全等相似三角形证明经典50题与相似三角形
相似三角形经典题(含答案)
相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CDF S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长. 解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆.例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2. 说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FCAB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.。
相似三角形经典题型
相似三角形经典题型一、相似三角形的判定定理相关题型1. 题目已知在△ABC和△A'B'C'中,∠A = 50°,AB = 3cm,AC = 4cm,∠A'= 50°,A'B'= 6cm,A'C' = 8cm。
判断这两个三角形是否相似。
解析根据相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
在△ABC和△A'B'C'中,(AB)/(A'B')=(3)/(6)=(1)/(2),(AC)/(A'C')=(4)/(8)=(1)/(2),且∠A = ∠A' = 50°。
所以△ABC∽△A'B'C'。
2. 题目如图,在四边形ABCD中,∠B = ∠ACD,AB = 6,BC = 4,AC = 5,CD=(7)/(2),求AD的长。
解析因为∠B = ∠ACD,且(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AC)/(AD)未知。
又因为(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),不满足三边对应成比例。
但是由∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),可以尝试证明△ABC和△ACD相似。
因为∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),这里我们重新计算(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)是错误的,应该是(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(BC)/(CD)所以△ABC∽△DCA。
相似三角形典型例题30道
相似三角形典型例题30道1: 在△ABC中,DE是平行于BC的线段,且AD/DB = 2/3。
求DE/BC的比值。
2: 已知△PQR与△XYZ相似,PQ = 6,XY = 9,求QR 与YZ的比值。
3: 在△ABC中,D、E分别是AB、AC上的点,且DE平行于BC,已知AD = 3,DB = 6,求AE与EC的比值。
4: 已知两个相似三角形的面积比为4:9,求它们对应边的比。
5: 在△XYZ中,MN是平行于XY的线段,且XM = 4,MY = 6,求MN/XY的比值。
6: 在△ABC中,AD是BC的中线,且AE是AB的延长线,若AE与BC相交于点F,求AF与FB的比值。
7: 在△DEF中,GH平行于EF,已知DE = 8,DF = 10,求GH/EF的比值。
8: 在一个相似三角形中,若大三角形的周长是36,小三角形的周长是24,求它们的面积比。
9: 在△JKL中,MN平行于JK,若JM = 3,MK = 5,求MN/JK的比值。
10: 如果两个相似三角形的对应边长分别为5和15,求它们的面积比。
11: 在△ABC中,AD是BC的中线,且DE平行于BC,已知AD = 4,BC = 8,求DE的长度。
12: 已知相似三角形的对应边长比为1:4,求它们的周长比。
13: 在△PQR中,S是PQ的中点,若ST平行于QR,求PS与PQ的比值。
14: 在相似三角形中,若小三角形的每条边长为5,大三角形的对应边长为15,求它们的面积比。
15: 在一个三角形中,若一条边的延长线与另一边的平行线相交,则形成的两小三角形与原三角形相似,求相似比。
16: 在△XYZ中,若XY = 10,XZ = 15,YZ = 12,求△XYZ的周长。
17: 已知△ABC与△DEF相似,若AB = 4,DE = 8,求AC与DF的比值。
18: 在△GHI中,JK平行于GH,若GJ = 5,GH = 20,求JK的长度。
19: 在相似三角形中,若一个三角形的面积是36,另一个三角形的面积是144,求其对应边的比。
初三数学相似三角形典型例题(含答案)
初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
相似三角形练习题
相似三角形练习题题目一已知三角形ABC中,∠A = 60°,AC = 6 cm,BC = 8 cm。
将三角形ABC沿着边BC剪开,使得三角形ABD与三角形ACD相似,连接BD。
求BD的长度。
解答一由已知条件可知∠A = ∠ADC = 60°,而∠ABD与∠ACD互为对应角,故∠ABD = ∠ACD = 60°,说明三角形ABD与三角形ACD相似。
根据相似三角形的性质,相似三角形中对应边的比例相等,即有:BD/AD = AC/CD将已知数值代入,得到:BD/AD = 6/8进一步化简,可得:BD/AD = 3/4将上式两侧同乘以AD,可得:BD = (3/4) * AD由直角三角形ADC中,利用三角函数可得AD的值:AD = AC * sin(60°) = 6 * √3 / 2 = 3√3 cm代入上式,可得:BD = (3/4) * 3√3 = 9√3 / 4 cm所以,BD的长度为9√3 / 4 cm。
题目二已知∆ABC与∆DEF相似,∠B = 40°,∠E = 20°,AB = 5 cm,FE = 3 cm。
求BC、DE的长度。
解答二由已知条件可知∠B = ∠F,即∠B = 40°。
而∆ABC与∆DEF相似,根据相似三角形的性质,相似三角形中对应边的比例相等,即有:AB/FE = BC/DE将已知数值代入,得到:5/3 = BC/DE进一步化简,可得:5DE = 3BC根据已知条件,我们还可以得到∠E = ∠C。
联立上述两个条件,可以列出方程组:{5DE = 3BC∠E = ∠C}要求BC和DE的长度,需要求解以上方程组。
我们可以通过求解方程组来得到BC和DE的长度。
题目三AG和EK是∆ABC和∆EFD的高,点G和点K分别位于边BC和边DE上,且∆AGK和∆EKG相似。
已知∠B = 45°,AB = 12 cm,BC = 10 cm,ED = 8 cm。
相似三角形经典例题(练习)
一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD,∠BCE=∠BAD求证:△DBE∽△ABC例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF AC=BC FE例6:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM⊥BC 于点E ,交BA 的延长线于点D 。
例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。
过D 点作DG∥AB 交FC 于G 则△AEF∽△DEG。
(平行于三角形一边的直线截其它两边或两边的延长线所得三角形与原三角形相似) (1)∵D 为BC 的中点,且DG∥BF∴G 为FC 的中点则DG 为△CBF 的中位线,(2)将(2)代入(1)得:三、如何用相似三角形证明两角相等、两线平行和线段相等。
边AB 和AD 上的点,且。
求证:例8:已知:如图E 、F 分别是正方形ABCD 的∠AEF=∠FBD例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线,••DG AFDE AE =BF DG 21=FBAF BF AF DE AE 221==31==AD AF AB EB A B C D E FG 1234ABC D AB C D E FK A B CD E FCDRAC E ABCDEFO 123ABCDFGE求证:SQ ∥AB ,RP ∥BC例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BF(答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
初三数学相似三角形经典题型
初三数学相似三角形经典题型相似三角形是初中数学中常见的一个重要概念,也是一种经典的题型。
相似三角形的性质和应用在数学学习和实际问题中都具有很大的意义。
本文将介绍相似三角形的定义、判定方法以及相关的经典题型。
一、相似三角形的定义与判定相似三角形是指具有相同形状但不同大小的三角形。
在数学中,我们可以通过以下两种方法判定两个三角形是否相似。
1. AAA(全等对应角)判定法:如果两个三角形的对应角分别相等,则它们是相似的。
例如,如果三角形ABC和三角形DEF的角A等于角D,角B等于角E,角C等于角F,那么可以得出三角形ABC与三角形DEF是相似的。
2. AA(对应角)判定法:如果两个三角形的两个角分别相等,则它们是相似的。
此时,我们还需要知道两个对应角的两边比例是否相等。
例如,如果角A等于角D,角B等于角E,而且边AB与边DE的比例等于边AC与边DF的比例,那么可以得出三角形ABC与三角形DEF是相似的。
以上两种判定法在实际解题中非常有用,也是帮助我们分析和解决问题的基础。
二、相似三角形的经典题型1. 求相似三角形的边长比例:已知两个相似三角形的某一个边长比例,求另一个边长的比例。
例如,已知相似三角形ABC与三角形DEF的边长比例为AB:DE = 2:3,BC:EF = 5:6,求AC:DF的比例。
解题思路:首先,我们可以假设AC:DF的比例为x:y。
根据相似三角形性质,我们可以列出一个等式:AB:DE = AC:DF2:3 = 5:6根据等式可以得出2y = 3x,5y = 6x。
进一步求解该等式,可以得到x:y的比例为2:5/3。
2. 利用相似三角形求解实际问题:有时候,我们需要利用相似三角形的性质来解决实际问题。
例如,一根高杆和一根矮杆在地面上的距离是30米,两杆的视角是60°和30°。
如果两根杆的高度之差是6米,求高杆的高度。
解题思路:我们可以设高杆的高度为h,矮杆的高度为h-6。
相似三角形绝对经典50道
1、2、如图,直线y=3x+3与x轴交于点A,与y轴交于点B.过B点作直线BP与x轴正半轴交于点P,取线段OA、OB、OP,当其中一条线段的长是其他两条线段长度的比例中项时,则P 点的坐标为.3、4、6、下列正方形方格中四个三角形中,与甲图中的三角形相似的是()A.B.C.D.10、11、如图为两正方形ABCD 、BEFG 和矩形DGHI 的位置图,其中G 、F 两点分别在BC 、EH 上.若AB=5,BG=3,则△GFH 的面积为何?( )A .10B .11C .152D .45412、如图,△ABC 中,D 、E 是BC 边上的点,BD :DE :EC=3:2:1,M 在AC 边上,CM :MA=1:2,BM 交AD ,AE 于H ,G ,则BH :HG :GM 等于( )A .3:2:1B .5:3:1C .25:12:5D .51:24:1013、14、如图,在△ABC 中,∠C=90°,BC=5米,AC=12米.M 点在线段CA 上,从C 向A 运动,速度为1米/秒;同时N 点在线段AB 上,从A 向B 运动,速度为2米/秒.△AMN的最大面积是 .15、17、18、如图,△ABC是RT△,∠CAB=30°,BC=1,以AB、BC、AC为边分别作3个等边△ABF,△BCE,△ACD.过F作MF垂直DA的延长线于点M,连接并延长DE交MF的延长线于点N.那么△DMN的面积为.19、如图,点A的坐标为(1,1),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,若以B,E,F为顶点的三角形与△OFE相似,B点的坐标是.20、如图,在△ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF,D为BF的中点,AE:AF的值为.21、兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为.22、23、已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.24、将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.25、如图,已知ED∥BC,∠EAB=∠BCF,(1)四边形ABCD为平行四边形;(2)求证:OB2=OE•OF;(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.27、已知,把Rt△ABC和Rt△DEF按图1摆放,(点C与E点重合),点B、C、E、F始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如图2,△DEF从图1出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从A出发,沿AB以每秒1个单位向点B匀速移动,AC与△DEF的直角边相交于Q,当P到达终点B时,△DEF 同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)△DEF在平移的过程中,当点D在Rt△ABC的边AC上时,求t的值;(2)在移动过程中,是否存在△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在移动过程中,当0<t≤5时,连接PE,是否存在△PQE为直角三角形?若存在,求出t 的值;若不存在,说明理由.28、已知∠AOB=90°,OM是∠AOB的平分线,将一个直角RPS的直角顶点P在射线OM上移动,点P不与点O重合.(1)如图,当直角RPS的两边分别与射线OA、OB交于点C、D时,请判断PC与PD的数量关系,并证明你的结论;(2)如图,在(1)的条件下,设CD与OP的交点为点G,且PG=PD,求GDOD的值;(3)若直角RPS的一边与射线OB交于点D,另一边与直线OA、直线OB分别交于点C、E,且以P、D、E为顶点的三角形与△OCD相似,请画出示意图;当OD=1时,直接写出OP的长.29、如图,甲、乙两人分别从A(1、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;(2)当t为何值时,△OMN∽△OBA;(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.30、在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.31、将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°]得△AB′C′,则S△AB′C′:S△ABC= ;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.32、如图所示,在形状和大小不确定的△ABC中,BC=6,E、F分别是AB、AC的中点,P在EF或EF的延长线上,BP交CE于D,Q在CE上且BQ平分∠CBP,设BP=y,PE=x.(1)当x=13EF 时,求S △DPE :S △DBC 的值; (2)当CQ=12CE 时,求y 与x 之间的函数关系式; (3)①当CQ=13CE 时,求y 与x 之间的函数关系式; ②当CQ=1n CE (n 为不小于2的常数)时,直接写出y 与x 之间的函数关系式. 如图,正三角形ABC 的边长为 .33、(1)如图①,正方形EFPN 的顶点E 、F 在边AB 上,顶点N 在边AC 上,在正三角形ABC 及其内部,以点A 为位似中心,作正方形EFPN 的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE 、EF 在边AB 上,点P 、N 分别在边CB 、CA 上,求这两个正方形面积和的最大值和最小值,并说明理由.34、如图,在直角梯形OABC 中,OA ∥BC ,A 、B 两点的坐标分别为A (13,0),B (11,12).动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿x轴向终点A运动,点Q以每秒1个单位的速度沿BC方向运动;当点P停止运动时,点Q也同时停止运动.线段PQ和OB 相交于点D,过点D作DE∥x轴,交AB于点E,射线QE交x轴于点F.设动点P、Q运动时间为t(单位:秒).(1)当t为何值时,四边形PABQ是平行四边形.(2)△PQF的面积是否发生变化?若变化,请求出△PQF的面积s关于时间t的函数关系式;若不变,请求出△PQF的面积.(3)随着P、Q两点的运动,△PQF的形状也随之发生了变化,试问何时会出现等腰△PQF?35、如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止运动,设P、Q运动的时间为t秒(t>0).(1)试求出△APQ的面积S与运动时间t之间的函数关系式;(2)在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.求出此时△APQ的面积.(3)在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由.(4)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP 于点F.当DF经过原点O时,请直接写出t的值.36、在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C 方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.求:(1)用含t的代数式表示Rt△CPQ的面积S;(2)当t=3秒时,P、Q两点之间的距离是多少?(3)当t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?37、已知:矩形OABC的顶点O在平面直角坐标系的原点,边OA、OC分别在x、y轴的正半轴上,且OA=3cm,OC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA 向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求点N的坐标;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)t为何值时,以△OAN的一边所在直线为对称轴翻折△OAN,翻折前后的两个三角形所组成的四边形为菱形?38、如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以1cm/s的速度从点B出发,沿折线B-A-C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x 的函数图象如图②所示.请根据图中信息,解答下列问题:(1)试判断△DOE的形状,并说明理由;(2)当a为何值时,△DOE与△ABC相似?39、已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断11DM DN是否为定值?若是,请求出该定值;若不是,请说明理由.40、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小?若存在,求出最小周长;若不存在,请说明理由.41、如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t/秒(t>0),正方形EFGH与△ABC重叠部分面积为S.(1)当t=1时,正方形EFGH的边长是.当t=3时,正方形EFGH的边长是.(2)当0<t≤2时,求S与t的函数关系式;(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?42、如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=52KC,求CDAB的值;(2)连接BE,若BE平分∠ABC,则当AE=12AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=1nAD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.43、已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图.(1)若BD是AC的中线,求BDCE的值;(2)若BD是∠ABC的角平分线,求BDCE的值;(3)结合(1)、(2),试推断BDCE的取值范围(直接写出结论,不必证明),并探究BDCE的值能小于43吗?若能,求出满足条件的D点的位置;若不能,说明理由.44、如图,在边长为2的等边△ABC中,AD⊥BC,点P为边AB 上一个动点,过P点作PF∥AC 交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.(1)①试判断BG与2BP的大小关系,并说明理由;②用x的代数式表示线段DG的长,并写出自变量x的取值范围;(2)记△DEF的面积为S,求S与x之间的函数关系式,并求出S的最大值;(3)以P、E、F为顶点的三角形与△EDG是否可能相似?如果能相似,请求出BP的长,如果不能,请说明理由.45、在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.(1)我们先从特殊的倍角三角形入手研究.请你结合图形填空:(2)如图4,对于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的对边分别记为a,b,c,a,b,c,三边有什么关系呢?请你作出猜测,并结合图4给出的辅助线提示加以证明;(3)请你运用(2)中的结论解决下列问题:若一个倍角三角形的两边长为5,6,求第三边长.(直接写出结论即可)46、如图,四边形OABC为正方形,点A在x轴上,点C在y轴上,点B(8,8),点P在边OC上,点M在边AB上.把四边形OAMP沿PM对折,PM为折痕,使点O落在BC边上的点Q处.动点E从点O出发,沿OA边以每秒1个单位长度的速度向终点A运动,运动时间为t,同时动点F从点O出发,沿OC边以相同的速度向终点C运动,当点E到达点A时,E、F 同时停止运动.(1)若点Q为线段BC边中点,直接写出点P、点M的坐标;(2)在(1)的条件下,设△OEF与四边形OAMP重叠面积为S,求S与t的函数关系式;(3)在(1)的条件下,在正方形OABC边上,是否存在点H,使△PMH为等腰三角形,若存在,求出点H的坐标,若不存在,请说明理由;(4)若点Q为线段BC上任一点(不与点B、C重合),△BNQ的周长是否发生变化,若不发生变化,求出其值,若发生变化,请说明理由.47、一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”法,请你依据分类的思想和分类讨论的方法解决下列问题:在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,作∠ADE=45°(A、D、E按逆时针方向),(1)如图1,若点D在线段BC上运动,DE交AC于E①求证:△ABD∽△DCE;②当△ADE是等腰三角形时,求AE的长;(2)如图2,若点D在BC的延长线上运动,DE的反向延长线与AC延长线相交于点E′,是否存在点D,使得△ADE′是等腰三角形?若存在,求出CD与AE′的长;若不存在,请简要说明理由.48、如图,已知锐角△ABC的边BC的长为6,面积为12,PQ∥BC,点P在AB上,点Q在AC上,四边形RPQS为正方形(RS与A在PQ的异侧),其边长为x,正方形RPQS与△ABC 的公共面积为y.(1)当正方形RPQS的边RS恰好落在BC上时,求边长x.(2)当RS不落在BC上时,求y关于x的函数关系式以及自变量x的取值范围.(可以将图形画在备用的图形中)(3)求y的最大值.49、如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A出发沿AB边向点B以1cm/秒的速度移动,点Q从点B出发沿BC边向点C以2cm/秒的速度移动.(1)如果P、Q分别从A、B同时出发,经过多长时间,使△PBQ的面积为8cm2?(2)如果P、Q分别从A、B同时出发,当P、Q两点运动几秒时,PQ有最小值,并求这个最小值.50、如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.①求证:AG⊥CH;②当AD=4,时,求CH的长.51、如图,已知AM∥BN,∠A=∠B=90°,AB=4,点D是射线AM上的一个动点(点D与点A不重合),点E是线段AB上的一个动点(点E与点A、B不重合),连接DE,过点E作DE 的垂线,交射线BN于点C,连接DC.设AE=x,BC=y.(1)当AD=1时,求y关于x的函数关系式,并写出它的定义域;(2)在(1)的条件下,取线段DC的中点F,连接EF,若EF=2.5,求AE的长;(3)如果动点D、E在运动时,始终满足条件AD+DE=AB,那么请探究:△BCE的周长是否随着动点D、E的运动而发生变化?请说明理由.52、如图,在矩形ABCD中,AB=6cm,BC=8cm,动点P从点A开始沿AC向点C以每秒2厘米的速度运动,同时动点Q从点C开始沿CB边向点B以每秒1厘米的速度运动.设运动的时间为t秒(0<t<5),△PQC的面积为Scm2.(1)求S与t之间函数关系式.(2)当t为何值时,△PQC的面积最大,最大面积是多少?(3)在P、Q的移动过程中,△PQC能否为直角三角形?若能,求出此时t的值;若不能,请说明理由.53、如图①,正方形ABCD中,点A、B的坐标分别为(0,10)、(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.。
三角形相似证明基础50题
相似三角形经典证明50题1、已知:如图,DE∥BC,AF∶FB=AG∶GE。
求证:ΔAFG∽ΔAED。
2、已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证:ΔAEF∽ΔACB.3、如图,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,求AD的长4、已知,如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,△ADQ与△QCP是否相似?为什么?5、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。
E AA B P D C 6、如图,AD 是Rt △ABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC E F AF AD BEBD于、。
则吗?说说你的理由。
7、如图,在⊿ABC (AB >AC )的边AB 上取一点,在边AC 上取一点E ,使AD=AE ,直线DE和BC 的延长线交于点P ,求证:BP :CP=BD :CE8、已知:如图,在△ABC 中,AB =AC ,AD ⊥AB ,AD 交BC 于点E ,DC ⊥BC ,与AD 交于点D .求证:AC 2=AE ·AD .9、已知:如图,在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 是AC 边的中点,ED 的延长线与AB 的延长线交于点F .求证:△AFD ∽△DFB .10、已知:如图,矩形ABCD 的对角线AC 、BD 相交于O ,OF ⊥AC 于点O ,交AB 于点E ,交CB 的延长线于点F ,求证:AO 2=OE · OF .B C DA E BC D A F EOB C DAE F11、己知:如图,AB∥CD,AF=FB,CE=EB. 求证:GC2=GF·GD.12、已知:如图,ΔABC中,∠ACB=900,F为AB的中点,EF⊥AB.求证:ΔCDF∽ΔECF.13、已知:如图,DE∥BC,AD2=AF·AB。
全等三角形的判定方法50道经典题
全等三角形的判定方法50道经典题全等三角形的判定方法是初中数学中重要的一部分,主要包括以下50道经典题目。
1. 如何通过边长判断两个三角形是否全等?答:如果两个三角形的三条边对应相等,则它们全等。
2. 如果通过角度判断两个三角形是否全等?答:如果两个三角形的三个角度对应相等,则它们全等。
3. 如何通过边角判断两个三角形是否全等?答:如果两个三角形中有一个角相等,并且两边对应相等,则它们全等。
4. 如果两个三角形的底边相等,底边上的高相等,判断它们是否全等。
答:根据边角对应的原理,如果底边和高都相等,则这两个三角形全等。
5. 给定两个相等的边和它们之间的夹角,判断它们所在的两个三角形是否全等。
答:根据边角对应的原理,如果两个相等的边和它们之间的夹角都相等,则这两个三角形全等。
6. 如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,判断它们是否全等。
答:根据边角边的原理,如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,则这两个三角形全等。
7. 如何通过勾股定理判断两个三角形是否全等?答:如果两个三角形的两条边的平方和相等,则它们全等。
8. 如果两个三角形的一个角相等,并且两边的比例相等,判断它们是否全等。
答:根据角边角的原理,如果两个三角形的一个角相等,并且两边的比例相等,则这两个三角形全等。
9. 如果两个三角形的两个角相等,并且两边的比例相等,判断它们是否全等。
答:根据角角边的原理,如果两个三角形的两个角相等,并且两边的比例相等,则这两个三角形全等。
10. 给定两个相等的边和它们夹角的正弦值,判断它们所在的两个三角形是否全等。
答:根据正弦定理,如果两个相等的边和它们夹角的正弦值都相等,则这两个三角形全等。
11. 给定两个相等的边和它们夹角的余弦值,判断它们所在的两个三角形是否全等。
答:根据余弦定理,如果两个相等的边和它们夹角的余弦值都相等,则这两个三角形全等。
初三数学相似三角形典型例题(含答案)
初三数学相似三角形典型例题(含答案)本节复的目标是理解相似三角形的概念和性质,并能应用其定理解决实际问题。
其中包括线段的比、成比例线段的概念,黄金分割,平行线分线段成比例定理等重要知识点。
相似三角形是平面几何的重要内容之一,常与四边形、圆的知识相结合构成高分值的综合题。
在中考试题中,相似三角形题型常以填空、选择、简答或综合出现,分值一般在10%左右。
相似三角形题目有利于培养学生的综合素质,形成创新与探索型试题。
重要知识点包括比例线段的有关概念、黄金分割、比例性质等。
比例线段的比例式中,a、d叫外项,b、c叫内项,a、c叫前项,b、d叫后项,d叫第四比例项。
黄金分割是把线段AB分成两条线段AC和BC,使AC=AB·BC,C叫做线段AB的黄金分割点。
比例性质包括基本性质、合比性质和等比性质。
平行线分线段成比例定理是相似三角形中的重要定理。
该定理指出,三条平行线截两条直线,所得的对应线段成比例。
同时,平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段也成比例。
如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
相似三角形的判定有五种情况。
其中,两角对应相等、两边对应成比例且夹角相等、三边对应成比例、直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例、平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
AEF=45°同理,∠CEA=45°XXX和△XXX都是等腰直角三角形,且∠AEF=∠CEAAEF∽△CEA2)∵四边形ABEG、GEFH、HFCD都是正方形AFB=∠EFG=90°同理,∠ACB=∠DCH=90°AFB+∠ACB=180°又因为四边形ABCD是平行四边形AFB+∠ACB=180°-∠BAC又因为△ABC是等边三角形BAC=60°AFB+∠ACB=180°-60°=120°AFB+∠ACB=45°+75°=120°AFB+∠ACB=45°+∠BAC=120°AFB+∠ACB=45°已知:在△ABC中,D为BC边上的一点,∠CAD=∠B,AD=6,AB=8,BD=7,求DC的长。
相似三角形基本知识点+经典例题(完美打印版)
相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。
它们的对应角度相等,对应边长成比例。
以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。
2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。
b. 对应边成比例:两个相似三角形的对应边的比值相等。
3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。
b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。
二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。
如果两个三角形是相似的,则对应边的比值相等。
以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。
则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。
例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。
解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。
例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。
若AB= 10cm,BC = 15cm,求AD的长度。
解析:由于ABCD是平行四边形,所以∠B = ∠D。
根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。
初中数学经典相似三角形练习题(附参考答案)
初中数学经典相似三角形练习题(附参考答案)初中数学经典相似三角形练习题(附参考答案)一、题目描述在初中数学中,相似三角形是一个非常重要的概念。
本文为您提供一些经典的相似三角形练习题,通过解答这些练习题可以提高学生的解题能力和对相似三角形的理解。
本文附有详细的参考答案,供学生进行自我检测和复习。
二、练习题1. 已知△ABC和△DEF相似,AB = 6cm,BC = 8cm,AC = 10cm,DE = 9cm,计算EF的长度。
2. △ABC与△DEF相似,AB = 2cm,BC =3.5cm,AC = 4cm,EF= 7cm,求DE的长度。
3. 在△ABC中,角A的度数为50°,角B的度数为70°,BC = 8cm。
若与△ABC相似的三角形的边长分别为10cm和12cm,求与△ABC相似的三角形的第三边的长度。
4. 在△ABC中,∠B = 90°,AC = 10cm,BC = 12cm。
若与△ABC相似的三角形的第二边为16cm,求与△ABC相似的三角形的第三边的长度。
5. 已知△ABC与△DEF相似,AB = 6cm,AC = 8cm,DE = 12cm,若EF = 18cm,求BC的长度。
6. 高度为5cm的小树和高度为12cm的大树的影子长度之比为2:3。
如果小树的影子长度为10cm,求大树的影子长度。
7. 一个航拍无人机垂直飞行,发现自己离地面的垂直距离与航拍无人机的长度(包括机身和旋翼)的比例为3:2。
如果航拍无人机的长度为120cm,求离地面的垂直距离。
8. 在一个旅游小组中,由5名成年人和7名儿童组成,其平均年龄为30岁。
如果另一个旅游小组由2名成年人和3名儿童组成,其平均年龄为24岁。
求这两个旅游小组的总年龄之比。
三、参考答案1. 根据相似三角形的性质可知,EF与AC的比例应与DE与BC的比例相等。
即 EF/AC = DE/BC。
代入已知值,得 EF/10 = 9/8。
初中数学全等相似三角形难题汇总(附答案)
1.如图所示,S△ABC=1,若S△BDE=S△DEC=S△ACE,则S△ADE=()A.B.C.D.2.如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子的倾斜角为45°;将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子倾斜角为75°,则小巷宽度w=()A.h B.k C.a D.3.已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AE=(AB+AD);②∠DAB+∠DCB=180°;③CD=CB;④S△ACE ﹣S△BCE=S△ADC.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个4.如图,△ABC中,∠A=2∠B,∠C≠72°,CD平分∠ACB,P为AB中点,则下列各式中正确的是()A.AD=BC﹣CD B.AD=BC﹣AC C.AD=BC﹣AP D.AD=BC﹣BD5.在△ABC与△A′B′C′中,∠B=∠B′=90°,∠A=30°,则以下条件,不能说明△ABC 与△A′B′C′相似的是()A.∠A′=30°B.∠C′=60°C.∠C=60° D.∠A′=2∠C′6.设a,b,c分别是△ABC的三边长,且,则它的内角∠A、∠B的关系是()A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定7.已知△ABC的三边长分别为a,b,c,面积为S,△A1B1C1的三边长分别为a1,b1,c1,面积为S1,且a>a1,b>b1,c>c1,则S与S1的大小关系一定是()A.S>S1B.S<S1C.S=S1 D.不确定8.如图,在△ABC中,D是边AC上一点,下面四种情况中,△ABD∽△ACB一定成立的情况是()A.AD•BC=AB•BD B.AB2=AD•AC C.∠ABD=∠CBD D.AB•BC=AC•BD9.如图,D、E分别是△ABC的边AC、AB上的点,BD、CE相交于O点.若S△=2,S△OBE=3,S△OBC=4,则S△ABC=.OCD10.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.11.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是.12.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.13.如图,已知Rt△ABC中,∠C=90°,D是AB上一点,作DE⊥BC于E,若BE=AC,BD=,DE+BC=1,求:∠ABC的度数.14.如图表示甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.记甲、乙、丙三个三角形的周长依次为l甲、l乙、l丙.已知AB=DE=GH,试猜想l甲、l乙、l丙的大小关系,并说明理由.15.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.16.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.1.如图所示,S△ABC=1,若S△BDE=S△DEC=S△ACE,则S△ADE=()A.B.C.D.【考点】K3:三角形的面积.=S△DEC,【解答】解:∵S△BDE∴BD=DC,=S△ABC=,∴S△ABD∵S=1,S△BDE=S△DEC=S△ACE,△ABC=S△DEC=S△ACE=,∴S△BDE=S△ABD﹣S△BDE=﹣=.∴S△ADE故选B.2.如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子的倾斜角为45°;将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子倾斜角为75°,则小巷宽度w=()A.h B.k C.a D.【考点】KE:全等三角形的应用;KM:等边三角形的判定与性质.【解答】解:连接QR,过Q作QD⊥PR,∴∠AQD=45°,∵∠QAR=180°﹣75°﹣45°=60°,且AQ=AR,∴△AQR为等边三角形,即AQ=QR,∵∠AQD=45°∴∠RQD=15°=∠ARP,∠QRD=75°=∠RAP,∴△DQR≌△PRA(ASA),∴QD=PR,即w=h.故选A.3.已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AE=(AB+AD);②∠DAB+∠DCB=180°;③CD=CB;④S△ACE ﹣S△BCE=S△ADC.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【解答】解:①在AE取点F,使EF=BE.∵AB=AD+2BE=AF+EF+BE,EF=BE,∴AB=AD+2BE=AF+2BE,∴AD=AF,∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,∴AE=(AB+AD),故①正确;②在AB上取点F,使BE=EF,连接CF.在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,∴△ACD≌△ACF,∴∠ADC=∠AFC.∵CE垂直平分BF,∴CF=CB,∴∠CFB=∠B.又∵∠AFC+∠CFB=180°,∴∠ADC+∠B=180°,∴∠DAB+∠DCB=360﹣(∠ADC+∠B)=180°,故②正确;③由②知,△ACD≌△ACF,∴CD=CF,又∵CF=CB,∴CD=CB,故③正确;④易证△CEF≌△CEB,∴S△ACE ﹣S△BCE=S△ACE﹣S△FCE=S△ACF,又∵△ACD≌△ACF,∴S△ACF=S△ADC,∴S△ACE ﹣S△BCE=S△ADC,故④正确.故选D.4.如图,△ABC中,∠A=2∠B,∠C≠72°,CD平分∠ACB,P为AB中点,则下列各式中正确的是()A.AD=BC﹣CD B.AD=BC﹣AC C.AD=BC﹣AP D.AD=BC﹣BD【考点】KD:全等三角形的判定与性质.【解答】解:因为∠A=2∠B,所以∠A>∠B,所以BC>AC.在BC上截取CA′=CE,连接DE′(如图),易证△ACD≌△EC′D,所以AD=ED,且∠CED=∠A=2∠B,又∠CED=∠B+∠EDB,所以∠B=∠EDB,所以AD=ED=EB,所以BC=E′C+E′B=AC+AD,所以AD=BC﹣AC.故此题选B.注意到:若AD=BC﹣CD,则CD=BC﹣AD=A′C=AC,此时∠CDA′=∠CDA=∠A=2∠B,所以∠ADA′=4∠B,又∠ADA′+∠2=4∠B+∠B=180°,所以∠B=36°,所以∠C=72°,与已知矛盾,故A排除,易证BD>BA′=AD,所以PB<BD,PA>AD.所以AD<BC﹣AP,排除C,AD>BC﹣BD,排除D.5.在△ABC与△A′B′C′中,∠B=∠B′=90°,∠A=30°,则以下条件,不能说明△ABC 与△A′B′C′相似的是()A.∠A′=30°B.∠C′=60°C.∠C=60° D.∠A′=2∠C′【考点】S9:相似三角形的判定与性质;KF:角平分线的性质.【解答】解:A、∵∠A′=30°,∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误;B、∵∠C′=60°,∴∠A′=30°,∵∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误;C、∠C=60°,无法确定△A′B′C′中各角的度数,故无法证明△ABC∽△A′B′C′,故本选项正确;D、∵∠A′=2∠C′,∠A′+∠C′=90°,∴∠A′=30°,∵∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误.故选C6.设a,b,c分别是△ABC的三边长,且,则它的内角∠A、∠B的关系是()A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定【考点】S9:相似三角形的判定与性质;K8:三角形的外角性质.【解答】解:由=得=,延长CB至D,使BD=AB,于是CD=a+c,在△ABC与△DAC中,∠C为公共角,且BC:AC=AC:DC,∴△ABC∽△DAC,∠BAC=∠D,∵∠BAD=∠D,∴∠ABC=∠D+∠BAD=2∠D=2∠BAC.故选B.7.已知△ABC的三边长分别为a,b,c,面积为S,△A1B1C1的三边长分别为a1,b1,c1,面积为S1,且a>a1,b>b1,c>c1,则S与S1的大小关系一定是()A.S>S1B.S<S1C.S=S1 D.不确定【考点】S9:相似三角形的判定与性质;K3:三角形的面积.【解答】解:分别构造△ABC与△A1B1C1如下:①作△ABC∽△A1B1C1,显然=>1,即S>S1;②设a=b=,c=20,则h c=1,S=10,a1=b1=c1=10,则S1=×100>10,即S<S1;③设a=b=,c=20,则h c=1,S=10,a1=b1=,c1=10,则h c=2,S1=10,即S=S1;因此,S与S1的大小关系不确定.故选D.8.如图,在△ABC中,D是边AC上一点,下面四种情况中,△ABD∽△ACB一定成立的情况是()A.AD•BC=AB•BD B.AB2=AD•AC C.∠ABD=∠CBD D.AB•BC=AC•BD【考点】S8:相似三角形的判定.【解答】解:A、因为AD•BC=AB•BD的夹角非∠A,所以不能判定两三角形相似,故本选项错误;B、因为符合两边及夹角法,故可判定两三角形相似,故本选项正确;C、因为无法确定三角形的对应角相等,故无法判定两三角形相似,故本选项错误;D、因为AB•BC=AC•BD的夹角为∠C、∠B,不确定是否相等,无法判定两三角形相似,故本选项错误,故选B.9.如图,D、E分别是△ABC的边AC、AB上的点,BD、CE相交于O点.若S△=2,S△OBE=3,S△OBC=4,则S△ABC=16.8.OCD【考点】K3:三角形的面积.【解答】解:连接DE,如图则有,,将已知数据代入可得S=1.5,△DOE=x,则由,设S△ADE,所以得方程:,解得:x=6.3,所以四边形ADOE的面积=x+1.5=7.8.=2+3+4+7.8=16.8.所以S△ABC故填:16.8.10.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于 5.5.【考点】KD:全等三角形的判定与性质.【解答】解:如图,延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,∵M是BC中点,∴BM=CM,∠BMN=∠CMF,∴△BMN≌△CMF,∴BN=CF,∠N=∠MFC,又∵∠BAD=∠CAD,MF∥AD,∴∠E=∠BAD=∠CAD=∠CFM=∠AFE=∠N,∴AE=AF,BN=BE,∴AB+AC=AB+AF+FC=AB+AE+FC=BE+FC=BN+FC=2FC,∴FC=(AB+AC)=5.5.故答案为5.5.11.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是5.【考点】KD:全等三角形的判定与性质.【解答】解:作∠CAO的平分线AD,交BO的延长线于点D,连接CD,∵AC=BC=5,∴∠CAB=∠CBA=50°,∵∠OAB=10°,∴∠CAD=∠OAD===20°,∵∠DAB=∠OAD+∠OAB=20°+10°=30°,∴∠DAB=30°=∠DBA,∴AD=BD,∠ADB=120°,在△ACD与△BCD中⇒△ACD≌△BCD⇒∠CDA=∠CDB,∴∠CDA=∠CDB===120°,在△ACD与△AOD中⇒△ACD≌△AOD⇒AO=AC,∴AO=5.故答案为5.12.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.【考点】KD:全等三角形的判定与性质.【解答】证明:(1)在边BC上截取BE=AB,连接DE,∵BD为∠ABC的平分线,∴∠ABD=∠DBE,∴△ABD≌△DBE,∴AD=DE,∴∠A=∠BED,∵∠A=100°,∴∠BED=100°,∵∠C=50°,∴∠CDE=50°,∴∠C=∠CDE,∴DE=CE,∵BC=BE+CE,∴BC=BA+AD;(2)如图,以BC为边作等边三角形A'BC,在A'C上截取CD'=BD,∴∠ACA′=∠ABD=20°,∵AB=AC,∴△ABD≌△ACD'(SAS),∴AD=AD',∠BAC=∠CAD′=100°,∴∠AD′C=60°,连接AA′,∴∠D'A'A=∠A'AD'=30°,∴A'D'=AD',∴BC=A'C=A'D'+CD'=AD+BD,即BC=BD+AD.13.如图,已知Rt△ABC中,∠C=90°,D是AB上一点,作DE⊥BC于E,若BE=AC,BD=,DE+BC=1,求:∠ABC的度数.【考点】KD:全等三角形的判定与性质.【解答】解:延长BC到F,使CF=DE,连接AF(如图)∵DE+BC=1,∴BF=BC+CF=BC+DE=1∵BE=AC,∠DEB=∠ACF=90°,DE=CF,∴△BDE≌△AFC(SAS),∵BD=,∴AF=BD=,∠B=∠1,∴AF=BF,∵∠B+∠2=90°,∴∠1+∠2=90°,∴∠ABC=30°.14.如图表示甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.记甲、乙、丙三个三角形的周长依次为l 甲、l 乙、l 丙.已知AB=DE=GH ,试猜想l 甲、l 乙、l 丙的大小关系,并说明理由.【考点】KD :全等三角形的判定与性质;K6:三角形三边关系.【解答】解:猜想l 甲<l 乙<l 丙.(5分)理由:在甲三角形中,作∠ABF′=65°,交AC 的延长线于点F′.在△DEF 和△BAF′中,∵∠D=∠ABF′=65°,DE=BA ,∠E=∠A=55°,∴△DEF ≌△BAF′(ASA ).(3分)∵F′C +F′B >BC ,∴△BAF′的周长大于l 甲.即 l 甲<l 乙.(3分)同理可说明l 乙<l 丙.(3分)∴l 甲<l 乙<l 丙.15.已知等腰直角三角形ABC ,BC 是斜边.∠B 的角平分线交AC 于D ,过C 作CE 与BD 垂直且交BD 延长线于E ,求证:BD=2CE .【考点】KD:全等三角形的判定与性质.【解答】证明:如图,分别延长CE,BA交于一点F.∵BE⊥EC,∴∠FEB=∠CEB=90°,∵BE平分∠ABC,∴∠FBE=∠CBE,又∵BE=BE,∴△BFE≌△BCE (ASA).∴FE=CE.∴CF=2CE.∵AB=AC,∠BAC=90°,∠ABD+∠ADB=90°,∠ADB=∠EDC,∴∠ABD+∠EDC=90°.又∵∠DEC=90°,∠EDC+∠ECD=90°,∴∠FCA=∠DBC=∠ABD.∴△ADB≌△AFC.∴FC=DB,∴BD=2EC.16.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.【考点】KD:全等三角形的判定与性质.【解答】证明:作∠OBF=∠OAE交AD于F,∵∠BAD=∠ABE,∴OA=OB.又∠AOE=∠BOF,∴△AOE≌△BOF(ASA).∴AE=BF.∵AE=BD,∴BF=BD.∴∠BDF=∠BFD.∵∠BDF=∠C+∠OAE,∠BFD=∠BOF+∠OBF,∴∠BOF=∠C.∵∠BOF=∠BAD+∠ABE=2∠BAD,∴∠BAD=∠C,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016专题:《全等三角形证明》
1. 已知:D 是AB 中点,∠ACB=90°,求证:
1
2
CD AB
2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2
3. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE
4. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
A C D
E
F 2
1 D
A
B
5.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
6.已知:AB=CD,∠A=∠D,求证:∠B=∠C
7.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.D
C
B
A
F
E
A
B C
D
8.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.
求证:∠OAB=∠OBA
9.已知:如图,DC∥AB,且DC=AE,E为AB的中点,
(1)求证:△AED≌△EBC.
(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):
10.如图:DF=CE,AD=BC,∠D=∠C。
求证:△AED≌△BFC。
11.如图:在△ABC中,BA=BC,D是AC的中点。
求证:BD⊥AC。
12.AB=AC,DB=DC,F是AD的延长线上的一点。
求证:BF=CF
13.如图:AB=CD,AE=DF,CE=FB。
求证:AF=DE。
14.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.
15.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证:AE=AF。
16.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .
17.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F 。
求证:DE =DF .
18.已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE
.若
D
C
B
A
E
AB = 5 ,求AD 的长?
2016专题:相似三角形
1.如图,D,E是AB边上的三等分点,F,G是AC边上的三等分点,•写出图中的相似三角形,并求出对应的相似比.
2.如图,在直角坐标系中,已知点A(2,0),B(0,4),在坐标轴上找到点C(1,0)•和点D,使△AOB与△DOC相似,求出D点的坐标,并说明理由.
3.已知:如图是一束光线射入室内的平面图,•上檐边缘射入的光线照在距窗户2.5m处,已知窗户AB高为2m,B点距地面高为1.2m,求下檐光线的落地点N•与窗户的距离NC.
4.如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM ∽△ANC.
5.如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明.
6.如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD•
于点E.
(1)求证:△CDE∽△FAE.
(2)当E是AD的中点且BC=2CD时,求证:∠F=∠BCF.。