多值函数的单值化方法与技巧

多值函数的单值化方法与技巧
多值函数的单值化方法与技巧

多值函数Lnz w =的单值化方法与技巧

1 引言

在复变函数中,多值函数是较为复杂的函数,也是较难理解的函数,对于多值函数、多值函数单值化以及在支点、支割线判定上对于教学者和初学者来说都是一个难点,初学者更不易掌握.所以系统的对多值函数单值化方法与技巧做一下研究是很有必要的.我主要是针对多值函数Lnz w =的单值化方法与技巧来做一下详细研究与总结.

多值函数对我们来说是棘手的,然而我们经常不可避免地会遇到它,例如在研究代数函数时就会遇到,但前人在这方面已做了详细的研究.对于多值函数Lnz w =的单值化方法与技巧.我们有一些传统的方法,比如割破z 平面法.其主要是在z 平面上从原点0z =起割破负实轴的区域D 内,可以得到Lnz w =的无穷多个不同的单值解析分支函数.

下面就针对这个课题详细进行探讨一下.

2 预备知识

概念1 支点——设()w f z =是多值函数,a 是z 平面上一点,如果z 在a 点的充分小的邻域内绕a 的任一简单闭曲线一周后,()w f z =从一支进入另一支,即,从它在曲线上一点的任一值连续变动到其他一值,则称a 是()w f z =的一个支点.

概念2 支割线——用来割破z 平面,借以分出多值函数()w f z =的单值解析分支函数的割线,叫做()f z 的支割线.

3 多值函数w Lnz =的单值化方法与技巧

3.1 割破平面法

这个方法是很传统的方法,它的步骤是:首先确定多值函数的支点,再在复平面上以连接支点 的曲线作支割线得一区域,然后在这一区域内多值函数分成了单值解析分支函数.

ln arg 2ln 2w Lnz z i z k i z k i ππ==++=+ (k Z ∈). (i ) 其中,ln ln arg z z i z =+(ln z 是Lnz 的主值) (1) 确定w Lnz =的支点

在0或∞的充分“小”的邻域内,任作一简单连续曲线C 围绕0或∞.

根据Argz 的连续变化情况,当一点z 从C 上一点1z 出发沿C 连续变动一周时,Lnz 从它在1

z 的任一值连续变动到其他一值.这可以由(i )式看出,(任何不是零的复数有无穷多个对数,其中任意两个相差2π的整数倍).

所以由预备知识概念1,0或∞称为对数函数w Lnz =的支点. (2) 对w Lnz =做支割线,确定区域

一般在复平面上,取连接0及∞的任一条无界简单连续曲线1K 作为割线隔开z 平面.即由预备知识概念2可知1K 为支割线.

w Lnz =就是取这样的1K 作为支割线的,且通常是取负实轴.

现在确定区域:设区域

11D C K =-,并且11z D ∈,

则1D 即为所确定区域. (3) 将w Lnz =单值化

在1D 内任意取定一点0z ,并指定0z 的一个辐角值,则在1D 内的每一点z ,皆可由0z 的辐角依连续变化而唯一确定z 的辐角.

若支割线从原点割破负实轴,C 是1D 内任一简单闭曲线,C 不会穿过负实轴,它的内部不包含原点0z =,当变点z 从0z 绕C 一周后,这时arg z 又回到起点的辐角0arg z ,而z 的像点

()ln arg 2k k w w z z i z k i π==++,

(k Z ∈) 则画出一条闭曲线而回到原来的位置()0k w z ,(如图1).画出的闭曲线是包含在w 平面上的宽为

2π的带形域k B 内

k B : ()()()2121,k v k k Z ππ-<<+∈

这些带形域互不相交而填满w 平面.

因此,在1D 内可得到的无穷多个单值解析分支函数,记作

()()ln ln arg 2k k w z z i z k π==++,

(k Z ∈). 同理,w Lnz =的支割线也可以取正实轴割破z 平面,方法同上.

图1

例1 将函数Lnz 沿正实轴(包括原点)割破z 平面,试在所得区域D 内取定函数Lnz 在正实轴上岸的点1z =处取12ln i π=的一个解析分支,并求这一分支在1z =-处的值及正实轴下岸的点

1z =处的值(区域的边界可以看作是有不同两岸,上、下或左、右,且同一单值解析分支在两岸所

取的值不同).如图2

图2

解 因12ln i π=,从而arg12π=,所以取定的单值解析分支函数为

[]ln ln 2L z z i Argz i π=++,z D ∈.

([]L Argz 表示Argz 在曲线L 上的改变量,如下同义),在D 内逆时针作以正实轴上岸的点1z =为起点、分别以1z =-和正实轴下岸的点1z =为终点的简单曲线1L 和2L ,则

[]1

L

Argz π=,[]2

2L Argz π=,

()[]1

ln 1ln 123L i Argz i i ππ-=-++=,

[]2

ln1ln 124L i Argz i i ππ=++=下.

这里接下来简单介绍一下具有多个有限支点的对数函数,方法不是很难理解的,与w Lnz =的 单值化方法基本相同.它也是先确定函数的支点,只不过是有多个支点,再适当连接支点作支割线来割破z 平面,最后在z 平面上以此支割线为边界的区域D 内就能分出该函数的单值解析分支.因为,在D 内变点z 不能穿过支割线,也就不能单独绕任一个支点转一周,函数就不能在D 内同一点取不同的值.看如下例题

例2 试证()

21Ln z -在割去线段[][]1,,1,i i -,及射线0,1x y =≥的区域内可取出单值分支? 并求0z =时等于零的那一支在2z =的值

解 (1) ()

21Ln z -的支点为1z =±及∞ 因 ()

()()2ln 1ln 1ln 1z z z -=-++,

当变点z 单绕1-或+1一周时,()

2ln 1z -的值就改变2i π(沿正向)或2i π-(沿负向),即

()2ln 1z -从一支变成另一支;

当变点z 同绕+1及1-一周时, ()

2ln 1z -共改变4i π(沿正向)或4i π-(沿负向),即()

2ln 1z - 也从一支变成另一支.

将z 平面沿题中要求割破后(如图2),变点z 既不能单绕1-或+1转一周,也不能同绕1- 及 +1转一周.

于是,在这样割破了的z 平面上任一区域D 内,(

)2

1Ln z

-就能分出无穷多个单值解析分支.

(2) 当z 从0z =沿D 内一条简单曲线C 变动到2z =时,由图3

图3

()()()()()2arg 1arg 11arg 1arg 10C C C C

z z z z z ππ

??-=+-??

????=++-????????=+=.

已知此指定分支在0z =的值为0,从而此初值的虚部为零,故由公式

()()()()221ln ln arg arg C f z f z i f z i f z =++????

可知该分支在2z =的值为

2

2

ln 1ln3z z i i ππ=-+=+.

3.2 给定某点函数值法

多值函数w Lnz =有支点0z =,z =∞,适当割破z 平面后(如沿着负实轴割破z 平面,相当 于限制z 的辐角范围为:arg z ππ-<≤),多值函数w Lnz =可分出如下无穷多个单值解析分支

()[]ln arg 2k k w lnz z i z k π==++ (z D ∈,k Z ∈)

(D 为割破z 平面后的区域),一般是选取从0z =开始沿着z =∞的射线来割破z 平面,随着 割破z 平面的射线选取不同,z 的辐角范围也不相同.于是,有下面在给定某点0z z =函数值

()0w w z =时,单值解析分支确定的具体方法:

(1) 确定z 的辐角范围.设割破z 平面的射线与x 轴正向夹角为α(02απ<≤)则z 的辐角范围为:arg 2z z απα<≤+

(2) 确定w Lnz =的带形区域为arg 2w απα<≤+,并由此得出()0arg w z 的值

(3) 确定各个单值解析分支k w 所在的带形:

()()2arg 21k k w k k Z παπα+<≤++∈

并由

()()()02arg 21z k w k k Z παπα+<≤++∈

来求出k 值,从而可得所求单值解析分支.

例3 设w Lnz =是在沿上半虚轴割破了的z 平面上,并且()3

2

w i i π=-左(上半虚轴左岸i 点的值),现试在所得区域内取定函数Lnz 在正实轴取正实值的一个解析分支,及求()

w i 右的值.

解 所求的解析分支是

3

ln arg arg 2

2z i z z ππ??+-<< ???.

这里3

2

απ=-,于是

3arg 22z ππ-<<,则3arg 22

w ππ-<<. 又因为()32

w i i π=-左,所以()arg 2

w i π

=-

左,再由

()()33

221222

k k k Z πππππ-<-≤+-∈,

解得0k =

故所求得单值解析分支为

()()()0ln 2w Lnz r z i z k k Z θπ==++∈????,

于是

()()()()0ln arg 02w i w i Ln i i i i i π

??===++=??右右右右右.

例4 设w Lnz =是在沿正实轴割破了的z 平面上,并且()1w i π-=,现试在所得区域内取定函数Lnz 在正实轴上沿取实值的一个解析分支,及求在正实轴下沿的值.

解 所求的的解析分支是

()ln arg 0arg 2z i z z π+≤<

这里0α=,于是

0arg 2z π<≤,则0arg 2w π<≤.

又因为()1w i π-=,所以()arg 12

w π

-=

.再由

()()2212

k k k Z π

ππ<

≤+∈,

解得0k =,于是在正实轴下沿z x =处的值是

()()()()()0ln arg 0ln 2w x w x Ln x x i x x i π??===++=+??下下下下下

3.3 取单值域法

相关概念 为了确定多值函数的单值域和单值分支,所以要先引入一些概念.

设多值函数()F z 在a 点的空心邻域上定义,环绕a 作一简单闭曲线C ,取定一点0z C ∈和多 值函数()F z 在0z 的值.让动点z 从0z 出发沿C 绕行,同时使()F z 的值连续地变化.

若动点z 不管绕C 多少周,()F z 总不回到原来的值,则称a 是()F z 的一个对数支点; 若动点z 绕行n 周后,()F z 回到原来的值,则称a 为一个代数支点.

因此将复平面沿连接支点的曲线(可以是一条或几条)切开,得到区域D (可以是单连通域或多连通域),只要动点z 沿D 内任一简单闭曲线绕行一周时,函数()F z 总是回到出发点时的值,则

D 即为多值函数()F z 的一个单值域.取定多值函数()F z 在一点0z C ∈的值,即取定它在D 内的

一个单值分支函数.

例5 求多值函数()z a

Ln

a b z b -≠-的支点与单值域. 解 多值函数()z a

Ln a b z b

-≠-在a 点的空心邻域内定义,

动点沿环绕z a =的充分小闭曲线一周 时,函数虚部增加2π,绕行n 周时,虚部增加2k π,所以z a =是一个对数支点.同理z b =,也是Lnz 的对数支点.

考虑z =∞,当沿包含z =∞的充分小简单闭曲线C 绕行一周后,因为这时函数在C 上的该变 量为

()()000C C C

z a Ln Ln z a Ln z b z b -??=---=-=??????????-??, 所以z =∞不是支点.

用一曲线或直线段连接z a =,z b =这两支点,记此曲线为γ.

则{}\D C γ=即为()z a

Ln

a b z b

-≠-的单值域. 取定()z a Ln a b z b -≠-在0z D ∈的值,即得()z a

Ln a b z b

-≠-的一个单值分支.

4 总结

多值函数单值化方法与技巧,前人已经做了大量的研究,但大多都是对根式函数的单值化方法与技巧进行了详细的研究,而对数函数的单值化方法与技巧却研究者甚少,大多也只是在判定其支点,支割线的方法上.因此,针对多值函数w Lnz

=的单值化方法与技巧可以仿照根式函数单值化方法进行,比如3.1割破平面法;但其本身还是有一些巧妙的方法,比如3.2给定某点函数值法、3.3取单值域法,读者可以多加注意一下.

由于这方面内容本身对初学者就是一个难以解决的问题,所以要能熟练掌握对数函数单值化方法与技巧还需要大量的练习来巩固,所以希望我的课题能给好学的人带来一点帮助.我暂时只能对=的单值化方法与技巧做这几点研究,也希望好学的读者还能提供一些更好的方法多值函数w Lnz

与技巧.

参考文献

[1] 方企勤.复变函数教程[M].北京:北京大学出版社,2003

[2] 余家荣.复变函数[M].第三版.北京:高等教育出版社,2004

[3] 路可见,钟寿国,刘士强.复变函数[M].第二版.武汉:武汉大学出版社,2007

[4] 钟玉泉.复变函数论[M].第三版.北京:高等教育出版社,2005

[5] 钟玉泉.复变函数学习指导书[M].北京:高等教育出版社,2005

[6] 于慎根,杨永发,张相梅.复变函数与积分变换[M].天津:南开大学出版社,2006

[7] Marsden JE.1973.Basic Complex Analysis.San Francisco:WH Freeman and Company

定义构造函数的四种方法

定义类的构造函数 作者:lyb661 时间:20150613 定义类的构造函数有如下几种方法: 1、使用默认构造函数(类不另行定义构造函数):能够创建一个类对象,但不能初始化类的各个成员。 2、显式定义带有参数的构造函数:在类方法中定义,使用多个参数初始化类的各个数据成员。 3、定义有默认值的构造函数:构造函数原型中为类的各个成员提供默认值。 4、使用构造函数初始化列表:这个构造函数初始化成员的方式显得更紧凑。 例如:有一个学生类。其中存储了学生的姓名、学号和分数。 class Student { private: std::string name; long number; double scores; public: Student(){}//1:default constructor Student(const std::string& na,long nu,double sc); Student(const std:;string& na="",long nu=0,double sc=0.0); Student(const std:;string& na="none",long nu=0,double sc=0.0):name(na),number(nu),scores(sc){} ……….. void display() const; //void set(std::string na,long nu,double sc); }; ......... Student::Student(const std::string& na,long nu,double sc) { name=na; number=nu; scores=sc; } void Student::display()const { std::cout<<"Name: "<

求函数值域的几种方法

高中数学中求函数值域的几种方法 汝南双语学校赵保刚 函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题. 定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难。实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函数的理解,从而深化对函数本质的认识。 若有非空数集A到B的映射f:A→B,则函数:y=f(x)(x∈A,y∈B)的值域是自变量x在f作用 下的函数值y的集合C,很明显,C B,求函数值域的方法要随函数式的变化而灵活掌握,同时应注重数形结合,等价转换,分类讨论等重要数学思想的理解与运用。下面通过八个方面的例题来加以说明。 题型一定义法 要深刻领会映射与函数值域的定义。 例1.已知函数f:A→B(A,B为非空数集),定义域为M,值域为N,则A,B,M,N的关系:()。 A.M=A,N=B B.M N,N=B C.M=A,N B D.M A,N B 说明:函数的定义域是映射f:A→B中的原象集合A,而值域即函数值的集合是集合B的子集。 故:应有M=A,N B,选C。 例2.已知函数f(x)=2log2x的值域是[-1,1],求函数y=f-1(x)的值域。 分析:要求反函数的值域,只需求原函数的定义域。 解:由已知可得 f(x)∈[-1,1],,解之得,

二次函数求最值之高级求法 (1)

二次函数求最值之高级求法 问题阐述: 对于二次函数2 y ax bx c =++(0a ≠),我们都知道当0a >时,有最小值2 44ac b a -;当0a <时,有最大值2 44ac b a -。但是,我们真的在求最值过程中很少用这个公式直接计算,因为这里计算量比较大。 因此,大多数人在求解最值过程中用的最多的方法便是配方法求最值,这也是普遍能够接受的方法。那有没有更快的方法来求解二次函数的最值呢?答案是肯定的,今天,我们用一种高级一点的方法来快速求解二次函数的最值。 首先,我们来看一个基本的不等式()2 0a b -≥恒成立,因此得到222a b ab +≥,两边加上一个2ab ,得到()24a b ab +≥,即2 2a b ab +??≤ ???,当a b =时,这里就取到等号。 求二次函数的最值问题时,我们要保证a b +是一个定值,然后就可以利用刚刚证明的一个基本不等式2 2a b ab +??≤ ??? 来求二次函数的最大值或最小值。 【求最大值】 例1:求二次函数246y x x =-++的最大值。 解:原式化为,()46y x x =-+, 因为()44x x +-=是一个定值, 所以原式()2 4646102x x y +-??≤+=+= ???

32解:原式化为,71623y x x ??=-+ ???,到此,我们发现现在不能用基本不等式求出最大值,因为x 与7123 x -的和并不是定值,因此我们陷入了困境。实际上我们可以换一个角度思考,既然要出现和为定值,那么我们就只需要配出一个和为定值的形式即可。 因此,原式可以这样变形:17136323y x x ????=?-+ ??????? , 这里就有1717=3232 x x ??+- ???为定值了, 那么我们就可以利用基本不等式求解二次函数的最大值了, 所以原式2 171492433233636=21616x x y ????+- ? ??? ?≤+=?+ ? ??? 【求最小值】 例3:求二次函数246y x x =++的最小值。 解:原式化为,()46y x x =++,因为()442x x x ++=+并不是一个定值,那么我们就不能够直接运用基本不等式求最值,那么我们就得从例2的求解方法中采用的配凑思想,因为()44x x -++=是定值. 因此原式()()46y x x =--++, 由基本不等式22a b ab +??≤ ??? ,两边添一个负号, 不等号改变方向,即2 2a b ab +??-≥- ??? 。 所以原式()2464622x x y -++??≥-+=-+= ???

例析构造函数的基本方法

例析构造函数的基本方法 一、用作差法构造函数 求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 证明:设函数x x x f -+=)1ln()(,1111)(+-=-+= 'x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数,故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞,于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则, 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111)1ln(+- ≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 二、换元法构造函数 对任意的正整数n ,不等式3 211)11ln(n n n ->+ 都成立. 分析:从所证结构出发,只需令x n =1,则问题转化为:当0>x 时, 恒有32)1ln(x x x ->+成立,现构造函数)1ln()(23++-=x x x x h ,求导即可达到证明。

求极值与最值的方法

求极值与最值的方法 1 引言 在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。下面我们将要介绍多种求初等函数的极值和最值的方法。 2 求函数极值的方法 极值定义:设函数()f x 在0x 的某邻域内有定义,且对此邻域内任一点 x 0()x x ≠,均有0()()f x f x <,则称0()f x 是函数错误!未找到引用源。的一个极大值;同样如果对此邻域内任一点x 0()x x ≠,均有错误!未找到引用源。,则称0()f x 是函数错误!未找到引用源。的一个极小值。函数的极大值与极小值统称为函数的极值。使函数取得极值的点0x ,称为极值点。 2.1 求导法 判别方法一: 设()f x 在点0x 连续,在点错误!未找到引用源。的某一空心邻域内可导。当 x 由小增大经过错误!未找到引用源。时,如果: (1)'()f x 由正变负,那么0x 是极大值点; (2)错误!未找到引用源。由负变正,那么0x 是极小值点; (3)错误!未找到引用源。不变号,那么0x 不是极值点。 判别方法二: 设()f x 在点0x 处具有二阶导数,且'()0f x =,''()0f x =。 (1)如果''()0f x <,则()f x 在点0x 取得极大值; (2)如果''()0f x >,则()f x 在点0x 取得极小值。

判别方法三: 设()f x 在点0x 有n 阶导数,且0)()()(0)1(00===''='-x f x f x f n 0)(0)(≠x f n ,则: (1)当为偶数时,)(x f 在0x 取极值,有0)(0)(x f n 时,)(x f 在0x 取极小值。 (2)当为奇数时,)(x f 在0x 不取极值。 求极值方法: (1)求一阶导数,找出导数值为0的点(驻点),导数值不存在的点,及端点; (2)判断上述各点是否极值点 例 1 求函数32()69f x x x x =-+的极值。 解法一 : 因为32()69f x x x x =-+的定义域为错误!未找到引用源。, 且'2()31293(1)(3)f x x x x x =-+=--, 令'()0f x =,得驻点11x =, 23x =; 在错误!未找到引用源。内,错误!未找到引用源。,在错误!未找到引用源。内,'()0f x <,(1)4f =为函数()f x 的极大值。 解法二: 因为错误!未找到引用源。的定义域为错误!未找到引用源。, 且错误!未找到引用源。,错误!未找到引用源。。 令错误!未找到引用源。,得驻点错误!未找到引用源。,错误!未找到引用源。。又因为错误!未找到引用源。,所以,错误!未找到引用源。为)(x f 极大值。 错误!未找到引用源。,所以错误!未找到引用源。为)(x f 极小值.

函数极值的几种求法

函数极值的几种求法 ──针对高中生所学知识 摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。 关键词:函数;单调性;导数;图像;极值 Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school. Key words: function; monotonicity; derivative; image; extreme value “函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。就这样“函数”这词逐渐盛行。在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者善兰给出的定义是:

构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左面,令11 1)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

例说求函数的最大值和最小值的方法

例说求函数的最大值和最小值的方法 例1.设x 是正实数,求函数x x x y 32 + +=的最 小值。 解:先估计y 的下界。 5 5 )1(3)1(5)21 (3)12(222≥+-+-=+-+++-=x x x x x x x y 又当x =1时,y =5,所以y 的最小值为5。 说明 本题是利用“配方法”先求出y 的下界,然后再“举例”说明这个下界是可以限到的。“举例”是必不可少的,否则就不一定对了。例如,本题我们也可以这样估计: 7 7 )1(3)1(7)21 (3)12(222-≥-++-=-++++-=x x x x x x x y 但y 是取不到7的。即7不能作为y 的最小值。 例 2. 求函数 1 22322 2++--=x x x x y 的最大值和最小

值。 解 去分母、整理得:(2y 1)x 2+2(y +1)x +(y +3)=0. 当2 1≠y 时,这是一个关于x 的二次方程,因为x 、y 均为实数,所以 =[2(y +1)]24(2y 1)(y +3)0, y 2 +3y -40, 所以 4y 1 又当3 1-=x 时,y =4;x =2时,y =1.所以y min =4,y max =1. 说明 本题求是最值的方法叫做判别式法。 例3.求函数1 52++-=x x y ,x [0,1]的最大值 解:设 ] 2,1[1∈=+t t x ,则x =t 21 y = 2(t 21)+5t = 2t 2+5t +1 原函数当t =169,45=x 即时取最大值8 33

例4求函数2 2 3 ,5212 ≤≤+--=x x x x y 的最小值和最 大值 解:令x 1=t (121≤≤t ) 则t t t t y 414 2 +=+= y min =5 1,172 max = y 例 5.已知实数x ,y 满足1x 2+y 24,求f (x )=x 2+xy +y 2的最小值和最大值 解:∵) (2122 y x xy +≤ ∴6 )(2 3),(2222 ≤+≤ ++=y x xy y x y x f 又当2==y x 时f (x ,y )=6,故f (x ,y )max =6 又因为) (2122 y x xy +-≥ ∴2 1)(21),(2222 ≥+≥ ++=y x xy y x y x f

二次函数配方法练习

二次函数配方法练习 The latest revision on November 22, 2020

1.抛物线y =2x 2-3x -5配方后的解析式为顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大 . 2.抛物线y =3-2x -x 2的顶点坐标是______,配方后为 它与x 轴的交点坐标是______,与y 轴的交点坐标是______. 3.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______. 4.已知二次函数y =x 2+4x -3,配方后为当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0. 5.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______. 6.抛物线y =2x 2如何变化得到抛物线y =2(x -3)2+4.请用两种方法变换。 7.抛物线y =-3x 2-4的开口方向和顶点坐标分别是() A .向下,(0,4) B .向下,(0,-4) C .向上,(0,4) D .向上,(0,-4) 8.抛物线x x y --=221 的顶点坐标是() A .)21,1(- B .)21,1(- C .)1,21 (- D .(1,0)

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

构造函数法解选填压轴题

微专题:构造函数法解选填压轴题 高考中要取得高分,关键在于选准选好的解题方法,才能省时省力又有效果。近几年各地高考数学试卷中,许多方面尤其涉及函数题目,采用构造函数法解答是一个不错的选择。所谓构造函数法是指通过一定方式,设计并构造一个与有待解答问题相关函数,并对其进行观察分析,借助函数本身性质如单调性或利用运算结果,解决原问题方法,简而言之就是构造函数解答问题。怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 几种导数的常见构造: 1.对于()()x g x f ''>,构造()()()x g x f x h -= 若遇到()()0'≠>a a x f ,则可构()()ax x f x h -= 2.对于()()0''>+x g x f ,构造()()()x g x f x h += 3.对于'()()0f x f x +>,构造()()x f e x h x = 4.对于'()()f x f x > [或'()()0f x f x ->],构造()()x f x h x e = 5.对于()()0'>+x f x xf ,构造()()x xf x h = 6.对于()()0'>-x f x xf ,构造()()x x f x h = 一、构造函数法比较大小 例1.已知函数()y f x =的图象关于y 轴对称,且当(,0),()'()0x f x xf x ∈-∞+<成立,0.20.22(2)a f =,log 3(log 3)b f ππ=,33log 9(log 9)c f =,则,,a b c 的大小关系是 ( ) .Aa b c >> .B a c b >> .C c b a >> .Db a c >> 【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为[()]'()'()xf x f x xf x =+, 所以当(,0)x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数()y xf x =单调递减, 当(0,)x ∈+∞时,函数()y xf x =单调递减. 因为0.2122<<,0131og π<<,3192og =,所以0.23013219og og π<<<,所以b a c >>,选D. 变式: 已知定义域为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,()'()0f x f x x + >, 若111(),2(2),ln (ln 2)222 a f b f c f ==--=,则下列关于,,a b c 的大小关系正确的是( D ) .Aa b c >> .B a c b >> .C c b a >> .Db a c >> 例2.已知()f x 为R 上的可导函数,且x R ?∈,均有()()f x f x '>,则有

求式子最值的几种常见的方法

求式子最值的几种常见的方法 我任教新教材已有二个轮回了,通过这几年教学和学习中,总结了几种求式子最值的常用方法,式子最值主要还是求函数最大值和最小值。 第一种方法是熟练利用基础函数的一些性质,基础函数包括指数函数、对数函数、幂函数、三角函数,这此函数图像和性质,学生必须牢牢记住掌握。比如二次函数在实数内求最值,只求对称轴函数值即可。再加上开口方向就定出最大或最小值。比如:y=sinx 有实数内求最大或最小值,掌握正弦函数性质,直接指出最大值是1,最小值是-1。若求基础函数在定义域内某一个区间内最值,就得看此区间函数单调情况再求最值。 方法二:利用单调性求最值,比如:y=1x-2在区间[3,4]上最值,先证明y=1x-2在[3,4]上是单调递减的,所以x=3时,y最大1,x=4时,y最小1/2。 方法三:利用线性规划求最值 例如:若变量x,y满足y≤1x+y≥0x-y-2≤0 则z=x-2y取值范围点。 A.[-1,3) B.[-3,1)

C. [-3,3) D. [-1,1) 先画可行域,画直线x-2y=0,平移直线x-2y=0在可能域内求使,z= x-2y产生最值的最优解,代入z= x-2y,选C。 有些函数最值还可以把线性规划问题加深求非线性目标函数最值,常利用式子几何意义来求,如:已知实数x,y满足约束条件x≥-1y≥0x+y≥1 则(x+2)2+y2最小值是 解决这个问题利用几何意义在可行域内找一点到(-2,0)点距离平方最小,最后得9/2,这些类型还有利用斜率意义等。 方法四:利用不等式求最值 利用不等式求最值,常用基本不等式2,a>0,b>0,则a+b≥2ab这个式子必须有一个固定值,当a+b确定能求出,ab积最大值,当ab积固定时能求出a+b的最小值,但在a=b前提下。老师在教学中给同学总结一正、二定、三相等,例如:设a>b>c,n∈N且1a-b+1b-c ≥na-c恒成立,求n的最大值是() A. 2 B. 3 C. 4 D. 6 解决这道题实际上就是求(a-c)(1a-b+1b-c)的最小值,上式变形[(a-b)+(b-c)][ 1a-b+1b-c]展开后利用重要不等式求出选C,利用不等式2求最

高中数学求值域的10种方法

求函数值域的十种方法 一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。 例1.求函数1y = 的值域。 【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。 【练习】 1.求下列函数的值域: ①32(11)y x x =+-≤≤; ②x x f -+=42)(; ③1 += x x y ; ○ 4()112 --=x y ,{}2,1,0,1-∈x 。 【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞U ;○4{1,0,3}-。 二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。形如 2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。 例2.求函数242y x x =-++([1,1]x ∈-)的值域。 【解析】2242(2)6y x x x =-++=--+。 ∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。 ∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。 例3.求函数][)4,0(422∈+--=x x x y 的值域。 【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设: )0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得 ][4,0)(∈x f ,从而得出:]0,2y ?∈?。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为: 0)(≥x f 。 例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

求最值问题的几种方法

浅谈求最值问题的几种方法 摘要:最值问题综合性强, 涉及到中学数学的许多分支, 因而这类问题题型广, 知识面宽,而且在解法上灵活多样, 能较好体现数学思想方法的应用. 在历年的高考试题中, 既有基础题, 也有一些小综合的中档题, 更有一些以难题的形式出现. 解决这类问题要掌握多方面的知识, 综合运用各种数学技巧, 灵活选择合理的解题方法, 本文就几类最值问题作一探求. 关键词:数学;函数;最值;最大值;最小值 1. 常见函数的最值问题. 1.1 一次函数的最大值与最小值. 一次函数b kx y +=在其定义域(全体实数)内是没有最大值和最小值的, 但是, 如果对自变量x 的取值范围有所限制时, 一次函数就可能有最大值和最小值了. 例1. 设0>a 且 a ≠1,)1(1 x a ax y -+=,(0≤x ≤1),求y 的最大值与最小值. 解: )1(1x a ax y -+=可化为:.1 )1(a x a a y +-=下面对一次项系数分两种情况讨论: (1)当a >1时,a -a 1>0,于是函数a x a a y 1 )1(+-=的函数值是随着x 的增加而增加的,所 以 当x =0时,y 取最小值 a 1 ; 当x =1时,y 取最大值a . (2)当0

人教版必修一求函数值域的几种常见方法

人教版必修一求函数值域的几种常见方法 1.直接法:利用常见函数的值域来求 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b a c y y 4)4(|2 -≤}. 例1.求下列函数的值域 ① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1 += x x y ④x x y 1 + = 解:①∵-1≤x ≤1,∴-3≤3x ≤3, ∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2} ③1 111 111 +- =+-+= +=x x x x x y ∵ 01 1≠+x ∴1≠y 即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+ ==2)1(2 +- x x 2≥, 当x<0时,)1(x x y -+ --==-2)1(2 --- -x x 2-≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数x x y 1+ =的图像为: 2.二次函数比区间上的值域(最值): 例2 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 4 3 21 -1-2-3 -4 -6 -4 -2 2 4 6 y=x o -2 -112 f x () = x+ 1x

几种构造辅助函数的方法及应用

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例说 明了寻求辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 “逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=21 21dx x xf f ,证明在][1,0内至少有一点θ,使()() θ θθf f - ='. 证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将() () θ θθf f '变为()()0='?+θθθf f ,联想到()[]()()θθθθf f x xf x '?+=' =, 可考虑辅助函数 ()()[].1,0,∈=x x xf x F

因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得()0='θF 即:()() θ θθf f - ='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积 分因子),为简便起见,可将积分常数取为零; (4)移项,将等式一边为零,则等式的另一边为所求的辅助函数. 例2: ()[]() (),0,0,,>>a f a b a b a x f 且内可导,其中上连续,在在设 ()()()ξξ ξξf a b f b a '?-=?∈?,,证明: 分析: ()()ξξ ξf a b f '?-= ()()x f a x b x f x '?-=??→?=ξ令 ()()x b a x f x f -='? ()()c x b x f a ln ln ln +-=??→?-积分 ()()c x f x b a =-? 可令 ()()()x f x b x F a -= 证明: 作辅助函数 ()()()x f x b x F a -=

二次函数求最值方法总结

二次函数求最值方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

XX 教育辅导教案 学生姓名 性别 年级 学科 数学 授课教师 上课时间 年 月 日 第( )次课 共( )次课 课时: 课时 教学课题 二次函数求最大值和最小值 教学目标 利用二次函数的图像和性质特点,求函数的最大值和最小值 教学重点 与难点 含有参数的二次函数最值求解。 课堂引入: 1) 由二次函数应用题最值求解问题引申至一般二次函数求最值问题,阐述二次函数求最值问题 方法的重要性(初高中衔接、高中必修一重点学习内容)。 2) 当22x -≤≤时,求函数223y x x =--的最大值和最小值. (引导学生用初中所学的二次函数知识求解,为下面引出二次函数求最值方法总结做铺垫) 二次函数求最值方法总结: 一、设)0(2≠++=a c bx ax y ,当n x m ≤≤时,求y 的最大值与最小值。 1、当0>a 时,它的图象是开口向上的抛物线,数形结合可求得y 的最值: 1) 当n a b m ≤-≤2时,a b x 2-=时,y 取最小值:a b a c y 442min -=;y 的最大值在m x =或n x =处取到。 2) 若m a b <-2,二次函数在n x m ≤≤时的函数图像是递增的,则m x =时,y 取最小值;则n x =时,y 取最大值。 若n a b >- 2,二次函数在n x m ≤≤时的函数图像是递减的,则n x =时,y 取最小值;则m x =时,y 取最大值。

【变式训练】 变式1、当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,1max -=y ,当2x =时,5min -=y . 【例题解析】 例2、当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2min 1511322 y =?--=-; (3) 当对称轴在所给范围右侧.即110t t +

相关文档
最新文档