测量钢丝绳的杨氏模量

测量钢丝绳的杨氏模量
测量钢丝绳的杨氏模量

金属的杨氏模量的测量

金属的杨氏模量的测量 当固体受外力作用时,它的体积和形状将要发生变化,这种变化,称为形变。当外力不太大时,物体的形变与外力成正比,且外力停止作用物体立即恢复原来的形状和体积,这种形变称为弹性形变。当外力较大时,物体的形变与外力不成比例,且外力停止作用,物体形变不能恢复原来的形状和体积,这种形变称为范性形变。范性形变的产生,是由于物体形变而产生的内应力超过了物体的弹性限度的缘故。如果再继续增大外力,物体内产生的内应力将会超过物体的强度极限时,物体便被破坏了。 固体材料的弹性形变可以分为纵向、切变、扭转、弯曲等,对于纵向弹性形变可以引入杨氏模量来描述材料抵抗形变的能力。杨氏模量是反映材料形变与内应力关系的一个重要的物理量。杨氏模量越大,越不易发生形变。杨氏模量一般只与材料的性质和温度有关,与其几何形状无关。材料杨氏模量测量方法很多,有静态法和动态法。对于静态法来说,又可分为拉伸法和弯曲法。 I .拉伸法测定钢丝的杨氏弹性模量 【实验目的】 1. 学会用拉伸法测定钢丝的杨氏弹性模量。 2. 掌握几种长度测量工具的使用方法及其不确定度的分析和计算。 3. 进一步掌握逐差法、作图法和最小二乘法的数据处理方法。。 【实验仪器】 杨氏模量测量仪、螺旋测微器、钢卷尺、读数显微镜装置等。 【实验原理】 一、拉伸法测金属丝的杨氏弹性模量 设有一根粗细均匀的金属丝,长度为L,截面积为S ,将其上端紧固, 下端悬挂质量为m的砝码。当金属丝受外力F= mg作用而发生形变L时,金属丝受外力作用发生形变而产生的内应力RS,其应变为LL,根据虎克

定律有:在弹性限度内,物体的应力 F 「S 与产生的应变成正比,即 Fl S L 式中E 为比例恒量,将上式改写为 L F EwlL 其中E 为该材料的杨氏弹性模量 (又称杨氏模量) 变的应力。实验证明,杨氏模量 E 与外力 F 、金属丝的长度L 、横截面积S 的 大小无关,它只与制成金属丝的材料有关。 1 若金属丝的直径为d ,则S = - Q ?d 2 ,将其代入(I .2 )式中可得 4 4F L 二 d 2 .丄 (I .3 )式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝 伸长量较 小,杨氏模量小的金属丝伸长量较大。 因此,杨氏模量反映了材料抵抗 外力引起的拉伸(或压缩)形变的能力。实验中,测量出 F 、L 、d 和厶L 值就 可以计算出金属丝的杨氏模量 E 。其中F 、L 、d 都可用一般方法测得,唯有 L 是一个微小的变化量,约 10‘mm 数量级,用普通量具如钢尺或游标卡尺 是难以测准的。因此,实验的核心问题是对微小变化量 L 的测量。在本实验 中用读数显微镜测量(也可利用光杠杆法或其他方法测量) 二、杨氏模量测量仪 杨氏模量测量仪的基本结构如图1所示。在一个较重的三脚底座上固定有两 根立柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个 支架受力后变形极小,可以忽略。通过调节三角底座的水平调节螺母13使整个支 架铅直。待测样品是一根粗细均匀的金属丝(长约 90Cn )O 金属丝上端用上端紧 固座2夹紧并固定在上横梁上,钢丝下端也用一个钳形平台5夹紧并穿过平台的中 心孔,使金属丝自由悬挂。钢丝的总长度 L 就是从上端固定座2的下端面至钳形 平台5的上端面之间的长度。钳形平台5下方的挂钩上挂一个砝码盘,当盘上逐次 加上一定质量的砝码后,钢丝就被拉伸,标尺刻线6也跟着下降。读数标尺9相对 (I .1 ) (I .2 ) ,在数值上等于产生单位应 (I ?3 )

用拉伸法测金属丝的杨氏模量

2222)()()(4)()(b u n u d u R u L u Y u b n d R L +?+++=?用拉伸法测金属丝的杨氏模量 [预习思考题] 1、使用螺旋测微器的注意事项是什么?棘轮如何使用?螺旋测微器用毕还回盒内时要作何处理? 答:使用螺旋测微器测物时,手要握螺旋测微器的绝热板部分,手上不能有汗渍;被测物接触测砧之前,应旋转棘轮,切不可拧微分套筒,否则会损伤测砧,测值也不准确。砧台夹住被测物时,听到棘轮发出“咯咯”声响,立刻停止旋转。螺旋测微器还回盒内时,要将微分筒退旋几转,使砧台间留有一定空隙,避免热胀使螺杆变形。 2、公式 Y=8FLR πd 2b △n 中哪几个量是待测量?关键是测准哪几个量?这些量都是长度量,却使用了不同的量具和方法,这是根据什么考虑的?此公式的适用条件是什么? 答:公式中有L 、R 、d 、b 、Δn 等五个待测量。测准Δn 和d 是实验成功的关键。由Y 的不确定度传播公式: 可知,Y 的不确定度是各直接测得量的不确定度的总和,因而,一般考虑各量的不确定度按等影响原则分配,即每个直接测得量的不确定度对合成不确定度的贡献大致相同;也就是说,按照不确定度的合理分配来确定每个长度量用什么测量工具。在测量中,过高地追求某一两个量的精确度,对最后合成不确定度的影响并不大,因而无意义。比如L 和R 都大于50cm ,用米尺

,分别计算出解答提示:根据:22222)()()(4)()(b u n u d u R u L u Y u b n d R L +?+++=?二和知,。由实际测量的计算可、、、、出根号中各量:n d b u n u d u R u L u b n d R L ???2测量完全能满足要求,不必考虑选用精确度更高的仪器。公式应满足的实验条件有三:① 加负荷不能超过钢丝的弹性限度;② 光杠杆偏角θ应很小,即外力F 不能过大;③ 望远镜光轴水平,反射镜与标尺垂直于光轴。 [实验后思考题] 1、根据Y 的不确定度公式,分析哪个量的测量对Y 的测量结果影响最大。 量的测量对Y的测量结果影响最大,因此测此二量尤应精细。 2、可否用作图法求钢丝的杨氏模量,如何作图? 答:本实验不用逐差法,而用作图法处理数据,也可以算出杨氏模量。由公式 Y=8FLR πd 2b △n 可得: F= πd 2b 8LR Y △n =KY △n 。式中K=πd 2b 8LR 可视为常数。以荷重F 为纵坐标,与之相应的n i 为横坐标作图。由上式可见该图为一直 线。从图上求出直线的斜率,即可计算出杨氏模量。 3、怎样提高光杠杆测量微小变化的灵敏度?这种灵敏度是否越高越好? 答:由Δn= 2R b ΔL 可知, 2R b 为光杠杆的放大倍率。适当改变R 和 b ,可以增加放大倍数,提高光杠杆的灵敏度,但这种灵敏度并非越高越好;

拉伸法测钢丝的杨氏模量(已批阅)教学文案

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种 数据处理的方法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直 接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光 线转过2θ,而且有: 故:)2(D b l L =?,即是) 2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体 重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表 面共面。

(3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面 (1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜 处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰, 用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上 的读数r i ,然后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值 i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm , )、游标卡尺(0-150mm,、螺旋测微器(0-150mm, 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ??? ????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】 <一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方左右位置上;

4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0‘,' 7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: 4 )()()()(37261504n n n n n n n n n -+-+-+-=? 3. 注:上式中的n ?为增重400g 的金属丝的伸长量。 【实验数据记录处理】 【结果及误差分析】 1. 光杠杆、望远镜和标尺所构成的光学系统一经调节好后,在实验过程中就不可 在移动,否则,所测的数据将不标准,实验又要重新开始; 2. 不准用手触摸目镜、物镜、平面反射镜等光学镜表面,更不准用手、布块或任 意纸片擦拭镜面;

材料杨氏模量的测量

霍耳位置传感器的定标和杨氏模量的测定 一、 实验目的 1. 熟悉霍耳位置传感器的特性; 2. 掌握用弯曲法测量黄铜的杨氏模量; 3. 测黄铜杨氏模量的同时,对霍耳位置传感器定标; 4. 用霍耳位置传感器测量可锻铸铁的杨氏模量。 二、 仪器和用具 1. 霍耳位置传感器测杨氏模量装置一台(底座固定箱、读数显微镜、95A 型集成霍耳位置 传感器、磁铁两块、支架、砝码盘、砝码等); 2. 霍耳位置传感器输出信号测量仪一台(包括直流数字电压表)。 三、 实验原理 1、霍尔元件置于磁感应强度为B 的磁场中,在垂直于磁场方向通以电流I ,则与这二者垂直的方向上将产生霍尔电势差U H : U H =K· I·B (1) (1) 式中K 为元件的霍尔灵敏度。如果保持霍尔元件的电流I 不变,而使其在一个均匀梯度的磁场中移动时,则输出的霍尔电势差变化量为: Z dZ dB I K U H ??? ?=? (2) (2)式中?Z 为位移量,此式说明若 dZ dB 为常数时,? U H 与?Z 成正比。 为实现均匀梯度的磁场,可以如图1所示两块相同的磁铁(磁铁截面积及表面磁感应强度相同)相对放置,即N 极与N 极相对,两磁铁之间留一等间距间隙,霍尔元件平行于磁铁放在该间隙的中轴上,间隙大小要根据测量范围和测量灵敏度要求而定,间隙越小,磁场梯度就越大,灵敏度就越高。磁铁截面要远大于霍尔元件,以尽可能的减小边缘效应影响,提高测量精确度。 若磁铁间隙内中心截面处的磁感应强度为零,霍尔元件处于该处时,输出的霍尔电势差应该为零。当霍尔元件偏离中心沿Z 轴发生位移时,由于磁感应强度不再为零,霍尔元件也就产生相应的电势差输出,其大小可以用数字电压表测量,由此可以将霍尔电势差为零时元件所处的位置作为位移参考零点。 霍尔电势差与位移量之间存在一一对应关系,当位移量较小(<2mm ),这一一对应关系具有良好的线性。 2、在横梁弯曲的情况下,杨氏模量E 可以用下式表示: ;433Z b a Mg d E ????= (3) 其中:d 为两刀口之间的距离;M 为所加砝码的质量;a 为梁的厚度;b 为梁的宽度;?Z 为

大学物理实验报告_钢丝的杨氏模量测量

大学物理仿真实验 实 验 报 告 : 班级: 学号: 2014年12月10日

实验名称:钢丝的杨氏模量测量 实验原理 任何物体(或材料)在外力作用下都会发生形变。当形变不超过某一限度时,撤走外力则形变随之消失,为一可逆过程,这种形变称为弹性形变,这一极限称为弹性极限。超过弹性极限,就会产生永久形变(亦称塑性形变),即撤去外力后形变仍然存在,为不可逆过程。当外力进一步增大到某一点时,会突然发生很大的形变,该点称为屈服点,在达到屈服点后不久,材料可能发生断裂,在断裂点被拉断。 人们在研究材料的弹性性质时,希望有这样一些物理量,它们与试样的尺寸、形状和外加的力无关。于是提出了应力F/S(即力与力所作用的面积之比)和应变ΔL/L(即长度或尺寸的变化与原来的长度或尺寸之比)之比的概念。在胡克定律成立的范围内,应力和应变之比是一个常数,即 (1) E被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。杨氏模量的大小标志了材料的刚性。 通过式(1),在样品截面积S上的作用应力为F,测量引起的相对伸长量ΔL/L,即可计算出材料的杨氏模量E。因一般伸长量ΔL很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL。光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。当杠杆支脚随被测物上升或下降微小距离ΔL时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。当θ很小时, (2)

式中l为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角,由图可知 (3) 式中D为镜面到标尺的距离,b为从望远镜中观察到的标尺移动的距离。 从(2)和(3)两式得到 (4) 由此得 (5) 合并(1)和(4)两式得

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方 法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: 故:)2(D b l L = ?,即是)2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口 (3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高 度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

实验报告-杨氏模量测量

实验报告:杨氏模量的测定

杨氏模量的测定(伸长法) 【实验目的】 1.用伸长法测定金属丝的杨氏模量 2.学习光杠杆原理并掌握使用方法 【实验仪器】 伸长仪;光杆杆;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。 【实验原理】 物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。 设有一截面为S ,长度为l 的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了δ,其单位面积截面 所受到的拉力S F 称为胁强,而单位长度的伸长量l δ称为胁变。根据胡克定律,在弹性形变范围内,棒状 (或线状)固体胁变与它所受的胁强成正比: F E S l δ = 其比例系数E 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。 Fl E S δ = (1) 右图是光杠杆镜测微小长度变化量的原理图。左侧曲尺状物为光杠杆镜,M 是反射镜,b 为光杠杆镜短臂的杆长,B 为光杆杆平面镜到尺的距离,当加减砝码时,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为l 时,从一个调节好的位于图右侧的望远镜看M 镜中标尺像的读数为0h ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为i h 。这样,钢丝的微小伸长量δ,对应光杠杆镜的角度变化量θ,而对应的光杠杆镜中标尺读数变化则为Δh 。由光路可逆可以得知,h ?对光杠杆镜的张角应为θ2。从图中用几何方法可以得出: tg b δ θθ≈= (1) tg22h B θθ?≈= (2) 将(1)式和(2)式联列后得: 2b h B δ= ? (3) 考虑到2 =/4S D π,F mg = 所以:2 8Bmgl E D b h π=? 这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。 图 光杠杆原理 A

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85 实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。在数据处理中,掌握逐差法 和作图法两种数据处理的方法 实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ, 其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: D b =≈θθ22t a n 故: ) 2(D b l L = ?,即是) 2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确 定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并

(完整版)拉伸法测钢丝杨氏模量

拉伸法测钢丝杨氏模量 实验目的 1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量; 2. 掌握有效数字的读取、运算以及不确定度计算的一般方法. 3. 掌握用逐差法处理数据的方法; 4. 了解选取合理的实验条件,减小系统误差的重要意义. 实验仪器 YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干. 1.标尺 2.锁紧手轮 3.俯仰手轮 4.调焦手轮 5.目镜 6.内调焦望远镜 7.准星 8.钢丝上夹头 9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝. 实验原理 设一粗细均匀的钢丝,长度为L 、横截面 积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即 F L E S L ?= 或 //F S E L L =? 式中E 称为杨氏模量,单位为 N·m -2,在数值上等于产生单位应变的应力. 由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题. 本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放 在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动. 设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此 时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度). 由图可知 2 tan L d θ?= ,1011tan 2s s s d d θ-?== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有 θtan ≈θ2d L ?= ,θ2tan θ2≈1 101d s d s s ?=-= 由此可得 2 1 2d L s d ?= ? 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式: 1 228mgLd E D d s = π? 其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E . 实验内容 1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度; 2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次; 3. 用游标卡尺测量光杠杆常数d 2一次; 4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度; 5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果. 实验步骤 1. 杨氏模量测定仪的调整 (1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直; (2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直. (3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在 支架上. 调整到平面镜法线和望远镜轴线等高共轴. (4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节 平面镜倾角,直到在平面镜中看到镜筒或标尺的像. (6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝. 杠杆架 反射镜 固定平台 砝码 光杠杆结构图 θ θ 光杠杆 望远镜 标尺 s 0 s 1 d 1 d 2 ΔL θ θ Δs

测量钢丝绳的杨氏模量

实验三 测量钢丝绳的杨氏模量 杨氏弹性模量是描述金属材料抗弹性形变能力的重要物理量,它是选定机械构件材料的依据之一,是工程技术上常用的参数。 测量材料杨氏弹性模量的方法很多,例如①静态测量法,包括静态拉伸法、弯曲法、扭转法;②动态测量法,包括横向共振法、纵向共振法、扭转共振法;③波速测量法,包括连续波法、脉冲波法,等等。本实验是用拉伸法测钢丝绳的杨氏模量。 任何物体在外力作用下都要发生形变,形变分为弹性形变和塑性形变两大类。如果外力在一定限度以内,当外力撤除后物体能恢复到原来的形状和大小,这种形变称为弹性形变;如果外力撤除后物体不能恢复原状,而留下剩余的形变,则称为塑性形变。本实验只研究弹性形变,因而要控制外力的大小,以保证物体作弹性形变。 例如一根长约1m 的钢丝,在外力作用下产生了一个微小的伸长,数量级约mm 1 10-,用一般长度量具(如米尺、游标尺和螺旋测微计等)去测量此伸长量,根本无法测量。本实验采用光杠杆镜尺法来测量长度的微小变化,以解决这一难题。镜尺法不仅可以测量长度的微小变化,也可以测量角度的微小变化。 【实验目的】 1、学会测量金属丝的杨氏弹性模量; 2、掌握光杠杆镜尺法测量长度微小变化的原理,学会具体的测量方法; 3、学习用逐差法处理实验数据。 【实验原理】 一根粗细均匀的金属丝,长度为L ,截面积为S 。将其上端固定,下端悬挂质量为m 的砝码。于是,金属丝受外力mg F =的作用伸长了L ?。把单位截面积上所受的作用力 S F /称为应力,单位长度的伸长L L /?称为应变。于是,根据胡克定律有:在弹性限度内, 物体的应力S F /和所产生的应变L L /?成正比,即: L L Y S mg ?= (2.3-1) 比例恒量Y 就是该材料的弹性模量,简称杨氏模量,它在数值上等于产生单位应变的 应力。它的单位为2 /m N 或Pa 。由(2.3-1)式可得:

物理实验报告 - 金属丝杨氏模量的测定

实验名称:金属丝杨氏弹性模量的测定 一、引言: 金属杨氏弹性模量是反映物体在受外力作用下发生形变难易程度的重要物理量。 二、实验目的: 1.学会用光杠杆法测量杨氏弹性模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 三、实验原理: 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L,截面积为S,沿长度方向施力F后, ,则在金属丝的弹性限度内,有: 物体的伸长L ,. 我们把Y称为杨氏弹性模量,单位N/m2 S=,则有Y= b

如上图: , 解出: 四、实验仪器: 杨氏弹性模量测量仪,螺旋测微器,游标卡尺,钢卷尺,望远镜 五、实验内容: 仪器调整 加重2kg 杨氏弹性模量测定仪底座调节水平;平面镜镜面放置与测定仪平面垂直;将望远镜放置在平面镜正前方左右位置上;粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像。 测量 计下加重2kg 时刻度尺的读数 n ;依次挂上kg 1的砝码,七次,计下 7 654321,,,,,,n n n n n n n ;依次取下 kg 1的砝码,七次,计下' 7'65' 4' 3' 2' 1,,,,,,' n n n n n n n ;用米尺测量出金属丝的长度L (两卡口之间的金属 丝)、镜面到尺子的距离D ;用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 六、实验记录:

实验报告-共振法测量固体材料的杨氏模量

实验报告 学生姓名:杨绍东 学号:100204122 班级:A10轮机1 实验名称:共振法测杨氏模量 实验指导老师:卢立娟 实验时间:2011.12.12 共振法测量固体材料的杨氏模量 、实验目的 1学会用动态悬挂法测量材料的杨氏模量. 2学会用外延法测量,处理实验数据. 3了解换能器的功能,熟悉测试仪器的使用. 4培养学生综合运用知识和使用常用实验仪器的能力. 二、实验原理 如图所示,一长为L 的细棒(长度比横向尺寸大很多) 棒的轴线沿x 方向.棒在z 方向的振动(棒的横振动)满足 动力学方程 YI S x 4 S 为棒的横截面积, S 为某一截面的惯量矩。 由该方程及边界条件,可解出杨氏模量: 上式中m 为棒的质量,f 为圆棒的基频频率. 3 Y 1.6067 f 2 d 4 实验中就是以悬挂点位置为横坐标,以相对应的共振频率为纵坐标作出关系曲线,用外延测量 法求得曲线最低点(即节点)所对应的频率即为试棒的基频共振频率 h.再由上式可求得杨氏模量 Y 。 三、实验仪器 YM-2动态型杨氏模量测试台, FB209型动态杨氏模量测试仪,通用示波器、试样棒(铜、不锈 钢)、天平、螺旋测微计等. 式中 为棒上距左端X 处横截面的Z 方向位移,Y 为该棒的杨氏模量, 单位为N/m 2, 为材料密度, 1.9978 10 L 4S I 7.8870 10 2 L 3m 对于直径为d 的圆棒,惯量矩| z 2dS S 64 ,代入上式得:

四、实验内容 1测量试样棒的长度L,直径d,质量m,为提高测量精度,要求以上量均测量3-5次. 2测量试样棒在室温时的共振频率f i. (1) 安装试样棒:将试样棒悬挂于两悬线之上,要求试样棒横向水平,悬线与试样棒轴向垂直,两悬线挂点到试样棒的端点距离相同,并处于静止状态. (2) 连机:将测试台、测试仪器、示波器之间用专用导线连接. (3) 开机:分别打开示波器、测试仪的电源开关,调整示波器处于正常工作状态. 适当选取输出衰减大小,调节频率旋钮显示当前输出频率. (4) 鉴频:待试样棒稳定后,调节“频率调节”粗、细旋钮,寻找试样棒的共振频率f i. (5) 外延法测共振频率f i:因f i值随悬线位置不同而略有变化。按照上述方法,依次将两悬线支 架同时从距两端20mm处开始,每次向内移动5mm,直至50mm处(35mm处不测),分别测出相应的共振频率f i.(自行设计数据记录表格) (6) 以悬挂点位置x为横坐标,以相对应的共振频率为纵坐标作出关系曲线,求曲线最低点(即 节点)所对应的频率(即是试棒的基频共振频率f i). 五、数据分析 i测量试样棒的长度L A 类不确定度为 A =4.30 “(i5.96-i5.96)2 (i5.96-i5.97)2 (i5.96-i5.96)2。皿呦 V 3 2 B类不确定度为□ = 0. 005(cm) 长度L的不确定度为L = . 一2A—? 0.02(cm) L =i5.96 0.02(cm) E L = i00% 0.i3% i5.96 2测量试样棒的直径d A =2.780X (5.987-5.990)2 (5.987-6.00C)2 (5.987-5.98i)2 (5.987-5.968>2 (5.987-5.996)2 0.0i6(mm)

金属丝杨氏模量的测定

物理实验报告 【实验名称】 杨氏模量的测定 【实验目的】 1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。 2. 掌握各种长度测量工具的选择和使用。 3. 学习用逐差法和作图法处理实验数据。 【实验仪器】 MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。 【实验原理】 一、杨氏弹性模量 设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即 L L Y S F ?= (1) 则 E L L S F Y ?= (2) 比例系数E 即为杨氏弹性模量。在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。Y 的国际单位制单位为帕斯 卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。 本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S 42d S π= 则(2)式可变为 E L d FL Y ?=24π (3) 可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量, F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时, F 每变化1kg 相应的ΔL 约为mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。 二、光杠杆测微小长度变化 尺读望远镜和光杠杆组成如图2所示的测量系统。光杠杆系统是由光杠杆镜架与尺读望远镜组成的。光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。三个尖足的边线为一等腰三角形。前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。尺读望远镜由一把竖立的毫米刻度尺和在尺旁的一个望远镜组成。

杨氏弹性模量的测定

实验七杨氏弹性模量的测定 测量材料杨氏模量的方法很多,诸如拉伸法、压入法、弯曲法和碰撞法等。拉伸法是最常用的方法之一。但该方法使用的载荷较大,加载速度慢,且会产生驰豫现象,影响测量结果的精确度。另外,此法还不适用于脆性材料的测量。本实验借助于新颖的动态杨氏模量测量仪用振动法测量材料的杨氏模量。该方法可弥补其不足,同时还可扩大学生在物体机械振动方面的知识面,不失为一种非常有用和很有特点的测量方法。 【实验目的】 1.了解振动法测量材料杨氏模量的原理; 2.学会用作图外推求值法测量振动体基频共振频率和杨氏模量; 3. 测量试件机械振动的本征值 4.观察铝平板的振型; 5.通过实验,逐步提高综合运用各种测量仪器的能力。 【实验仪器】 DY-D99型多用途动态杨氏模量测量仪、YXY-3D型音频信号源、示波器(Y轴灵敏度5-10m V)、毫米刻度钢皮尺(250mm长)、0.02mm精度游标卡尺、物理天平(精度0.05克)。 DY-D99型多功能动态杨氏模量测量仪简介 图3 DY-D99型多功能动态杨氏模量测量仪 1电动式激振器、6电动式拾振器、2试件(圆棒)、17试件(金属铝板)、 3、5刀口、26导轨标尺、9标尺支架、25试件压板、24压板固定螺钉、 10接线箱、11试件选择旋钮、12输入接口、13输出接口、22声整流罩、 19发声元件、18小导轨、20声激振器固定螺钉、14-16水平调节螺钉、 4刻度指示板、8备用试件安放支架、7试件限位装置、23底板 该仪器如图3所示。它由棒材试件杨氏模量定量测量装置和板材试件振型演示观察装置两部分组成。两部分用接线箱连接和转换。前一装置包含两个换能器(电动式换能器)、导轨标尺及其支架。其中一个电动式换能器用作激振器,在音频信号发生器输出的音频正弦信号电压的作用下,作机械振动,进而激励试件作机械振动。另一个电动式换能器当作拾振器,将由试件传递过来的机械振动信号转变为电信号,并输到示波器观察波形。当音频信号发生器的信号频率调到与试件的固有频率相同时,试件产生共振,示波器显示的波形幅度达到最大。两个换能器的作用可互换。它们各自设有一个刀口,可搁置棒材试件。标尺用于指示换能器或刀口在试件上的位置。 矩形金属板试件和带有声整流罩的声激振器是振动体振型演示观察装置的基本组成部

实验10 杨氏模量的测定

实验1 拉伸法测量杨氏模量 杨氏弹性模量(以下简称杨氏模量)是表征固体材料性质的重要的力学参量,它反映材料弹性形变的难易程度,在机械设计及材料性能研究中有着广泛的应用。其测量方法有静态拉伸法、悬臂梁法、简支梁法、共振法、脉冲波传输法,后两种方法测量精度较高;本实验采用静态拉伸法测量金属丝的杨氏模量,因涉及多个长度量的测量,需要研究不同测量对象如何选择不同的测量仪器。 【实验目的】 1. 学习用静态拉伸法测量金属丝的杨氏模量。 2. 掌握钢卷尺、螺旋测微计和读数显微镜的使用。 3. 学习用逐差法和作图法处理数据。 4. 掌握不确定度的评定方法。 【仪器用具】 杨氏模量测量仪(包括砝码、待测金属丝)、螺旋测微计、钢卷尺、读数显微镜 【实验原理】 1. 杨氏模量的定义 本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用后的伸长或缩短。按照胡克定律:在弹性限度内,弹性体的应力与应变成正比。 设有一根原长为,横截面积为的金属丝(或金属棒),在外力的作用下伸长了,则根据胡克定律有 (1-1)式中的比例系数称为杨氏模量,单位为Pa(或N·m–2)。实验证明,杨氏模量与外力、金属丝的长度、横截面积的大小无关,它只与制成金属

丝的材料有关。 若金属丝的直径为,则,代入(1-1)式中可得 (1-2)(1-2)式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝伸长量较小,杨氏模量小的金属丝伸长量较大。因此,杨氏模量反映了材料抵抗外力引起的拉伸(或压缩)形变的能力。实验中,测量出值就可以计算出金属丝的杨氏模量。 2. 静态拉伸法的测量方法 测量金属丝的杨氏模量的方法就是将金属丝悬挂于支架上,上端固定,下端加砝码对金属丝,测出金属丝的伸长量,即可求出。金属丝长度用钢卷尺测量,金属丝直径用螺旋测微计测量,力由砝码的重力求出。实验的主要问题是测准伸长量,伸长量一般很小,约10-1mm数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。为了使测量更准确些,采用测量多个的方法以减少测量的随机误差,即在金属丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录长度;通过逐差法(参考绪论)求出。考虑到读数显微镜物镜的放大倍率为X和砝码的重力,拉伸法测量杨氏模量的实验公式为 (1-3) 3. 测量结果的不确定度估计 根据间接测量量的不确定度合成法则(参考绪论),杨氏模量的相对不确定度计算式为: (1-4)4. 对实验条件的分析(实验设计项目) 本实验利用显微镜测微小长度变化,根据(1-3)式测量金属丝的杨氏模量,试分析测量时须满足哪些实验条件?有哪些因素将导致系统误差的产生?请读者根据实验要求,理论联系实际地讨论提高测量结果的精确度的方法和途径。 【仪器介绍】 1. 杨氏模量测量仪 杨氏模量测量仪的基本结构如图1-1所示。主要包括以下两部分:金属丝支架和砝码:杨氏模量仪的底座是一个水平底座,四个角下都有螺旋底脚12,用于调节底座水平。在两根立柱之间有上下两个横梁。待测金属丝(长约80cm)的上端被上梁侧面的夹板1夹牢,下端用小夹板夹在连接方框上,方框下旋进一个螺钉吊起砝码盘7,框子的侧

相关文档
最新文档