技术在内的宽带接入技术得到了快速发展。特别是PLC技术,由于充分利用最为普及的电力网络资源,建设速度快、投资少、户内不用布线,能够通过遍布各个房间的电源插座进行高速上网,实现“有线移动”,具备了其它接入方式不可比拟的优势,受到国内外的广泛关注。 二、PLC技术的发展现状 (一)国外发展现状 目前国际上专用PLC调制解调芯片主要有:以色列Yitran公司传输速率为2.5Mbps的芯片、美国Intellon公司14Mbps芯片、西班牙DS2公司45Mbps和200Mbps芯片,其中美国Intellon公司14Mbps 芯片应用最为普遍,大部分PLC系统都是基于该芯片开发的。近期,

美国Intellon公司推出了芯片速率为85Mbps的样片,法国Spidcom 公司也开发了224Mbps芯片,正在测试之中。 欧盟为促进PLC技术的发展,从2004年1月1日开始启动了一个称之为OPERA(Open PLC European Research Alliance)的计划,旨在联合欧洲的主要PLC研究开发力量致力于制定欧洲的PLC统一技术标准、推动大规模商业化应用,并将PLC作为实现“eEurope”(信息化欧洲)的重要技术手段。美国联邦通信委员会(FCC)一直在鼓励启用新的基于现有设施的宽带平台,促进美国的宽带业务。2004年2月12日,FCC批准对某些技术规则的修改意见,目的是通过促进电力线宽带接入技术的推广应用,把美国电力网的巨大潜力利用起来。美国、欧洲等国许多大的电力企业也积极进行中压及低压PLC 的试验,美国的Cinergy 等17家电力企业、德国、奥地利、西班牙等15个欧洲国家的32个电力企业建立了PLC试验网络,有的还进行了PLC商业化运营,如德国的MVV等。亚洲开展PLC研究和试验的国家和地区除中国大陆外,还有日本、韩国、新加坡、中国香港、中国台湾等地,日本对PLC的态度,经历了从初期怀疑否定、到开放试验、直至今日的积极推动的三个阶段。目前日本的东京电力、新加坡电力、香港中华电力等建立了一定规模的试验网络。据不完全统计,截止2004年年底,PLC的试验网络遍及欧洲、亚洲、北美洲、南美洲、非洲以及大洋洲的40多个国家和地区。 (二)国内PLC技术的研发及应用 国外在电力线通信技术方面的进展,引起了国家电力公司的高

电力线载波技术特点

电力线载波技术特点 电力线载波(PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。 但是电力线载波通讯因为有以下缺点,导致PLC主要应用--“电力上网”未能大规模应用: 1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10 dB -30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。有一种利用波形过0点的短时间内进行数据

传输的方法,但由于过0点时间短,实际应用与交流波形同步不好控制,现代通讯数据帧又比较长,所以难以应用; 5、电力线对载波信号造成高削减。当电力线上负荷很重时,线路阻抗可达1欧姆以下,造成对载波信号的高削减。实际应用中,当电力线空载时,点对点载波信号可传输到几公里。但当电力线上负荷很重时,只能传输几十米。 虽然技术问题随着时间的发展,最终都能被解决被克服,但是从目前国内宽带网建设的情况来看,留给PLC的时间和空间并不宽裕。2000年以来各大运营商大规模推出ADSL、光纤、无线网络等多种宽带接入业务,留给电力线上网的生存空间,已经不断被其他接入方式压缩。现在,PLC除了在远程抄表上有所应用外,已没有了当初的豪言壮语。 随着家庭智能系统这个话题的兴起,也给PLC带来了一个新的舞台。在目前的家庭智能系统中,以PC机为核心的家庭智能系统是最受人热捧的。该系统的观念就是,随着电脑的普及,可以将所有家用电器需要处理的数据都交给电脑来完成。这样就需要在家电与PC间构建一个数据传送网络,现在大家都看好无线,但是在家庭这个环境中,“墙多”这一特征严重影响着无线传输的质量,特别是在别墅和跃层式住宅中这一缺陷更加明显。如果架设专用有线网络除了增加成本,那么家电的位置今后也无法随意挪动。 PLC的最大特点:不需要重新架设网络,只要有电线,就

电力线通信技术及其应用

?电网技术? 电力线通信技术及其应用 甘 武,孙云莲,邓宏伟 (武汉大学,武汉市,430072) [摘 要] 电力线通信(PLC ),是指利用电力线传输高频数据和话音信号的一种通信方式。PLC 以其广阔的资源、与 家庭的紧密结合等优势得到快速发展。利用PLC 技术可将电脑、电话、音响、电冰箱等家用电器连成一体,实现集中控制,也可以连接多台电脑,组建、实现家庭局域网,还可以实现高速上网。目前电力线上网在我国还在试验阶段,它的潜在市场是巨大的。 [关键词] 电力线通信 网络体系结构 电磁兼容 管制 中图分类号:TN915.853 文献标识码:B 文章编号:1000-7229(2004)11-0028-03 Power Line Communication Technology and Its Application G an W u ,Sun Yunlian ,Deng Hongwei (W uhan University ,W uhan City ,430072) [Abstract]The power line communication (PLC )means a kind of communication m ode which uses the power line to transmit the HF data and acoustic signals.The PLC network expands quickly because of its abundant network res ources and strong link with family life.Application of PLC technology can unite the computer ,telephone ,acoustic device ,refrigerator and other household applicants together for central control ,als o link with many comput 2ers to establish home local network.The PLC network is under test stage in China at present and it has a great latent market.[K eyw ords]power line communication ;network system structure ;electromagnetic compatibility ;control 电力线通信(PLC ),是指利用电力线传输高频 数据和话音信号的一种通信方式。它在不需要重新布线的基础上实现上网、打电话和有线电视等多种应用,用户可以通过房间里面的任意一个电源插座上网,实现家庭的移动办公。利用PLC 技术可将电脑、电话、音响、电冰箱等家用电器连成一体,实现集中控制,也可以连接多台电脑,组建、实现家庭局域网。作为一种新的家庭联网和宽带接入技术,PLC 引起了人们极大的关注。 入户的线路,除了电话线和有线电视电缆,就是电力线。其中电力线是普及最广的线路,进入家家户户,几乎每间房间都有电源插座。因此,电力线网就是一个现成的局域网,整个低压配电网的网络结构(包括户外电缆)非常适合互联网接入,能够提供最后1km 的解决方案,从而与电话网进行竞争。在一些不发达国家,许多家庭还没有敷设电话线和有线电视电缆,电力线则成了唯一可选的通信载体。 对于家庭联网来说,连接信息家电的基础设施必须易于安置、安装维护费便宜并且性能良好。典型的高性能网络对日常生活用途来讲过于复杂。尽管目前已有多种技术可用于家庭联网,如以太网通过在住家内敷设5类通信线联网。但安装复杂,且需要新建网络。用电话线也可以建网,但因受电话线插口的限制,建起的网络会失去移动性。直接使用住家内的电力线与电源插座作为数据通信的载体,便可以克服这些缺陷。 用电力线作为网络基础设施相对于其他技术有其优点。首先,由于信息家电可以通过电力线进行通信,故不需另外布线。其次,在住家内通常有多个接入点(电源插座),PLC 技术可以为用户建一个家庭局域网,把PC 机、打印机、扫描器以及他们想连接的任何设备连接起来。按HomePlug 1.0标准的规定,电力线通信可以提供14Mb/s 的数据速率,足够信息家电日常使用。将来的PLC 还可能 收稿日期:2004-05-30 作者简介:甘武(1978-),男,硕士研究生。 孙云莲(1962-),女,博士生导师,从事电力系统通信研究。 ? 82?第25卷 第11期 2004年11月 电 力 建 设 Electric Power Construction Vol.25 No.11 Nov ,2004

电力线通信技术原理及应用

电力线通信技术原理及应用 中压电力线通信(MV-PLC)技术是指利用电力传输网络中的中压电力线(通常指10KV电压等级)作为信号传输媒介,进行语音、数据信息的传输。该技术首先被应用于中压配电网的自动化数据传输平台中;近年来,中压电力线宽带网络接入以其基础设施完备、分布广泛、成本低廉的特点,正越来越受到关注,尤其是在偏远农村或者人口稀少的地区,具有极强的实用价值。中压PLC应用领域中压输电网覆盖面积广大,应用领域繁多,中压配电自动化对于国民经济的发展具有重要的意义,相关应用包括用电负荷控制、电网运行监测、集中抄表等。配电网自动化往往有数量巨大且分布分散的节点需进行控制和数据采集,故对数据通道的经济性有较高要求。中压PLC技术将传统中压电力网转变成为数据通信网,在建设成本、运行和维护费用等方面具有天然的优势,目前在韩国、美国、西班牙等国家已得到良好的应用,国内也开展了大量的研究和实践。随着互联网的飞速发展,Internet在生产生活中发挥着日益重要的作用,而PLC技术也在宽带网络接入手段中占据了重要的地位。从户外中压PLC到户内低压PLC的接入方案,被认为是解决宽带接入的最后一公里问题的理想方案,该类研究兴起于北美,近年来发展迅速。对于中压电力线网络,由于其业已存在的广泛分布,成为了在偏远地区实现高速网络接入的理想媒介,以缩短和消除城市地区与农村地区,发达地区与不发达地区之间的数字鸿沟。在偏远或者人口密度较低的地区,短期内通过PLC以外的其它技术手段实现较大带宽的数字通信服务,会面临较多的困难;在城市地区广泛使用的xDSL或者通信光缆一般均难以铺设到这些地区;卫星通信在一些地区可以实现,但是低通信速率以及信道租用和终端所带来的高成本,使其大规模应用受到很大限制;以GSM、IS-95、WCDMA等为代表的蜂窝通信技术本身是针对高用户密度的应用场景所设计,如果在用户密度较低的地区使用,将带来通信能力的严重浪费和高昂的运营成本,从而难以得到推广和普及。在发展中国家,这一矛盾尤其突出。就国内的情况而言,我国幅员辽阔,有相当数量的农村地区处于偏远、人烟稀少的地带,这些区域的通信发展相对滞后。据统计,我国行政村固定电话覆盖率为94%~97%,数据通信的覆盖率则更低。由于自然和经济条件的制约,若采用现有的通信方

电力线载波通信技术的发展与特点

电力线载波通信技术的发展及特点 摘要 本文介绍了电力线载波通信的发展及特点,文中主要就高压电力线载波通信、中压配电网电力线载波数据通信和低压用户配电网电力线载波通信,以及与其相关的关键技术问题进行了讨论。 0 引言 电力线载波(Power Line Carrier - PLC)通信是利用高压电力线(在电力载波领域通常指35kV及以上电压等级)、中压电力线(指10kV电压等级)或低压配电线(380/220V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。近年来,高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代。并且,随着电力线载波技术的不断发展和社会的需要,中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面,电力线载波通信这座被国外传媒喻为“未被挖掘的金山”正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。在这种形势下,本文旨在通过对电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程、特点及技术关键。 2 电力线载波通信的特点

2.1 高压载波路由合理,通道建设投资相对较低高压电力线路的路由走向沿着终端站到枢纽站,再到调度所,正是电力调度通信所要求的合理路由,并且载波通道建设只需结合加工设备的投入而无须考虑线路投资,因此当之无愧成为电力通信的基本通信方式,尤其在边远地区更是这样。电力线载波通道往往先于变电站完成建设,对于新建电站的通信开通十分有利。为此,只要妥善解决电力线载波信道的容量问题,载波通信的优势就会显现出来。在中压配电网载波和低压用户电网载波中,节省线路建设费用,无须考虑破坏家庭已装修环境,也仍然是载波通信的优势。 2.2 传输频带受限,传输容量相对较小 在高压电网中,一般考虑到工频谐波及无线电发射干扰电力线载波的通信频带限制于40~500kHz之内,按照单方向占用4kHz带宽计算,理想情况下一条线路可安排115条高频载波通道。但由于电力线路各相之间及变电站之间的跨越衰减有限(13~43dB),不可能理想地按照频谱紧邻的方式安排载波通道,因此,真正组成电力线载波通信网所实现的载波通道是有限的,在当今通信业务已大大开拓的情况下,载波通道的信道容量已成为其进一步应用的“瓶颈”问题。尽管我们在载波频谱的分配上研究了随机插空法、分小区法、分组分段法、频率阻塞法及地图色法和计算机频率分配软件,并且规定不同电压等级的电力线路之间不得搭建高频桥路,使载波频率尽量得以重复使用,但还是不能满足需要。近来随着光纤通信的发展和全数字电力线载波机的出现,稍微缓解了载波频谱的紧张程度。在10kV中压配电

电力载波通信资料

八、电力线载波部分:49题(716-764) 716. 电力线载波通信的特点是什么? 答:线路衰减小,机械强度高,传输可靠; 线路存在强大的电磁干扰,要求电力线载波设备具有较高的发信功率,以获得必需的输出信噪比; 具有独特的耦合设备。电力线载波通信是电力系统特有的通信方式。 717. 我国规定高压电力线载波通信的频率使用围是多少? 答:40~500kHz。 718. 电力线载波通信系统主要由哪些部分构成? 答:电力线载波通信系统主要由电力线载波机、电力线路和耦合装置构成。 719. 电力线载波通信的耦合装置由哪些部分构成? 答:耦合装置由线路阻波器、耦合电容器、结合滤波器(又称结合设备)和高频电缆构成。 720. 电力线高频通道由哪些部分组成? 答:电力线高频通道由耦合装置与电力线路一起组成。 721. 耦合电容的作用是什么? 答:通高频,阻工频。 722. 结合滤波器的作用是什么? 答:阻工频,通高频载波。 723. 线路阻波器的主要作用是什么? 答:通工频,阻高频。 724. 对连接结合设备的次级端子和载波机的高频电缆有什么要求? 答:按照载波机载波输出输入端不同阻抗的要求,可以用不对称电缆(同轴电缆),也可用对称电缆。电缆的阻抗值,同轴电缆一般为75Ω;对称电缆一般为150Ω。我国主要采用同轴电缆。 725. 简述电力线载波进行话音通信的原理? 答:利用载波机将低频话音信号调制成 40kHz以上的高频信号,通过专门的结合设备耦合到电力线上,信号会沿电力线传输,到达对方终端后,再采用滤波器将高频信号和工频信号分开,通过解调还原出低频语音信号。 726. 能否在输电线上直接传送话音信号?简单说明理由。 答:不能,因为高压输电线路上输送的工频电压很高,电流很大,其谐波分量也很大,这些谐波落会在语音频段,与话音信号混合在一起无法区分,且其谐波幅值往往比一般传送的话音信号大得多,对话音信号产生严重干扰,因此不能在电力线上直接传送话音信号。 727. 利用载波设备传输音频信号,高压电力线的工频电流是否会对它产生严重干扰?简述原因。 答:不会,因为载波频率是40kHz以上,需要50Hz工频电流的800次以上谐波才会对此频段造成干扰,而实际上800次以上谐波其幅值已相当小,对话音信号的干扰已减至可以接受的程度。

电力线载波通信技术的发展和应用

电力线载波通信技术的发展和应用 摘要:随着社会生活水平的提高,通信技术在人们的生活中扮演着不可缺少的重要角色。实时、高速、可靠的通信技术才能满足人们日益频繁的信息交流,但是要新建能满足当前需求的通信基础设施将花费巨大的人力和物力,并且还不能跟上需求的增长速度。电力系统输电线路错综复杂,遍布全球,有线通信具有稳定可靠的传输数据的特点。因此,在电力线上使用载波通信技术将大大减少资源的消耗,同时也能满足高速可靠的通信技术要求。文章介绍了电力线载波通信技术的发展现状,分析了该技术在应用中经济可靠的优点和噪音、信号衰减以及干扰的缺点,详细阐述了该技术噪音干扰问题产生的原因,提出了一些提高电力线载波通信可靠性的措施,最后举例说明电力线载波通信技术的实际应用。 关键词:电力线;载波通信;发展现状;信号衰减;可靠性 电力线载波通信技术是利用整个电力系统的输电线路作为数据传输的载体的一种新型通信模式,这种技术不需要重新架设数据传输通道,可实现点对点的数据传输,具有很好的经济性和便利性。 1 电力线载波通信的发展及现状 电力线载波通信技术出现于20世纪20年代,40年代电力线载波技术最初应用在我国的长距离电力调度的通信中,60年代我国开始自主研发第一代电力载波机,80年代中期由于单片机和集成化的出现和发展,出现了小型化功能多的第二代载波机,90年代中后期出现了利用数字信号处理技术的第三代电力载波机,具有了软件调制、滤波、限幅和自动增益的功能。 进入21世纪,我国输电线路架设脚步加快,为电力线载波通信技术的发展提供了广阔空间。2001年底,“电力线高速数据通信”技术的核心产品—电力调制解调器及多个相关产品成功研发,其传输速率可以达到10 Mbps;到2005年,北京已经有五500多个居民小区覆盖了由电力线宽带接入的实验网络,电力线宽带用户多达4万多户。2010年国内首个电力线载波通信实验室投运使用,大力为研发我国智能用电服务关键电力线通信设备。到如今,我国高中压输电线路载波通信技术已经比较成熟,低压配电网由于其结构复杂、线路多、阻抗大等特点使得载波通信技术在其上应用还有较多难点需要攻克。 2 电力线载波通信的优点和不足 2.1 电力线载波通信的优点 电力系统输电线工作运行条件苛刻,具有很高的可靠性、自愈性、快速反应能力以及高覆盖率等特点,使用输电线作为通信媒介,可以不占用无线频道资源、无需布线、省工省钱、维护简单,为输电线载波通信技术提供了其他通信无法比拟的优点。

基于低压电力线的高速载波模块设计

第10卷 第1期信息与电子工程Vo1.10,No.1 2012年2月INFORMATION AND ELECTRONIC ENGINEERING Feb.,2012 文章编号:1672-2892(2012)01-0022-05 基于低压电力线的高速载波模块设计 林佳森,李 智,李乔峰,马一森 (四川大学电子信息学院,四川成都 610065) 摘 要:选择有效的方案实现智能电网中的双向实时通信至关重要,电力线载波(PLC)技术提供了一种适合中国国情的低成本解决方案。介绍了OFDM PLC调制技术的优势,通过分析低压电 力线通信信道输入阻抗,建立了低压电力线载波模块系统模型。并在关于电力线信道的研究基础 上,设计了基于低压电力线的高速载波模块。测试结果表明,该载波模块设计方案具有较高的接 收灵敏度和抗噪声能力。 关键词:智能电网;正交频分复用;电力线载波;阻抗;电力线载波模块 中图分类号:TN761文献标识码:A Design of high-speed PLC module based on low voltage power line LIN Jia-sen,LI Zhi,LI Qiao-feng,MA Yi-sen (College of Electronic and Information Engineering,Sichuan University,Chengdu Sichuan 610065,China) Abstract:Effective choice of the solution is essential to achieve a real-time, bi-directional(full- duplex) communication of the smart grid. The Power Line Carrier(PLC) technology provides a low-cost solution, which suits China's own national conditions. In this paper, the advantages of OFDM PLC modulation technology are introduced. A PLC module of system model is established through the analysis of the input impedance under the low-voltage power line channel. The high-speed PLC module based on low-voltage Power Line is also designed according to the studies of power line channel. The results show that the design of the PLC module has featured high receiving sensitivity and anti-noise ability. Key words:smart grid;Orthogonal Frequency Division Multiplexing;Power Line Carrier;impedance; PLC module 随着国家全面实施“两改一同价”、“阶梯电价”以及“一户一表”工程政策,申办一户一表用电的客户数量激增,基层供电企业负担大幅增加(诸如抄、核、收人员工作量加大,费用增加等)[1]。传统的人工上门抄表、手持终端抄表等方式已不能满足供用电管理现代化的需要。电力线载波抄表因不用额外增加网络改造和后续费用而备受青睐。本文在对低压电力线通信信道研究的基础上,设计和实现了低压电力线高速载波模块,并对模块的通信性能进行了测试。 1 OFDM PLC调制技术的优势 目前满足国家电网智能电表系列标准的抄表通信方式有RS485通信、红外通信、载波抄表、公网通信(GSM、GPRS、CDMA)抄表等[2]。电力线载波通信技术利用已有的电力配电网络进行通信,不需要重新布线,信号不会因为通过建筑物墙壁而受到衰减甚至屏蔽,成本相对较为低廉等,使得这项技术成为智能电网通信系统领域的重要发展方向。 虽然电力线载波通信具有很多优点,但是电力线的初衷是传输50 Hz工频电力信号,并不是为了通信,故低压电力线通信环境非常恶劣,因此选择合适的调制技术至关重要。本系统采用的是正交频分复用通信技术(OFDM),其主要思想就是将信道分成若干正交子信道,将所传输的高速数据流转换成并行的低速数据流,调制到每个子信道上进行传输,从而实现数据的高速传输[3-4]。 低压电力线载波通信采用OFDM技术来实现,具有频带利用率高、抗码间串扰能力强、抗信道衰落、抗噪 收稿日期:2011-03-09;修回日期:2011-05-10

相关文档
最新文档