常用研磨机械

常用研磨机械
常用研磨机械

常用研磨机

研磨是超精密加工中一种重要加工方法,其优点是加工精度高,加工材料范围广,几乎适合于各种材料的加工,研磨加工可以得到很高的尺寸精度和形状精度,甚至可以达到加工精度的极限,研磨装置简单,不需要大量复杂的机械并且不苛求设备的精度条件。

作为超精加工的一种方法,研磨机主要用于研磨工件中的高精度平面、内外圆柱面、圆锥面、球面、螺纹面和其他型面。其主要类型有圆盘式研磨机、转轴式研磨机、磁力研磨机和各种专用研磨机。

圆盘式研磨机分单盘和双盘两种,以双盘研磨机应用最为普通。在双盘研磨机上,多个工件同时放入位于上、下研磨盘之间的保持架内,保持架和工件由偏心或行星机构带动作平面平行运动。下研磨盘旋转,与之平行的上研磨盘可以不转,或与下研磨盘反向旋转,并可上下移动以压紧工件(压力可调)。此外,上研磨盘还可随摇臂绕立柱转动一角度,以便装卸工件。双盘研磨机主要用于加工两平行面、一个平面(需增加压紧工件的附件)、外圆柱面和球面(采用带V形槽的研磨盘)等。加工外圆柱面时,因工件既要滑动又要滚动,须合理选择保持架孔槽型式和排列角度。单盘研磨机只有一个下研磨盘,用于研磨工件的下平面,可使形状和尺寸各异的工件同盘加工,研磨精度较高。有些研磨机还带有能在研磨过程中自动校正研磨盘的机构。

转轴式研磨机由正、反向旋转的主轴带动工件或研具(可调式研磨环或研磨棒)旋转,结构比较简单,用于研磨内、外圆柱面。

磁力研磨机是通过采用磁场力量传导至不锈钢磨针使工件作高频率旋转运动;可对精密工件内孔、死角、细小夹缝起到明显较好的抛光研磨去除毛刺的效果。

专用研磨机依被研磨工件的不同,有中心孔研磨机、钢球研磨机和齿轮研磨机等。

此外,还有一种采用类似无心磨削原理的无心研磨机,用于研磨圆柱形工件。

研磨是磨具通过磨料作用于工件表面,进行微量加工的过程。研磨工件表面的尺寸精度、形位精度、研磨工具的寿命及研磨效率等,在很大程度上取决于研磨运动。为使工件表面研磨均匀,从运动学角度归纳出如下的平面研磨最佳运动学条件:(1)工件相对研具作平面运动,应保证工件被研磨表面上各点相对研具均有相同或相近的研磨轨迹;(2)研磨运动是由工件与研具之间的相对运动实现的,工件表面上各点的研磨运动速度应尽可能相同;(3)研磨运动方向应不断变化,研磨纹路交错多变,以利于工件加工表面粗糙度的降低,但应尽量避免工件被研磨表面上各点相对研具的研磨轨迹曲率变化过大;(4)研具或抛光盘工作表面的形状精度会反映到工件表面上,所以工件的运动轨迹应遍及整个

研具表面并且分布均匀,以利于研具的均匀磨损;(5)工件相对研具在被研磨材料的去除方向上具有运动自由度,这样可以避免因研磨机械的导向精度不高而引起误差。

研磨基本原理是利用涂敷或压嵌在研具上的磨料颗粒,通过研具与工件在一定压力下的相对运动对加工表面进行的精整加工的过程。

圆柱面的研磨加工过程就是利用游离磨粒对圆柱两平面进行刮削和挤压去除材料的过程,达到减小圆柱高度,提高平面度和降低表面粗糙度的目的。这些去除作用要通过柱面与研磨盘的相对运动在磨粒的作用下来完成。磨料是研磨加工的主要介质。整个研磨过程根据磨料的变化可分为三个阶段。

第一阶段:游离磨料的破碎阶段。精研初期较大的磨粒首先参与切削,这时磨料多呈带棱角的多面体,切削能力强。在压力的作用下,尺寸大的磨粒被破碎使更多的磨粒得以参加切削,这时圆柱体一方面消耗尺寸及上工序的残留表面,这个阶段磨削效率较高,尺寸消耗快,圆柱表面粗糙。但该阶段时间很短。

第二阶段:磨粒细化和镶嵌阶段。由于压力的作用上下研磨盘和圆柱体相互作用不断地辗压磨粒,使粗磨粒逐渐破碎为细磨粒且大小趋于一致,这时磨削效率达到最高,时间也最长。随着磨料的不断细化,各种要素也处于相对稳定阶段,在这个阶段钢球的几何精度得以改善并基本达到相应的要求,表面质量逐渐提高,粗糙度下降。这个阶段是钢球的稳定加工阶段。

第三阶段:磨粒钝化和研光阶段。在这个阶段磨料绝大部分细化为O.3μm 以下的微细磨粒,磨粒的形状也由原来锐利的几何体变为无锐棱的圆滑球体,磨削速度大大降低。钝化了的磨粒微粉对圆柱面只能进行更微量的研磨,研磨量大约0.2~O.3/μm/h。此阶段圆柱表面粗糙度值进一步降低,最终达到标准要求。

一般来讲,研磨轨迹主要有4种:(1)直线研磨运动轨迹。此种方法适用于台阶的狭长平面工件研磨,可获得较高的几何精度,但不易获得较小的表面粗糙度。(2)摆动式直线研磨运动轨迹。可以获得较好的平直度。(3)螺旋形研磨运动轨迹。主要用于圆片形或圆柱形工件端平面研磨,能获得较高的平面度和较小的表面粗糙度。(4)“8”字形研磨运动轨迹。适用于平板类工件的修整和小平面工件的研磨,能使相互研磨的平面介质均匀接触,并且研具均匀地磨损。

在生产实践中,研磨是一种常用的精加工工艺,研磨的方法不断进步和更新,为适应不同的加工要求,各种文献资料报道的研磨方法有多种,有超声波抛光、磨料流喷射加工、电解研磨、化学抛光、磁性磨料研磨、液体磨料研磨等表面光整加工技术。最常用的并且应用最多的是机械研磨,其特点是可获得较高的尺寸精度、形状精度和较低的表面粗糙度,但要求操作者有很高的技术水平和经验,加工效率低,劳动强度大,加工质量不易控制,表面残余应力大,表面残留磨粒还会影响表面质量。

磁性研磨法是通过磁场的磁极将磁性磨料吸压在加工件表面,加工件表面与磁极之间可以有数毫米的间隙,磁性磨料在加工间隙中沿磁力线整齐排列,形成弹性磁刷,并压附在工件表面!旋转磁场或旋转加工件,使磁刷与加工件产生相对运动,从而精磨工件表面。磁研磨加工的特点是,不管加工件表面形状如何,只要使磁极形状与加工表面形状大体吻合,就可精磨有曲面的工件表面,因而磁研磨法适用于通常研削和研磨加工难以胜任的复杂形状零件表面的光滑加工。

研磨机采用无级调速系统控制,可轻易调整出适合研磨各种部件的研磨速bocuo度。采用电—气比例阀闭环反馈研磨机压力控制,可独立调控压力装置。上盘设置缓降功能,有效的防止薄脆工件的破碎。通过一个时间继电器和一个研磨计数器,可按加工要求准确设置和控制研磨时间和研磨圈数。工作时可调整压力模式,达到研磨设定的时间或圈速时就会自动停机报警提示,实现半自动化操作。

研磨机变速控制方法,研磨加工有三个阶段,即开始阶段、正式阶段和结束阶段,开始阶段磨具升速旋转,正式阶段磨具恒速旋转,结束阶段磨具降速旋转,其特征在于,在研磨加工开始阶段,人为控制磨具转速的加速度从零由慢到快地增大,当磨具转速升到正式研磨速度的一半时,加速度的变化出现一个拐点,控制磨具转速的加速度由最大值由快到慢地减小,直到磨具转速达到正式的研磨速度,磨具转速的加速度降为零。

利用固着磨料研磨的这一特点,根据工件磨具间的相对运动轨迹密度分布,合理地设计磨具上磨料密度分布,以使磨具在研磨过程中所出现的磨损不影响磨具面型精度,从而显著提高工件的面型精度。

今后随着人们对产品性能的要求日益提高,研磨加工以其加工精度和加工质量高而越来越受到了人们的关注。因此,超精密研磨等技术的研究,今后将更引人注目。

抛光打磨机器人项目初步方案

抛光打磨机器人项目 初步方案 规划设计/投资分析/实施方案

摘要 工业机器人是指面向工业领域,通过编程或示教方式实现自动化,同时具备拟人形态及功能的机械装置。其常见形态为多关节机械手或多自由度的机器装置,能够靠自身的动力和控制能力来实现各种功能,具有可高危作业、生产效率高、稳定性强、精度高等特点。 该抛光打磨机器人项目计划总投资15393.44万元,其中:固定资产投资11482.01万元,占项目总投资的74.59%;流动资金3911.43万元,占项目总投资的25.41%。 本期项目达产年营业收入31968.00万元,总成本费用24444.67 万元,税金及附加293.78万元,利润总额7523.33万元,利税总额8854.81万元,税后净利润5642.50万元,达产年纳税总额3212.31万元;达产年投资利润率48.87%,投资利税率57.52%,投资回报率36.66%,全部投资回收期4.23年,提供就业职位596个。

抛光打磨机器人项目初步方案目录 第一章项目总论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目必要性分析 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章项目规划方案 一、产品规划 二、建设规模 第四章选址评价 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

粉碎机械设备知识点

粉碎机械遵循原则:1,掌握物料性质和对粉碎的要求。2合理设计和选择粉碎流程及粉碎机械。3,周密的系统设计。 气流粉碎机优缺点:优点:1,粉碎强度大,产品粒度微细,可达数微米甚至亚微米,颗粒规整,表面光滑。2,颗粒在高速旋转中分级,产品力度分布窄,单一颗粒成分多。3,产品纯度高,设备结构简单,易于清理,可获得极纯产品,还可进行无菌作业。4,可以粉碎磨料为硬质合金等莫氏硬度大于9的坚硬物料。5,适用于粉碎热敏性及易燃易爆物料。6,可以在机内实现粉碎与干燥,粉碎与混合,粉碎与化学反应等联合作业。7,能量利用率高。缺点:1,辅助设备多,一次性投资大。2,影响运行的因素多,操作不稳定。3,粉碎成本较高。4,噪声较大。5,粉碎系统堵塞时会发生测料现象,喷出大量粉尘,恶化操作环境。 选用筛分设备遵循规则:①筛分设备所用的筛网应按照物料粒径选取②筛面要耐磨损,抗腐蚀,可靠性好,要求筛分机能够长时间安全可靠运动③单位处理能力高,维修时间短,噪声低 影响混合的因素:①物料的粉体性质:粒度分布,粒子形态及表面状态,粒子密度及堆密度,含水量,流动性,黏附性,凝聚性等都会影响混合过程②设备类型:混合机的形状及尺寸,内部插入物,材质及表面情况等影响混合效果,应根据物料的性质选择适合的混合器③操作条件:物料的填充量,装料方式,混合比,混合机的转动速度及混合时间等影响混合效果 膜分离技术主要存在什么问题? 1.在操作中磨面会发生污染,使膜性功能降低,故有必要采取与工艺相适应的膜面清洗方法 2.从目前获得的膜性能来看,其耐药性、耐热性、耐溶剂能力都是有限的,因此适用范围受限 3.单独采用膜分离技术效果有限 良好的膜分离设备应具有哪些条件? 1.膜面切向速度快,以减少浓差极化 2.单位体积中所含膜面积比较大 3.容易拆洗和更换新膜 4.保留体积小且无死角 5.具有可靠的膜支撑装置 膜分离过程有什么特点? 1.膜分离过程中不发生相变化,与有关相变化的分离法的其他分离法相比,能耗要低。 2.膜分离过程是在常温下进行的,因而特别适用于对热敏性物质的分离,分级,浓缩和富集。 3.膜分离技术不仅适用有机物,病毒,细菌的分离,而且适用于许多特殊溶液体系的分离。 4.分离装置简单,操作方便,易于自动控制,易与维修。 真空冷冻干燥有什么特点 1.物料处于冷冻状态下干燥,水分以冰的状态直接升华为水蒸汽,而物料的物理结构和分子结构变化极小; 2.物料在低温条件下进行干燥操作,使物料中的热敏性成分仍保留不变,保持物料原有的色,香,味及生物活性; 3.因为干燥后的物料在被除去水分后其组织的多孔性能不变,故若添加水,即可在短时间内恢复干燥前的状态;

DLRB-2600机器人打磨抛光实训系统

1 DLRB-2600机器人打磨抛光实训系统 技术文件 图片仅供参考,以实际配置为准 一、设备概述 该系统依据国家相关职业工种培养及鉴定标准,结合中国当前制造业的岗位需求设计研发而成。 该系统由该系统涵盖了机、电、光、气一体化专业中所涉及的多学科、多专业综合知识,可最大程度缩短培训过程与实际生产过程的差距,涉及的技术包括:PLC 控制技术、传感器检测技术、气动技术、电机驱动技术、计算机组态监控及

人机界面、机械结构与系统安装调试、故障检测技术技能、触摸屏技术、运动控制、计算机技术及系统工程等。 二、设备特点 1、系统采用计算机仿真现代化信息技术手段,通过操作、模拟、仿真三个培训层面,解决专业培训理论、实验、实习和实际应用脱节的问题。 2、系统操作安全(多重人身、设备安全保护)、规范,使用灵活,富有现代感。 3、模块化结构,各任务模块可与机器人组合完成相应任务 4、开放式设计:可根据实训内容选择机器人夹具及载体模型;并根据学员意愿选择在实训平台的安装位置及方向;且具有很好的延伸型,客户可根据自己的需求开发新模型及夹具。 三、技术参数 1、三相四线380V±10% 50HZ 2、工作环境:温度-10℃-+40℃,相对湿度<85%(25℃),无水珠凝结海拔<4000m 3、电源控制:自动空气开关通断电源,有过压保护、欠压保护、过流保护、漏电保护系统。 4、输出电源: 2

(1)三相四线380V±10% 50HZ (2)直流稳压电源:24V/5A, 7、机器人:ABB IRB2600 四、各模块简介 1、实训台 实训台体采用优质钢板(板厚1.2mm)制作,表面喷涂处理;实训台面采用型材结构搭建,可任意安装机器人或其它执行机构;并有不锈钢网孔电气安装板(板厚1.5mm),用于安装控制器件与电源电路;实训台上配有相应的操作面板,采用内嵌按钮和指示灯,分别为“启动”、“停止”、“复位”,并且具备急停功能;可编程逻辑控制器安装于电气网孔板上,实现机器人与各任务模块的组合;实训台底脚上安装有脚轮,能够方便移动与定位。 2、机器人 1)机器人本体 3

化学机械抛光工艺(CMP)全解

化学机械抛光液(CMP)氧化铝抛光液具体添加剂 摘要:本文首先定义并介绍CMP工艺的基本工作原理,然后,通过介绍CMP系统,从工艺设备角度定性分析了解CMP的工作过程,通过介绍分析CMP工艺参数,对CMP作定量了解。在文献精度中,介绍了一个SiO2的CMP平均磨除速率模型,其中考虑了磨粒尺寸,浓度,分布,研磨液流速,抛光势地形,材料性能。经过实验,得到的实验结果与模型比较吻合。MRR 模型可用于CMP模拟,CMP过程参数最佳化以及下一代CMP设备的研发。最后,通过对VLSI 制造技术的课程回顾,归纳了课程收获,总结了课程感悟。 关键词:CMP、研磨液、平均磨除速率、设备 Abstract:This article first defined and introduces the basic working principle of the CMP process, and then, by introducing the CMP system, from the perspective of process equipment qualitative analysis to understand the working process of the CMP, and by introducing the CMP process parameters, make quantitative understanding on CMP.In literature precision, introduce a CMP model of SiO2, which takes into account the particle size, concentration, distribution of grinding fluid velocity, polishing potential terrain, material performance.After test, the experiment result compared with the model.MRR model can be used in the CMP simulation, CMP process parameter optimization as well as the next generation of CMP equipment research and development.Through the review of VLSI manufacturing technology course, finally sums up the course, summed up the course. Key word: CMP、slumry、MRRs、device 1.前言 随着半导体工业飞速发展,电子器件尺寸缩小,要求晶片表面平整度达到纳米级。传统的平坦化技术,仅仅能够实现局部平坦化,但是当最小特征尺寸达到

化学机械研磨後清洗技术简介

第六卷第一期 化學機械研磨後清洗技術簡介 蔡明蒔 國家奈米元件實驗室 前言 自1997年開始,半導體製程邁進0.5微米元件線幅以下,幾乎所有半導體製造廠開始採用化學機械研磨技術(Chemical Mechanical Polishing, CMP)。此乃由於愈來愈嚴苛的曝光景深要求,對於曝光區內晶圓表面之起伏輪廓必須借助研磨方式才能獲得全域性平坦化(Global planarity)。故在多層導線結構製程之IMD介電層平坦化及鎢金屬栓塞(W plugs)之製作,以CMP取代傳統以乾式蝕刻回蝕法,不但可確保晶圓表面之平整度且製程簡化,大幅提昇製程良率。除了應用在後段導線之製作,CMP亦應用於前段元件隔離之oxide回蝕製程,即淺溝槽隔離(Shallow Trench Isolation, STI),大幅增加晶圓上元件之可用面積。當元件線幅小於0.18微米,傳統鋁銅合金導線之RC延遲將大過於元件開關速度,此時較低電阻之銅導線則勢必被採用。由於銅之電漿乾蝕不易,應用Cu-CMP金屬嵌入式導線之大馬士革製程(Metal Inlaid Damascene Process)則為形成導線製作之主要方式。 CMP製程雖為先進半導體製程之關鍵技術,但在無塵室中卻屬高污染性之製程(dirty process)。由於製程中必須引入研磨泥漿(slurry)於晶圓表面進行研磨,泥漿中包含約5-10%,30-100奈米之微細研磨粉體(abrasive),種類包括SiO2、Al2O3、CeO2、ZrO2等。此外還必須加入化學助劑,有pH緩衝劑如KOH、NH4OH、HNO3或有機酸等;氧化劑如雙氧水、硝酸鐵、碘酸鉀等;亦必須加入界面活性劑(Surfactants)幫助粉體在水溶液中之懸浮穩定性。故晶圓經過研磨之後,晶圓表面勢必殘留大量之研磨粉體(>10k/wafers)、金屬離子(>1012 atoms/cm2)及其他不純物之污染。若無有效之清洗製程去除此外來之污染物及因研磨產生之表面損傷,則將影響後續薄膜沈積、微影等製程良率,故過研磨後CMP清洗製程為成功應用CMP於半導體製程之關鍵技術。 清洗機制、原理及方法 1. 微塵吸附原理及清洗方法 在設計一清洗系統可以去除吸附在晶圓上微塵之前,必須先檢視有那些作用力促使塵粒吸附於晶圓表面上。主要之作用力包含有分子吸附力(molecular adhesion)、靜電作用力(electrostatic interactions)、液體介質橋接(liquid bridges)、電雙層排斥力及化學共價鍵結(chemical bonding)

化学机械研磨废液处理

化学机械研磨废液处理 化学机械研磨(CMP)制程已经广泛使用于半导体业晶圆的制造程序,对于晶圆表面全面性平坦化是有效的制程。虽然CMP制程是现代半导体业晶圆制造重要的技术,但是CMP 制程在无尘室中是一个高污染的制程。因此,CMP废水包含來自于研磨液、晶圆本身以及CMP 后续清洗程序所产生的各种无机及有机污染物质,大部份的无机物质系以氧化物存在,主要的非溶解性无机物來自研磨液的砥粒,包含SiO2、Al2O3及CeO2,还有一些在研磨时从晶圆本身掉下來的无机物质(例如:金属、金属氧化物及低介电材料等)。溶解性的无机物质包含溶解性硅酸盐与氧化剂。 CMP废水中的有机物包含界面活性剂、金属错合剂以及其他物质。为了移除在晶圆表面的上述物质,需要使用大量超纯水于CMP后续清洗程序。据统计,以一个拥有20 个CMP制程机具的公司而言,每天将产生700 m3的CMP废水。根据文献的报导,在1999年及2000年估计分别有4.088×108 m3及超过5.223×108 m3的超纯水用于CMP制程,此用水占了整个半导体用水的40%左右。如此庞大的CMP制程用水必定产生大量的CMP废水,此废水量大且碱度、总固体物及浊度高,因此必须妥善加以处理。 目前所有的科技产业中,其中又以半导体组件产业为最受瞩目,其主要基本概念系经由高精密度的集成电路(Integrated Circuit, IC)完成的电子电路组件与硅半导体所组合而成。简而言之,半导体产业可区分前、中及后端制程,前端制程为晶圆加工制造,中段制程为晶圆与电子电路组件制造以及后端的晶圆封装。在前及中段制程中,化学机械研磨(Chemical Mechanical Polishing, CMP)扮演成功与否的关键技术。在强势的竞争环境下,企业主为了维持在业界的优势及塑造企业社会形象,近年投入大量的资本及人力,不断地提升整个制程技术高精密化、轻量化、功能性及更微小化并积极研发低污染性产品,以降低对环境生态的冲击。 半导体业、图像处理以及生物科技产业所制造的污染物质,是具有其独特性,例如制程中常使用有机酸碱液、污染物质微小化等,用原有的处理技术及处理设备,是无法将污染物质去除。势必投入新的处理设备、提升处理技术等,才能将整个区内所有不同性质的废污水处理达到放流水标准。尤其是半导体产业的制程,所制造出来的化学机械研磨废液,其废液含有粒径极小、具高浊度、有机酸碱液以及后清洗程序中的超纯水。

机器人自动化打磨抛光技术的应用

机器人自动化打磨抛光技术的应用 发表时间:2017-10-24T14:19:31.290Z 来源:《防护工程》2017年第15期作者:罗智文 [导读] 由PLC反馈给机器人,进而控制机器人打磨力的大小的方法,打磨效果好,效率极高,值得推广与应用。 广东利迅达机器人系统股份有限公司广东佛山 528000 摘要:随着工业自动化技术的发展,机器人被越来越多地应用到自动化生产线中。洁具表面的磨削抛光是一道较为复杂的工序,手工操作不仅难以保证产品的加工质量,而且恶劣的工作环境对工人的身体健康有极大的危害。因此,本文对机器人自动化打磨抛光技术的应用进行了研究。 关键词:机器人系统;打磨抛光;工艺研究 1 引言 机器人研究水平的高低直接与一个国家的经济、科技水平密切相关,在一定程度上反映了这个国家的综合实力。目前,打磨抛光主要以人工为主,由于对人体的高危害,打磨抛光行业已面临严重的用工荒。因此,应开展低成本打磨抛光机器人智能控制系统的研究和开发,提升我国金属抛光打磨行业装备水平,这不仅具有很高的学术价值,同时也具有相当大的现实意义。 2 打磨机器人系统组成及打磨控制流程 打磨机器人系统采用由埃夫特机器人公司研发的六轴工业机器人ER50-C10。打磨系统包括PLC、打磨砂带机、抛光机、和压力传感器、安装在机器人第六轴的夹具组成的一个闭环控制系。 当开始打磨时,安装在机器人第六轴的夹具夹持圆形排气管,放置在转动的打磨砂带机上进行打磨,打磨下压力的大小实时被压力传感器检测,传感器将检测压力值转换为电信号传递给PLC,PLC判断压力大小,输送给机器人控制系统。从而控制机器人打磨压力的大小。通过多次试验设定合适的压力值。如果打磨的压力大于正常压力,则机器人六轴向相反方向移动一定距离,即减小打磨压力。如果打磨的压力值小于正常压力值,则机器人六轴向正方向移动一定距离,即增大打磨压力。如果打磨压力值在允许的打磨压力范围之内,则进行正常的打磨程序运行。以此来保证打磨机器人系统的打磨压力值一直在合理的范围之内。打磨控制流程图,如图1所示。 图1 打磨控制流程图 3 打磨抛光示教编程 传统打磨抛光示教编程需要耗费工人的很多时间,一般采用点到点示教编程方法,普通工件打磨示教编程需要几百个点,多的则长达一千多个点。本文对结构较为典型汽车排气管进行示教编程,并采用两种示教编程方法。第一种示教编程方法:如图2所示,根据工件特点,打磨从起始点A1处开始,依次到An、Bn、B1、C1、Cn,以此类推。其中A1到An有N个点,点的个数根据打磨工件的大小和打磨效果确定,同理确定Bn到B1点的个数,以此类推。在示教打磨圆形汽车排气管时,完成整个打磨程序示教了600多个点,耗时8个小时左右。 图2 工件立体图 第二种示教编程的方法:图3为排气管的平面图,根据打磨圆形工件的特点,为直径88mm,AB长度为104cm,CD长度为156cm。将圆

化学机械研磨(CMP)

晶片黏貼研磨拋光系統( CMP ) 儀器介紹 一.目的 化學機械研磨是一個移除製程,它藉著結合化學反應和機械研磨達到其目的。並且我們使用它在半導的薄膜體製程中,利用它來剝除薄膜使得表面更加平滑和更加平坦。它也被用在半導體的金屬化製程中,用來移除在其表面大量的金屬薄膜以在介電質薄膜中形成連線的栓塞或是金屬線。並且當晶圓從單晶矽晶棒被切下來後,就有很多的製程步驟被用來準備平坦的、光亮的以及無缺陷的晶圓畏面以滿足積體電路的製程所需,而化學機械研磨製程通常被用在晶圓生產的最後一道步驟,它可以使晶圓平坦化,並且可以從表面完全消除晶圓鋸切步驟所引起的表面缺陷。當矽單晶棒被鋸成薄片,在鋸開的過程中在晶圓的兩面會留有鋸痕,必須除去,晶圓然後放在一拋光板上,用蠟和真空固定住,拋光板再放在拋光機上將晶圓一面磨成像鏡子一樣,才可以開始進入製作積體電路與元件的製程。 二.實驗原理 化學機械研磨的原理是將晶圓置在承載體與一表面承載拋光墊的旋轉工作台之間,同時浸在含有懸浮磨粒、氧化劑、活化劑的酸性或鹼性溶液,晶圓相對於拋光墊運動,在化學蝕刻與磨削兩個材料移除機制交互作用下達成平坦化,其結構如下圖所示。

CMP研磨機制的概略圖 通常,一個化學機械研磨的設備架構,由幾個主要部分組成,一是負責研磨晶圓表面的研磨平台,另一部分是負責抓住待磨晶圓的握柄。其中,握柄是利用抽真空的方式,吸咐待磨晶圓的背面,然後向下壓在鋪有一層研磨墊的研磨台上,進行平坦化過程。當CMP進行的時候,研磨平台將會與握柄順著同一方向旋轉,同時,提供研磨過程中化學反應的研磨液將由一條管線,輸送到系統中,不斷滴在研磨墊上,幫助研磨。 CMP-Lapping 磨粒是以懸浮方式添加到硬的盤面,這些磨粒不會被壓入或固定在盤面,而是朝向各方向自由自在地滾動,因此這些磨粒會對試片進行敲擊作用。Lapping的運動模式:

打磨抛光机器人调研报告.docx

打磨抛光机器人调研报告 第一章:打磨抛光机器人概述 1、定义:打磨抛光机器人是现代工业机器人众多种类的一种,用于替代 传统人工进行工件的打磨抛光工作。 2、用途:主要用于工件的表面打磨,棱角去毛刺,焊缝打磨,内腔内孔 去毛刺,孔口螺纹口加工等工作。 3、组成:一般是由示教盒、控制柜、机器人本体、压力传感器、磨头组 件等部分组成。可以在计算机的控制下实现连续轨迹控制和点位控制。 4、应用领域:卫浴五金行业、IT 行业、汽车零部件、工业零件、医疗器械、木材建材家具制造、民用产品等行业。 5、主要优点:提高打磨质量和产品光洁度,保证其一致性;提高生产 率,一天可24 小时连续生产;改善工人劳动条件,可在有害环境下长期 工作;降低对工人操作技术的要求;缩短产品改型换代的周期,减少相 应的投资设备;可再开发性,用户可根据不同样件进行二次编程。具有

可长期进行打磨作业、保证产品的高生产率、高质量和高稳定性等特 点。 6、主要类别:按照对工件的处理方式的不同可分为工具型打磨机器人和工件型打磨机器人两种。 7、发展前景:在传统制造行业,抛光打磨是最基础的一道工序,但是其成本占到总成本的30%。由于劳动力成本越来越高,这种不需要文化技术的岗位,其薪酬反而越来越高,有的甚至月薪超过一万元。以卫浴行业 为例,如果使用抛光打磨机器人,一年半可回收成本。另外产品品质更好,抛光打磨颜色更均匀。纵观全球产业化发展,随着人口红利的消 失、产品成本降低和产品质量提高的要求等因素,打磨抛光机器人的市 场前景一片光明。 第二章:广东地区打磨抛光机器人市场情况 上月底,受公司委派前往广东市场调研打磨抛光机器人市场需求及 发展情况,前往广州市、东莞市、佛山市禅城区、佛山市顺德区四地进 行调研,前后历时13 天。

晶片化学机械研磨技术综述

晶片化学机械研磨技术综述 ,国家知识产权局专利局专利审查协作湖北中心湖北武汉430070, 1.前言 化学机械研磨,CMP,,又称化学机械抛光,是机械研磨与化学腐蚀的组合技术,它借助超微粒子的研磨作用以及抛光浆料的腐蚀作用,在化学成膜和机械去膜的交替过程中去除被抛光介质表面上极薄的一层材料,实现超精密平坦表面加工。CMP技 术是超大规模集成电路制造过程中的晶片平坦化的一种新技术,对集成电路、半导体产业发展有直接的影响。本文将从专利分析的角度对晶片CMP技术现状进行梳理,为晶片CMP技术进一步发展提供一些建议 2.晶片化学机械研磨技术的国内外发展概况 2.1 国外发展历程 CMP技术在半导体工业的首次应用始于1988年,由IBM将其应用于4MDRAM的制造中,该公司也于1992年申请了晶片CMP技术的第一份专利。在此之后,经过不断的技术发展,CMP技术在全球范围内有较广泛的技术布局,图1显示了世界范围内专利申请量 CMP的研究开发工作过去主要集中在美国,随后发展至 1 法、德等欧洲国家,日本在CMP方面发展很快,并且还从事硅晶片CMP设备供应,我国台湾和韩国也在CMP方面研究较多。从图1来看,其与CMP技术的研究现状也比较相符,CMP技术仍以美国为主导,日本、欧洲、韩国等国家和地区的研究能力也在不断增强。从图2中可以看出,美国的CMP技术布局在2000年左右达到高峰,此后专利保有量逐渐保持稳定的状态,而日本、韩国及中国,包括台湾,则在2006-2008年左右专利申请达到最高峰,此后有渐渐回落的趋势。从图2中还可反映出各

国家或组织在近年来专利申请量均呈下降的趋势,这也反映了经过近几十年的发展,CMP技术研究逐渐趋于饱和,新的技术创新点可能会在今后一段时间内出现 2.2 国内发展历程 1995年由美国卡伯特公司在中国提出第一件涉及晶片化学机械研磨的专利申请,申请号为CN95196473。在此之后,美国申请人针对CMP技术的设备、材料、工艺等不同的技术角度进行了专利布局。除美国外,日本及中国台湾在CMP技术发展上也较迅速,符合其半导体芯片产业的发展规律 在技术布局方面,除了专利数量外,专利布局的时间也不相同,早期在华专利以 国外申请人为主,如下图3所示 从图3中可看出,国外申请人在中国较早的完成了专利布局,建立了技术壁垒, 在2008年以后,国内申请人专利 2 申请数量则呈增长的趋势,对晶片CMP技术逐渐形成了自己的研究成果。经过 近几年的努力,国内形成了以清华大学和中科院为主的教育科研力量,以及以安集微电子、中芯国际等为主的产业研究力量,CMP技术在国内也逐渐成熟 3. 晶片化学机械研磨关键技术 从目前的研究热点来看,该技术主题可以分为以下几个重要的分支 从技术的分类看,对CMP技术的研究,主要从机械研磨和化学腐蚀两个方面对传统技术做出改进,在具体的生产实践中,影响晶片终成品表面质量的因素是多种多样的,对技术的改进点,也由单个变量的控制,迈向多因素多角度协同控制的技术阶段。下图给出了影响CMP系统工艺性能的一些主要因素 3.1 化学机械研磨设备 传统的化学机械研磨设备由旋转的硅晶片夹持装置、承载抛光垫的工作台和抛光液供给系统三大部分组成

打磨抛光机器人调研报告

打磨抛光机器人调研报 告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

打磨抛光机器人调研报告 第一章:打磨抛光机器人概述 1、定义:打磨抛光机器人是现代工业机器人众多种类的一种,用于替代传统人工进行工件的打磨抛光工作。 2、用途:主要用于工件的表面打磨,棱角去毛刺,焊缝打磨,内腔内孔去毛刺,孔口螺纹口加工等工作。 3、组成:一般是由示教盒、控制柜、机器人本体、压力传感器、磨头组件等部分组成。可以在计算机的控制下实现连续轨迹控制和点位控制。 4、应用领域:卫浴五金行业、IT行业、汽车零部件、工业零件、医疗器械、木材建材家具制造、民用产品等行业。 5、主要优点:提高打磨质量和产品光洁度,保证其一致性;提高生产率,一天可24小时连续生产;改善工人劳动条件,可在有害环境下长期工作;降低对工人操作技术的要求;缩短产品改型换代的周期,减少相应的投资设备;可再开发性,用户可根据不同样件进行二次编程。具有可长期进行打磨作业、保证产品的高生产率、高质量和高稳定性等特点。 6、主要类别:按照对工件的处理方式的不同可分为工具型打磨机器人和工件型打磨机器人两种。 7、发展前景:在传统制造行业,抛光打磨是最基础的一道工序,但是其成本占到总成本的30%。由于劳动力成本越来越高,这种不需要文化技术的岗位,其薪酬反而越来越高,有的甚至月薪超过一万元。以卫浴行业为例,如果使用抛光打磨机器人,一年半可回收成本。另外产品品质更好,抛光打磨颜色更均匀。纵观全球产业化发展,随着人口红利的消失、产品成本降低和产品质量提高的要求等因素,打磨抛光机器人的市场前景一片光明。 第二章:广东地区打磨抛光机器人市场情况 上月底,受公司委派前往广东市场调研打磨抛光机器人市场需求及发展情况,前往广州市、东莞市、佛山市禅城区、佛山市顺德区四地进行调研,前后历时13天。 先后参观了机器人生产厂家2家:①东莞市启帆工业机器人有限公司②乐佰特(中国)自动化科技有限公司东莞机器人事业部; 陶瓷卫浴、五金生产厂家9家:①永利陶瓷厂②祥兴陶瓷厂③佛陶集团石湾美术陶瓷厂有限公司④建丰园林建筑陶瓷厂有限公司⑤佛山柏朗卫浴有限公司⑥雄俊五金不锈钢制品有限公司⑦顺德市容桂区龙宏洁具厂⑧左域厨卫有限公司⑨东莞兴达五金科技公司。 本次主要针对打磨抛光机器人潜在客户进行调研,其中有效调研厂家7家,调研目标基本完成。现将整理后的调研情况表述如下: 1、就调研的情况来看,广东乃至珠三角地区使用机器人进行打磨抛光作业的企业很少, 大部分厂商均采用人工手持打磨工具打磨抛光,也有使用一体化打磨设备进行打磨的,仅美的、格力、科龙等知名制造商使用机器人打磨抛光,各类占比均很小。 2、调研中发现已有小部分企业表示愿意尝试使用机器人代替传统人工进行打磨抛光作业,个人分析认为珠三角地区多为中小型民营企业,现代科技制造新工艺、新技术、新工具的使用与革新与公司领导人的思维和远见有密不可分的关系。 3、上述提及的打磨机器人,按照作业方式的不同主要分为工具型打磨机器人和工件型打磨机器人。其中工具型打磨机器人,主要用于大型工件的打磨加工,例如大型铸件、叶片、大型工模具等。工件型打磨机器人主要适用于中小零部件的自动化打磨加工,还可以根据需要、配置上料和下料的机器人,完成打磨的前后道工件自动化输送。一般情况下陶瓷卫浴、家具等生产厂家使用工具型机器人较多。五金、零部件、电子产品等使用工件型机器人较多。保持本体不变的情况下可根据不同生产情况进行转换。 注:工具型打磨机器人,由工业机器人本体和打磨工具系统力控制器、刀库、工件变位机等外围设备组成,由总控制电柜固连机器人和外围设备,总控制柜的总系统分别调控机器人和外围设备的各个子控制系统,使打磨机器人单元按照加工需要,分别从刀库调用各种打磨工具,完成工件各个部位的不同打磨工序和工艺加工。

粉碎机械的现状及发展趋势

粉碎机械的现状及发展趋势 振动磨机 振动磨机是一种高效、节能的新型磨粉设备,主要解决冶金、化工、非金属矿、医药、陶瓷、建筑新材料、水泥、磁性材料等诸多行业超细粉体加工难题。由于粉体实现超细化或超微化后,原子或分子在热力学上处理亚稳定状态,使得比面积增大,从而性格较为活泼,其光学、电学、磁学、热学和化学活性等发生了变化,并在使用中更具有超常的效果。这些变化既不属固体物理又不是原子或分子物理,是物理学中一门新课题,形成独具特色的超微粒子粉体物理学。 本机与球磨机相比,具有下列显著特点: 1、占地面积小,容易安装和隔离; 2、单位产量能耗低; 3、粉磨粒度集中; 4、操作简便,控制容易; 5、整体重量轻,产量与机重比大; 6、噪音小; 7、流程简单,维修方便;8、衬板和介质更换容易; 9、不受加速度最佳指数0.8 g的影响,研磨介质小,单位研磨面变化大。

发展趋势现代科学技术往往需要粉体粒径细至500~12500目,有的甚至需要粒径达亚微米或纳米,这是古老传统的粉碎技术及设备所无法实现的。目前国内外许多高校、科研机构都把粉体超细化或超微化做为研究开发的主攻方向,将重点集中在如何能获得更细粉碎技术及设备的研究上。 球磨机 当前我国球磨机主要可分为:水泥球磨机、管式球磨机、圆锥球磨机、陶瓷球磨机以及间歇式、溢流型、格子型等类型球磨机。转速一般在:17~28r/min ,出料粒度一般在0.075-0.89(mm) 之间,产量从0.65~100t/h不等,总重量在5.5-175 t 不等。 当前我国球磨机发展面临的几个重要问题 1.球磨机配置相当昂贵:由于球磨机筒体转速和很低(每分钟15~25转),如用普通电动机驱动,则需配置昂贵的减速装置。 2.生产成本高:研磨体在冲击和研磨物料的同时,本身也要受到磨剥,筒体内的衬板等零件也被磨剥,因此在整个水泥生产过程中,粉碎作业(生料制备、磨水泥)所消耗的铁板量是很多的,据分析,大约每生产一吨水泥的钢铁消耗为1公斤左右。 3.工作效率低:比如:在生产水泥的过程中,用于粉碎作业的电量约占全厂的2/3,据统计,每生产一吨水泥的耗电量不低于70千瓦小时,但这部分电能的有效利用率却很低,据分析,水泥球磨机输入的功率用于粉碎物料(做有用功)的功率消耗只占一小部分,约5%~7%,而绝大部分电能消耗于其他方面,主要是

切割与粉碎机械

切割与粉碎机械 ?本章学习目标 1)了解物料破碎度的一般测定和表示方法 2)掌握常见切割和粉碎原理及主要机械类型应用特点 3)掌握切割和粉碎机械主要类型及其性能特点 4)掌握常见切割和粉碎机械作业构件的基本结构及其应用特点 5)了解提高切割质量和粉碎机械效率的途径、含义、目的、方法及适用性 尺寸减小:对物料施加一定的外力,克服分子间的内聚力,物料分裂破碎,物料体积减小,比表面积增大,物料化学限制不变。 目的:有利于均匀混合; 便于加工制成多种食品和饲料; 除去物料上不宜食用的部分; 破坏细胞壁结构,便于胞内产物排出 机械分类:1.切碎机械:切片机、切割机 2.磨碎机械:锥形磨粉机、对辊式磨粉机 3.粉碎机械:超微粉碎机、微分碎机 粒度测定方法:1.量具测量法:一般用于测量粒度较大的粉碎物和碎段。 2.筛选法:采用标准筛来测定,即目数来表示。目数越大筛孔尺寸越小。 3.显微镜测量法: 4.粒度测定法:用粒度测定仪 物料粉碎时所受到的作用力包括挤压力、冲击力和剪切力三种。 粉碎力的种类与形式:物料的力学性质 1.强度:是根据物料弹性极限应力的大小来划分的性质,有强与弱之分。 2.脆性:是根据物料塑变区域长短来划分的性质,有脆性和可塑性之分。

3.韧性:是一种抵抗物料裂缝扩展能力的特性,韧性越大则裂缝末端的应力集中久越容易解决。 一、挤压 ?原理:利用低速运动的钝工作面挤压物料使之产生弹性变形、塑性变形直至破裂或破碎。?破碎特点:破碎料粒度不匀,但操作过程的功耗低、噪音小。 ?原料特性:适用于淀粉含量高的坚硬脆性物料,可作为粗粉碎工序使用,对于韧性或塑性物料,通过控制轧距,可制取部分断裂的片状产品。 ?机械种类:机械有挤压破碎机、光辊式挤压破碎机和对辊式压片机。 二、剪切 ?原理:用中低速的利刃压入、高速利刃切入或小间歇低速相对运动的两钝刃剪切使物料断裂。?破碎特点:碎段尺寸均匀,断面整齐,操作过程的噪音低, ?原料特点:适用于纤维性或含水量较高的韧性或低强度脆性物料,如果蔬、肌肉。 ?机械种类:如胶体磨,切碎机械 三、冲击 ?原理:利用物料于工作部件或物料与物料间的高速相对运动产生的撞击,使物料产生的拉应力超过物料强度而破碎。 ?破碎特点:破碎料粒径分布宽,作业设备的空载功耗大,结构简单,通用性好, ?原料特点:适用于淀粉含量高的脆性物料,如各种谷物。 ?机械种类:冲击粉碎机械有锤片式粉碎机。气流粉碎机 四、研磨 ?原理:利用粗糙工作面并在一定压力作用下,在垂直于压力的方向上与物料相对运动成挤压与剪切综合作用,使物料内部产生裂纹二破碎或逐层剥落而破碎 ?破碎特点:作用柔和,每次热高,粒度不匀, ?原料特点:韧性物料 五、劈裂 ?原理:利用低速刃口压入,使物料内部产生压力集中及裂纹扩展二破碎, ?原料特点:适用于脆性物料 ?破碎特点:耗能低,但粒度大且不均匀,

打磨抛光机器人控制系统设计与开发

第5期2019年5月组合机床与自动化加工技术 ModularMachineTool&AutomaticManufacturingTechnique No.5May2019 文章编号:1001-2265(2019)05-0119-03一一一一DOI:10.13462/j.cnki.mmtamt.2019.05.029 收稿日期:2018-09-01?修回日期:2018-10-08 一?基金项目:运载火箭柔性制造成套装备应用示范(2017ZX04015001) 作者简介:孔袁莉(1992 )?女?河南信阳人?上海航天设备制造总厂有限公司助理工程师?研究方向为智能控制二机器人系统集成?(E-mail) 1009163914@qq.com? 打磨抛光机器人控制系统设计与开发 ? 孔袁莉?付宏文?苏一达?梁世盛?张秋华 (上海航天设备制造总厂有限公司?上海一200245) 摘要:为了解决传统手工打磨效率和打磨精度低等问题?文章采用PLC控制打磨机器人?实现对复杂曲面的打磨抛光?并基于Qt软件设计了人机交互界面?实现了机器人打磨系统的状态控制和监控?该控制系统可以实现复杂曲面的全自动化打磨抛光过程?并且可以实时监控设备运行参数?操作简单灵活?易于维护?对不锈钢回转体的打磨抛光实验结果表明:打磨抛光时间为2.5min?自动全流程时间为3min?较人工打磨方式效率提高了60%?关键词:机器人?自动打磨?PLC?人机交互 中图分类号:TH165?TG659一一一文献标识码:A TheDesignandDevelopmentofGrindingandPolishingRobotControlSystem KONGYuan ̄li?FUHong ̄wen?SUDa?LIANGShi ̄sheng?ZHANGQiu ̄hua (ShanghaiAerospaceEquipmentManufacturerCo.?Ltd.?Shanghai200245?China) Abstract:Tosolvetheproblemsoflowtraditionalmanualgrindingefficiencyandaccuracy?thispaperu ̄sesPLCtocontrolthegrindingrobotandthehuman ̄computerinterfacebasedonQtsoftwareisdesignedtocontrolandmonitorthestateofrobotgrindingsystem.Thiscontrolsystemcanachievethefullautomaticpolishingprocessofcomplexsurfaceandmonitortheoperatingparametersoftheequipmentinrealtime?anditiseasytooperateandmaintain.Theexperimentalresultsofgrindingandpolishingstainlesssteelro ̄tarybodyindicatethatthegrindingandpolishingtimeneeds2.5minutes?thewholeautomaticprocessneeds3minutes?andtheefficiencyisincreasedby60%incomparisonofmanualgrinding.Keywords:robot?automaticgrinding?PLC?human ̄computerinteraction 0一引言 随着机械加工制造业的迅速发展?打磨抛光机器人正逐渐取代传统手工打磨?完成对工件表面的打磨抛光[1]?目前?打磨抛光机器人已运用于工件的表面打磨二焊缝打磨二棱角去毛刺二内腔内孔去毛刺二螺纹口加工等工作中?并在卫浴五金行业二IT行业二汽车零部件二工业零件二医疗器械二木材建材家具制造二民用产品等行业得到了广泛应用[2]?机器人自动化打磨系统可以确保打磨效果的一致性和精确性?提高加工效率?降低废品率?而且能够降低成本?改善工人作业环境[3 ̄4]?机器人打磨抛光系统在复杂曲面加工领域具有明显的优势?对推动科技发展具有非常重要的意义?也必将成为工业生产中不可或缺的一部分[5]? PLC以其抗干扰能力强二性能稳定二应用灵活二安装和调试简单?易维护等优点?在工业自动化控制中得到了广泛应用[6]?在打磨抛光机器人控制系统中采用PLC控制?可以提升打磨效率?且具有成本低二稳定性高二易于操作等优点?同时?在加工过程中?对各执行机构工作状态进行实时监控?快速处理系统故障和报警尤为重要?本文拟采用QT软件编写上位机人机交互界面?与PLC进行实时以太网通信?实现对整个机器人打磨控制系统的状态控制与显示? 1一控制系统整体设计 1.1一机器人打磨装备整体结构 在汽车二船舶二医疗器械二五金等制造行业中存在众多大尺寸二结构复杂的零件?本文以不锈钢回转体工件为对象?设计研发一台机器人打磨抛光装备?该机器人打磨抛光装备总体结构主要由4个关键部分组成:机器人二打磨执行器二系统附件二装夹机构?如图1所示?机器人与末端装夹机构主要用于工件的装夹和移动?打磨装置主要用于完成工件的抛光打磨过程 ? 图1一机器人打磨整体结构图

粉磨机械设备试题

粉磨机械设备试题 Prepared on 22 November 2020

粉碎度(粉碎比):指物料粉碎前的尺寸D与粉碎后的尺寸d之比,即i=D/d,用于说明粉碎过程中物料尺寸的变化情况公称粉碎度:指破碎机的最大进料口宽度与最大出料口宽度之比粉碎的易碎性:指物料粉碎的难易程度易碎性与物料的强度、硬度、宽度、结构的均匀性、含水量、粘度、裂痕、表面情况以及形状等因素有关,破碎的难易取决于物料的强度,硬度大二强度不大的结构松弛的脆性物料比强度大二硬度小的韧而软的物料易于破碎开流流程:凡是不带筛分或仅有预先筛分的破碎流程,从破碎机卸出的物料全部作为产品,不再经破碎机循环闭流流程:凡是有检查筛分的破碎流程。从破碎机卸出的物料要经过检查筛分,粒度合乎要求的颗粒作为产品,其余作为循环物料重新送回破碎机,再次进行破碎过粉碎现象:在开流粉磨流程中,因要求经一次粉磨后的产品均符合要求的细度,其中必须有一部分物料成为过细粉磨,称为过粉碎现象弹性衬垫的作用:在开流流程中,由于过粉碎现象,使已经粉碎的细小颗粒把粗颗粒包裹起来,构成弹性衬垫,使其不能直接受到粉磨介质的作用,是磨机生产能力下降的现象粒度组成特性曲线:将测各粒级颗粒的相对质量数值的数据绘制成反应物料粒度组成特性的曲线常用的粉碎理论有哪几种指出他们的内容和适用范围。答:常用的粒度理论有表面理论、体积理论、裂纹理论1)表面理论认为,粉碎过程是物料表面积增加的过程,物料粉碎会产生更多粒子从内部迁移到表面,使物料具有更多的表面能,所以粉碎功用以客服固体各质点间的分子引力,消耗在产生新表面上,表面理论符合较细物料的粉碎过程。2)体积理论把物料的粉碎当做弹性体的变形看待,认为由于物体的体积变形,导致了物料的粉碎,,因而粉碎物料所做的功与物料的体积(或质量)成正比,体积理论比较符合粗大物料的粉碎过程3)裂纹理论认为当物体受到外力作用时,产生应力,当应力超过受力点的强度时就产生裂纹,物体的变性能就聚集在裂纹附近,产生应力集中,使裂纹扩展,最终导致物体粉碎,所以粉碎功与破碎期间产生的裂纹的长度成正比,裂纹理论适用于各个粉碎阶段,无重大误差,但对同一物料不同粉碎阶段要使用不同的Kc值以上理论各有其局限性,综合而得的综合理论认为任何粉碎过

埃夫特机器人在打磨抛光领域的应用

埃夫特机器人在打磨抛光领域的应用 摘要 本文介绍打磨抛光机器人用于替代传统人工进行工件的打磨抛光工作,主要用于工件的表面打磨、棱角去毛刺、焊缝打磨、内腔内孔去毛刺、孔口螺纹口加工等工作,可应用于卫浴五金行业、IT行业、汽车零部件、工业零件、医疗器械、木材建材家具制造、民用产品等行业。其主要优点:提高打磨质量和产品光洁度,保证其一致性;提高生产率,一天可24小时连续生产;改善工人劳动条件,可在有害环境下长期工作;降低对工人操作技术的要求;缩短产品改型换代的周期,减少相应的投资设备;可再开发性,用户可根据不同样件进行二次编程;具有可长期进行打磨作业、保证产品的高生产率、高质量和高稳定性等特点。关键词:机器人,打磨抛光,生产率,稳定性 0 引言 在一些传统制造行业,抛光打磨是最基础的一道工序,但是其成本占到总成本的30%。目前社会劳动力成本越来越高,这种不需要文化要求的岗位,其薪酬相对过去越来越高,有的甚至月薪超过1万元。以卫浴行业为例,同样的岗位,如果使用抛光打磨机器人,三年可回收成本,而且产品品质更好,抛光打磨颜色更均匀。因此,随着人口红利的消失、产品成本降低和产品质量提高等因素的要求,打磨抛光机器人的市场前景一片光明。 虽然在打磨抛光领域使用机器人有很多优点,但是在实际应用中仍然有一定的难度。机器人的稳定性,外围设备是否满足机器人的生产要

求,现场工艺等都会影响最终生产出来的产品质量。对此,安徽埃夫特智能装备有限公司(以下简称埃夫特)设计出一台适用于卫浴行业的柔性打磨机器人,填补了国内同类工业机器人空白。该机器人在市场上的成功应用,也标志着埃夫特公司在打磨抛光领域成功地迈出了第一步。 图1 工业机器人安装量

相关文档
最新文档