首届中国东南地区数学奥林匹克(有答案)

首届中国东南地区数学奥林匹克(有答案)
首届中国东南地区数学奥林匹克(有答案)

首届中国东南地区数学奥林匹克

第一天

(2004年7月10日 8:00 — 12:00 温州)

一、设实数a 、b 、c 满足2

2

2

3232

a b c ++=

,求证:39271a b c

---++≥ 二、设D 是ABC ?的边BC 上的一点,点P 在线段AD 上,过点D 作一直线分别与线段AB 、

PB 交于点M 、E ,与线段AC 、PC 的延长线交于点F 、N 。如果DE=DF , 求证:DM=DN

三、(1)是否存在正整数的无穷数列{}n a ,使得对任意的正整数n 都有2

122n n n a a a ++≥。 (2)是否存在正无理数的无穷数列{}n a ,使得对任意的正整数n 都有2122n n n a a a ++≥。

四、给定大于2004的正整数n ,将1、2、3、…、2

n 分别填入n ×n 棋盘(由n 行n 列方格构成)的方格中,使每个方格恰有一个数。如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”。求棋盘中“优格”个数的最大值。

第二天

(2004年7月11日 8:00 — 12:00 温州)

五、已知不等式63)cos()2sin 2364

sin cos a a π

θθθθ+-

+

-<++对于0,2πθ??

∈??

??

恒成立,求a 的取值范围。

六、设点D 为等腰ABC ?的底边BC 上一点,F 为过A 、D 、C 三点的圆在ABC ?内的弧上一点,过B 、D 、F 三点的圆与边AB 交于点E 。求证:CD EF DF AE BD AF ?+?=?

七、n 支球队要举行主客场双循环比赛(每两支球队比赛两场,各有一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛。但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛。如果4周内能够完成全部比赛,球n 的最大值。

注:A 、B 两队在A 方场地举行的比赛,称为A 的主场比赛,B 的客场比赛。

八、求满足

0x y y z z u

x y y z z u

---++>+++,且110x y z

u ≤≤、、、的所有四元有序整数组(,,,x y z u )的个数。

首届中国东南地区数学奥林匹克(答案)

一、解:

由柯西不等式,(

)2

222

(23)))))

9a b c ++≤+++=

所以,233a b c ++≤,所以

39271a b c ---++≥≥=

二、证明:

对AMD ?和直线BEP 用梅涅劳斯定理得:1(1)AP DE MB PD EM BA ??=, 对AFD ?和直线NCP 用梅涅劳斯定理得:

1(2)AC FN DP

CF ND PA ??=, 对AMF ?和直线BDC 用梅涅劳斯定理得:

1(3)AB MD FC

BM DF CA

??= (1)(2)(3)式相乘得:

1DE FN MD

EM ND DF

??=,又

所以有DM DN DM DE DN DE

=--, 所以DM=DN 。

三、解:

(1)假设存在正整数数列{}n a 满足条件。

212212221231

112,0,...,3,4,....,222n n n n n n n n n n n a a a a

a a a a n a a a a --++----1≥>∴

≤?≤?≤≤?= 又

2222111,2a a a a -≤?所以有2211

12n n n a a

a a --≤?对n=2,3,4,…成立。 2

2

2221222(2)(3)

(2)(3) (111111)

1

...2

22n n n n n n n n n a a a a a a a a a a -----+--+-++??????∴≤≤??≤≤?? ? ? ?

??????

?

所以122

22

21

12n n n n a a a

---??≤?

???

设212[2,2),k k a k N +∈∈,取3N k =+,则有

1

221

2

2

22

211

11121

12

2N k k N N N k k a a a a -++--++????≤?

? ???

??

,这与N a 是正整数矛盾。 所以不存在正整数数列{}n a 满足条件。

(2)(1)(2)

2

n n n a π

--=

就是满足条件的一个无理数数列。此时有2

12242n n n n n a a a a a +++=≥。

四、解:为叙述方便,如果一个方格中填的数大于它所在行至少2004个方格中所填的数,则称此格为行优的。由于每一行中填较小的2004个数的格子不是行优的,所以每一行中有n -2004个行优的。一个方格为“优格”一定是行优的,所以棋盘中“优格”个数不大于

(2004)n n -。

另一方面,将棋盘的第i (1,2,3,...,)i n =行,第 1...

2003i i i ++、、、(大于n 时取模n 的余数)列中的格子填入“*”。将1、2、3、…、2004n 填入有“*”的格子,其余的数填入

没有“*”的格子。没有“*”的格子中填的数大于有“*”的格子中任何一个数,所以棋盘上没有“*”的格子都为“优格”,共有(2004)n n -个。

此时每行有2004个格子有“*”,每列也有2004个格子有“*”(如图)。实际上,当12003i ≤≤时,第i 列的第1、2、…、i 、n+i -2003、n+i -2002、...、n 行中有“*”。当2004i ≥时,第i 列的第i -2003、i -2002、...、i 行中有“*”。所以每行有2004个格子有“*”,每列也有2004

所以棋盘中“优格”个数的最大值是(2004)n n -。

五、解:设sin cos x θθ+=,则2cos(),sin 21,4

2

x x x π

θθ?-=

=-∈? 从而原不等式可化为:26

(23)2(1)36a x x a x

++

--<+ 即2

622223340,2()3()0x ax x a x x a x a x x x

---++>+--+->,

()2

(23)0

(1)x x a x x ??

?-+->∈ ????

∴ 原不等式等价于不等式(1)

,230x x ?∈∴-

(1

)不等式恒成立等价于()

2

0x a x x

?+

-<∈?恒成立。

从而只要max 2

()()a x x x

?>+∈?。

又容易知道2()f x x x =+

在??

上递减,max 2

()3()x x x

?∴+=∈?。

所以3a >。

六、证明:设AF 的延长线交BDF 于K ,,AEF AKB AEF AKB ∠=∠∴?? ,因此

,EK BK AE AK

AF AB AF AB

==。于是要证(1), 只需证明:(2)CD BK DF AK BD AB ?+?=?

又注意到KBD KFD C ∠=∠=∠。 我们有1

sin 2

DCK S CD BK C ?=

??∠ 进一步有

1

sin 2

1

sin 2

ABD

ADK

S BD AB C S AK DF C ??=??∠=??∠

因此要证(2),只需证明ABD DCK ADK S S S ???=+(3) 而(3)//(4)ABC AKC S S BK AC ???=?

事实上由BKA FDB KAC ∠=∠=∠知(4)成立,得证。

七、解:(1)如右图所示:表格中有“*”, 表示该球队在该周有主场比赛,不能出访。 容易验证,按照表中的安排,6支球队四周 可以完成该项比赛。 (2)下面证明7支球队不能在四周

完成该项比赛。设(1,2,3,4,5,6,7)i S i =表示 i 号球队的主场比赛周次的集合。假设4周内 能完成该项比赛,则i S 是{1,2,3,4}的非空真子集。

一方面由于某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛,所

以(1,2,3,4,5,6,7)i S i =中,没有一个集是另一个的子集。

另一方面,设

{}{}{}{1},{1,2},{1,2,3},{2},{2,3},{2,3,4},{3},{1,3},{1,3,4}A B C ===

{}{}{}{4},{1,4},{1,2,4},{2,4},{3,4}D E F === 由抽屉原理,一定存在

,,,,{1,2,3,4,5}i j i j i j ≠∈,,i j S S 属于同一集合A 或B 或C 或D 或E 或F ,必有i j S S ?或j i S S ?发生。

所以,n 的最大值是6。

八、解:设(,,,)a b b c c d

f a b c d a b b c c d

---=

+++++。 记:{(,,,)|1,,,10,(,,,)0}A x y z u x y z u f x y z u ≤≤>,

:{(,,,)|1,,,10,(,,,)0}B x y z u x y z u f x y z u ≤≤<, :{(,,,)|1,,,10,(,,,)0}C x y z u x y z u f x y z u ≤≤=,

显然4()()()10card A card B card C ++=。

我们证明()()card A card B =。对每一个(,,,)x y z u A ∈,考虑(,,,)x u z y 。

(,,,)(,,,)000(,,,)0(,,,)x y y z z u u x

x y z u A f x y z u x y y z z u u x

x u u z z y y x

f x y z u x u z y B x u u z z y y x

----∈?>?+++>++++----?

+++

接着计算()card C 。

(,,,)()()()0()()()()

xz yu xz yu

x y z u C z x u y xz yu x y z u y z u x --∈?

=?---=++++

设1{(,,,)|,1,,,10}C x y z u x z x y z u ==≤≤, 2{(,,,)|,,1,,,10}C x y z u x z y u x y z u =≠=≤≤, 3{(,,,)|,,,1

,,,10}

C x y z u x

z y

u x z

y u x y z u =≠≠=≤≤。 满足,(,,,)a b c d a b c d ?=?为1、2、3、...、10的两两不同的无序四元组只有

1623,1824,11025,2634,2936,21045,?=??=??=??=??=??=? 3846,31056,41058?=??=??=?。

满足,,x y z u x z ==≠的四元组共90个,满足,,x z y u x z ==≠的四元组共90个,

312()4299090252,()1000,()900card C card C card C =??++===。

所以,()2152,()3924card C card A ==。

2007年中国西部数学奥林匹克试题及答案

2007年中国西部数学奥林匹克 第一天 11月10日 上午8:00-12:00 每题15分 一、已知{}1,2,3,4,5,6,7,8T =,对于,定义为A 中所有元素之和,问:T 有多少个非空子集A ,使得为3的倍数,但不是5的倍数? ,A T A ?≠?()S A ()S A 二、如图,⊙与⊙相交于点C ,D ,过点D 的一条直线分别与⊙,⊙相交于点A ,B ,点P 在⊙的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在 ⊙的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证: 的充要条件为P ,Q ,M ,N 四点共圆. 1O 2O 1O 2O 1O 2O OD MN ⊥ 三、设实数a ,b ,c 满足3a b c ++=.求证: 2221115411541154114 a a b b c c ++?+?+?+1≤. 四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得 12007 p OA q OB r OC ?+?+?

广西 南宁 第二天 11月11日 上午8:00-12:00 每题15分 五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍? 六、求所有的正整数n ,使得存在非零整数12,,,n x x x y ,L 2,n ,满足 ???=++=++. ,022211ny x x x x n n L L 七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心. 八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,.再从某个黑子起,按逆时针方向依次将黑子标以1,. 证明:存在连续个棋子(不计黑白), 它们的标号所成的集合为{,L 2,,n L n }1,2,,n L .

历届东南数学奥林匹克试题

目录 2004年东南数学奥林匹克 (2) 2005年东南数学奥林匹克 (4) 2006年东南数学奥林匹克 (6) 2007年东南数学奥林匹克 (9) 2008年东南数学奥林匹克 (11) 2009年东南数学奥林匹克 (14) 2010年东南数学奥林匹克 (16) 2011年东南数学奥林匹克 (18) 2012年东南数学奥林匹克 (20)

2004年东南数学奥林匹克 1.设实数a、b、c满足a2+2b2+3c2=32,求证:3?a+9?b+27?c≥1. 2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作 一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN. 3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. (2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. 4.给定大于2004的正整数n,将1,2,3,?,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值. 5.已知不等式√2(2a+3)ccc(θ?π4)+6ssnθ+ccsθ?2csn2θ<3a+ 6对于θ∈?0,π2?恒成立,求a的取值范围. 6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的 圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD?EE+DE?AE=AD?AE. 7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有 一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进

第十届中国东南地区数学奥林匹克试题解答

第十届东南数学奥林匹克解答 第一天 (2013年7月27日 上午8:00-12:00) 江西 鹰潭 1. 实数,a b 使得方程3 2 0x ax bx a -+-=有三个正实根.求32331 a a b a b -++的 最小值. (杨晓鸣提供) 解 设方程320x ax bx a -+-=的三个正实根分别为123,,x x x ,则由根与系数的关系可得 123122313123,,x x x a x x x x x x b x x x a ++=++==, 故0,0a b >>. 由2123122313()3()x x x x x x x x x ++≥++知:23a b ≥. 又由123a x x x =++≥= a ≥ 32331a ab a b -++23(3)31 a a b a a b -++= +332333113 a a a a a a b ++≥≥=≥++ 当9a b == 综上所述,所求的最小值为. 2. 如图,在ABC ?中,AB AC >,内切圆I 与BC 边切于点D ,AD 交内切圆I 于另一点E ,圆I 的切线EP 交BC 的延长线于点P ,CF 平行PE 交AD 于点 F ,直线BF 交圆I 于点,M N ,点M 在线段BF 上,线段PM 与圆I 交于另一 点Q .证明:ENP ENQ ∠=∠. (张鹏程提供) 证法1 设圆I 与,AC AB 分别切于点,S T 联结,,ST AI IT ,设ST 与AI 交 于点G ,则,I T A T T G A I ⊥⊥,从而有2AG AI AT AD AE ?==?,所以,,,I G E D 四点共圆. 又,IE PE ID PD ⊥⊥,所以,,,I E P D 四点共圆,从而,,,,I G E P D 五点共圆. 所以90IGP IEP ∠=∠=,即IG PG ⊥ ,

2004年首届中国东南地区数学奥林匹克竞赛考试试题

首届中国东南地区数学奥林匹克竞赛试题 第一天 (2004年7月10日 8:00 — 12:00 温州) 一、设实数a 、b 、c 满足2 2 2 3232 a b c ++= ,求证:39271a b c ---++≥ 二、设D 是ABC ?的边BC 上的一点,点P 在线段AD 上,过点D 作一直线分别与线段AB 、 PB 交于点M 、E ,与线段AC 、PC 的延长线交于点F 、N 。如果DE=DF , 求证:DM=DN 三、(1)是否存在正整数的无穷数列{}n a ,使得对任意的正整数n 都有2 122n n n a a a ++≥。 (2)是否存在正无理数的无穷数列{}n a ,使得对任意的正整数n 都有2 122n n n a a a ++≥。 四、给定大于2004的正整数n ,将1、2、3、…、2 n 分别填入n ×n 棋盘(由n 行n 列方格构成)的方格中,使每个方格恰有一个数。如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”。求棋盘中“优格”个数的最大值。 第二天 (2004年7月11日 8:00 — 12:00 温州) 五、已知不等式63)cos()2sin 2364 sin cos a a π θθθθ+- + -<++对于0,2πθ?? ∈?? ?? 恒成立,求a 的取值范围。 六、设点D 为等腰ABC ?的底边BC 上一点,F 为过A 、D 、C 三点的圆在ABC ?内的弧上一点,过B 、D 、F 三点的圆与边AB 交于点E 。求证:CD EF DF AE BD AF ?+?=? 七、n 支球队要举行主客场双循环比赛(每两支球队比赛两场,各有一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛。但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛。如果4周内能够完成全部比赛,球n 的最大值。 注:A 、B 两队在A 方场地举行的比赛,称为A 的主场比赛,B 的客场比赛。 八、求满足 0x y y z z u x y y z z u ---++>+++,且110x y z u ≤≤、、、的所有四元有序整数组(,,,x y z u )的个数。

2017中国西部数学邀请赛试题及解析

2017中国西部数学邀请赛 1.设素数p 、正整数n 满足()2 2 1 1n k p k =+∏.证明:2p n <. 1.按照 ()2 1 1n k k =+∏中的因子所含p 的幂次分情形讨论. (1)若存在()1k k n ≤≤,使得()2 2 1p k +,则221p n ≤+. 于是,2p n ≤ <. (2)若对任意的()1k k n ≤≤,( ) 2 2 1p k +?,由条件,知存在1j k n ≤≠≤,使得()21p j +且() 2 1p k +. 则( )22 p k j -. 于是,|()()p k j k j -+. 当|()p k j -,则12p k j n n ≤-≤-<;当|()p k j +,则1212p k j n n n n ≤+≤+-=-<, 综上,2p n <. 2、已知n 为正整数,使得存在正整数12,,,n x x x 满足:()12 12100n n x x x x x x n +++=,求n 的最 大可能值. 2、n 的最大可能值为9702, 显然:由已知等式得 1n i i x n =≥∑,所以:1 100n i i x =≤∏ 又等号无法成立,则 1 99n i i x =≤∏ 而 ()()()1 1 1111111n n n n i i i i i i i i x x x x n =====-+≥-+=-+∑∑∏∏ 则 1 1 198n n i i i i x x n n ==≤+-≤+∑∏99(98)10099989702n n n ?+?≤?=… 取123970299,1x x x x =====,可使上式等号成立

2019年第十六届中国东南地区数学奥林匹克高一年级试题答案及评析

1.求最大的实数k ,使得对任意正数a ,b ,均有2()(1)(1)a b ab b kab +++≥. 2.如图,两圆1Γ,2Γ交于A ,B 两点,C ,D 为1Γ上两点,E ,F 为2Γ上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1Γ,2Γ分别交于点()K C ≠,()L F ≠,DE 与1Γ,2Γ分别交于点()M D ≠,()N E ≠. 证明:若ALM ?的外接圆与BKN ?的外接圆相切,则这两个外接圆的半径相等. 3.函数**:f →N N 满足:对任意正整数a ,b ,均有()f ab 整除(){} max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论. 4.将一个25?方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示. 现有一个固定放置的918?方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由.

5.称集合{1928,1929,1930,,1949}S =的一个子集M 为“红色”的子集,若M 中任意两个不同的元素之和均不被4整除.用x ,y 分别表示S 的红色的四元子集的个数,红色的五元子集的个数.试比较x ,y 的大小,并说明理由. 6.设a ,b ,c 为给定的三角形的三边长.若正实数x ,y ,y 满足1x y z ++=,求axy byz czx ++的最大值. 7.设ABCD 为平面内给定的凸四边形.证明:存在一条直线上的四个不同的点P ,Q ,R ,S 和一个正方形A B C D '''',使得点P 在直线AB 与A B ''上,点Q 在直线BC 与B C ''上,点R 在直线CD 与C D ''上,点S 在直线DA 与D A ''上. 8.对于正整数1x >,定义集合()(){},,,mod 2x p S p p x p x v x αααα=≡为的素因子为非负数且,其中()p v x 表示x 的标准分解式中素因子p 的次数,并记()f x 为x S 中所有元素之和.约定()11f =. 今给定正整数m .设正整数数列1a ,2a ,,n a ,满足:对任意整数n m >,()()(){}11max ,1,,n n n n m a f a f a f a m +??=++. (1)证明:存在常数A ,B ()01A <<, 使得当正整数x 有至少两个不同的素因子时,必有()f x Ax B <+; (2)证明:存在正整数Q ,使得对所有*n ∈N ,n a Q <. 第十六届中国东南地区数学奥林匹克 参考答案 1.原不等式 ()() 2221(1)a b b a b b kab ?++++≥ ()221(1)b ab b b kb a ???++++≥ ?? ? 单独考虑左边,左边可以看成是一个a 的函数、b 为参数,那么关于a 取最小值的时候有 ()()2231(1)1(1)(1)b ab b b b b b a ????++++≥++=+ ? ? ????? 于是我们只需要取32(1)k b b ?≤+即可.

2006年第3届中国东南数学奥林匹克试题及答案

第三届中国东南地区数学奥林匹克 第一天 (2006年7月27日, 8:00-12:00, 南昌) 一、 设0,a b >>2()2()4a b x ab f x x a b ++= ++.证明:存在唯一的正数x ,使得 113 3 3 ()()2 a b f x +=. 二、 如图所示,在△ABC 中,90,,ABC D G ∠=?是 边CA 上的两点,连接BD ,BG 。过点A ,G 分别作BD 的垂线,垂足分别为E ,F ,连接CF 。若BE =EF ,求证:ABG DFC ∠=∠。 三、 一副纸牌共52张,其中“方块”、“梅花”、“红心”、“黑桃”每种 花色的牌各13张,标号依次是2,3,,10,,,,J Q K A ,其中相同花色、相邻标号的两张牌称为“同花顺牌”,并且A 与2也算是顺牌(即A 可以当成1使用). 试确定,从这副牌中取出13张牌,使每种标号的牌都出现,并且不含“同花顺牌”的取牌方法数。 四、 对任意正整数n ,设n a 是方程3 1x x n +=的实数根,求证: (1) 1n n a a +>; (2) 2 11 (1)n n i i a i a =<+∑。 第二天 (2006年7月28日, 8:00-12:00, 南昌) 五、 如图,在ABC ?中,60A ∠=?,ABC ?的内切圆I 分 别切边AB 、AC 于点D 、E ,直线DE 分别与直线BI 、 CI 相交于点F 、G ,证明:1 2 FG BC =。 六、 求最小的实数m ,使得对于满足a +b +c =1的任意正实数a ,b ,c ,都有333222(61m a b c a b c ++≥+++) ()。 七、 (1)求不定方程2()mn nr mr m n r ++=++的正整数解(,,)m n r 的组数。 (2)对于给定的整数k >1,证明:不定方程()mn nr mr k m n r ++=++至 少有3k +1组正整数解(,,)m n r 。 B A

2009第六届中国东南地区数学奥林匹克试题及解答

第六届中国东南地区数学奥林匹克 第一天 (2009年7月28日 上午8:00-12:00) 江西·南昌 1. 试求满足方程2221262009x xy y -+=的所有整数对(,)x y 。 2. 在凸五边形ABCDE 中,已知AB =DE 、BC =EA 、AB EA ≠,且B 、C 、D 、E 四点共圆。证明:A 、B 、C 、D 四点共圆的充分必要条件是AC =AD 。 3. 设,,x y z R +∈,222(), (), ()a x y z b y z x c z x y =-=-=-。求证: 2222()a b c ab bc ca ++≥++。 4. 在一个圆周上给定十二个红点;求n 的最小值,使得存在以红点为顶点的n 个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边。 第二天 (2009年7月29日 上午8:00-12:00) 江西·南昌 5. 设1、2、3、…、9的所有排列129(,,,)X x x x = 的集合为A ;X A ?∈,记 1239()239f X x x x x =++++ ,{()}M f X X A =∈;求M 。(其中M 表示集合M 的元素个数) 6. 已知O 、I 分别是ABC ?的外接圆和内切圆。证明:过O 上的任意一点D ,都可以作一个三角形DEF ,使得O 、I 分别是DEF ?的外接圆和内切圆。 7. 设(2)(2)(2) (,,)131313x y z y z x z x y f x y z x y y z z x ---= ++++++++, 其中,,0x y z ≥ ,且 1x y z ++=。求(,,)f x y z 的最大值和最小值。 8. 在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T 型五方连块? F E I O B C A D

首届中国东南地区数学奥林匹克(有答案)

首届中国东南地区数学奥林匹克 第一天 (2004年7月10日 8:00 — 12:00 温州) 一、设实数a 、b 、c 满足2 2 2 3232 a b c ++= ,求证:39271a b c ---++≥ 二、设D 是ABC ?的边BC 上的一点,点P 在线段AD 上,过点D 作一直线分别与线段AB 、 PB 交于点M 、E ,与线段AC 、PC 的延长线交于点F 、N 。如果DE=DF , 求证:DM=DN 三、(1)是否存在正整数的无穷数列{}n a ,使得对任意的正整数n 都有2 122n n n a a a ++≥。 (2)是否存在正无理数的无穷数列{}n a ,使得对任意的正整数n 都有2122n n n a a a ++≥。 四、给定大于2004的正整数n ,将1、2、3、…、2 n 分别填入n ×n 棋盘(由n 行n 列方格构成)的方格中,使每个方格恰有一个数。如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”。求棋盘中“优格”个数的最大值。 第二天 (2004年7月11日 8:00 — 12:00 温州) 五、已知不等式63)cos()2sin 2364 sin cos a a π θθθθ+- + -<++对于0,2πθ?? ∈?? ?? 恒成立,求a 的取值范围。 六、设点D 为等腰ABC ?的底边BC 上一点,F 为过A 、D 、C 三点的圆在ABC ?内的弧上一点,过B 、D 、F 三点的圆与边AB 交于点E 。求证:CD EF DF AE BD AF ?+?=? 七、n 支球队要举行主客场双循环比赛(每两支球队比赛两场,各有一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛。但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛。如果4周内能够完成全部比赛,球n 的最大值。 注:A 、B 两队在A 方场地举行的比赛,称为A 的主场比赛,B 的客场比赛。 八、求满足 0x y y z z u x y y z z u ---++>+++,且110x y z u ≤≤、、、的所有四元有序整数组(,,,x y z u )的个数。

2018年第十五届东南地区数学奥林匹克试题

The 15th China Southeast Mathematical Olympiad 福建,泉州 第一天(2018年7月30日8:00-12:00) 高一年级试卷 1. 设c 是实数,若存在[]1,2x ∈,使得max ,25c c x x x x ? ?+++≥???? .求c 的取值范围.这里{}max ,a b 表示实数a 、b 中的较大者. 2. 在平面直角坐标系中,若某点的横坐标与纵坐标均为有理数,则称该点为有理点,否则称之为无理点.在平面直角坐标系中任作一个五边形,在它的五个顶点中,有理点和无理点哪个多?请证明你的结论. 3. 锐角ABC △内接于⊙O ()AB AC <,BAC ∠的平分线于BC 相交于点T ,AT 的中点是M ,点P 在ABC △内,满足PB PC ⊥.过P 作AP 的垂线,D 、E 是该垂线上不同于P 的两点,满足BD BP =,CE CP =.若直线AO 平分线段DE .证明:直线AO 与AMP △的外接圆相切. 4. 是否存在集合*A N ?,使得对每个正整数n ,{},2,3,,15A n n n n ?恰含有一个元素?证明你的结论.

The 15th China Southeast Mathematical Olympiad 福建,泉州 第二天(2018年7月31日8:00-12:00) 高一年级试卷 5. 设{}n a 为非负实数列.定义21k k i i X a ==∑,212k k k i i Y a i =??=???? ∑,1,2, k =.证明:对任意正整数n ,有100n n n n i i i i X Y Y X ?==≤? ≤∑∑.这里,[]x 表示不超过实数x 的最大整数. 6. 在ABC △中,AB AC =,⊙O 的圆心是边BC 的中点,且与AB 、AC 分别相切于点E 、F .点G 在⊙O 上,使得AG EG ⊥,过G 作⊙O 的切线,与AC 相交于点K .证明:直线BK 平分线段EF . 7. 一次会议共有24人参加,每两人之间或者握手一次,或者不握手.会议结束后发现,总共出现了216次握手,且任意握过手的两个人P 、Q ,在剩下的22人中,恰与P 、Q 之一握过手的不超过10人.一个朋友圈指的是会议中3个两两之间握过手的人所构成的集合.求这24个人中朋友圈个数的最小可能值. 8. 设m 为给定的正整数,对正整数l ,记()()()()4142451m l A l l l =+?+? ?+.证明:存在无穷多个正整数l ,使得55 m l l A 且515m l +不整除l A .并求出满足条件的l 的最小值.

2019年第十六届中国东南地区数学奥林匹克高一试题

第十六届中国东南地区数学奥林匹克 1. 求最大的实数k ,使得对任意正数a ,b ,均有()()()2 11a b ab b kab +++≥. 2. 如图,两圆1P ,2P 交于A ,B 两点,C ,D 为1P 上两点,E ,F 为2P 上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1P ,2P 分别交于点()K C ≠,()L F ≠,DE 与1P ,2P 分别交于点()M D ≠,()N E ≠. 证明:若ALM ?的外接圆与BKN ?的外接圆相切,则这两个外接圆的半径相等. 3. 函数:f N N **→满足:对任意正整数a ,b 均有()f ab 整除(){} max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论. 4. 将一个25?方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示. 现有一个固定放置的918?方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由. 第十六届中国东南地区数学奥林匹克 江西g 吉安 高二年级 第一天

2019年7月30日 上午8:00-12:00 1. 对任意实数a ,用[]a 表示不超过a 的最大整数,记{}[] a a a =-.是否存在正整数m ,n 及1n +个实数0x ,1x ,…,n x ,使得0428x =,1928n x =, 110105k k k x x x m +????=++???????? (0k =,1,…,1n -)成立?证明你的结论. 2. 如图,在平行四边形中ABCD ,90BAD ∠≠?,以B 为圆心,BA 为半径的圆与AB ,CB 的延长线分别相交于点E ,F ,以D 为圆心,DA 为半径的圆与AD ,CD 的延长线分别相交于点M ,N ,直线EN ,FM 相交于点G ,直线AG ,ME 相交于点T ,直线EN 与圆D 相交于点()P N ≠,直线MF 与圆B 相交于点()Q F ≠.证明:G ,P ,T ,Q 四点共圆. 3. 今有n 人排成一行,自左至右按1,2,…,n 的顺序报数,凡序号为平方数者退出队伍;剩下的人自左至右再次按1,2,3,…的顺序重新报数,凡序号为平方数者退出队伍;如此继续.在此过程中,每个人都将先后从队伍中退出. 用()f n 表示最后一个退出队伍的人在最初报数时的序号.求()f n 的表达式(用n 表示);特别地,给出()2019f 的值. 4. 在55?矩阵X 中,每个元素为0或1.用,i j x 表示中第行第列的元素(,,…,).考虑的所有行、列及对角线上的元有序数组(共个数组): (,1i x ,,2i x ,...,,5i x ),(,5i x ,,4i x ,...,,1i x ,)(1i =,2, (5) (1,j x ,2,j x ,...,5,j x ),(5,j x ,4,j x ,...,1,j x )(1j =,2, (5) (1,1x ,2,2x ,…,5,5x ,),(5,5x ,4,4x ,…,1,1x ), (1,5x ,2,4x ,…,5,1x ),(5,1x ,4,2x ,…,1,5x ). 若这些数组两两不同,求矩阵X 中所有元素之和的可能值.

2005年第2届中国东南数学奥林匹克试题及答案

第2届中国东南地区数学奥林匹克 第1天 (2005年7月13日8:00~12:00 福州) 1 (1)设a R ∈,求证抛物线()1222+-++=a x a x y 都经过一个定点,且顶点都 落在一条抛物在线。 (2)若关于x 的方程()22210x a x a ++-+=有两个不等实根,求其较大根的取 值范围。 2 如图,圆O (圆心为O )与直线l 相离,作OP l ⊥,P 为垂足。设点Q 是l 上任意一点(不与点P 重合),过点Q 作圆O 的两条切线QA 和QB ,A 和B 为切点,AB 与OP 相交于点K 。过点P 作PM QB ⊥,PN QA ⊥,M 和N 为垂足。求证:直线MN 平分线段KP 。 3 设n 是正整数,集合{1,2,3,,2}M n = 。求最小的正整数k ,使得对于M 的任何一 个k 元子集,其中必有4个互不相同的元素之和等于4n +1。 4 试求满足2222005a b c ++=,且a b c ≤≤的所有三元正整数组(a , b , c )。 第2天 (2005年7月14日8:00~12:00福州) 5 已知直线l 与单位圆S 相切于点P ,点A 与圆S 在l 的同侧,且A 到l 的距离为h (h >2),从点A 作S 的两条切线,分别与l 交于B , C 两点。求线段PB 与线段PC 的长度之乘积。 6 将数集12{,,...,}n A a a a =中所有元素的算术平均值记为()P A , (12...()n a a a P A n +++=)。若B 是A 的非空子集,且()()P B P A =,则称B 是A 的一个“均衡子集”。试求数集{1,2,3,4,5,6,7,8,9}M =的所有“均衡子集”的个数。 7 (1)讨论关于x 的方程|1||2||3|x x x a +++++=的根的个数。 (2)设12,,...,n a a a 为等差数列,且12n a a a ++???+=1211a a ++++???+1n a += 12222507n a a a -+-+???+-=求项数n 的最大值。 8 设0,,2 π αβγ<< ,且3 3 3 s i n s i n s i n 1αβγ+ += , 求证:2 2 2 tan tan tan 2 αβγ++≥

中国西部数学奥林匹克试题及答案(广西南宁,11月10日、11日)

2007年中国西部数学奥林匹克(广西南宁,11月10日) 第一天 11月10日 上午8:00-12:00 每题15分 一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ?≠?,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数? 二、如图,⊙1O 与⊙2O 相交于点C ,D ,过点D 的一条直线分别与⊙1O ,⊙2O 相交于点A ,B ,点P 在⊙1O 的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙2O 的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证:OD MN ⊥的充要条件为P ,Q ,M ,N 四点共圆. 三、设实数a ,b ,c 满足 3a b c ++=.求证: 22211115411541154114 a a b b c c ++≤-+-+-+. 四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得 12007 p OA q OB r OC ?+?+?

六、求所有的正整数n ,使得存在非零整数12,,,n x x x L y ,,满足 七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心. 八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,2,,n L .再从某个黑子起,按逆时针方向依次将黑子标以1,2,,n L . 证明:存在连续n 个棋子(不计黑白), 它们的标号所成的集合为{}1,2,,n L . 2007西部数学奥林匹克 解 答 一、已知{}1,2,3,4,5,6,7,8T =,对于,A T A ?≠?,定义()S A 为A 中所有元素之和,问:T 有多少个非空子集A ,使得()S A 为3的倍数,但不是5的倍数? 解 对于空集?,定义()0S ?=.令012{3,6},{1,4,7},{2,5,8}T T T ===.对于A T ?,令001122,,A A T A A T A A T ===I I I ,则 01212()()()()(mod3)S A S A S A S A A A =++≡-, 因此,3()S A 当且仅当12(mod3)A A ≡.有以下几种情况: 从而满足3()S A 的非空子集A 的个数为 20003303311223333333333332()1C C C C C C C C C C C C +++++-=87. 若3()S A ,5()S A ,则15()S A . 由于()36S T =,故满足3()S A ,5()S A 的()S A 的可能值为15,30.而 15=8+7=8+6+1=8+5+2=8+4+3=8+4+2+1 =7+6+2=7+5+3=7+5+2+1=7+4+3+1 =6+5+4=6+5+3+1=6+4+3+2 =5+4+3+2+1, 36-30=6=5+1=4+2=3+2+1. 故满足3()S A ,5()S A ,A ≠?的A 的个数为17. 所以,所求的A 的个数为87-17=70.

2011年中国西部数学奥林匹克试题

2011年中国西部数学奥林匹克试题 江西 玉山 第一天 10月29日 上午 8:00~12:00 每题15分 1、已知0,1x y <<,求 (1) ()(1)(1) xy x y x y x y --+--的最大值. 2、设集合{1,2,,2011}M ?,满足:在M 的任意三个元素中,都可以找到两个元 素,a b 使得|a b 或|b a .求||M 的最大值(其中||M 表示集合M 的元素个数). 3、给定整数2n ≥, (I )求证:可以将集合{1,2, ,}n 的所有子集适当地排列为122,, ,n A A A ,使得i A 与 1i A +的元素个数恰相差1,其中1,2,3, ,2n i =,且121n A A +=; (II)对于满足(I )中条件的子集122,, ,n A A A ,求21 (1)()n i i i S A =-∑的所有可能值,其中 ()i i x A S A x ∈=∑,()0S ?=. 4、如图,线段AB 、CD 是⊙O 中长度不相等的两条弦,AB 与CD 的交点为E ,⊙I 内切⊙O 于点F ,且分别与弦AB 、CD 相切于点G 、H .过点O 的直线l 分别交AB 、CD 于点P 、Q ,使得EP EQ =.直线EF 与直线l 交于点M ,求证:过点M 且与AB 平行的直线是⊙O 的切线.

第二天 10月30日 上午 8:00~12:00 每题15分 5、是否存在奇数3n ≥及n 个互不相同的质数12,, ,n p p p ,使得 111(1,2,,,)i i n p p i n p p +++==其中都是完全平方数?请证明你的结论. 6、设,,0a b c >,求证:2222 222()()()()()()()()()()a b b c c a a b c a c b a b a c b c b a a b c ----++≥++++++++. 7、如图,在ABC ?中,AB AC >,内切圆⊙I 于边BC 、CA 、AB 分别相切于点D 、E 、F ,M 是边BC 的中点,AH BC ⊥于点H .BAC ∠的平分线AI 分别于直线DE 、DF 交于点K 、L . 求证:,,,M L H K 四点共圆. 8、求所有的整数对(,)a b ,使得对任意正整数n ,都有1 |()n n n a b ++.

历届数学奥林匹克参赛名单

1985-2012年国际数学奥林匹克中国参赛人数按地区、学校统计 国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。由罗马尼亚罗曼(Roman)教授发起。1959年7月在罗马尼亚古都布拉索举行第一届竞赛。 我国第一次派学生参加国际数学奥林匹克是1985年,当时仅派两名学生,并且成绩一般。我国第一次正式派出6人代表队参加国际数学奥林匹克是1986年。 2012年第53届国际数学奥林匹克竞赛将于今年7月4日至16日在阿根廷马德普拉塔(Mar del Plata , Argentina)举行。入选国家队的六名学生是:(按选拔成绩排名) 陈景文(中国人民大学附属中学)、吴昊(辽宁师范大学附属中学)、左浩(华中师范大学第一附属中学)、 佘毅阳(上海中学)、刘宇韬(上海中学)、王昊宇(武钢三中) --------------------------------------------------------- 历届IMO的主办国,总分冠军及参赛国(地区)数为: 年份届次东道主总分冠军参赛国家(地区)数 1959 1 罗马尼亚罗马尼亚7 1960 2 罗马尼亚前捷克斯洛伐克5 1961 3 匈牙利匈牙利 6 1962 4 前捷克斯洛伐克匈牙利7 1963 5 波兰前苏联8 1964 6 前苏联前苏联9 1965 7 前东德前苏联8 1966 8 保加利亚前苏联9 1967 9 前南斯拉夫前苏联13 1968 10 前苏联前东德12 1969 11 罗马尼亚匈牙利14 1970 12 匈牙利匈牙利14 1971 13 前捷克斯洛伐克匈牙利15 1972 14 波兰前苏联14 1973 15 前苏联前苏联16 1974 16 前东德前苏联18 1975 17 保加利亚匈牙利17 1976 18 澳大利亚前苏联19

2008年中国西部数学奥林匹克解答

2008年中国西部数学奥林匹克 (2008年11月1日 8:00-12:00) 贵州省贵阳市 每题15分 1. 实数数列}{n a 满足:1,00≠a ,011a a -=,)(11n n 1n a a a --=+,n=1,2,…. 证明:对任意正整数n ,都有 )1 11( n 1010a a a a a a n +++ =1. 证明:由条件可知1-a n+1=a n (1-a n )=a n a n-1(1-a n-1)=…=a n …a 1(1-a 1)=a n …a 1a 0,即a n+1= 1-a 0a 1…a n ,n=1,2,…. 下面对n 归纳来证明 当n=1时,命题显然成立.假设n =k 时,命题成立,对n=k+1的情形有 )1111( 1 k k 101k 10++++++a a a a a a a =k 2101k 10k 210)1 11( a a a a a a a a a a a a k +++++ =k 2101a a a a a k ++=1. 故命题对n=k+1成立. 所以,对任意正整数n, 2. 在ABC ?中,AC AB =,其 内切圆⊙I 切边AB CA BC ,, 于点F E D ,,,P 为弧EF (不含点D 的弧)上一点. 设线段 BP 交⊙I 于另一点Q ,直线 EQ EP ,分别交直线BC 于点N M ,.证明:

(1) M B F P ,,,四点共圆; (2) BP BD EN EM =. 证明: (1) 连EF,由条件可知EF//BC,故 ∠ABC=∠AFE=∠AFP+∠PFE=∠PEF+∠PFE=180?-∠FPE. 所以,P,F,B,M 四点共圆. (2) 利用正弦定理,EF//BC 及P,F,B,M 四点共圆可知 EMN ENM EN EM ∠∠=sin sin =)sin(sin PFB FEN ∠-∠π=PFB FPB ∠∠sin sin =BP BF . 结合BF=BD 即可知命题成立. 3.设整数2≥m ,m 21,,a a a ,都是正整数.证明:存在无穷多个正整数n ,使得数n n n m a a a ?++?+?m 2121 都是合数. 证明:取数a 1+2a 2+…+ma m 的质因子p,由Fermart 小定理可知对任意1≤k ≤m,都有k p ≡k(mod p),所以,对任意正整数n,都有 a 1?n p 1+a 2?n p 2+…+a m ?n p m ≡a 1+2a 2+…+ma m ≡0(mod p), 从而,数a 1?n p 1+a 2?n p 2+…+a m ?n p m (n=1,2,…)都是合数. 4.设整数2≥m ,a 为正实数,b 为非零实数,数列} {n x 定义如下:b x =1, ,2,1,1=+=+n b x a x m n n .证明: (1) 当b <0且m 为偶数时,数列}{n x 有界的充要条件是1-m ab ≥-2; (2) 当b <0且m 为奇数,或b >0时,数列} {n x 有界的充要条件是1 -m ab ≤m m m m 1 )1(--. 证明:(1) 当b<0且m 为偶数时,如果ab m-1<-2,那么首先有ab m +b>-b>0,于是a(ab m +b)m +b>ab m +b>0,即x 3>x 2>0.利用ax m +b 在(0,+∞)上单调增可知数列} {n x 的每一项都比前一项大,并且从第二项起每一项都大于-b. 考察数列} {n x 中的连续三项x n ,x n+1,x n+2,n=2,3,…,我们有

第十六届东南地区数学奥林匹克(高二年级)

第一天 1.对任意实数a ,用[a ]表示不超过a 的最大整数,记{a }=a ?[a ]. 是否存在正整数m,n 及n +1个实数x 0,x 1,...,x n ,使得 x 0=428,x n =1928,x k +110=[x k 10]+m +{x k 5 }(k =0,1,···,n ?1)成立?证明你的结论. 2.如图,在平行四边形ABCD 中,∠BAD =90?,以B 为圆心,BA 为半径的圆与AB ,CB 的延长线分别相交于点E,F ,以D 为圆心,DA 为半径的圆与AD,CD 的延长线交于点M,N ,直线EN,F M 相交于点G ,直线AG,ME 相交于点T ,直线EN 与圆D 相交于点P (=N ),直线MF 与圆B 相交于点Q (=F ),证明:G,P,T,Q 四点共圆. 3.今有n 人排成一行,自左至右按1,2,···,n 的顺序报数,凡序号为平方数者退出队伍;剩下的人自左至右再按1,2,3,···的顺序重新报数,凡序号为平方数者退出队伍;如此继续.在此过程中,每个人都将先后从队伍中退出. 用f (n )表示最后一个退出队伍的人在最初报数是的序号.求f (n )的表达式(用n 表示);特别地,给出f (2019)的值. 4.在5×5矩阵X 中,每个元素为0或1.用x i,j 表示X 中第i 行第j 列的元素(i,j =1,2,···,5).考虑X 的所有行、列及对角线上的五元有序数组(共24个数组): (x i,1,x i,2,...,x i,5),(x i,5,x i,4,...,x i,1)(i =1,2, (5) (x 1,j ,x 2,j ,...,x 5,j ),(x 5,j ,x 4,j ,...,x 1,j )(j =1,2, (5) (x 1,1,x 2,2,···,x 5,5),(x 5,5,x 4,4,···,x 1,1) (x 1,5,x 2,4,···,x 5,1),(x 5,1,x 4,2,···,x 1,5) 若这些数组两两不同,求矩阵X 所有元素之和的可能值.

2007年第4届中国东南数学奥林匹克试题及答案

第四届中国东南地区数学奥林匹克 第一天 (2007年7月27日, 8:00-12:00, 浙江g 镇海) 一、 试求实数a 的个数,使得对于每个a ,关于x 的三次方程31x ax a =++都 有满足1000x <的偶数根。 二、 如图,设C 、D 是以O 为圆心、AB 为直 径的半圆上的任意两点,过点B 作O e 的切线交直线CD 交于P ,直线PO 与直线CA 、AD 分别交于点E 、F 。证明:OE =OF 。 三、 设*min i i a k k N k ?? =+∈???? ,试求 [][]2212n n S a a a ??=+++??L 的值,其中 []2, n x ≥表示不超过x 的最大整数。 四、 求最小的正整数n ,使得对于满足条件1 2007n i i a ==∑的任一具有n 项的正整 数数列12,,,n a a a L ,其中必有连续的若干项之和等于30。 第 二 天 (2007年7月28日, 8:00-12:00, 浙江g 镇海) 五、 设函数()f x 满足:()()121f x f x x +-=+(x R ∈),且当[]0,1x ∈时有 ()1f x ≤,证明:当x R ∈时,有()22f x x ≤+。 六、 如图,直角三角形ABC 中,D 是斜边AB 的 中点,MB AB ⊥,MD 交AC 于N ;MC 的延长线交AB 于E 。证明:DBN BCE ∠=∠。 七、 试求满足下列条件的三元数组(a , b , c ): (i) a

相关文档
最新文档