耐火材料结合剂的性质

耐火材料结合剂的性质
耐火材料结合剂的性质

结合剂

把由耐火粗颗粒料和粉料组成的散状耐火材料胶结在一起的物质,又称“胶结剂”。用作耐火材料的结合剂,不但要求具有较好的冷态和热态结合强度,而且要求具有较好的施工(成型)性能和使用性能。

分类耐火材料,尤其是不定形耐火材料所用的结合剂,随被结合材料的性能及用途不同而不同,品种繁多,一般按结合剂的化学性质和结合剂的硬化条件分类。

按结合剂的化学性质分有无机结合剂和有机结合剂。

(1)无机结合剂。按其化合物性质可分为6类。第1类为硅酸盐类。包括硅酸钙水泥、水玻璃(包括硅酸钠、硅酸钾水玻璃)和结合粘土。第2类为铝酸盐类。包括普通铝酸钙水泥(也称矾土水泥或高铝水泥)、纯铝酸钙水泥、铝酸钡水泥、含尖晶石铝酸钙水泥等。第3类为磷酸盐类。包括磷酸、磷酸二氢铝、磷酸镁、磷酸铵、铝铬磷酸盐、三聚磷酸钠、六偏磷酸钠等。第4类为硫酸盐类。包括硫酸镁、硫酸铝、硫酸铁等。第5类为氯化物类。包括氯化镁(卤水)、氯化铁、聚合氯化铝(又称碱式氯化铝)等。第6类为溶胶类。包括硅溶胶、铝溶胶、硅铝溶胶等。

(2)有机结合剂。按制取方法分为两类。第l类为天然有机物,即从天然有机物中分离出的,包括淀粉、糊精、阿拉伯树胶、海藻酸钠、纸浆废液、焦油和沥青等。第2类为合成有机物,即通过化学反应或缩聚反应而合成的,包括甲阶酚醛树脂、线性酚醛树脂(又称酚醛清漆)、环氧树脂、t聚胺脂树脂、脲醛树脂、聚醋酸己烯脂、聚苯己烯、硅酸己酯、聚己烯醇类树脂、呋喃树脂等等。

按结合剂硬化条件分有水硬性、气硬性和热硬性结合剂。

(1)水硬性结合剂。加入散状耐火材料集料中、加水混合均匀并成型后,在潮湿条件下养护才能发生正常的凝结与硬化的结合剂,如硅酸盐水泥、铝酸盐水泥。

(2)气硬性结合剂。与散状耐火材料集料混合成型后,在自然干燥条件(常温)下养护即可发生凝结与硬化的结合剂,这类结合剂使用时一般要加硬化剂,如水玻璃加氟硅酸钠,磷酸或磷酸二氢铝加铝酸钙水泥或氧化镁,氧化硅微粉加铝酸钙水泥或氧化镁等。

(3)热硬性结合剂。与散状耐火材料集料混合成型后,在加热烘烤时才能发生硬化的结合剂,如磷酸、磷酸二氢铝、甲阶酚醛树脂等。

结合机理耐火材料用的结合剂,随结合剂的化学性质不同,其结合机理也不同。

(1)水化结合。借助于常温下结合剂与水发生水化反应生成水化产物而产生结合作用。如铝酸钙水泥加水后,发生水解和水化反应生成六方片状或针状CaO?A12O3?

10H2O(CAHl0)、2Ca0?AL2O3?8H2O(C2AH8)和立方粒状3Ca0?AL2O3?6H2O(C3AH6)晶体和氧化铝凝胶体(AL2O3gel),形成凝聚一结晶网而产生结合,反应如下:

又如p—AL2O3加水混合时,会发生水化反应而生成单斜板状、纤维状或粒状三羟铝石(Bayerite)和斜方板状勃姆石(Boehmite)而产生结合作用。反应如下:

水化结合的结合剂在常温下进行水化反应需要有一定的时间,因此有一定的凝结与硬化时间。

(2)化学结合。借助于结合剂与硬化剂(又称促凝剂),或结合剂与耐火材料集料之间在常温下发生化学反应,或加热时发生化学反应生成具有结合作用的化合物而产生结合。如硅酸钠(水玻璃)结合剂加氟硅酸钠硬化剂时,发生如下反应:

反应结果生成水溶胶SiO2?nH20、经脱水形成硅氧烷(Si一0一Si)网络状结构,从而产生较强的结合强度。又如磷酸二氢铝加MgO时,在常温下发生如下脱水和交联反应而产生结合强度:

(3)缩聚结合。借助于加催化剂或交联剂使结合剂发生缩聚形成网络状结构而产生结合强度。如甲阶酚醛树脂加酸作催化剂或加热时可产生如下缩聚反应而产生较好的结合强度:

又如线型酚醛树脂加上甲基四胺在加热下可产生如下

(4)瓷结合。系指低温烧结结合,即在散状耐火材料中加入可降低烧结温度的助剂或金属粉末,以交联反应而产生缩聚结合大大降低液相出现温度,促进低温下固一液反应而产生低一中温烧结结合。

一般所使用的烧结助剂是在500~1000℃的低温下首先产生粘性液相将集料颗粒粘结在一起,随后随着温度提高,依靠液一固之间的高温化学反应,生成具有更高熔融温度的结合相而产生坚固的结合。如往刚玉质干法震动料中加入少量的硼酐,由于硼酐在450~550℃生成粘性液相,随后与a一AL2O3发生液固反应,生成具有更高熔融温度的化合物2AL2O3?B2O3(不一致熔融温度1035℃),9AL2O3?2B2O3(不一致熔融温度1950℃)而将刚玉骨料固结在一起,其相关系见图1。

(5)粘着(粘附)结合。是借助于如下几种物理作用之一或几种作用叠加而产生结合的。其一是吸附作用,包括物理吸附和化学吸附,依靠分子间的相互作用力——德瓦尔斯力而产生结合;其二是扩散作用,即在物质分子热运动的作用下,粘结剂与被粘结物的分子发生相互扩散作用,在界面上形成扩散层,从而形成牢固的结合;其三是静电作用,即粘结剂与被粘结物的界面存在着双电层,由双电层的静电引力作用而产生结合。

产生粘着结合的结合剂多数为有机结合剂,其中有的为暂时性结合剂,即在常温下或低温下起结合作用,经中温和高温热处理后会燃烧掉,如糊精、羧甲基纤维素、环氧树脂、纸浆废液等;有的为永久性结合剂,经中、高温热处理后,除部分挥发物分解挥发掉外,其余的成分会碳化形成碳结合,如沥青、酚醛树脂等高含碳的有机结合剂。也有一些永久性无机结合剂具有粘结作用,如磷酸二氢铝、水玻璃、硅溶胶等。

图2质点的势能与质点间距的关系

(6)凝聚结合。依靠加入凝聚剂使微粒子(胶体粒子)发生凝聚而产生结合。根据DLVO理论,胶体质点之间存在着德瓦尔斯力,当质点在相互接近时,又因双电层的重叠而产生排斥力,胶体的稳定性和凝聚性就取决于质点之间的吸引力和排斥力的相对大小,此两种作用力合成的总势能曲线如图2中实线所示。当胶体质点相互靠近越过图2中所示的势垒Vmax后,由于引力起主导作用,质点(微粒)就会发生凝聚。因此,要使微粒发生凝聚,必须克服双电层重叠时而产生的排斥力,或降低势垒Vmax。要减小排斥力,或降低Vmax,可往胶体溶液中加入电解质,这样就会有更多的反离子进入双电层中的扩散层,由于电性中和作用,扩散层厚度变薄,排斥力下降。当扩散层变薄(压缩)到与紧密层叠合时,ζ电位为零,此时称为“等电点”。对不同性质的胶体而言,其“等电点”时的pH值是不同的。达到“等电点”时,胶体粒子会发生快速凝聚。图3为SiO2、TiO2、Cr2O3和AL2O3几种氧化超微粉制备成浆体的“等电点”与pH值的关系。据此可利用加入适当的迟效性凝聚剂(电解质)来控制凝聚过程的效果。

图3不同超微粉泥浆的等电点

结合剂的选用耐火材料,尤其是不烧耐火制品和不定形耐火材料的力学强度主要是靠结合剂形成的,因此结合剂是耐火材料的主要成分之一。但随着耐火材料的材质不同,以及成型或施工方法的不同,应当分别选用不同性质的结合剂。机压和捣打成型的烧成耐火制品,可选用暂时性的结合剂,如亚硫酸纸浆废液、糊精、糖蜜、甲基纤维素或羧甲基纤维素、淀粉、阿拉伯树脂等。机压或捣打成型的不烧耐火制品,应选用永久性结合剂。如硅酸铝质刚玉质等不烧制品,可选用磷酸、磷酸二氢铝,硫酸铝等酸性结合剂。而碱性和弱碱性不烧耐火制品,如镁质、镁铝或铝镁质、镁铬质等不烧制品应选用碱性结合剂,如水玻璃、三聚磷酸钠、六偏磷酸钠等。含碳的或碳化硅的耐火材料可选用含碳有机结合剂,如镁碳质、铝碳质、氧化铝一碳化硅一碳质、尖晶石一碳质等不烧制品,可选用沥青、酚醛树脂、沥青改性酚醛树脂作结合剂。

不定形耐火材料的结合剂选择,除要考虑与材质的匹配、结合强度外,还要考虑对不同施工方法的适应性,也就是要考虑结合剂的凝结硬化方式、凝结硬化时间,对材料流变特性、浸润性、粘结性和铺展性等的影响。浇注耐火材料应选用能产生水化结合、或化学结合、或凝聚结合的结合剂,如粘土质、高铝质、刚玉质、莫来石质等浇注料可选用铝酸钙水泥、磷酸或磷酸二氢铝加硬化剂,水玻璃加氟硅酸钠硬化剂,氧化物超微

粉加分散剂和迟效硬化剂等作结合剂。可塑和捣打耐火材料应选用气硬性的化学结合、或凝聚结合、或粘着结合的结合剂,如硅酸铝质可塑料可选用磷酸、磷酸二氢铝、硫酸铝以及结合粘土作结合剂。喷射耐火材料应选用化学结合或水化结合的结合剂,如碱性(镁质)喷补料可选用聚磷酸钠(三聚磷酸钠、或六偏磷酸钠)和羧甲基纤维素作结合剂,也可使用铝酸钙水泥作结合剂(热态喷补用),而硅酸铝质喷涂或喷补料可选用纯铝酸钙水泥、固态磷酸二氢铝、或固态水玻璃作结合剂。耐火泥浆应选用气硬性或热硬性结合剂,酸性、中性耐火材料配制成的泥浆应选用酸性、弱酸性结合剂,而碱性耐火材料配制成的泥浆则应选用碱性或弱碱性的结合剂。

材料结构与性能历年真题

材料结构与性能历年真 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2009年试题 1.一外受张应力载荷力500MPa的无机材料薄板(长15cm,宽10cm,厚,其 中心部位有一裂纹(C=20μm)。该材料的弹性模量为300GPa,(1Pa=1N/m2)断裂能为15J/m2(1J=1Nm)。 a)计算该裂纹尖端应力强度因子K I (Y=) b)判断该材料是否安全 ,可知,即材料的裂纹尖端应力强度应子超过了材料的临界断裂应子,则材料不安全。 2.测定陶瓷材料的断裂韧性常用的方法有几种并说明它们的优缺点。 答: 方法优点缺点 单边切口梁法(SENB)简单、快捷①测试精度受切口宽度的影响,且过分要求窄的切口;②切口容易钝化而变宽,比较适合粗晶陶瓷,而对细晶体陶瓷测试值会偏大。 Vickers压痕弯曲梁法 (SEPB)测试精度高,结果较准 确,即比较接近真实值 预制裂纹的成功率低;控制裂纹的深度尺 寸较困难。 直接压痕法(IM)①无需特别制样;②可 利用很小的样品;③测 定H V的同时获得K IC, 简单易行。 ①试样表面要求高,无划痕和缺陷;②由 于压痕周围应力应变场较复杂,没有获得 断裂力学的精确解;③随材料性质不同会 产生较大误差;④四角裂纹长度由于压痕 周围残余应力的作用会发生变化;产生压 痕裂纹后若放置不同时间,裂纹长度也会 发生变化,影响测试精度。

3.写出断裂强度和断裂韧性的定义,二者的区别和联系。 答: 断裂强度δr断裂韧性K IC 定义材料单位截面承受应力而不发生断裂的能力材料抵抗裂纹失稳扩展或断裂能力 联系①都表征材料抵抗外力作用的能力;②都受到E、的影响,提高E、既可提高断裂强度,也可提高断裂韧性;③在一定的裂纹尺寸下,提高K IC也会提高δr,即增韧的同时也会增强。 区别除了与材料本身的性质有关外,还与 裂纹尺寸、形状、分布及缺陷等有关 是材料的固有属性,是材料的结构和显微 结构的函数,与外力、裂纹尺寸等无关 4.写出无机材料的增韧原理。 答:增韧原理:一是在裂纹扩展过程中使之产生有其他能量消耗机构,从而使外加负载的一部分或大部分能量消耗掉,而不致集中于裂纹扩展上;二是在陶瓷体中设置能阻碍裂纹扩展的物质场合,使裂纹不能再进一步扩展。 根据断裂力学,抗弯强度,断裂韧性,可以看出要提高陶瓷材料强度,必须提高断裂表面能和弹性模量以及减小裂纹尺寸;要提高断裂韧性,必须提高断裂表面能和弹性模量。 5.试比较以下材料的热导率,并按大小顺序排列,说明理由。氮化硅(Si3N4)陶 瓷、氧化镁(MgO)陶瓷、镁橄榄石(2MgO·SiO2)、纯银(Ag)、镍铬合金 (NiCr)。 答:热导率大小顺序:纯银>镍铬合金>氮化硅>氧化镁>镁橄榄石 理由:1)一般金属的热导率比非金属的热导率高,这是由于金属中存在大量的自由电子,电子质量轻,平均自由程很大,故可以快速的实现热传导;而非金属主要是通过声子来进行热传导的,声子的平均自由程要比自由电子的小很多,自由电子的热传导速率是声子的20倍,故纯银和镍铬合金的热导率高。2)单质的热导率要比混合物质的热导率高,故纯银大于镍铬合金。3)固溶体的热导率要比纯物质的小,故镁橄榄石的热导率小于氮化硅和氧化镁。4)共价键强的晶体热导率高,故氮化硅的热导率强于氧化镁。 6.对于组成范围为0-50%K2O,100-50%SiO2的玻璃,推断其膨胀系数的变 化,试通过玻璃的结构来解释所得的结果。

耐火材料重点

第一章: 1耐火材料的定义;耐火度不小于1580℃的无机非金属 材料分类:按化学成份、矿物组成分类1)氧化硅质2)硅酸铝质3)氧化镁质4)刚玉质5)白云石质MgCa(CO3)2 6)尖晶石质Fe2MgO4 7)橄榄石质Mg2SiO4 8)碳质9)含锆质10)特殊耐火材料 按化学性质分类;1)酸性耐火材料2)中性耐火材料3)碱性耐火材料 3、按制造方法分类块状耐火材料;不定形耐火材料;烧制耐火材料;熔铸耐火材料。 4、按耐火度分类普通耐火材料(1580~1770℃);高级耐火材料(1770~2000℃);特级耐火材料(大于2000℃)。 按密度分:轻质(气孔率45%-85%)、重质 生产过程中的基本知识,如一般生产工艺流程:原料加工→配料→混练→(成型)→干燥→烧成(熔制)→(成型)→检验→成品, 配料(颗粒级配又称(粒度)级配,由不同粒度组成的物料中各级粒度所占的数量,用百分数表示。)混料使两种以上不均匀物料的成分和颗粒均匀化,促进颗粒接触和塑化的操作过程称为混练。等内容; 耐火材料行业存在的问题1)钢铁行业竞争激烈,面临更大的成本压力2洁净钢的生产对耐火材料提出更高要求,除了要求长寿还要对钢水无污染3)研发有待加强,4)应注意可持续发展战略。 存在的差距: 1、通常用耐火材料综合消耗指标来衡量一个国家的钢铁工业与耐火材料的发展水平,我国吨钢消耗水还较高。(见下表) 2、耐火材料生产装备落后,新技术推广慢 3、原料不精,高纯原料的生产有困难。, 发展趋势:当今耐火材料的发展,一极是不定形化,而另一极则是定形耐火材料的高级化,概括起来就是朝着高纯化、精密化、致密化和大型化。着重开发氧化物和非氧化物复合的耐火材料。等。 问题:1合计可用作耐火原料总数为4000余种,其中常用于工业生产的耐火原料只有100种。why? 除了考虑熔点外,还要看它在自然界中存在的数量及分布情况,即作为耐火原料还应该具有来源广,成本低廉。在地球岩石层中,硅酸盐+铝酸盐数量最大占86.5%。金属Pt的熔点为1772℃,可以用作耐火原料,但是太昂贵了 2留意“烧成”与“烧结”的区别! 烧成是陶瓷、耐火材料制品烧成过程中最重要的物理、化学过程。所谓“烧结”,就是指坯体经过高温作用逐渐排出气孔而致密的过程。 第二章: 耐火材料的宏观结构、微观结构方面的知识, 如显微结构的类型;基质连续结构,主晶相连续结构;基质连续结构:液相数量较多或主晶相润湿性良好,主晶相被玻璃相包围起来,形成基质连续,主晶相不连续结构,如粘土砖。主晶相连续结构:液相数量较少或主晶相润湿不良,形成主晶相连续,基质不连续结构,如硅砖。 力学性能中抗折强度:材料单位面积所承受的极限弯曲应力,高温抗折强度:材料在高温下单位截面所能承受的极限弯曲应力、蠕变:材料在恒定的高温、恒定

耐火材料结合剂的性质

结合剂 把由耐火粗颗粒料和粉料组成的散状耐火材料胶结在一起的物质,又称“胶结剂”。用作耐火材料的结合剂,不但要求具有较好的冷态和热态结合强度,而且要求具有较好的施工(成型)性能和使用性能。 分类耐火材料,尤其是不定形耐火材料所用的结合剂,随被结合材料的性能及用途不同而不同,品种繁多,一般按结合剂的化学性质和结合剂的硬化条件分类。 按结合剂的化学性质分有无机结合剂和有机结合剂。 (1)无机结合剂。按其化合物性质可分为6类。第1类为硅酸盐类。包括硅酸钙水泥、水玻璃(包括硅酸钠、硅酸钾水玻璃)和结合粘土。第2类为铝酸盐类。包括普通铝酸钙水泥(也称矾土水泥或高铝水泥)、纯铝酸钙水泥、铝酸钡水泥、含尖晶石铝酸钙水泥等。第3类为磷酸盐类。包括磷酸、磷酸二氢铝、磷酸镁、磷酸铵、铝铬磷酸盐、三聚磷酸钠、六偏磷酸钠等。第4类为硫酸盐类。包括硫酸镁、硫酸铝、硫酸铁等。第5类为氯化物类。包括氯化镁(卤水)、氯化铁、聚合氯化铝(又称碱式氯化铝)等。第6类为溶胶类。包括硅溶胶、铝溶胶、硅铝溶胶等。 (2)有机结合剂。按制取方法分为两类。第l类为天然有机物,即从天然有机物中分离出的,包括淀粉、糊精、阿拉伯树胶、海藻酸钠、纸浆废液、焦油和沥青等。第2类为合成有机物,即通过化学反应或缩聚反应而合成的,包括甲阶酚醛树脂、线性酚醛树脂(又称酚醛清漆)、环氧树脂、t聚胺脂树脂、脲醛树脂、聚醋酸己烯脂、聚苯己烯、硅酸己酯、聚己烯醇类树脂、呋喃树脂等等。 按结合剂硬化条件分有水硬性、气硬性和热硬性结合剂。

(1)水硬性结合剂。加入散状耐火材料集料中、加水混合均匀并成型后,在潮湿条件下养护才能发生正常的凝结与硬化的结合剂,如硅酸盐水泥、铝酸盐水泥。 (2)气硬性结合剂。与散状耐火材料集料混合成型后,在自然干燥条件(常温)下养护即可发生凝结与硬化的结合剂,这类结合剂使用时一般要加硬化剂,如水玻璃加氟硅酸钠,磷酸或磷酸二氢铝加铝酸钙水泥或氧化镁,氧化硅微粉加铝酸钙水泥或氧化镁等。 (3)热硬性结合剂。与散状耐火材料集料混合成型后,在加热烘烤时才能发生硬化的结合剂,如磷酸、磷酸二氢铝、甲阶酚醛树脂等。 结合机理耐火材料用的结合剂,随结合剂的化学性质不同,其结合机理也不同。 (1)水化结合。借助于常温下结合剂与水发生水化反应生成水化产物而产生结合作用。如铝酸钙水泥加水后,发生水解和水化反应生成六方片状或针状CaO?A12O3? 10H2O(CAHl0)、2Ca0?AL2O3?8H2O(C2AH8)和立方粒状3Ca0?AL2O3?6H2O(C3AH6)晶体和氧化铝凝胶体(AL2O3gel),形成凝聚一结晶网而产生结合,反应如下: 又如p—AL2O3加水混合时,会发生水化反应而生成单斜板状、纤维状或粒状三羟铝石(Bayerite)和斜方板状勃姆石(Boehmite)而产生结合作用。反应如下:

耐火材料概论知识点总结

硅砖的应用:是焦炉、玻璃熔窑、高炉热风炉、硅砖倒焰窑和隧道窑、有色冶炼和酸性炼钢炉及其它一些热工设备的良好筑炉材料。 粘土质耐火材料的原料 软质粘土 生产过程中通常以细粉的形式加入,起到结合剂和烧结剂的作用。苏州土和广西泥是我国优质软质粘土的代表。 硬质粘土 通常以颗粒和细粉的形式加入,前者起到配料骨架的作用,后者参与基体中高温反应,形成莫来石等高温形矿物。 结合剂 水和纸浆废液 粘土质耐火材料制品原料来源丰富,制造工艺简单,产量很大,广泛用于各种工业窑炉和工业锅炉上。如隧道窑,加热炉和热处理炉等的全部或大部分炉体,排烟系统内衬用耐火材料,其中钢铁冶金系统是粘土质耐火材料制品的大用户,用于盛钢桶,热风炉、高炉、焦炉等使用温度在1350℃以下的高温部位。 铝矾土的加热变化 a. 分解阶段(400~1200℃) b 二次莫来石化阶段(1200~1400℃或1500℃) 二次莫来石化时发生约10%的体积膨胀 c. 重结晶烧结阶段(1400~1500℃)。 ? 高铝质耐材的应用 ? 由于高铝质耐火材料制品的优良性能,因而被广泛应用于高温窑炉一些受炉气、炉 渣侵蚀,温度高承受载荷的部位。例如高铝风口、热风炉炉顶、电炉炉顶等部位。 ? 硅线石族制品具有较高的荷重软化温度、热震稳定性好、耐磨性和抗侵蚀性优良, 因此适用于钢铁、化工、玻璃、陶瓷等行业,如用作烟道、燃烧室、炉门、炉柱、炉墙及滑板等。在高炉上,为确保内衬结构的稳定性、密封性,避免碱性物的侵入和析出,或风口漏风,在出铁口、风口部位,选择内衬大块型组合砖结构的硅线石族耐火材料,延长了使用寿命。 ? 莫来石制品的抗高温蠕变、抗热震性能力远远优于包括特等高铝砖在内的其它普通 高铝砖 ,广泛应用于冶金工业的热风炉、加热炉、钢包,建材工业的玻璃窑焰顶、玻璃液流槽盖、蓄热室,机械工业的加热炉,石化工业的炭黑反应炉,耐火材料和陶瓷工业的高温烧成窑及其推板、承烧板等窑具。 刚玉耐材的原料 氧化铝 所有熔点在2000℃以上的氧化物中,氧化铝是一种最普通、最容易获 得且较为便宜的氧化物。氧化铝在自然界中的储量丰富。天然结晶的 Al 2O 3被称为刚玉,如红宝石、蓝宝石即为含Cr 2O 3或TiO 2杂质的刚玉。大 232232400~600()H O Al O H O Al O αα-?????→-℃刚玉假象+23222322400~600222H O Al O SiO H O Al O SiO ?????? →?℃+23223229503(2)324SiO Al O SiO Al O SiO ????→?℃+232232 12003232Al O SiO Al O SiO ≥+????→?℃

耐火材料复习

1、.耐火材料的化学成分、矿物组成及微观结构决定了耐火材料的性质; 2、耐火材料是耐火度不低于1580℃的无机非金属材料。 耐火材料在无荷重时抵抗高温作用的稳定性,即在高温无荷重条件下不熔融软化的性能称为耐火度,它表示耐火材料的基本性能。 3、耐火材料的分类方法很多,其中主要有化学属性分类法、化学矿物组成分类法、生产工艺分类法、材料形态分类法等多种方法。 酸性耐火材料:硅质,半硅质,粘土质 中性耐火材料:碳质,高铝质、刚玉质、锆刚玉质、铬质耐火材料 两性氧化物: Al2O3、Cr2O3 碱性耐火材料一般是指以MgO、CaO或以MgO·CaO为主要成分的耐火材料,镁质、石灰质、白云石质为强碱性耐火材料;镁铬质、镁硅质及尖晶石质为弱碱性耐火材料。 (1)硅质耐火材料含SiO2在90%以上的材料通常称为硅质耐火材料,主要包括硅砖及熔融石英制品。硅砖以硅石为主要原料生产,其SiO2含量一般不低于93%,主要矿物组成为磷石英和方石英,主要用于焦炉和玻璃窑炉等热工设备的构筑。熔融石英制品以熔融石英为主要原料生产,其主要矿物组成为石英玻璃,由于石英玻璃的膨胀系数很小,因此熔融石英制品具有优良的抗热冲击能力。 (2)镁质耐火材料是指以镁砂为主要原料,以方镁石为主晶相,MgO含量大于80%的碱性耐火材料。通常依其化学组成不同分为: 镁质制品:MgO含量≥87%,主要矿物为方镁石; 镁铝质制品:含MgO >75%,Al2O3含量一般为7-8%,主要矿物成分为方镁石和镁铝尖晶石(MgAl2O4);镁铬质制品:含MgO>60% ,Cr2O3含量一般在20%以下,主要矿物成分为方镁石和铬尖晶石; 镁橄榄石质及镁硅质制品:此种镁质材料中除含有主成分MgO外,第二化学成分为SiO2。镁橄榄石砖比镁硅砖含有更多的SiO2,前者的主要矿物成分为镁橄榄石,其次为方镁石;后者的主要矿物为方镁石,其次镁橄榄石; 镁钙质制品:此种镁质材料中含有一定量的CaO,主要矿物成分除方镁石外还含有一定量的硅酸二钙(2 CaO?SiO2)。 3)白云石质耐火材料 以天然白云石为主要原料生产的碱性耐火材料称为白云石质耐火材料。主要化学成分为:30-42%的MgO 和40-60%的CaO,二者之和一般应大于90%。其主要矿物成分为方镁石和方钙石(氧化钙)。 4)碳复合耐火材料 碳复合耐火材料是指以不同形态的碳素材料与相应的耐火氧化物复合生产的耐火材料。一般而言,碳复合材料主要包括镁碳制品、镁铝碳制品、锆碳制品、铝碳制品等。 5)含锆耐火材料 含锆耐火材料是指以氧化锆(ZrO2)、锆英石等含锆材料为原料生产的耐火材料。含锆耐火材料制品通常包括锆英石制品、锆莫来石制品、锆刚玉制品等。 (6)特种耐火材料 碳质制品:包括碳砖和石墨制品; 纯氧化物制品:包括氧化铝制品、氧化锆制品、氧化钙制品等; 非氧化物制品:包括碳化硅、碳化硼、氮化硅、氮化硼、硼化锆、硼化钛、塞伦(Sialon)、阿伦(Alon)制品等; 1.3耐火材料的组成、结构与性质 耐火材料是构筑热工设备的高温结构材料,在使用过程中除承受高温作用外,还不同程度地受到机械应力、热应力作用,高温气体、熔体以及固体介质的侵蚀、冲刷、磨损。 耐火材料的性质主要包括化学-矿物组成、组织结构、力学性质、热学性质及高温使用性质等。

纳米材料物理热学性质

纳米材料的热学性质 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级 ( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达 l 5 ~5 0 %。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 一热容 1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。 1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。 2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小, 二.晶格参数,结合能,内聚能 纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现 Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。结合能的确比相应块体材料的结合能要低。通过分子动力学方法,模拟 Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对 晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。 三纳米粒子的熔解热力学 熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和熔解焓建立的块体材料的熔解温度(有时称熔点) 熔解焓(或称熔解热)和熔解熵一般是常数,但对于纳米材料则非如此实验表明:纳米微粒的熔解温度依赖于微粒的尺寸。 四反应体系的化学平衡 利用纳米氧化铜和纳米氧化锌分别与硫酸氢钠溶液的反应,测定出不同粒径,不同温度时每个组分反应的平衡浓度,从而计算出平衡常数,进而得到化学反应的标准摩尔吉布斯函数;通过不同温度的标准摩尔吉布斯函数,可得化学反

耐火材料的六大使用性能

耐火材料的六大使用性能 耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。 (一般)耐火度 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。 耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。因此,耐火度是多相体达到某一特定软化程度的温度。 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。耐火度是判定材料能否作为耐火材料使用的依据。 国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。 (二)荷重软化温度

荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。 荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关 (三)重烧线变化(高温体积稳定性) 首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。 耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。 耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。

耐材结合剂-磷酸盐

耐火材料结合剂磷酸盐 以酸性正磷酸盐或缩聚磷酸盐为主要化合物并具有胶凝性能的无机材料。它是由磷酸与氧化物或氢氧化物或碱反应生成的耐火材料结合剂。磷酸盐结合剂的结合形式属化学反应结合或聚合结合。磷酸与碱金属或碱土金属氧化物及其氢氧化物反应生成的结合剂多数为气硬性结合剂,即不须加热在常温下即可发生凝结与硬化作用。磷酸与两性氧化物及其氢氧化物或酸性氧化物反应生成的结合剂多数为热硬性结合剂,即须经加热到一定温度发生反应后方可产生凝结与硬化作用。磷酸盐用作耐火材料的结合剂在产生陶瓷结合之前的中、低温范围内具有较强的结合强度,所以被广泛用作不定形和不烧耐火材料的结合剂。 分类磷酸盐的分类一般是以其化合物中所含的金属氧化物(M2O)与五氧化二磷(P2O5)的摩尔比(R=M2O//P2O5)来区分,其分类见表1。 表1磷酸盐结合剂的分类 但作为耐火材料结合剂的磷酸盐则分为两类: (1)正磷酸盐结合剂,即含一个磷原子化合物的结合剂,如磷酸二氢铝(Al(H2PO4)3)、磷酸一氢铝(Al2HPO4)3); (2)缩聚磷酸盐结合剂,即含2个磷原子以上的磷酸盐化合物,如三聚磷酸钠(Na5P3O10)、六偏磷酸钠((NaPO3)6)等。正磷酸盐结合剂又可按其化合物名称命名,主要有以下几种:磷酸铝结合剂,磷酸锆结合剂,磷酸镁结合剂,磷酸铬结合剂和复合磷酸盐结合剂等。适合作耐火材料结合剂的缩聚磷酸盐主要有:焦磷酸钠(Na4P2O7),三聚磷酸钠,六偏磷酸钠、超聚磷酸钠(Na2P4O11)等。 磷酸铝结合剂用氢氧化铝与磷酸反应而制得,其反应式如下: 反应生成的铝的磷酸盐也可用如下方式表示: 由此可计算出所生成的不同磷酸盐中Al2O3与P2O5摩尔比,一般用此摩尔比的百分数来表示磷酸铝结合剂的中和度(Nm):

《材料结构与性能》课程论文

《材料结构与性能》课程论文 刚玉-尖晶石浇注料微结构参数控制及其强度、热震稳定性和抗渣性能研究 学生姓名:周文英 学生学号:201502703043 撰写日期:2015年11月

摘要 本文通过使用环境对耐火材料的要求,耐火材料与结构参数的分析,耐火材 料结构控制措施进展分析等方面总结了耐火材料的使用现状,并提出了下一步耐 火材料的改进措施。分别是:在基质中加入一定量的硅微粉,改变液相的粘度, 提高抗渣性;控制铝镁浇注料基质的粒径分布,使大颗粒含量一定保证其高温强度;使用球形轻骨料代替原来的致密骨料,提高气孔率,降低体积密度,提高能 源利用率,降低能耗。 关键词:铝镁浇注料;高温强度;抗渣性;热震稳定性 Abstract Requirements of the apply for fire resistance, analysis of refractory materials and structure parameters, current application and the promotion about the refractory are introduced in this paper. It included that: add some sillicon power into matrix in order to improve the viscosity of the liquid for abtaining better slag resistance; control the distribution of the particle in the matrix to ensure the high temperature strength; use spherical light aggregate instead of the original density aggregate to improve porosity and the rate of energy. Keywords:Alumina-Magnesia castable; high temperature strength; slag resistance; themal shock resistance.

耐火材料的基本知识

第一节耐火材料的基本知识 1、耐火材料的定义? 耐火材料就是指耐火度不低于 1500℃的无机非金属材料。 2、耐火材料必须具备的基本性能? (1)耐火度(2)高温体积稳定性(3)耐急冷急热性 3、耐火材料在电炉炼钢厂的应用? (1)电炉炉衬、炉盖、炉底、炉坡、渣线修补料。 (2)精炼钢包包衬、包盖、滑动水口、透气砖系统。 (3)连铸中间包包衬、包盖、长水口、整体塞棒、浸入式水口。(4)模铸用漏斗砖,中注管,中心砖,汤道砖,尾砖,模底砖。 4、按耐火度不同,耐火材料可分几类? (1)普通耐火材料,耐火度1580~1770℃; (2)高级耐火材料,耐火度1770~2000℃; (3)特级耐火材料,耐火度> 2000℃; 5、按化学矿物组成的性质不同,耐火度可分为几类?

(1)酸性耐火材料,如硅砖;(2)碱性耐火材料,如镁砖、白云石砖、镁碳砖;(3)中性耐火材料,如高铝砖、碳砖。 6、按外形尺寸的多少,耐火材料可分为几类? (1)标准型耐火砖,外形尺寸≤4个;(2)普通型耐火砖,外形尺寸≤6个;(3)异型耐火砖,外形尺寸<10个,带孔、槽、角;(4)特异型耐火砖,外形尺寸>10,带多个孔、槽、角。 7、按外形耐火材料可分类为几类? (1)耐火砖——具有一定的形状。(2)不定形耐火材料——散状实,需按所要形状进行施工用耐火材料。(3)耐火泥——砌砖填缝用耐火材料。 8、学习耐火基本知识的目的? (1)掌握基本技能,科学合理使用耐火材料。 (2)掌握使用特性,防止穿炉、穿包、漏钢、跑钢事故发生。 (3)掌握使用规律,不断提高炉衬,包衬使用寿命,降低炼钢生产成本,减轻劳动强度,提高经济效益。 第二节耐火材料的基本性能 9、什么叫气孔率?

耐火材料试题及答案

理工大学2007耐材A标答 一、填空题(20分,每题2分) 1、耐火材料的物理性能主要包括烧结性能、力学性能、热学性能、和高温使用性能。 2、材料的化学组成越复杂,添加成分形成的固溶体越多,其热导率越小;晶体结构愈简单, 热导率越大。 3、硅砖生产中矿化剂的选择原则为系统能形成二液区,并且系统形成液相的温度低或不大 于1470℃。 4、相同气孔率的条件下,气孔大而集中的耐火材料热导率比气孔小而均匀的耐火材料大。 5、“三石”指蓝晶石、红柱石、硅线石,其中体积膨胀居中的是硅线石。 6、赛隆(Sialon)是指Si3N4与Al2O3在高温下形成的一类固溶体。 7、连铸系统的“三大件”,通常指整体塞棒、长水口和浸入式水口,其化学组成主要为Al2O3、 SiC、C、SiO2等。 8、高温瓷涂层的施涂方法主要有烧结法或火焰喷涂、等离子喷涂、低温烘烤补强法和气 相沉积法等。 9、不定形耐火材料所用的结合剂按硬化特点分有水硬性结合剂、热硬性结合剂、气硬性结合 剂和火硬性结合剂。 10、镁铝尖晶石的合成属固相反应烧结,影响其合成质量的因素主要为原料纯度或细度、外加剂、 烧成温度。 二、选择题(10分,每题5分) 1、不同耐火材料所对应的化学矿物组成特征1个0.83分 ①方镁石;②CaO;③K2O,Na2O;④刚玉;⑤Al2O3;⑥鳞石英。 2、白云石耐火材料抵抗富铁渣侵蚀能力的顺序:③>①>②,在⑤条件下更是如此。 1个1.25分①理论白云石;②高钙白云石;③富镁白云石;④氧化;⑤还原。 三、判断简答题(28分,每题7分)

1、耐火度愈高砖愈好。 答:错。(2.5分) 耐火度是指耐火材料在无荷重条件下抵抗高温而不熔化的特性。而耐火材料在使用过程中不可能无荷重,因此,耐火度只能作为一个相对指标。(4.5分) 2、水泥因含有一定数量CaO,所以,为提高高温性能,浇注料应该采用超低水泥或无水泥结合。答:错。(2.5分) 浇注料向低水泥或无水泥方向发展主要是指Al2O3-SiO2系耐火材料,Al2O3、SiO2、CaO等高温下易形成低熔物影响高温性能,而刚玉或高纯铝镁系浇注料采用水泥结合,问题不大。(4.5分) 3、二次莫来石化因伴随体积膨胀,所以,在生产中应尽可能地避免。 答:错。(2.5分) 二次莫来石化主要是指高铝砖生产中结合粘土的SiO2与高铝熟料的Al2O3反应生成莫来石,并伴随体积膨胀,因此,在生产高铝砖过程中应尽可能地避免。但是,在生产高荷软耐火材料或低蠕变砖时,其原理正是利用这种反应产生的一定体积膨胀效应。(4.5分) 4、石墨能在钢铁熔体中溶解,对其有一定污染,因此,碳复合耐火材料前途黯淡。 答:错。(2.5分) 石墨尽管高温下对钢水有一定污染,但石墨熔点高、热膨胀系数小、热导率高、不易被渣润湿,因此,碳复合耐火材料具有优异的热震稳定性、抗渣渗透性。所以,在冶炼条件苛刻的关键部位仍然需要碳复合耐火材料。(4.5分) 四、论述题(42分,每题14分) 1、试区别热剥落、结构剥落、机械剥落所形成的主要原因,并说明提高这些性能的主要措施。答:热剥落:热震稳定性;结构剥落:渣渗透;机械剥落:机械冲击。2.5分 主要措施: 热剥落:1)热膨胀系数小;2)导热率高;3)弹性模量小;4)微裂纹;5)少量液相; 6)晶须;7)合适强度。(至少3种) 4.5分

材料热学力学性能

第一章 脆性材料的断裂强度等于甚至低于弹性极限,因而断裂前不发生塑性形变。脆性材料的抗拉断裂强度低,但抗压断裂强度高。 强度:材料对塑性变形和断裂的抗力 塑性:材料在断裂前发生的不可逆的变形量的多少 韧性:断裂前单位体积材料所吸收的变形和断裂能。即外力所做的功。 泊松比 比例极限(16)弹性极限(17表征材料对极微量塑性变形的抗力)屈服强度抗拉强度延伸率断面收缩率P7 真应力S——真应变?曲线P8 单位体积材料在断裂前所吸收的能量,也就是外力使材料断裂所做的功,称为金属的韧度或断裂应变能密度Ut,它可能包含三部分能量,即弹性变形能、塑性变形能和断裂能。 第二章 零构建的刚度取决于两个因素:构件的几何和材料的刚度。表征材料刚度的力学性能指标是弹性模量。在加工过程中,应当提高材料的塑性,降低塑性变形抗力——弹性极限和屈服强度。 金属变形的微观解释P12 弹性模量表明了材料对弹性变形的抗力,代表了材料的刚度。 影响弹性模量的内部因素有纯金属的弹性模量、合金元素与第二相的影响,外部因素有温度、加载速率和冷变形影响p14 总之,弹性模量是最稳定的力学性能参数,对合金成分和组织的变化不敏感。 单晶体金属的弹性模量,其值在不同的结晶学方向上是不同的,也表现出各向异性。在原子间距较小的结晶学方向上,弹性模量的数值较高,反之较小。 弹性比功:弹性应变能密度,指金属材料吸收变形功而又不发生永久变形的能力,是在开始塑性变形前单位体积金属所能吸收的最大弹性变形功,韧度指标。P17 金属塑性变形方式为滑移和孪生,临界切分应力p21 滑移面和滑移方向常常是金属晶体中原子排列最密的晶面和晶向。金属浸提中的滑移系越多,其塑性可能越好。 实用金属材料的塑性变形特点择优取向形变织构(p22): 1 各晶粒塑性变形的非同时性和不均一性 2 各晶粒塑性变形的相互制约性与协调性 屈服效应、时效效应p23 提高屈服强度的途径: 1 纯金属

耐火材料各性质

耐火材料的力学性质 耐火材料的力学性质是指材料在不同温度下的强度、弹性、和塑性性质。耐火材料在常温或高温的使用条件下,都要受到各种应力的作用而变形或损坏,各应力有压应力、拉应力、弯曲应力、剪应力、摩擦力、和撞击力等。 此外,耐火材料的力学性质,可间接反映其它的性质情况。 检验耐火材料的力学性质,研究其损毁机理和提高力学性能的途径,是耐火材料生产和使用中的一项重要工作内容。 4.1 常温力学性质 4.1.1 常温耐压强度σ压 定义;是指常温下耐火材料在单位面积上所能承受的最大压力,也即材料在压应力作用下被破坏的压力。 常温耐压强度σ压=P/A ,(pa) 式中;P—试验受压破坏时的极限压力,(N); A—试样的受压面积,(m2)。 一般情况下,国家标准对耐火材料制品性能指标的要求,视品种而定。其中,对常温耐压强度σ压的数值要求为50Mpa左右(相当于500kg/cm2);而耐火材料的体积密度一般为2.5g/cm3左右。据此计算,因受上方砌筑体的重力作用,导致耐火材料砌筑体底部受重压破坏的砌筑高度,应高达2000m以上。 可见,对耐火材料常温耐压强度的要求,并不是针对其使用中的受压损坏。而是通过该性质指标的大小,在一定程度上反映材料中的粒度级配、成型致密度、制品烧结程度、矿物组成和显微结构,以及其它性能指标的优劣。 体现材料性能质量优劣的性能指标的大小,不仅反映出来源于各种生产工艺因素与过程控制,而且反映过程产物气、固两相的组成和相结构状态以及相关性质指标间的一致性。一般而言,这是一条普遍规律。 4.1.2 抗拉、抗折、和扭转强度 与耐压强度类似,抗拉、抗折、和扭转强度是材料在拉应力、弯曲应力、剪应力的作用下,材料被破坏时单位面积所承受的最大外力。与耐压强度不同,抗拉、抗折、和扭转强度,既反映了材料的制备工艺情况和相关性质指标间的一致性,也体现了材料在使用条件下的必须具备的强度性能。抗折强度σ折按下式计算。

耐火材料结合剂的6大结合机理及选用原则

耐火材料结合剂的6大结合机理及选用原则 耐火材料结合剂的结合机理 结合剂的种类不同,其结合散状耐火原料的机理也有所区别。常见耐火材料结合剂的结合机理主要有以下几种: 1 水化结合 即在常温下通过结合剂与水发生水化反应生成的水化产物而产生结合作用。水泥类结合剂一般都是水化结合机理,如铝酸钙水泥遇水后发生水解和水化反应生成六方片状或针状CAH10(CaO·Al2O3·10H2O)、C2AH8(CaO·Al2O3·H2O)和立方粒状C3AH6(3CaO·Al2O3·6H2O)晶体和氧化铝凝胶体,形成凝聚一结晶网而产生结合。 2 化学结合 通过结合剂与硬化剂(促凝剂)之间的反应,或者结合剂与耐火原料在常温或高于常温而低于烧结温度的范围内发生反应生成具有结合作用的化合物而产生结合。气硬性结合剂和部分热硬性结合剂属于这种结合机理,例如水玻璃结合剂与氟硅酸钠硬化剂发生反应生成的水溶胶SiO2·nH2O经脱水形成硅氧烷(Si-O-Si)网络结构而产生结合强度;

磷酸二氢铝结合剂加MgO硬化剂时,在常温下即可发生脱水和交联反应而产生结合强度。 3 缩聚结合 借助于催化剂或交联剂,结合剂发生缩聚反应形成网络状结构而产生结合强度。例如甲阶酚醛树脂加酸作催化剂或受热时都可产生缩聚反应。 4 陶瓷结合 通过耐火原料或耐火原料与加入的烧结助剂在高温下形成的液相而产生结合。陶瓷结合实际上是一种由液相烧结而产生的结合。在耐火材料坯体中,耐火度较低的原料或耐火原料与助烧剂发生反应首先产生粘性液相使散状原料粘结在一起,随温度的提高,依靠液一固相反应生成具有更高熔融温度的新物相而产生坚固的结合。 5 粘着结合 借助于吸附作用、扩散作用和静电作用等物理作用而将散状耐火原料结合在一起。吸附作用有物理吸附和化学吸附,是依靠分子间的相互作用力一一范德华力而产生结合;扩散作用是在分子热运动的作用下,结合剂与被结合物的分子发生相互扩散,在界面上形成扩散层从而产生结合:静电作用,即若结合剂与被结合物的界面存在着双电层,

耐火材料的热学性质

耐火材料的热学性质 耐火材料的热学性质有热膨胀、热导率、热容、温度传导性,此外还有热辐射性。 3.1 耐火材料的热膨胀 耐火材料的热膨胀是其体积或长度随温度升高而增大的物理性质。原因是材料中的原子受热激发的非谐性振动使原子的间距增大而产生的长度或体积膨胀。衡量耐火材料的热膨胀性能的技术指标有热膨胀率、热膨胀系数。 3.1.1 热膨胀率 热膨胀率也称线膨胀率,物理意义:是试样在一定的温度区间的长度相对变化率。测定出热膨胀率,才能计算出热膨胀系数。 线膨胀率=[(L T-L0)/L0]×100% 式中:L T、L0—分别为试样在温度T、T0时的长度,(mm)。 3.1.2 热膨胀系数 热膨胀系数有平均线膨胀系数α、真实线膨胀系数αT,体膨胀系数β。以后除特别说明外,热膨胀系数一般指的是平均线膨胀系数。线膨胀系数物理意义:在一定温度区间,温度升高1℃,试样长度的相对变化率。 热膨胀系数α=(L T-L0)/ L0(T-T0)=ΔL/ L0ΔT 式中:T、T0—分别为测试终了温度、测试初始温度,(℃)。 体热膨胀系数β=ΔV/V0ΔT 式中:V0—为试样在初始温度T0时的体积,(mm3)。 真实热膨胀系数αT=dL/LdT 式中;L—为试样在某温度时的长度,(mm)。 如线膨胀系数数值很小,则体膨胀系数约等于线膨胀系数的3倍。对于各向同性晶体,体膨胀系数β≈3α;对于各向异性晶体,体膨胀系数等于各晶轴方向的线膨胀系数只和,即β≌αa+αb+αc。 影响材料热膨胀系数的因素有:化学矿物组成、晶体结构类型和键强等。 ①化学矿物组成的影响:含有多晶转变的制品,热膨胀系数的变化不均匀,在相变点会发生突变,例如硅质制品和氧化锆制品;材料中含有较多低熔液相或挥发性成分时,热膨胀系数α在相应的温度区域也发生较大的变化。 ②晶体结构类型的影响:结构紧密的晶体热膨胀系数较大、无定型的玻璃热膨胀系数较

耐火材料复习资料

耐火材料:是指耐火度不低于1580℃的无机非金属材料。 主晶相:是指构成制品结构的主体且熔点较高的晶相。 基质:是指耐火材料中大品体或骨料间隙中存在的物质。 直接结合:指耐火制品中,高熔点的主晶相之间或主晶相与次晶相间直接接触产生结晶网络的一种结合,而不是靠低熔点的硅酸盐相产生结合。 成型:借助外力和模型将坯料加工成为具有一定尺寸、形状和强度的坯体或制品的过程。 主晶相陶瓷结合:又称为硅酸盐结合,其结构特征是耐火制品主晶相之间由低熔点的硅酸盐非晶质和晶质联结在一起而形成结合。 酸性耐火材料:含有相当数量的游离二氧化硅(Si02)。酸性最强的耐火材料是硅质耐火材料,几乎由94?97%的游离硅氧(Si02)构成。粘土质耐火材料与硅质相比,游离硅氧(Si02)的量较少,是弱酸性的。 碱性耐火材料:含有相当数量的MgO 和CaO 等,镁质和白云石质耐火材料是强碱性的, 格镁系和镁橄榄右质耐火材料以及尖晶石耐火材料属于弱诚性耐火材料。 热震稳定性:耐火材料抵抗温度的急剧变化而不破坏的性能。 抗渣性:耐火材料在高温下抵抗熔渣侵蚀怍用而不破坏的能力。 粘土质耐火材料:是用天然产的各种粘土作原料,将一部分粘土预先煅烧成熟料,并与部分生粘土配合制成Al2O3含量为30%-46%的硅酸盐铝质耐火材料。 耐火泥:是由粉状物料和结合剂组成的供调制泥浆用的不定形耐火材料。 矿化剂:泛指内生成矿作用中对成矿物质的运移和集中起重要媒介作用的物质。 防氧化剂:含碳耐火材料采用金属添加剂的作用在于抑制碳的氧化, 被称为防氧化剂 减水剂:是指在能在保持耐火浇注料的流动值基本不变的条件下,显著降低拌和用水量的物质。 镁碳砖:是由高熔点碱性氧化镁(2800℃)和难以被炉渣浸润的高熔点碳素材料为原料,添加各种非氧化物添加剂,用碳质结合剂结合而成的不烧碳复合材料。 电熔镁砂是以优质镁砂为原料经过熔化而制成。 低水泥浇注料:由耐火细粉和结合剂组成的基质中,用超细粉(指粒度小于10μm )来取代部分或大部分铝酸钙水泥,在加入少量分散剂使超细粉均匀地分散于骨料颗粒之间,填充在亚微米级的空隙中,从而形成均匀致密的组织结构。 液相烧结:凡有液相参加的烧结过程;液相起到促进烧结和降低烧结 温度的作用。 ,式子中的系数m 是SiO2/Na2O 的摩尔比。 显微结构:在光学和电子显微镜下分辨出的试样中所含有相的种类 及各相的数量、形状、大小、分布取向和它们相互之间的 关系,称为显微结构。 气硬性结合剂:气硬性结合剂是在大气中和常温下即可逐渐凝结硬化 而具有相当高强度的结合剂 热硬性结合剂:热硬性结合剂是指在常温下硬化很慢和强度很低,而在高于常温但低于烧结温度下可较快的硬化的结合剂 问答题: 1.耐火材料的组织结构有那两个类型? 答:宏观组织结构和微观组织结构。 2.耐火材料的高温蠕变可划分为哪三个特征阶段? 答:一次蠕变初期蠕变或减速蠕变;第2次蠕变或粘性蠕变,又可称为均速锘变或稳态蟠变;第3次蠕变又称加速緩变。 3. 莫来石、菱镁矿、白云石、镁铝尖晶石和镁橄榄石的分子式。 答:,,, ,。 4、杂质成分与主成分共熔产生液相对耐火材料性能有何影响。 222??水玻璃的模数:是在水玻璃(Na O mSiO nH O )2323:3Al 2O Si O 莫来石22MgO SiO ?镁橄榄石:33 白云石:CaCO MgCO 3Mg CO 菱镁矿:23MgO Al O 镁铝尖晶石:

材料结构与性能答案(DOC)

1.材料的结构层次有哪些,分别在什么尺度,用什么仪器进行分析? 现在,人们通过大量的科学研究和工程实践,已经充分认识到物质结构的尺度和层次是有决定性意义的。 在不同的尺度下,主要的,或者说起决定性的问题现象和机理都有很大的差异,因此需要我们用不同的思路和方法去研究解决这些问题。更值得注意的是空间尺度与时间尺度还紧密相关,不同空间尺度下事件发生及进行的时间尺度也很不相同。一般地讲,空间尺度越大的,则描述事件的时间尺度也应越长。不同的学科关注不同尺度的时空中发生的事件。现代科学则按人眼能否直接观察到,且是否涉及分子、原子、电子等的内部结构或机制,而将世界粗略地划分为宏观(Macro-scopic)世界和微观(Microscopic)世界。之后,又有人将可以用光学显微镜观察到的尺度范围单独分出,特别地称作/显微结构(世界)。随着近年来材料科学的迅速发展,材料科学家中有人将微观世界作了更细致地划分。而研究基本粒子的物理学家可能还会把尺度向更小的方向收缩,并给出另外的命名。对于宏观世界,根据尺度的不同,或许还可以细分为/宇宙尺度/太阳系尺度/地球尺度和/工程及人体尺度等。人类的研究尺度已小至基本粒子,大至全宇宙。但到目前为止,关于/世界的认识还在不断深化,因而对其划分也就还处于变动之中。即使是按以上的层次划分,其各界之间的边界也比较模糊,有许多现象会在几个尺度层次中发生。 在材料科学与工程领域中,对于材料结构层次的划分尚不统一,可以列举出许多种划分方法,例如:有的材料设计科学家按研究对象的空间尺度划分为三个 层次: (1)工程设计层次:尺度对应于宏观材料,涉及大块材料的加工和使用性能的设计研究。 (2)连续模型尺度:典型尺度在1Lm量级,这时材料被看作连续介质,不考虑其中单个原子、分子的行为。 (3)微观设计层次:空间尺度在1nm量级,是原子、分子层次的设计。 国外有的计算材料学家,按空间和时间尺度划分四个层次〔1〕,即 (1)宏观 这是人类日常活动的主要范围,即人通过自身的体力,或借助于器械、机械等所能通达的时空。人的衣食住行,生产、生活无不在此尺度范围内进行。其空间尺度大致在0.1mm(目力能辨力最小尺寸)至数万公里人力跋涉之最远距离),时间尺度则大致在0.01秒(短跑时人所能分辨的速度最小差异)至100年(人的寿命差不多都在百年以内)。现今风行的人体工程学就是以人体尺度1m上下为主要参照的。 (2)介观 介观的由来是说它介于/宏观与/微观之间。其尺度主要在毫米量级。用普通光学显微镜就可以观察。在材料学中其代表物是晶粒,也就是说需要注意微结构了,如织构,成分偏析,晶界效应,孔中的吸附、逾渗、催化等问题都已开始显现。现在,介观尺度范围的研究成果在材料工程领域,如耐火材料工业、冶金工业等行业中有许多直接而成功的应用。 (3)微观 其尺度主要在微米量级,也就是前面所说/显微结构(世界)0。多年以来借助于光学显微镜、电子显微镜、X)衍射分析、电子探针等技术对于晶态、非晶态材料在这一尺度范围的行为表现有较多的研究,许多方法已成为材料学的常规手段。在材料学中,这一尺度的代表物有晶须、雏晶、分相时产生的液滴等。 (4)纳观 其尺度范围在纳米至微米量级,即10-6~10-9m,大致相当于几十个至几百个原子集合体的尺寸。在这一尺度范围已经显现出量子性,已经不再能将研究对象作为/连续体0,不能再简单地

相关文档
最新文档