最新人教A版必修2高中数学 2.4.1.1圆的标准方程教案

合集下载

数学必修Ⅱ人教新课标A版4.1.1圆的标准方程教案

数学必修Ⅱ人教新课标A版4.1.1圆的标准方程教案
4.1.1圆的标准方程
教学目标
1.掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
2.会用待定系数法求圆的标准方程。
教学重点
圆的标准方程
教学难点
会根据不同的已知条件,利用待定系数法求圆的标准方程。
教学过程
(一)情境设置:
在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?
方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。
(三)知识应用与解题研究
例1.(课本例1)写出圆心为 ,半径长等于5的圆的方程,并判断点 是否在这个圆上。
分析探求:可以从计算点到圆心的距离入手。
探究:点 与圆 的关系的判断方法:
(1) > ,点在圆外
(2) = ,点在圆上
师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小.圆心为 的圆经过点 和 ,由于圆心 与A,B两点的距离相等,所以圆心 在线段AB的垂直平分线m上,又圆心 在直线 上,因此圆心 是直线 与直线m的交点,半径长等于 或 。
解:
总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:
1.题设条件,列出关于 的方程组,解方程组得到 的值,写出圆的标准方程.
2.确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.
(四)课堂练习(课本P120练习1,2,3,4)
(五)小结:
1.圆的标准方程。
2.点与圆的位置关系的判断方法。
3.根据已知条件求圆的标准方程的方法。

高一数学人教A版必修2教案4.1.1 圆的标准方程

高一数学人教A版必修2教案4.1.1 圆的标准方程
讨论结果:①根据两点之间的距离公式 ,得
,
.
②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).
③圆心是定点,圆周上的点是动点,它们到圆心距离等于定长,圆心和半径分别确定了圆的位置和大小.
④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了.
.理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义观点,欣赏和体验圆的对称性,感受数学美.
教学重、
难点
教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.
教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.
应用示例
例写出下列各圆的标准方程:
()圆心在原点,半径是;
⑵圆心在点(),半径是;
()经过点(),圆心在点();
()圆心在点(),并且和直线相切.
解:()由于圆心在原点,半径是,所以圆的标准方程为()(),即.
()由于圆心在点(),半径是,所以圆的标准方程是()()(),即()().
()方法一:圆的半径 ,因此所求圆的标准方程为()().
它们的坐标都满足方程()(),于是
解此方程组得 所以△的外接圆的方程为()().
解法二:线段的中点坐标为(),斜率为,所以线段的垂直平分线的方程为 ().①
同理线段的中点坐标为(),斜率为,所以线段的垂直平分线的方程为().②
解由①②组成的方程组得,所以圆心坐标为(),半径 ,所以△的外接圆的方程为()().
②确定圆的方程主要方法是待定系数法,即列出关于、、的方程组,求、、或直接求出圆心()和半径,一般步骤为:

高中数学人教A版必修2《4.1.1圆的标准方程》教案1

高中数学人教A版必修2《4.1.1圆的标准方程》教案1

必修二4.1.1圆的标准方程●三维目标1.知识与技能(1)掌握圆的标准方程.(2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程.(3)会判断点与圆的位置关系.2.过程与方法(1)进一步培养学生用代数方法研究几何问题的能力.(2)加深对数形结合思想的理解和加强待定系数法的运用.(3)增强学生用数学的意识.3.情感、态度与价值观(1)培养学生主动探究知识、合作交流的意识.(2)在体验数学美的过程中激发学生的学习兴趣.●重点难点重点:圆的标准方程及点与圆的位置关系.难点:会根据不同的已知条件求圆的标准方程.重难点突破:以圆的定义为切入点,结合坐标法,让学生导出圆的标准方程,考虑到不同条件下求圆的标准方程的难度,教学时,可借助具体实例,通过让学生“看一看、想一想、练一练”等方式熟悉圆心、半径与圆的标准方程之间的关系,逐步理解圆的标准方程中三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时化解难点.【课前自主导学】课标解读1.会用定义推导圆的标准方程并掌握圆的标准方程的特征.(重点)2.能根据所给条件求圆的标准方程.(重点、难点)3.掌握点与圆的位置关系.(易错点)圆的标准方程1.在平面内,圆是如何定义的?【提示】在平面内,到定点的距离等于定长的点的集合.2.在平面直角坐标系中,如图所示,以(1,2)为圆心以2为半径的圆能否用方程(x-1)2+(y-2)2=4来表示?【提示】能.圆的标准方程(1)以C(a,b)为圆心,r(r>0)为半径的圆的标准方程为(x-a)2+(y-b)2=r2.(2)以原点为圆心,r为半径的圆的标准方程为x2+y2=r2.点与圆的位置关系【问题导思】点A(1,1),B(3,0),C(2,2)同圆x2+y2=4的关系如图所示,则|OA|,|OB|,|OC|同圆的半径r=2什么关系?【提示】|OA|<2,|OB|>2,|OC|=2.点与圆的位置关系设点P到圆心的距离为d,圆的半径为r,则点与圆的位置关系对应如下:位置关系点在圆外点在圆上点在圆内d与r的大小关系d>r d=r d<r【课堂互动探究】直接法求圆的标准方程求满足下列条件的圆的标准方程.(1)圆心为点A(-2,3),半径为2;(2)经过点A(5,1),圆心为点C(8,-3).【思路探究】只要有确定的圆心与半径,就可以写出圆的标准方程.【自主解答】(1)圆的标准方程为:(x+2)2+(y-3)2=2.(2)法一圆的半径为|AC|=5-82+1+32=5,圆心为(8,-3).∴圆的标准方程为(x-8)2+(y+3)2=25.法二设圆的方程为(x-8)2+(y+3)2=r2,∵点A(5,1)在圆上,∴(5-8)2+(1+3)2=r2,∴r2=25,∴圆的标准方程为(x-8)2+(y+3)2=25.直接法求圆的标准方程时,一般先从确定圆的两个要素入手,即首先求出圆心坐标和半径,然后直接写出圆的标准方程.(2013·咸阳高一检测)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1【解析】设圆心坐标为(0,b),则由题意知0-12+b -22=1,解得b =2,故圆的方程为x 2+(y -2)2=1.【答案】 A点与圆的位置关系 已知一个圆的圆心在点C (-3,-4),且经过原点.(1)求该圆的标准方程;(2)判断点P 1(-1,0),P 2(1,-1),P 3(3,-4)和圆的位置关系.【思路探究】 直接法求圆的标准方程――→分析点与圆心的距离同半径的关系―→下结论 【自主解答】 (1)∵圆心是C (-3,-4),且经过原点, ∴圆的半径r =-3-02+-4-02=5,∴圆的标准方程为(x +3)2+(y +4)2=25.(2)∵-1+32+0+42=4+16=25<5,∴P 1(-1,0)在圆内;∵1+32+-1+42=5,∴P 2(1,-1)在圆上; ∵3+32+-4+42=6>5,∴P 3(3,-4)在圆外.判断点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系有几何法和代数法两种:(1)对于几何法,主要是利用点与圆心的距离d与半径r的大小关系作出判断:①d>r,点在圆外;②d=r,点在圆上;③d<r,点在圆内.(2)对于代数法,主要把点的坐标代入圆的标准方程,具体判断如下:①当(x0-a)2+(y0-b)2<r2时,点在圆内;②当(x0-a)2+(y0-b)2=r2时,点在圆上;③当(x0-a)2+(y0-b)2>r2时,点在圆外.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是()A.a<-1或a>1B.-1<a<1C.0<a<1 D.a=±1【解析】由题意可知,(1-a)2+(1+a)2<4,解得a2<1,解得-1<a<1.【答案】 B待定系数法或几何法求圆的标准方程 求过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程.【思路探究】 思路一:设圆的标准方程(x -a )2+(y -b )2=r 2,利用A ,B 及圆心所在位置求参数a ,b ,r .思路二:设圆的圆心坐标C (a,2-a ),利用|AC |=|BC |求a 及圆的半径.思路三:利用圆的几何性质:弦AB 的中垂线与直线x +y -2=0的交点必为圆心,求圆的标准方程.【自主解答】 法一 设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由已知条件知⎩⎨⎧1-a2+-1-b 2=r 2,-1-a 2+1-b2=r 2,a +b -2=0,解此方程组,得⎩⎨⎧a =1,b =1,r 2=4.故所求圆的标准方程为(x -1)2+(y -1)2=4.法二 设点C 为圆心,∵点C 在直线x +y -2=0上,∴可设点C 的坐标为(a,2-a ). 又∵该圆经过A ,B 两点,∴|CA |=|CB |. ∴a -12+2-a +12=a +12+2-a -12,解得a =1.∴圆心坐标为C (1,1),半径长r =|CA |=2.故所求圆的标准方程为(x -1)2+(y -1)2=4. 法三 由已知可得线段AB 的中点坐标为(0,0),k AB =1--1-1-1=-1,∴弦AB 的垂直平分线的斜率为k =1,∴AB 的垂直平分线的方程为y -0=1·(x -0), 即y =x .则圆心是直线y =x 与x +y -2=0的交点,由⎩⎨⎧ y =x ,x +y -2=0,得⎩⎨⎧x =1,y =1,即圆心为(1,1), 圆的半径为1-12+[1--1]2=2,故所求圆的标准方程为(x -1)2+(y -1)2=4.1.给定条件,求圆的标准方程时,一般有两种方法: (1)用待定系数法,其一般步骤如下:①根据题意,设出所求圆的标准方程(x -a )2+(y -b )2=r 2; ②根据已知条件,建立关于a ,b ,r 的方程组; ③解方程组,求出a ,b ,r 的值;④将a ,b ,r 的值代入所设的方程,即为所求圆的方程.这种方法体现了方程的思想,思路直接,是通用方法,如本题法一、法二.(2)由圆的几何性质直接求出圆心坐标和半径,然后代入标准式写方程.这种方法要充分利用圆的几何性质,但计算相对较容易.如本题法三.2.求圆的标准方程,关键是确定圆心坐标和半径,为此常用到圆的以下几何性质: (1)弦的垂直平分线必过圆心.(2)圆内的任意两条弦的垂直平分线的交点一定是圆心. (3)圆心与切点的连线长是半径长. (4)圆心与切点的连线必与切线垂直.把本例条件“圆心在直线x+y-2=0上”换成“圆心在x轴上”,求相应问题.【解】∵圆心在x轴上,∴设圆心坐标为(a,0),由题意可知(a-1)2+1=(a+1)2+1,解得a=0,∴圆的半径r=1+1=2,故所求圆的标准方程为x2+y2=2.【易错易误辨析】求圆的标准方程时以“形”代“数”致误已知某圆圆心在x轴上,半径为5,且截y轴所得线段长为8,求该圆的标准方程.【错解】如图,由题设知|AB|=8,|AC|=5.在Rt△AOC中,|OC|=|AC|2-|OA|2=52-42=3.∴C点坐标(3,0),∴所求圆的方程为(x-3)2+y2=25.【错因分析】上述求解的错误在于以“形”代“数”只画出了圆心在x轴正半轴的情况,没有画出圆心在x轴负半轴的情况而产生漏解.【防范措施】借助图形解决数学问题,只能是定性地分析,而不能定量研究,要定量研究问题,就应考虑到几何图形的各种情况,本题出错就是由于考虑问题不全面所致.【正解】由题意设|AC|=r=5,|AB|=8,所以|AO|=4.在Rt△AOC中,|OC|=|AC|2-|AO|2=52-42=3,如图所示.∴圆心坐标为(3,0)或(-3,0).∴所求圆的方程为(x±3)2+y2=25.【课堂小结】1.确定圆的方程主要方法是待定系数法,即列出关于a,b,r的方程组求a,b,r或直接求出圆心(a,b)和半径r.另依据题意适时的运用圆的几何性质解题可以化繁为简,提高解题效率.2.讨论点与圆的位置关系可以从代数特征(点的坐标是否满足圆的方程)或几何特征(点到圆心的距离与半径的关系)去考虑,其中利用几何特征较为直观、简捷.【当堂达标检测】1.圆C:(x-2)2+(y+1)2=3的圆心坐标是()A.(2,1)B.(2,-1)C.(-2,1) D.(-2,-1)【解析】结合圆的标准形式可知,圆C的圆心坐标为(2,-1).【答案】 B2.以原点为圆心,2为半径的圆的标准方程是()A.x2+y2=2 B.x2+y2=4C.(x-2)2+(y-2)2=8 D.x2+y2= 2【解析】以原点为圆心,2为半径的圆,其标准方程为x2+y2=4.【答案】 B3.圆心为(1,1)且与直线x+y=4相切的圆的方程是()A.(x-1)2+(y-1)2=2 B.(x-1)2+(y-1)2=4C.(x+1)2+(y+1)2=2 D.(x+1)2+(y+1)2=4【解析】由题意知,圆心到直线的距离即为圆的半径,即r=|1+1-4|12+12=2,故所求圆的方程为(x-1)2+(y-1)2=2.【答案】 A4.已知两点P (-5,6)和Q (5,-4),求以P ,Q 为直径端点的圆的标准方程,并判断点A (2,2),B (1,8),C (6,5)是在圆上,在圆内,还是在圆外.【解】 由已知条件及圆的性质可知,圆心M 在直径PQ 的中点处,∴圆心M 的坐标为(0,1), 半径r =12|PQ |=12×-5-52+6+42=5 2.∴圆的标准方程为x 2+(y -1)2=50.∵|AM |=2-02+2-12=5<r ,∴点A 在圆内. ∵|BM |=1-02+8-12=50=r ,∴点B 在圆上. ∵|CM |=6-02+5-12=52>r ,∴点C 在圆外.【课后知能检测】 一、选择题1.(2014·温州高一检测)点P (-2,-2)和圆x 2+y 2=4的位置关系是( ) A .在圆上 B .在圆外 C .在圆内 D .以上都不对【解析】 将点P 的坐标代入圆的方程的等号的左边,有(-2)2+(-2)2=8>4,故点P 在圆外. 【答案】 B2.圆心为(1,-2),半径为3的圆的方程是( ) A .(x +1)2+(y -2)2=9 B .(x -1)2+(y +2)2=3 C .(x +1)2+(y -2)2=3 D .(x -1)2+(y +2)2=9【解析】 由题意可知,圆的方程为(x -1)2+(y +2)2=9,故选D. 【答案】 D3.圆心为(0,4),且过点(3,0)的圆的方程为( ) A .x 2+(y -4)2=25 B .x 2+(y +4)2=25 C .(x -4)2+y 2=25 D .(x +4)2+y 2=25 【解析】 由题意,圆的半径r =0-32+4-02=5,则圆的方程为x 2+(y -4)2=25.【答案】 A4.已知点A (3,-2),B (-5,4),则以线段AB 为直径的圆的方程是( ) A .(x -1)2+(y +1)2=25 B .(x +1)2+(y -1)2=25 C .(x -1)2+(y +1)2=100 D .(x +1)2+(y -1)2=100 【解析】 圆心为AB 的中点(-1,1),半径为12|AB |=123+52+-2-42=5,∴圆的方程为(x +1)2+(y -1)2=25.【答案】 B5.已知一圆的圆心为点A (2,-3),一条直径的端点分别在x 轴和y 轴上,则圆的方程是( )A .(x +2)2+(y -3)2=13B .(x -2)2+(y +3)2=13C .(x -2)2+(y +3)2=52D .(x +2)2+(y -3)2=52 【解析】 如图,结合圆的性质可知,圆的半径r =2-02+-3-02=13.故所求圆的方程为(x -2)2+(y +3)2=13. 【答案】 B 二、填空题6.与圆(x -2)2+(y +3)2=16同心且过点P (-1,1)的圆的方程是________.【解析】 圆(x -2)2+(y +3)2=16的圆心为(2,-3),设圆的方程为(x -2)2+(y +3)2=r 2,由点P (-1,1)在圆上可知(-1-2)2+(1+3)2=r 2,解得r 2=25.故所求圆的方程为(x -2)2+(y +3)2=25. 【答案】 (x -2)2+(y +3)2=257.点P (1,-1)在圆x 2+y 2=r 的外部,则实数r 的取值范围是________. 【解析】 由题意得12+(-1)2>r ,即r <2,又r >0,故r 的取值范围是(0,2). 【答案】 (0,2)8.(2014·苏州高一检测)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________.【解析】 设圆心坐标为(a,0),易知a -52+-12= a -12+-32,解得a =2.所以圆心为(2,0),半径长为10,所以圆C 的方程为(x -2)2+y 2=10.【答案】 (x -2)2+y 2=10 三、解答题9.求以直线2x +y -4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程. 【解】 令x =0得y =4,令y =0得x =2,所以直线与两坐标轴交点坐标为A (0,4)和B (2,0),|AB |=0-22+4-02=20,以A 为圆心过B 的圆方程为x 2+(y -4)2=20,以B 为圆心过A 的圆方程为(x -2)2+y 2=20. 10.已知点A (1,2)和圆C :(x -a )2+(y +a )2=2a 2,试分别求满足下列条件的实数a 的取值范围: (1)点A 在圆的内部; (2)点A 在圆上; (3)点A 在圆的外部.【解】 (1)∵点A 在圆内部,∴(1-a )2+(2+a )2<2a 2,即2a +5<0,解得a <-52. 故a的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a <-52. (2)将点A (1,2)坐标代入圆的方程,得(1-a )2+(2+a )2=2a 2,解得a =-52,故a 的值为-52.(3)∵点A 在圆的外部,∴(1-a )2+(2+a )2>2a 2,即2a +5>0,解得a >-52. 故a的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a >-52. 11.平面直角坐标系中有A (0,1),B (2,1),C (3,4),D (-1,2)四点,这四点能否在同一个圆上?为什么?【解】 能.设过A (0,1),B (2,1),C (3,4)的圆的方程为(x -a )2+(y -b )2=r 2.将A ,B ,C 三点的坐标分别代入得⎩⎨⎧a 2+1-b2=r 2,2-a 2+1-b 2=r 2,3-a2+4-b2=r 2,解得⎩⎨⎧a =1,b =3,r = 5.∴圆的方程为(x -1)2+(y -3)2=5.将D (-1,2)的坐标代入上式圆的方程左边,(-1-1)2+(2-3)2=4+1=5, 即D 点坐标适合此圆的方程.故A ,B ,C ,D 四点在同一圆上.。

人教版高中数学必修2-4.1《圆的标准方程》教学设计

人教版高中数学必修2-4.1《圆的标准方程》教学设计

4.1圆的方程4.1.1圆的标准方程(熊用兵)一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径r 圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等.(2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一。

最新人教A版必修2高中数学 4.1.1 圆的标准方程教案

最新人教A版必修2高中数学 4.1.1 圆的标准方程教案

第四章圆的方程4.1 圆的方程【高考要求】①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④了解用代数方法处理几何问题的思想.【教学目标】1、回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程和一般方程2、掌握圆的标准方程和一般方程3、圆的方程的应用【教学重点】1、掌握圆的标准方程和一般方程2、圆的方程的应用4.1.1圆的标准方程(第1课时)【课前导学】阅读教材第118页,完成下列学习Array一、复习圆的静态定义:___________________________________二、圆的标准方程1、建立圆的标准方程的步骤:建系设点;写点集;列方程;化简方程2、圆的标准方程:圆的两个要素分别为______和______,当两个要素确定后,圆就唯一确定了.在平面直角坐标系中,圆心C 的位置用坐标(,)a b 表示,半径r 的大小等于圆上任意点(,)M x y 与圆心(,)C a b 的距离,圆心为A 的圆就是集合{}P M MC r ==由两点间的距离公式,点M 的坐标适合的条件可以表示为____________________ ①①式两边平方,得____________________ ⑴若点(,)M x y 在圆上,有上述讨论可知,点M 的坐标适合方程⑴;反之,若点(,)M x y 的坐标适合方程⑴,这就说明点M 与圆心C 的距离为r ,即点M 在圆心为C 的圆上.我们把方程________________________称为圆心为圆心为),(b a C ,半径长为r 的圆的方程,把它叫做圆的标准方程若圆心在坐标原点上,这时0==b a ,则圆的方程就是___________________3、圆的标准方程的两个基本要素:_________________圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要r b a ,,三个量确定了且r >0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件确定r b a ,,,可以根据条件,利用待定系数法来解决.【预习自测】1、写出下列圆的标准方程(1)圆心在)4,3(-C ,半径长是5(2)圆心在)3,8(-C ,且经过点)1,5(M2、点P (5a+1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( )A |a |<1 Ba <131 C |a |<51 D |a |<131 3、圆22420x y x y +-+=的圆心和半径分别是( )A (2,-1),,-1), 5 C (-2,1),,1), 5【典型例题】例 1. △ABC 的三个顶点的坐标分别是()()(5,1),7,3,2,8A B C --,求它的外接圆的方程△ABO 的三个顶点的坐标分别是(0,0),(0,15),(8,0)O A B -,求它的内切圆的方程例2. 已知圆心为C 的圆经过点)1,1(A 和)2,2(B ,且圆心C 在直线01:=+-y x l 上,求圆心为C 的圆的标准方程。

人教A版高中数学必修2《圆的标准方程》教案

人教A版高中数学必修2《圆的标准方程》教案

【教案设计】课题:《圆的标准方程》教材:普通高中课程标准试验教科书人教A版数学必修2 §4.1.1一、教学目标:(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据不同条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.二、教学重点、难点(1)重点: 圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.三、教学方法与手段1.教学方法采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入.2.教学手段多媒体课件进行辅助教学.四、教学过程整个教学过程是由八个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,根据半圆的对称性建立平面直角坐标系,构建数学模型.把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程求D点的纵坐标来解决.同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.【设计意图】用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心为(,)a b ,半径为时圆的方程又如何呢?这一环节我首先让学生对问题一进行归纳,由勾股定理得到圆心在原点、半径为4的圆的标准方程2224x y +=后,引导学生归纳出圆心在原点、半径为r 的圆的标准方程222x y r +=.然后再让学生对圆心不在原点的情况进行探究.我预设了三种种方法等待着学生的探究结果,分别是:坐标法、勾股定理法、图形变换法.坐标法:引导学生根据圆的定义,圆上的点到圆心的距离等于常数,即两点距离公式推导圆心不在原点的标准方程.推导过程: 圆是这样一些点的集合P={M|︱MC ︱=r }已知圆心C(,)a b 半径r根据两点间的距离公式,圆上任意一点M 的坐标(x, y )r =化简,得到圆的标准方程 ()()222x a y b r -+-=图形变换法:借助多媒体的演示,让学生体会平移的过程,让学生了解利用图像平移的知识也可推导圆心不在坐标原点的标准方程.得出圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节..(三)应用举例——巩固提高I .直接应用 内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点P(5,1),圆心在点C(8,3).2.写出圆22(2)36x y ++=的圆心坐标和半径.我设计了两个比较简单的小问题,可以安排学生口答完成.【设计意图】目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为形成待定系数法求圆的标准方程打下基础,并为后续探究圆的切线问题作准备.II .灵活应用 提升能力问题四 求过原点O 和点P(1,1),且圆心在直线l:2310x y ++=上的圆的标准方程.设计这一题难度明显增大,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆. 教学中应该突出对问题的分析过程,在分析过程中,要强调图形在分析问题中的辅助作用,引导学生根据题意画出图形.根据确定圆的要素-----圆心位置和半径长,借助图形,结合题设条件可以发现关键是找出圆心位置.圆心位置一旦确定,就可以利用距离公式确定半径大小,从而求出圆的标准方程.让学生自主探究出圆心位置,最后可得出:直线l 与线段OP 垂直平分线l '的交点即为圆心位置.解题过程:∵O (0,0),P (1,1)∴线段OP 的中点的坐标为11,22⎛⎫ ⎪⎝⎭直线OP 的斜率10110op k -==- 因此线段OP 的垂直平分线 l ′的方程是111022y x x y ⎛⎫-=--+-= ⎪⎝⎭即 102310x y x y +-=++= 的解 圆心C 的坐标是方程组43x y ==- 所以圆心C 的坐标是(4,3)-解此方程组,得圆C的半径 5r OC === 所求圆的标准方程是()()224325x y -++=【设计意图】有利于培养学生逻辑思维能力和加深对数形结合思想的理解,提高分析问题、解决问题的能力,养成良好的解题习惯,并且对数学思维的严谨性具有良好的效果.再一次为学生的发散思维创设了空间,又一次模拟了真理发现的过程,使探究气氛达到高潮. III .实际应用 回归自然问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m ,拱高OP=4m ,在建造时每隔4m需用一个支柱支撑,求支柱22A P 的长度(精确到0.01m ).由于圆拱是圆的一段弧,引导学生根据对称性建立直角坐标系,构建数学模型,再应用待定系数法求出圆的三个参数a 、b 、r ,继而确定圆的方程,从而求出点2P 的纵坐标.要想求出22A P 的长度,还要求出O 点的纵坐标.这样问题就会迎刃而解.但为使求解过程简单,圆心最好设在坐标原点.解题过程: 由题意建立直角坐标系,设圆心C 在坐标原点,如图所示设圆的半径为r 即CA=r 由已知得AO=10,CO=r-OP=r-4222Rt CA =CO +AO CAO ∆在中,()2222941014.52r r r =-+==即 解得222C 14.5y +=圆的方程x2P 点的横坐标为-2,代入圆C 方程可得2P 点纵坐标为14.36∵CO=14.5-4=10.5 即2A 点的纵坐标为10.5∴ 22A P =14.36-10.5=3.86 所以,支柱22A P 的长度大约为3.86米.【设计意图】问题五同时与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生数学建模的习惯和用数学的意识.在教学中,我力求从生活走进数学,使数学回归生活.(四)反馈训练——形成方法问题六 求以点C(1 ,3)为圆心,并且和直线3470x y --=相切的圆的标准方程.【设计意图】接下来是第四环节——反馈训练.这一环节中,我设计一个小题作为巩固性训练,给学生一块“用武”之地,一个展示自己的舞台.让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.(五)小结反思——拓展引申1.课堂小结问题七 通过本节的学习,你学到了哪些内容?最大的体验是什么?掌握了哪些学习数学的方法?【设计意图】为了发挥学生的主体作用,通过三个小问题让学生从知识、方法、体验三方面,自己对圆的标准方程的形式加以小结,提炼数形结合的思想和待定系数的方法.2.分层作业(A )巩固型作业:教材P120:练习1.(B )思维拓展型作业:已知圆的方程为2225x y +=,求过圆上一点A(4,-3)的切线方程.3.激发新疑问题八 1.把圆的标准方程展开后是什么形式?2.方程2268200x y x y +-++=表示什么图形?【设计意图】在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.(六)板书设计【设计意图】 遵循简洁、明显,突出重点的设计意图,板书演示如下:五、教学反思在教学中尝试采用创设问题情景,以问题驱动、层层铺垫,帮助学生实现从被动接受知识变为主动获取知识;同时也试图改进学生的学习方式,以小组合作的方式展开,在合作中相互配合.灵活融合引导启发、数形结合、激励评价、多媒体辅助等教学方式,更好地实现教学目标.这堂课展示了一个完整的数学探究过程,提出问题、自主探究,让学生经历了知识再发现的过程,促进了个性化学习.在教学过程中,不失时机的进行数学文化渗透,除了能激发学生的学习兴趣、增强学习信心外,更是体现出了数学探索原貌,让学生看到数学探索的艰难和有趣,更客观的认识圆及现实意义,这对接受和理解圆的方程大有裨益!【教案说明】(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心坐标、半径与圆的标准方程之间的关系,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,为此我首先用一道题目简洁、贴近生活的实例进行引入,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我在问题一中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,分层次探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神.本节是一个“动眼观察,动脑思考,动手做题,共同提高”的动态生成过程.对生成性课堂的突出事件,因势利导,随机应变,适当调整教学环节;同时,教学反应性评价与反馈性评价相结合,促进学生的自我评价,勇于贯彻“成功教育,一贯教育”的理念,把握评价时机、评价主体和形式的多样化,从而结合课堂气氛,使课堂教学达到最佳状态.。

高中数学人教A版必修2教案-【教学设计】+圆的标准方程_数学_高中

高中数学人教A版必修2教案-【教学设计】+圆的标准方程_数学_高中

4.1.1圆的标准方程【学习目标】(1)会推导圆的标准方程,掌握圆的标准方程;(2)能根据圆心坐标、半径熟练地写出圆的标准方程;【学习重点】圆的标准方程的推导过程和圆标准方程特征的理解与掌握。

【学习难点】由已知条件求圆的标准方程;判定点和圆的位置关系【知识链接】1.初中圆的定:。

2.在平面直角坐标系中,确定一条直线,和也确定一条直线。

【学习过程】探究一:圆的标准方程思考1:圆可以看成是平面上的一条曲线,在平面几何中,根据初中学习的圆的定义,如何用集合语言描述以点A为圆心,r为半径的圆?思考2:确定一个圆最基本的要素是什么?思考3:设圆心坐标为A(a,b),圆半径为r,M(x,y)为圆上任意一点,根据圆的定义,圆心为A的圆的集合表示:P = { M | |MA| = r },那么点M的坐标x,y应满足什么关系?。

思考4:对于以点A(a,b)为圆心,r为半径的圆,由上可知,若点M(x,y)在圆上,则点M 的坐标满足方程(x-a)2+(y-b)2=r2;反之,若点M(x,y)的坐标适合方程(x-a)2+(y-b)2=r2,那么点M一定在这个圆上吗?新知圆的标准方程:。

思考5:那么确定圆的标准方程需要几个独立条件?思考6:以原点为圆心,1为半径的圆称为单位圆,那么单位圆的方程是什么?例题一:1、圆心为 A(2,-3),半径长等于5的圆的方程为()A (x – 2 )2+(y – 3 )2=25B (x – 2 )2+(y + 3 )2=25C (x – 2 )2+(y + 3 )2=5D (x + 2 )2+(y – 3 )2=52、圆 (x-2)2+ y2=2的圆心C的坐标及半径r分别为()A C(2,0) r = 2B C(– 2,0) r = 2C C(0,2) r =2D C(2,0) r = 23、已知M(5,-7)和圆 (x – 2 )2+(y + 3 )2=25 ,则点M在()A 圆内B 圆上C 圆外D 无法确定探究二:点与圆的位置关系思考7:在平面几何中,初中学过点与圆有哪几种位置关系? 如何确定的思考8:在初中平面几何中,如何确定点与圆的位置关系?思考9:在直角坐标系中,已知点M(x 0,y 0)和圆C :222()()x a y b r -+-=,如何判断点M 在圆外、圆上、圆内?思考题:集合{(x ,y)|(x-a)2+(y-b)2≤r 2}表示的图形是什么?探究三:圆的标准方程的应用例1 已知圆心为C 的圆经过点A (1, 1)和B (2, -2),且圆心C 在直线上l :x -y +1=0,求圆心为C 的圆的标准方程.思考10:求圆的标准方程方法有哪些?变式: 的三个顶点的坐标分别A(5,1)、B(7,-3)、C(2,-8),求它的外接圆的方程. ABC ∆。

高中数学 4.1.1圆的标准方程教案 新人教A版必修2

高中数学 4.1.1圆的标准方程教案 新人教A版必修2

4.1.1 圆的标准方程一、教学目标1、目标:(1)学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径;(2)会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力;(3)理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.2、解析:由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.二、预习导引1、圆的定义平面内到的距离等于()的点的集合(轨迹)是圆,定点是(),定常是()。

2、圆的标准方程圆心为C(a,b),半径为r 的圆的标准方程是()三、问题引领,知识探究问题一:我们知道直线可以用方程表示,那么,圆可以用方程表示吗?如果能圆的方程怎样来求呢?.问题2:具有什么性质的点的轨迹称为圆?问题3:图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1问题4:我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?问题5:如果已知圆心坐标为C(a ,b ),圆的半径为r ,我们如何写出圆的方程?问题6:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?问题7:根据圆的标准方程说明确定圆的方程的条件是什么?问题8:确定圆的方程的方法和步骤是什么?问题9:坐标平面内的点与圆有什么位置关系?如何判断?师生活动:学生思考,回答。

新人教版必修二高中数学4.1.1圆的标准方程教案

新人教版必修二高中数学4.1.1圆的标准方程教案

4.1.1 圆的标准方程大家好!我今天说课的题目是《圆的标准方程》,选自人教版高中数学必修二4.1.1. 下面我将以教什么、怎么教、为什么这样教为思路从说教材、说学法、说教法、教学过程设计、板书设计、教学反思六方面来阐述我对本节课的认识和理解。

一、说教材(一)本节课在教材中的地位和作用圆的标准方程是本章的重点内容。

它是在学生学习了直线与直线方程之后,安排的一节继续深入学习的内容,进一步运用坐标法解决二次曲线问题,为后面学习直线与圆的位置关系、椭圆、双曲线、抛物线等提供了基本模式和理论基础,起着承前启后的重要作用。

大纲明确提出掌握确定圆的几何要素,掌握圆的标准方程,初步了解用代数方法处理几何问题的思想。

高考它多数作为容易题出现,或在解答题中作为中间步骤出现。

所以,本节课非常重要,需要学生熟练地掌握。

根据高一教材结构和新课程标准,我确定本节课的教学目标如下:(二)教学目标知识与技能(1)掌握圆的标准方程及其推导过程;(2)掌握点与圆的位置关系的判定方法;(3)会根据已知条件写出圆的标准方程;过程与方法(1)体会数形结合思想,初步形成代数方法处理几何问题能力;(2)加强对待定系数法的运用,培养学生自主探究的能力;情感态度与价值观(1) 培养学生积极思考、自主构建知识体系的学习态度;(2) 让学生感受数学的现实美、抽象美,体会圆的标准方程形成过程的严谨美.(三)教学重难点教学重点:圆的标准方程及其运用;教学难点: ①会根据不同的已知条件求圆的方程;解决方法:我将充分利用课本提供的两个例题,通过例题的解决使学生初步熟悉圆的标准方程的用途和用法,突出重点,突破难点。

二、说学法(一)学情分析1、学生特点本节课将在华侨中学高一一个平行班讲授,该班学生基础知识较好,接受能力强,求知欲强,这为本节课圆的标准方程的探索提供了情感保障。

2、知识能力基础学生在上一章已经学习了直线与直线的方程, 对方程有了初步了解,能接受用坐标、方程知识来刻画直线、圆等图形,具备一定的观察分析、解决问题能力,圆基于初中的知识,又是初中知识的加深,这为探究圆的标准方程提供了一定的认知基础。

2019-2020年高中数学4.1.1圆的标准方程教学设计新人教A版必修2

2019-2020年高中数学4.1.1圆的标准方程教学设计新人教A版必修2

2019-2020年高中数学4.1.1圆的标准方程教学设计新人教A版必修2一、教材分析本节内容是人教版A版数学必修2第四章第一节。

是前面学习了直线方程、两条直线的位置关系的基础上,让学生学会在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。

圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.二、学情分析圆的方程是学生在初中学习了圆的概念和基本性质以及直线方程后进行研究的。

但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。

另外学生在探究问题的能力,合作交流的意识等方面有待加强。

三、教法分析本节通过师生之间的相互探讨和交流进行教学,即以启发式教学法为主,以讲练结合法、谈话法等展开教学。

为了充分调动学生学习的积极性,采用“问题-探究”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。

在探究过程中,教师着眼于“导”,采用问题驱动的形式,激发学生的求知欲望;学生着眼与“探”,通过探究发现规律,发展探索能力和创造能力。

四、学法分析通过由直线方程的推导类比到圆的标准方程的推导,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法和几何法求解的过程。

根据上述分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:五、教学目标(1) 知识与技能:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。

(2) 过程与方法:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③培养学生自主探究的能力。

新人教A版必修2高中数学学案教案: §4.1.1 圆的标准方程

新人教A版必修2高中数学学案教案: §4.1.1 圆的标准方程

"数学§4.1.1 圆的标准方程教案新人教A版必修2 "本章教材分析上一章,学生已经学习了直线与方程,知道在直角坐标系中,直线可以用方程表示,通过方程,可以研究直线间的位置关系、直线与直线的交点坐标、点到直线的距离等问题,对数形结合的思想方法有了初步体验.本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究点与圆、直线与圆、圆与圆的位置关系,了解空间直角坐标系,以便为今后的坐标法研究空间的几何对象奠定基础,这些知识是进一步学习圆锥曲线方程、导数和微积分的基础,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力.通过方程,研究直线与圆、圆与圆的位置关系是本章的重点内容之一,坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法,通过坐标系把点和坐标、曲线和方程联系起来,实现了形和数的统一,因此在教学过程中,要始终贯穿坐标法这一重要思想,不怕反复.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后把运算结果“翻译”成相应的几何结论.这就是坐标法解决几何问题的三步曲.坐标法还可以与平面几何中的综合方法、向量方法建立联系,同时可以推广到空间,解决立体几何问题.本章教学时间约需9课时,具体分配如下(仅供参考):4.1.1 圆的标准方程1课时4.1.2 圆的一般方程1课时4.2.1 直线与圆的位置关系2课时4.2.2 圆与圆的位置关系2课时4.3.1 空间直角坐标系1课时4.3.2 空间两点间的距离公式1课时本章复习1课时§4.1 圆的方程§4.1.1 圆的标准方程一、教材分析在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.二、教学目标1.知识与技能(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程.(2)会用待定系数法求圆的标准方程.2.过程与方法进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题发现问题和解决问题的能力.3.情感态度与价值观通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.三、教学重点与难点教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.四、课时安排1课时五、教学设计(一)导入新课思路1.课前准备:(用淀粉在一张白纸上画上海和山)说明:在白纸上要表演的是一个小魔术,名称是《日出》,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).然后上升到数学层次:不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.(二)推进新课、新知探究、提出问题①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?②具有什么性质的点的轨迹称为圆?③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:①根据两点之间的距离公式221221)()(y y x x -+-,得 |AB|=212)59()62(22=++-, |CD|=22)8()3(++-y x .②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).③圆心C 是定点,圆周上的点M 是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了. ⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a 、b 、r 都是常数,r >0).设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件22)()(b y a x -+-=r.①将上式两边平方得(x-a)2+(y-b)2=r 2.化简可得(x-a)2+(y-b)2=r 2.②若点M(x,y)在圆上,由上述讨论可知,点M 的坐标满足方程②,反之若点M 的坐标满足方程②,这就说明点M 与圆心C 的距离为r,即点M 在圆心为C 的圆上.方程②就是圆心为C(a,b),半径长为r 的圆的方程,我们把它叫做圆的标准方程.⑥这是二元二次方程,展开后没有xy 项,括号内变数x,y 的系数都是1.点(a,b)、r 分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x 2+y 2=r 2.提出问题①根据圆的标准方程说明确定圆的方程的条件是什么?②确定圆的方程的方法和步骤是什么?③坐标平面内的点与圆有什么位置关系?如何判断?讨论结果:①圆的标准方程(x -a)2+(y -b)2=r 2中,有三个参数a 、b 、r,只要求出a 、b 、r 且r >0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.②确定圆的方程主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x -a)2+(y -b)2=r 2;2°根据已知条件,建立关于a 、b 、r 的方程组;3°解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.③点M(x 0,y 0)与圆(x-a)2+(y-b)2=r 2的关系的判断方法:当点M(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标满足方程(x-a)2+(y-b)2=r 2.当点M(x 0,y 0)不在圆(x-a)2+(y-b)2=r 2上时,点M 的坐标不满足方程(x-a)2+(y-b)2=r 2.用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外⇔(x 0-a)2+(y 0-b)2>r 2,点在圆外;2°点到圆心的距离等于半径,点在圆上⇔(x 0-a)2+(y 0-b)2=r 2,点在圆上;3°点到圆心的距离小于半径,点在圆内⇔(x 0-a)2+(y 0-b)2<r 2,点在圆内.(三)应用示例思路1例1 写出下列各圆的标准方程:(1)圆心在原点,半径是3;⑵圆心在点C(3,4),半径是5;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x 2+y 2=9.(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.(3)方法一:圆的半径r=|CP|=25)31()85(22=++-=5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.方法二:设圆的标准方程为(x-8)2+(y+3)2=r 2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r 2,r 2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.(4)设圆的标准方程为(x-1)2+(y-3)2=r 2,由圆心到直线的距离等于圆的半径,所以r=25|16|25|7123|=--.因此所求圆的标准方程为(x-1)2+(y-3)2=25256. 点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2 写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M 1(5,-7),M 2(-5,-1)是否在这个圆上.解:圆心为A(2,-3),半径长等于5的圆的标准方程是(x-2)2+(y+3)2=25,把点M 1(5,-7),M 2(-5,,-1)分别代入方程(x-2)2+(y+3)2=25, 则M 1的坐标满足方程,M 1在圆上.M 2的坐标不满足方程,M 2不在圆上.点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.例3 △ABC 的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r 2入手,要确定圆的标准方程,可用待定系数法确定a 、b 、r 三个参数.另外可利用直线AB 与AC 的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r 2,因为A(5,1),B(7,-3),C(2,-8)都在圆上,它们的坐标都满足方程(x-a)2+(y-b)2=r 2,于是⎪⎩⎪⎨⎧=--+-=--+-=-+-)3(.)8()2()2()3()7()1(,)1()5(222222222r b a rb a r b a 解此方程组得⎪⎩⎪⎨⎧=-==.5,3,2r b a 所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB 的中点坐标为(6,-1),斜率为-2,所以线段AB 的垂直平分线的方程为y+1=21(x-6). 同理线段AC 的中点坐标为(3.5,-3.5),斜率为3,所以线段AC 的垂直平分线的方程为y+3.5=3(x-3.5).解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r=22)31()25(++-=5,所以△ABC 的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC 外接圆的圆心是△ABC 的外心,它是△ABC 三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路.思路2例1 图2是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20 m,拱高OP=4 m,在建造时每隔4 m 需用一个支柱支撑,求支柱A 2P 2的长度(精确到0.01 m).图2解:建立坐标系如图,圆心在y 轴上,由题意得P(0,4),B(10,0).设圆的方程为x 2+(y-b)2=r 2,因为点P(0,4)和B(10,0)在圆上,所以⎪⎩⎪⎨⎧=-+=-+.)0(10,)4(0222222r b r b 解得⎩⎨⎧=-=,5.14,5.1022r b 所以这个圆的方程是x 2+(y+10.5)2=14.52.设点P 2(-2,y 0),由题意y 0>0,代入圆方程得(-2)2+(y 0+10.5)2=14.52,解得y 0=2225.14--10.5≈14.36-10.5=3.86(m). 答:支柱A 2P 2的长度约为3.86 m.例2 求与圆x 2+y 2-2x=0外切,且与直线x+3y=0相切于点(3,-3)的圆的方程. 活动:学生审题,注意题目的特点,教师引导学生利用本节知识和初中学过的几何知识解题.首先利用配方法,把已知圆的方程写成标准方程,再利用两圆外切及直线与圆相切建立方程组,求出参数,得到所求的圆的方程.解:设所求圆的方程为(x-a)2+(y-b)2=r 2.圆x 2+y 2-2x=0的圆心为(1,0),半径为1.因为两圆外切,所以圆心距等于两圆半径之和,即22)0()1(-+-b a =r+1, ①由圆与直线x+3y=0相切于点(3,-3),得⎪⎪⎩⎪⎪⎨⎧=++-=-•-+)3(.)3(1|3|)2(,1)31(332r b a a b 解得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y 2=4或x 2+(y+43)2=36.点评:一般情况下,如果已知圆心(或易于求出)或圆心到某一直线的距离(或易于求出),可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.变式训练一圆过原点O 和点P(1,3),圆心在直线y=x+2上,求此圆的方程.解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a,a+2).则圆的方程为(x-a)2+(y-a-2)2=r 2.因为点O(0,0)和P(1,3)在圆上,所以⎪⎩⎪⎨⎧=--+-=--+-,)23()1(,)20()0(222222r a a r a a 解得⎪⎪⎩⎪⎪⎨⎧=-=.825,412r a所以所求的圆的方程为(x+41)2+(y-47)2=825. 解法二:由题意:圆的弦OP 的斜率为3,中点坐标为(21,23), 所以弦OP 的垂直平分线方程为y-23=-31(x-21),即x+3y-5=0. 因为圆心在直线y=x+2上,且圆心在弦OP 的垂直平分线上,所以由⎩⎨⎧=-++=,053,2y x x y 解得⎪⎪⎩⎪⎪⎨⎧=-=,47,41y x ,即圆心坐标为C(-41,47). 又因为圆的半径r=|OC|=825)47()41(22=+-, 所以所求的圆的方程为(x+41)2+(y-47)2=825. 点评:(1)圆的标准方程中有a 、b 、r 三个量,要求圆的标准方程即要求a 、b 、r 三个量,有时可用待定系数法.(2)要重视平面几何中的有关知识在解题中的运用.例3 求下列圆的方程:(1)圆心在直线y=-2x 上且与直线y=1-x 相切于点(2,-1).(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.解:(1)设圆心坐标为(a,-2a),由题意知圆与直线y=1-x 相切于点(2,-1),所以2222)12()2(11|12|+-+-=+--a a a a ,解得a=1.所以所求圆心坐标为(1,-2),半径r=22)12()21(+-+-=2.所以所求圆的标准方程为(x-1)2+(y+2)2=2. (2)设圆的方程为(x-2)2+(y+1)2=r 2(r >0),由题意知圆心到直线y=x-1的距离为d=2211|112|+-+=2.又直线y=x-1被圆截得弦长为22,所以由弦长公式得r 2-d 2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.(四)知能训练课本本节练习1、2.(一)拓展提升1.求圆心在直线y=2x 上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.解:首先两平行线的距离d=2221B A C C +-=2,所以半径为r=2d =1. 方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d=2221||B A C C +-,得222234|3|43|7|+-=++k k ,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x 组成的方程组⎩⎨⎧==-+,2,0243x y y x 得⎪⎪⎩⎪⎪⎨⎧==,114,112y x ,因此圆心坐标为(112,114).又半径为r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 方法二:解方程组⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==++⎩⎨⎧==-+.113,116117,1114,2,0343,2,0743x y x y x y y x x y y x 和得与因此圆心坐标为(112,114).又半径r=1,所以所求圆的方程为(x-112)2+(y-114)2=1. 点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.(六)课堂小结①圆的标准方程.②点与圆的位置关系的判断方法.③根据已知条件求圆的标准方程的方法.④利用圆的平面几何的知识构建方程.⑤直径端点是A(x 1,y 1)、B(x 2,y 2)的圆的方程是(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0.(七)作业1.复习初中有关点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系有关内容.2.预习有关圆的切线方程的求法.3.课本习题4.1 A 组第2、3题.。

人教版高中数学必修二《圆的标准方程》教案

人教版高中数学必修二《圆的标准方程》教案

教案说明圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。

一、设计理念设计的根本出发点是促进学生的发展。

教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。

二、设计思路(1)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。

在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。

(2)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。

从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。

另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。

在一个个问题的驱动下,高效的完成本节的学习任务。

三、媒体设计本节采用powerpoint媒体,知识容量大,同时又有图形。

为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。

同时动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

4.1.1圆的标准方程教材:普通高中课程标准实验教科书(人教A版)数学(必修2)第四章第一节一、教学目标1、知识目标(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

高中数学 4.1.1圆的标准方程精品教案 新人教A版必修2

高中数学 4.1.1圆的标准方程精品教案 新人教A版必修2

(一)教学目标1.知识与技能(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程.(2)会用待定系数法求圆的标准方程.2.过程与方法进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题发现问题和解决问题的能力.3.情感态度与价值观通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.(二)教学重点、难点重点:圆的标准方程难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.(三)教学过程教学环节教学内容师生互动设计意图复习引入在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么圆是否也可用一个方程来表示呢?如果能,这个方程具有什么特征?由学生回答,然后引入课题设置情境引入课题概念形成确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r (其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P= {M|MA| = r},由两点间的距离公式让学生写出点的坐标适合的条件22()()x a y b r-+-=①化简可得:(x–a)2 + (y–b)2= r2②引导学生自己证明(x–a)2 + (y–b)2 = r2为圆的方程,得出结论.方程②就是圆心为A(a,b)半径为r的圆的方程,我们把它叫做圆的标准方程.通过学生自己证明培养学生的探究能力.应用举例例1 写出圆心为A(2,–3)半径长等于5的圆的方程,并判断点M1(5,–7),2(5,1)M--是否在这个圆上.分析探求:可以从计算点到圆心的距离入手.探究:点M(x0,y0)与圆(x–a)2 + (y–b)2 = r2的关系的判断方法:(1)(x0–a)2 + (y0–b)2>r2,点在圆外.(2)(x0–a)2 + (y0–b)2= r2,点在圆上.(3)(x0–a)2 + (y0–b)2<r2,点在圆内.引导学生分析探究从计算点到圆心的距离入手.例1 解:圆心是A(2,–3),半径长等于5的圆的标准方程是(x+ 3)2+ ( y+ 3)2=25.把M1 (5,–7),M2(5-,–1) 的坐标代入方程(x–2)2 + (y +3)2 =25,左右两边相等,点M1的坐标适合圆的方程,所以点M2在这个圆上;把M2(5-,–1)的坐标代入方程(x–2)2+ (y+3)2=25,左右两边不相等,点M2的坐标不适合圆的方程,所以M2不在这个圆上通过实例引导学生掌握求圆的标准方程的两种方法.例 2 △ABC的三个顶点的坐标是A(5,1),B(7,–3),C(2,– 8). 求它的外接圆的方程.例2 解:设所求圆的方程是(x–a)2 + (y–b)2 = r2. ①因为A(5,1),B(7,–3),C(2,–8) 都在圆上,所以它们的坐标都满足方程①. 于是师生共同分析:从圆的标准方程(x–a)2 + (y–b)2= r2可知,要确定圆的标准方程,可用待定系数法确定a、b、r三个参数,(学生自己运算解决)6––4––2––––2 –––4––––55AM222222222(5)(1)(7)(3)(2)(8)a b r a b r a b r⎧-+-=⎪-+--=⎨⎪-+--=⎩ 解此方程组,得22325a b r ⎧=⎪=-⎨⎪=⎩ 所以,△ABC 的外接圆的方程是(x – 2)2 + (y +3)2=25. 例3 已知圆心为C 的圆C . 经过点A (1,1)和B (2,–2),且圆心在l : x – y + 1 = 0上,求圆心为C 的圆的标准方程.比较例(2)、例(3)可得出△ABC 外接圆的标准方程的两种求法:①根据题设条件,列出关于a 、b 、r 的方程组,解方程组得到a 、b 、r 得值,写出圆的根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.练习:课本P127 第1、3、4题师生共同分析:如图确定一个图只需确定圆心位置与半径大小.圆心为C 的圆经过点A (1,1)和B (2,–2),由于圆心C 与A 、B 两点的距离相等,所以圆心C 在线段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于|CA |或|CB |.(教师板书解题过程)例3 解:因为A (1,1),B (2,– 2),所以线段AB 的中点D 的坐标为(32,12-),直线AB 的斜率k AB =2121---= –3, 因为线段AB 的垂直平分线l ′的方程是y +113()232x =-,Bm A C即x –3y –3 = 0. 圆心C 的坐标是方程组33010x y x y --=⎧⎨-+=⎩的解. 解此方程组,得32x y =-⎧⎨=-⎩ 所以圆心C 的坐标是(–3,–2) .圆心为C 的圆的半径长r =|AC |=22(13)(12)+++=5.所以,圆心为C 的圆的标准方程是(x + 3)2 + (y +2)2=25.归纳总结 1.圆的标准方程.2.点与圆的位置关系的判断方法.3.根据已知条件求圆的标准方程的方法. 教师启发,学生自己比较、归纳. 形成知识体系课外作业布置作业:见习案4.1第一课时学生独立完成 巩固深化备选例题例1 写出下列方程表示的圆的圆心和半径(1)x 2 + (y + 3)2 = 2; (2)(x + 2)2 + (y – 1)2 = a 2(a ≠0) 【解析】(1)圆心为(0,–3),半径为2; (2)圆心为(–2,1),半径为|a |.例2 圆心在直线x – 2y – 3 = 0上,且过A (2,–3),B (–2,–5),求圆的方程.解法1:设所求的圆的方程为(x – a )2 + (y – b )2 = r 2由条件知222222(2)(3)(2)(5)230a b r a b r a b ⎧-+--=⎪--+--=⎨⎪--=⎩解方程组得21210a b r ⎧=-⎪=-⎨⎪=⎩即所求的圆的方程为(x + 1)2 + (y + 2)2= 10 解法2:12AB k =,AB 的中点是(0,–4), 所以AB 的中垂线方程为2x + y + 4 = 0 由230240x y x y --=⎧⎨++=⎩得12x y =-⎧⎨=-⎩因为圆心为(–1, –2 )又r=所以所求的圆的方程是(x + 1)2 + (y + 2)2 = 10.例3 已知三点A(3,2),B(5,–3),C(–1,3),以P(2,–1)为圆心作一个圆,使A、B、C三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.【解析】要使A、B、C三点中一点在圆外,一点在圆上,一点在圆内,则圆的半径是|PA|、|PB|、|PC|中的中间值.PA PB PC||||因为|PA|<|PB|<|PC|所以圆的半径||==r PB故所求的圆的方程为(x – 2)2 + (y + 1)2 = 13.。

高中数学新人教版必修2教案4.1.1圆的标准方程.doc

高中数学新人教版必修2教案4.1.1圆的标准方程.doc

教 学 小 结 课 后 反 思
3
4
(2)根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大
小,然后再写出圆的标准方程.
2
教师课时教案
3
问题与情境及教师活动
4.练习:课本 p127 第 1、3、4 题
.小结:
1、 圆的标准方程。 2、 点与圆的位置关系的判断方法。 3、 根据已知条件求圆的标准方程的方法。







学生活动

问题与情境及教师活动
学生活动
1
1、情境设置:

在直角坐标系中,确定直线的基本要素是什么?圆作为平面
几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平
过 面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,
那么,原是否也可用一个方程来表示呢?如果能,这个方程又有
程 什么特征呢? 2、探索研究:
化简可得: (x a)2 ( y b)2 r2

6
4
A
2 M
-5
5
点评:由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计 -2
算它们的表面积就是计算它的各个侧面面积和底面面积之和.
-4
引导学生自己证明 (x a)2 ( y b)2 r2 为圆的方程,得出结
论。
1
教师课时教案

问题与情境及教师活动
学生活动
2
方程②就是圆心为 A(a,b),半径为 r 的圆的方程,我们把它叫做圆的标准
学 方程。
3、知识应用与解题研究

例 1:写出圆心为 A(2, 3) 半径长等于 5 的圆的方程,并判断点

高中数学 2.4.1.1圆的标准方程教案 新人教A版必修2-新人教A版高一必修2数学教案

高中数学 2.4.1.1圆的标准方程教案 新人教A版必修2-新人教A版高一必修2数学教案

课题: .1圆的标准方程课 型:新授课教学目标: 1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

2、会用待定系数法求圆的标准方程。

教学重点:圆的标准方程教学难点:会根据不同的条件,利用待定系数法求圆的标准方程。

教学过程:(一)、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究:(二)、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。

〔其中a 、b 、r 都是常数,r>0〕设M(x,y)为这个圆上任意一点,那么点M 满足的条件是〔引导学生自己列出〕P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件r =①化简可得:222()()x a y b r -+-=②引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。

(三)、知识应用与解题研究例1.〔课本例1〕写出圆心为(2,3)A -,半径长等于5的圆的方程,并判断点12(5,7),(1)M M --是否在这个圆上。

分析探求:可以从计算点到圆心的距离入手。

探究:点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:〔1〕2200()()x a y b -+->2r ,点在圆外〔2〕2200()()x a y b -+-=2r ,点在圆上〔3〕2200()()x a y b -+-<2r ,点在圆内 解:例2.〔课本例2〕ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程.222()()x a y b r -+-= 可知,要确定圆的标准方程,可用待定系数法确定a b r 、、三个参数.解:例3.〔课本例3〕圆心为C 的圆经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程.C 的圆经过点(1,1)A 和(2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在线段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或CB 。

高中数学 《圆的标准方程》教案1 新人教A版必修2

高中数学 《圆的标准方程》教案1 新人教A版必修2

4.1.1 圆的标准方程教学要求:使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程教学重点:圆的标准方程的推导步骤;根据具体条件正确写出圆的标准方程.教学难点:运用圆的标准方程解决一些简单的实际问题教学过程:一、复习准备:1.提问:两点间的距离公式?2.讨论:具有什么性质的点的轨迹称为圆?圆的定义?3.思考:在平面直角坐标系中,如何确定一个圆呢?二、讲授新课:1. 圆的标准方程:①设定点 A(a ,b),半径r ,设圆上任一点M 坐标为(x ,y).②写点集:根据定义,圆就是集合P={M||MA|=r}④化简方程: 将上式两边平方得222)))(r b x a x =-+-(建系设点→写点集→列方程→化简方程⇒圆的标准方程 (standard equation of circle)) ⑤思考:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?⑥师指出:只要a ,b ,r 三个量确定了且r >0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a 、b 、r ,可以根据条件,利用待定系数法来解决.2. 圆的标准方程的应用例1、写出下列各圆的方程:(1)圆心在原点,半径是3; (2)经过点P(5,1),圆心在点C(8,-3); (指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.)例2、已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程,试判断点M(6,9)、N(3,3)、 Q(5,3)是在圆上,在圆内,还是在圆外?(从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决)探究:点M (00,y x )在圆222r y x =+内的条件是什么?在圆外呢?例3、 ABC ∆的三个定点的坐标分别是 A(5,1), B(7,-3), C(2,-8),求它的外接圆的方程 ( 用待定系数法解)思考:你还有其它方法吗?例4、已知圆心为C 的圆经过点A(1,1)和B(2,-2),却圆心C 在直线L:10x y -+=上,求圆心为C的圆的标准方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2

引导学生自己证明 ( x a ) 2 ( y b) 2 r 2 为圆的方程,得出结论。 方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。 (三)、知识应用与解题研究
1
例1.(课本例1)写出圆心为 A(2, 3) ,半径长等于5的圆的方程,并判断 点 M 1 (5, 7), M 2 ( 5, 1) 是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点 M ( x0 , y0 ) 与圆 ( x a ) 2 ( y b) 2 r 2 的关系的判断方法: (1) ( x0 a ) 2 ( y0 b) 2 > r 2 ,点在圆外 (2) ( x0 a ) 2 ( y0 b) 2 = r 2 ,点在圆上 (3) ( x0 a ) 2 ( y0 b) 2 < r 2 ,点在圆内 解: 例2.(课本例2) ABC 的三个顶点的坐标是 A(5,1), B (7, 3), C (2, 8), 求它 的外接圆的方程. 师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯 一的外接圆.从圆的标准方程 ( x a ) 2 ( y b) 2 r 2
作业布置:课本 p124 习题4.1A组第2,3,4题. 课后记:
3
B (2, 2) ,由于圆心 C 与A,B两点的距离相等,所以圆心 C 在线段AB的垂直平分线
m上,又圆心 C 在直线 l 上,因此圆心 C 是直线 l 与直线m的交点,半径长等于
CA 或 CB 。
解:
2
4
l
2
A
-5
m
5
-2
C
B-4-6来自总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的 标准方程的两种求法:
课题: 2.4.1.1圆的标准方程

型:新授课 1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。
教学目标:
教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: (一)、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本 图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条 直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢 ?如果能,这个方程又有什么特征呢? 探索研究: (二)、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。( 其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条 件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 ( x a ) 2 ( y b) 2 r ① 化简可得: ( x a ) ( y b) r
b r 的方程组,解方程组得到 a、、 b r 的值 ①、 根据题设条件,列出关于 a、、
,写出圆的标准方程. ②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后 再写出圆的标准方程. (四)、课堂练习(课本P120练习1,2,3,4) 归纳小结: 1、 2、 3、 圆的标准方程。 点与圆的位置关系的判断方法。 根据已知条件求圆的标准方程的方法。
b r 三个参数. 可知,要确定圆的标准方程,可用待定系数法确定 a、、
解:
例3.(课本例3)已知圆心为 C 的圆经过点 A(1,1) 和 B (2, 2) ,且圆心在
l : x y 1 0 上,求圆心为 C 的圆的标准方程.
师生共同分析: 如图,确定一个圆只需确定圆心位置与半径大小.圆心为 C 的圆经过点 A(1,1) 和
相关文档
最新文档