多元实值函数及其极限

多元实值函数及其极限
多元实值函数及其极限

求多元函数极限的方法

求多元函数极限的方法 【摘要】对于大部分学生,尤其是初接触高等数学的同学而言,极限是一道很难过的关,因为那种“无限逼近”却又“无法达到”的抽象对于刚刚结束中学数学学习,习惯于具体图形分析、函数计算的同学来说,在思维上有了更高的要求。而对于高等数学来讲,极限又是相当重要的基础,不管是函数连续性的验证,亦或是单侧导数的求解,极限都是很重要的一个环节,它就相当于一条线惯于始终,所以说学好极限,是学好高等数学的一个起点。【1】 【关键词】多元函数;求极限多种方法;求极限常出现的错误 【引言】之前学过如连续、导数微分和积分等都要用极和秋极限的方法,例如:利用定义来求极限、用柯西收敛准则、利用两边夹定理等等。这些方法虽然简便易于理解和掌握,但对 于一些特殊的极限题目很难解决,例如:设0a >,10a >,2 12(3) 3n n n n a a a a a a ++=+求lim n n a →∞的问题题目尽给出了第n 项和第n +1项的关系若用利用定义来求极限、用柯西收敛准则 1 ! lim ! n k n k n =→∞ ∑及求一些复合函数极限的问题本文将探讨一些特殊的求极限的方法,对某些用常 见方法不易求解的题目运用此方法可以容易地解出。【2】本文将从多个方面,通过利用极限的性质及相关概念和几个典型例题对常用求极限的方法进行解析,并列出容易出错的地方。 1 利用极限定义的思想观察函数的极限 例1、讨论当x → 12时函数y =21 x x +的极限。我们列出了当x →12 时某些函数值,考察 从列表可以看出,当x 趋向于2时,y 就趋向于0.7,即x →2 时,y =21 x x +的极限是0.75。 2、利用四则运算法则求极限 例2(1)求2 3 32 1 lim(4)x x x →-+ (2)221 lim 21 x x x →-+ 解(2)2 21lim 21x x x →-+=2 2 2 lim(1)3lim(21)5 x x x x →→-=+ 3、利用无穷小量与无穷大量的关系及无穷小量的性质求极限 例3求0 1 lim sin x x x →

求二元函数极限地几种方法

精彩文档 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21 lim y x y x +→=3 1.

精彩文档 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( ) ) () () ,0,02 211lim 231x y x y →+= ++ ()( 22 ,0,0lim x y →= + 11022 = +=.

(整理)二元函数极限的求法.

二元函数极限的求法 数学与统计学院、数学与应用数学、0701班,湖北,黄石,435002 1.引言 多元函数的极限在高等数学中非常重要,但由于多元函数的自变量多,因此对于判断其极限存在与否及其求法,比起一元函数的极限就显得比较困难.求极限和证明极限的方法很多,一般我们常用定义法,初等变形法,两边夹准则,阶的估计等.在这几种方法中,定义法是基础,但是比较繁琐,其他方法有的较易,有的较难,让人不知道从何下手.因此,我们有必要总结探讨出比较容易好的方法去求多元函数的极限.多元函数极限在现在的生活中也有很大的用处,比如工程计算方面.从以上来看,研究归纳总结多元函数极限的求法问题是有意义和必要的.本文主要研究二元函数极限的定义以及二元函数极限求解的几种方法,并以实例加以说明. 2.二元函数极限的定义 定义1 设E 是2R 的一个子集,R 是实数集,f 是一个规律,如果对E 中的每一点(,)x y ,通过规律f ,在R 中有唯一的一个u 与此对应,则称f 是定义在E 上的一个二元函数,它在点(,)x y 的函数值是u ,并记此值为(,)f x y ,即(,)u f x y =. 有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象.例如,二元函数222y x R x --=就是一个上半球面,球心在原点,半径为R ,此函数定义域为满足关系式222R y x ≤+的x ,y 全体,即 }|),{(222R y x y x D ≤+=.又如,xy Z =是马鞍面. 知道多元函数的定义之后,在我们求多元函数极限之前我们必须知道多

元函数极限的定义. 定义2 设E 是2R 的一个开集,A 是一个常数,二元函数()(,)f M f x y =在点()000,M x y E ∈附近有定义.如果0>?ε,0>?δ,当()00,r M M δ<<时,有()f M A ε-<,就称A 是二元函数在0M 点的极限.记为()0 lim M M f M A →=或 ()()0f M A M M →→. 定义的等价叙述 1 :设E 是2R 的一个开集,A 是一个常数,二元函数 ()(,)f M f x y =在点()000,M x y E ∈附近有定义.如果0>?ε,0>?δ,当()() 22 000x x y y δ< -+-<时,有(,)f x y A ε-<,就称A 是二元函数在0 M 点的极限。记为()0 lim M M f M A →=或()()0f M A M M →→. 定义的等价叙述2: 设E 是2R 的一个开集,A 是一个常数,二元函数 ()(,)f M f x y =在点()000,M x y E ∈附近有定义.如果0>?ε,0>?δ,当 000,0x x y y δδ<-<<-<且()()00,,x y x y ≠时, 有(,)f x y A ε-<,就称A 是二元函数在0M 点的极限.记为 ()0 l i m M M f M A →=或 ()()0f M A M M →→. 注:(1)和一元函数的情形一样,如果0 lim ()M M f M A →=,则当M 以任何 点列及任何方式趋于0M 时,()f M 的极限是A ;反之,M 以任何方式及任何点列趋于0M 时,()f M 的极限是A .但若M 在某一点列或沿某一曲线0M →时,()f M 的极限为A ,还不能肯定()f M 在0M 的极限是A . 二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂.

多元函数的极限与连续习题

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1sin 1sin )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 sin ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1lim lim 00-=+-→→y x y x x y , 二重极限不存在。 或 0lim 0=+-=→y x y x x y x , 3 1lim 20-=+-=→y x y x x y x 。

求二元函数极限的几种方法二元函数极限定理

1 / 15 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125. x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

2 / 15 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解 : 00 x y →→ 00 x y →→= 0x y →→= 00 1. 4 x y →→==-例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解 : 原式 ()() ( ) )() () ,0,02 211lim 231x y x y →= + ()( 22 ,0,0lim x y →= + 11022 = +=.

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

(整理)多元函数的极限与连续

数学分析 第16章多元函数的极限与连续计划课时: 1 0 时

第16章 多元函数的极限与连续 ( 1 0 时 ) § 1 平面点集与多元函数 一. 平面点集: 平面点集的表示: ),(|),{(y x y x E =满足的条件}. 余集c E . 1. 常见平面点集: ⑴ 全平面和半平面 : }0|),{(≥x y x , }0|),{(>x y x , }|),{(a x y x >, }|),{(b ax y y x +≥等. ⑵ 矩形域: ],[],[d c b a ?, 1||||),{(≤+y x y x }. ⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分. 极坐标表示, 特别是 }cos 2|),{(θθa r r ≤和}sin 2|),{(θθa r r ≤. ⑷ 角域: }|),{(βθαθ≤≤r . ⑸ 简单域: -X 型域和-Y 型域. 2. 邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域. 空心邻域和实心邻域 , 空心方邻域与集 }||0 , ||0|),{(00δδ<-<<-

求多元函数极限的方法

求多元函数极限的方法 【摘要】对于大部分学生,尤其是初接触高等数学的同学而言,极限是一道很难过的关,因为那种“无限逼近”却又“无法达到”的抽象对于刚刚结束中学数学学习,习惯于具体图形分析、函数计算的同学来说,在思维上有了更高的要求。而对于高等数学来讲,极限又是相当重要的基础,不管是函数连续性的验证,亦或是单侧导数的求解,极限都是很重要的一个环节,它就相当于一条线惯于始终,所以说学好极限,是学好高等数学的一个起点。【1】 【关键词】多元函数;求极限多种方法;求极限常出现的错误 【引言】之前学过如连续、导数微分和积分等都要用极和秋极限的方法,例如:利用定义来求极限、用柯西收敛准则、利用两边夹定理等等。这些方法虽然简便易于理解和掌握,但对 于一些特殊的极限题目很难解决,例如:设0a >,10a >,2 12(3) 3n n n n a a a a a a ++=+求lim n n a →∞的问题题目尽给出了第n 项和第n +1项的关系若用利用定义来求极限、用柯西收敛准则 1 ! lim ! n k n k n =→∞ ∑及求一些复合函数极限的问题本文将探讨一些特殊的求极限的方法,对某些用常 见方法不易求解的题目运用此方法可以容易地解出。【2】本文将从多个方面,通过利用极限的性质及相关概念和几个典型例题对常用求极限的方法进行解析,并列出容易出错的地方。 1 利用极限定义的思想观察函数的极限 例1、讨论当x → 12时函数y =21 x x +的极限。我们列出了当x →12 时某些函数值,考察 从列表可以看出,当x 趋向于2时,y 就趋向于0.7,即x →2 时,y =21 x x +的极限是0.75。 2、利用四则运算法则求极限 例2(1)求2 332 1 lim(4)x x x →-+ (2)221 lim 21 x x x →-+ 解(2)221lim 21x x x →-+=222 lim( 1)3lim(21)5 x x x x →→-=+ 3、利用无穷小量与无穷大量的关系及无穷小量的性质求极限 例3求0 1 lim sin x x x → 解因为0 lim x x →=0,且1sin 1x ≤即1sin x 有界,所以01lim sin x x x →=0

求二元函数极限几种方法

1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈I 时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求 在点(1,2)的极限. 解: 因为在点(1,2)处连续,所以 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 . 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等.

例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 0x y →→= 00 1. 4 x y →→==-例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( ) ) ( ) () ,0,02 211lim 231x y x y →= + ()( 22 ,0,0lim x y →= + 11022 = +=. 2.3 利用等价无穷小代换 一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的 等价无穷小((,)0)u x y →,有 sin (,)(,)u x y u x y :; 2(,) 1cos (,)2 u x y u x y -:;

数学分析下——二元函数的极限课后习题.doc

第二节 二元函数的极限 1、试求下列极限(包括非正常极限): (1)(,)(0,0)lim x y x 2y 2x 2+y 2 ; (2)(,)(0,0)lim x y 1+x 2+y 2 x 2+y 2 ; (3)(,)(0,0)lim x y x 2+y 21+x 2+y 2 -1 ; (4)(,)(0,0)lim x y xy+1 x 4+y 4 ; (5)(,)(1,2)lim x y 12x-y ; (6)(,)(0,0) lim x y (x+y)sin 1 x 2+y 2 ; (7)(,)(0,0) lim x y sin(x 2+y 2)x 2+y 2 x 2+y 2 . 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=y 2x 2+y 2 ; (2)f(x,y)=(x+y)sin 1x sin 1 y ; (3)f(x,y)=x 2y 2x 2y 2+(x-y)2 ; (4)f(x,y)=x 3+y 3 x 2+y ; (5)f(x,y)=ysin 1x ; (6)f(x,y)=x 2y 2 x 3+y 3 ; (7)f(x,y)=e x -e y sinxy . 3、证明:若1 。 (a,b) lim (x,y )f(x,y)存在且等于A ;2。 y 在b 的某邻域内,有lim x a f(x,y)= (y) 则 y b lim a lim x f(x,y)=A. 4、试应用ε—δ定义证明 (x,y)(0,0)lim x 2y x 2+y 2 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) (x,y) ( ,) lim f(x,y)=A ; (2) (x,y) (0, ) lim f(x,y)=A. 7、试求下列极限: (1)(x,y)(,)lim x 2+y 2 x 4+y 4 ; (2)(x,y)(,) lim (x 2+y 2)e -(x+y); (3) (x,y) ( ,) lim (1+1 xy )xsiny ; (4) (x,y) ( ,0) lim 211+ x x y x . 8、试作一函数f(x,y)使当x + ,y + 时, (1)两个累次极限存在而重极限不存在; (2)两个累次极限不存在而重极限存在; (3)重极限与累次极限都不存在; (4)重极限与一个累次极限存在,另一个累次极限不存在. 9、证明定理16.5及其推论3.

多元函数的极限讨论.

多元函数的极限探讨 数学与应用数学专业 2010级 摘要: 多元函数理论是一元函数理论的发展,多元函数的极值在高等数学中非常重要,但由于多元函数的自变量多,因此,对于判断其极限存在与否及其求法,比起一元函数的极限就显的计较困难,于是我们可以通过求一元函数极限的方法类比来求二元函数的极限,再从二元推广到多元。所以本文的重点在于二元函数的极限探讨。二元函数毕竟不同于一元函数,它有新的.自身的性质和特点。本文将介绍二元函数的极限求解方法。 关键词: 多元函数;极限;二元函数 To explore the limits of multivariate functions Grade 2010, Mathematics and Applied Mathematics Abstract: The theory of multivariate function is the development of a meta function theory, the extreme value of multivariate function is very important in higher mathematics, but because of multivariate function, therefore, to determine the ultimate existence and the method, compared to the limit of one variable function on the significant computational difficulties, many of the concepts we can. Multivariate extreme value transformation function is a function extremum for a function. The theorem can be extended to the function of two variables, but a function of two variables is different from the function of one variable, it is new. The nature and features of its own. This paper will introduce the method of multivariate function extreme solution of one yuan and two yuan function. Keywords:Multivariable function ;limit; function of two variables 1、绪论 极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态.早在中国古代,极限的朴素思想和应用就已在

多元函数的定义域 极限

多元函数的定义域,极限 1,设函数Z=arcsin (x+y ),则定义域是 ; 答:?≤+≤-11y x 定义域为: {};11,),(≤+≤-y x y x 2,设函数Z=) ln(1y x y +,则定义域是 ; 解:由{}0/),(1 11φy y x D y z =?= 所以 {}0,0/,(21φφY y x y y x D D D +== (图 形讲义) 3,设函数Z= y x y x --2 4,则定义域是 ; {}0/,).(2 φπy x y y x 且 解:由04000422 φπφy x y x y y y x y x ≤???? ???? ???≥-≥- (图 形讲义) 4,求2 21)ln(y x x x y z --+ -=的定义域。

解:由 ?? ? ??+≥??????--≥-1001002222πφφφy x x x y y x x x y (图 形讲义) 5,设 xy e y x y x f xy ++= 2 2 3sin ),(π,求) ,(lim 2 1 y x f y x →→。 解:因为),(y x f 是初等函数,且D ∈)2,1( 所以),(y x f 在(1,2)处连续, 故 2322sin )2,1(),(lim 2 22 2 32 1 +=++==→→e e f y x f y x π 6,设2 22lim x y x y x xy ???? ??+∞ →∞→的极限。 解: 因为 2 2 21022x x y x xy ?? ? ??≤??? ? ? ?+≤ ( xy y x y x 2,0,02 2≥+φφΘ) 而 0)(lim ,021lim 2 2 22=+?=? ?? ??∞ →∞→∞ →∞→x y x x y x y x xy 7,求x xy a y x sin lim →→;

2二元函数极限

§2二元函数极限 2222 1x y (1)x y →+(x,y)(0,0)、试求下列极限lim 分析:对趋近于原点且含有22x y +类的极限问题,采用极坐标变换较为简单。 22222222 222 22 ()x r cos ,y r sin (x,y)(0,0)r 0 x y f (x,y)0r sin cos r x y >0f (x,y)0r x y lim 0x y →=θ=θ→?→-==θθ≤+?εδδ-≤≤ε∴=+(x,y)(0,0)解:1对函数自变量作极坐标变换:这时由于因此,对,取时,就有 22 22 (x,y)(0,0)1x y (2)lim x y →+++ 222 222(x,y)(0,0)r 0x r cos ,y r sin 1x y 1r lim =lim x y r →→=θ=θ +++=+∞+解:令 22(x,y)(3) lim → 分析:可以先分母有理化,再使用极坐标变化。 22(x,y)(x,y)(0,0) r 0 x r cos ,y r sin lim lim =1)2 →→→=θ=θ =解:令

44 (x,y)(0,0)44224444444 (x,y)(0,0)xy 1 (4) lim x y x r cos ,y r sin ,(x,y)0r 000<1 sin cos (3cos 4) 4 xy 1r sin cos 142r sin 22M x y r (cos sin )r (3cos 4)4r xy 1 lim →→++=θ=θ→?→?θ+θ=+θ+θθ++θ∴==>≥+θ+θ+θ+∴解:令不妨限制的,则,当0时44 x y =+∞+ (x,y)(1,2)1 (5)lim 2x y →- (x,y)(0,0)11M>0x 1,y 24M 2M 111 M 2x-y 2(x 1)(2y)2x 12y 1 lim 2x y →?-< -<≠=≥>-++-+-∴=∞ -解:对,当且(x,y)(1,2)时有 22 (x,y)(0,0)2222 (x,y)(0,0) 1 (6) lim (x y)sin x y >01 sin x y x y 1 lim (x y)sin 0x y →→++εε ?ε≤+<ε +∴+=+解:对,当x <,y <时有 22 (x+y) 2222 (x,y)(0,0)222222(x,y)(0,0)r 0sin(x y ) (7)lim x y x r cos ,y r sin ,(x,y)0r 0sin(x y )sin r lim = lim 1 x y r →→→++=θ=θ→?→+=+解:令令 2、讨论下列函数在点(0,0)处的重极限与累次极限 2 2 2 y (1)f (x,y)x y =+

求二元函数极限的几种方法精品

1文档来源为:从网络收集整理.word 版本可编辑. 【关键字】情况、方法、条件、领域、问题、准则、方式、检验、分析、推广、满足、保证、方向 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 . 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等.

2文档来源为:从网络收集整理.word 版本可编辑. 例3 求 00 x y →→ 解: 00 x y →→ 例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) ( ) () ,0,02 211lim 231x y x y →= + 11 022 = +=. 2.3 利用等价无穷小代换 一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的 等价无穷小((,)0)u x y →,有 sin (,)(,)u x y u x y ; 2(,) 1cos (,)2 u x y u x y -; []ln 1(,)(,)u x y u x y +;tan (,)(,)u x y u x y ;arcsin (,)(,)u x y u x y ; arctan ( ,) (,)u x y u x y (,) 1 u x y n ;(,)1(,)u x y e u x y -;同一元函数一样,等价无穷小代换只能在乘法和除法中应用. 例5 求 00 x y →→ 解: 当 0x →,0y →时,有0x y +→1 1 ()2 x y +,所以

二元函数的极限与连续5页word文档

§2.3 二元函数的极限与连续 定义设二元函数在点的某邻域内有意义, 若存在 常数A,,当(即)时,都有 则称A是函数当点趋于点时的极限,记作 或 或或。必须注意这个极限值与点趋于点的方式无关,即不论P 以什么方 向和路径(也可是跳跃式地,忽上忽下地)趋向。只要P与充分接近, 就能 使与A 接近到预先任意指定的程度。注意:点P趋于点点方式可有无穷多 种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。 图8-7 同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限 存在,但不相等, 则可以判定在该点极限不存在。这是判断多元函数极限不 存在的重要方法之一。 一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二

元函数极 限理论中都适用,在这里就不一一赘述了。 例如若有, 其中 求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理 来计算。例4 求。解由于 而,根据夹逼定理知 ,所以 例5求(a≠0)。解。例6求。解由于且 ,所以根据夹逼定理知 . 例7 研究函数在点处极限是否存在。解当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于 (0,0)的极限,有,。很显然,对于不同的k值,可得到不同的极

限值,所以极限不存在,但 。注意:的区别, 前面两个求极限方式的 本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的 极限,我们称为求二重极限。 例8 设函数。它关于原点的两个累次极限都不存在,因 为对任何,当时,的第二项不存在极限;同理对任何 时,的第 一项也不存在极限,但是, 由于, 因此 由例7知, 两次累次极限存在, 但二重极限不存在。由例8可知,二重极限存 在,但二个累次极限不存在。我们有下面的结果: 定理1若累次极限和二重极限 都存在,则 三者相等(证明略)。推论若存在但

多元函数的极限

多元函数的极限 摘要:多元函数是是一元函数的推广,由于自变量个数的增加,函数的极限和连续与一元函数相比复杂了很多。本文研究了多元函数的极限与连续,文章第一部分通过例题的形式总结了求解多元函数极限的几类方法。而极限与连续是紧密联系的,在本文第二部分中,我们讨论了连续、对单变量连续、以及一致连续之间的关系。 关键词:多元函数;极限;连续 一元函数只有一个自变量,它所能描述的只是客观现实中的很少一部分事物的变化,而更多的情形需要我们考虑多因素影响下事物的变化规律。例如,矩形的面积依赖于两个量:长和宽;长方体的体积则依赖于三个量:长、宽和高;而空间每一点温度的变化不仅依赖于每一点的位置(x,y,z),而且还随时间的变化而变化,这时它依赖于四个变量。因此,为了研究这些比较复杂的问题,我们需要在一元函数的基础上增加自变量的个数。这就是多元函数。 和一元函数一样,极限与连续是研究多元函数微积分的基础。自变量由一个变成多个,一方面,多个要以一个为前提。因此,我们学过的一元函数的极限、连续性与微积分,对多元函数的学习是必不可少的。另一方面,由单个自变量到多个,也必然会有本质的变化。变化之一是,一个自变量作为直线上的点是有大小顺序的,而多个自变量,例如两个自变量,作为平面上的点是没有大小顺序的。本质变化之二是,对直线上固定的一点,其它点趋向于它只有左右两个方向,十分简单,而平面上则有无穷多个方向。因此,掌握从一元到多元的差异,应该是在学习多元函数中需要特别注意的。从一元到二元,是需要许多新思想的,但从二元到多于二元,新的思想就不多了,只是形式和计算上会复杂很多。因此,其它多元函数可以

仿照二元函数的性质来研究。下面我们从二元函数说起,来研究多元函数的极限和连续。 1 多元函数的极限 1.1重极限 1.1.1定义及性质 2,定义1.1:设f是定义在DR上的二元函数,为D的一个聚点,A是一P0 。,个确定的数。若对任给正数ε,总存在某正数δ,使得当P(;δ)?DPU0时,都有f(P)-A<ε,则称f在D上当时以A为极限,记作f(P)=A. PP,lim,,0PP,0PD, ,在对于PD不致产生误解时,也可以简单地写作limf(P)=A. PP,0 当P, 分别用坐标(x,y),()表示时,也可以记作Pxy00,0 =A. lim,fxy,,(,)()xyxy,0,0 下述定理及其推论相当于数列极限的子列定理与一元函数极限的海涅归结 原则。 limfPA,定理1.1:的充要条件是:对于D的任一子集E,只要是EP,,0PP,0PD, limfPA,的聚点,就有。,,PP,0PD, limfPlimfP推论1:设EDP,,是它们的聚点,若不存在,则也不,,,, 10PP,PP,00PE,PD,1存在。 推论2:设是它们的聚点,若存在极限 EEDP,,,120 lim,fPA,limfPA,limfP ,但,则不存在。 AA,,,,,,, 1212PP,PP,PP,000PE,PD,PE,12 limfP推论3:极限存在的充要条件是:对于D中任一满足条件PP,,,, n0PP,0PD, 且的点列P,它所对应的函数列fP都收敛。 limPP,,,,,,,nnn0,,n

求二元函数极限的几种方法.

1 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125. x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

2 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 0x y →→= 0x y →→= 00 1. 4 x y →→==- 例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) ( ) () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= 11022 = +=.

二元函数的极限

§2 二元函数的极限 (一) 教学目的: 掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系. (二) 教学内容:二元函数的极限的定义;累次极限. 基本要求: (1)掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系,熟悉判别极限 存在性的基本方法. (2) 较高要求:掌握重极限与累次极限的区别与联系,能用来处理极限存在性问题. (三) 教学建议: (1) 要求学生弄清一元函数极限与多元函数极限的联系与区别,教会他们求多元函数极 限的方法. (2) 对较好学生讲清重极限与累次极限的区别与联系,通过举例介绍判别极限存在性的较完整的方法. 一 二元函数的极限 先回忆一下一元函数的极限: A x f x x =→)(lim 0 的“δε-” 定义(c31): 设函数)(x f 在0x 的某一空心邻域),(100 δx U 内由定义,如果对 1,0, 0δδδε≤>?>?, 当 ),(0δx U x ∈,即 δ<-||0x x 时,都有 ε<-|)(|A x f ,则称0x x →时,函数)(x f 的极限是 A. 类似的,我们也可以定义二元函数的极限如下: 设二元函数),(y x f 为定义在2R D ?上的二元函数,在点),(000y x P 为D 的一个聚点,A 是一个确定的常数,如果对 0, 0>?>?δε,使得当 D P U y x P ),(),(00 δ∈ 时, 都有 ε<-|)(|A P f ,则称f 在D 上当 0P P →时,以A 为极限。记作 A P f D P P P =∈→)(lim 0 也可简写为 A P f P P =→)(lim 0 或 A y x f y x y x =→),(lim ) ,(),(00 例1 用定义验证 7)(lim 2 2 )1,2(),(=++→y xy x y x 证明: |16||7|2 2 2 2 -+-+-+≤-++y x xy x x y xy x

求二元函数极限几种方法

. 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈I 时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125. x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

. 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 0x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( ) ) () () ,0,02 211lim 231x y x y →= + ()( 22 ,0,0lim x y →= + 11022 = +=.

相关文档
最新文档