数学建模竞赛论文写作
数学建模获奖论文模板范文
数学建模获奖论文模板范文在我国倡导素质教育的今天,数学建模受到的关注与日俱增,数学建模已经被应用于数学的教学中了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高职院校数学建模竞赛的思考与建议》一、我校学生数学建模现状1.高职生的数学基础相当薄弱,学习习惯不好,然而数学知识理论性强,计算繁琐,并要求学生有足够的耐心和较强的理性思维能力,这就会让学生在学习数学相关知识时感觉有一定的难度。
而另一方面,高职院校的课时量在尽量压缩,数学应用方面的内容只是蜻蜓点水,根本无法广泛而深入的涉及到位。
例如,我校很多专业只开一个学期64课时的数学课,还有些专业甚至不开数学课,要建立一些比较高等的数学模型,高职学生的数学知识显然不够。
2.高职院校目前的教学方法多表现为填鸭式的教学法,过分强调严格的定理和抽象的逻辑思维,特别是运算技巧的训练讲得过于精细,考试形式单一。
对于高职生来说,只要求他们会套用现成的公式及作一些简单的计算就行,但是目前的教学不能使学生发挥自己的主观能动性,也调动不了学生学习数学的兴趣。
3.目前我校只开设了一门数学方面的公共选修课《数学建模》,一共16次课,仅仅靠课堂上讲的内容让学生来参加数学建模竞赛远远不够,另外,学生又要同时兼顾其他专业课程,因此学习效果不好。
4.组织数学建模赛前培训的师资队伍理论薄弱,只靠一两个青年教师承担培训指导任务,缺乏参赛经验丰富的老教师。
5.我校学生参加数学建模的积极性不高,我校已经连续参加几年的数学建模竞赛,但最多的也就5个队,仍有多数学生称未听过有这项比赛,说明宣传不是很到位。
6.目前组队参赛的任务是交给基础部来完成,而基础部没有学生,这就会造成找队员困难的问题。
二、参加数学建模比赛的意义1.有利于培养学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整的论文,对于大多数学生来说,都是第一次,它可以提高学生如何把数学知识用到实际生活中的能力,提高学生合理利用网络查阅资料的能力,提高学生的创新意识和团队协作能力等。
优秀的数学建模论文范文(通用8篇)
优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
数学建模经典论文五篇
1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。
大学生数学建模论文(专业推荐范文10篇)
大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。
大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。
调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。
文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。
关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。
许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。
如何撰写数学建模论文
如何撰写数学建模论文如何撰写数学建模论文数学建模是一门将数学方法应用于实际问题解决的学科。
撰写数学建模论文是数学建模竞赛中非常重要的一部分,为了让你的论文论证清晰,逻辑严谨,下面给出一些建议:1. 理清问题:首先要仔细阅读题目,理解问题的背景和要求。
明确问题的关键点和限制条件,将问题抽象化,确定数学模型的目标和限定条件。
2. 收集信息:对于所给问题,收集并整理与之相关的信息。
例如,通过查阅文献、统计数据、实地调研等方式,获取问题的背景知识和阐明论证的依据。
3. 建立模型:根据问题的特点和要求,选择合适的数学方法建立模型。
可以是微分方程、线性规划、离散数学等。
模型要准确地反映问题的关键特征,并且具有可行性与可解性。
4. 分析模型:对所建立的数学模型进行分析。
包括模型的稳定性、敏感性分析、局部和全局优化等。
进行模型的合理简化与修正,提高模型的精确度与适用性。
5. 解决方案:根据数学模型,利用数学方法求得问题的解决方案。
可以使用数学软件进行求解,或者进行数值模拟实验,验证模型的可行性和准确性。
6. 结果讨论:对求解的结果进行准确描述,并进行合理的解释和讨论。
对问题的特点与解决方案进行分析,提出优化建议或改进方向。
7. 论文撰写:在论文撰写中,要注意论文的结构和格式。
包括题目摘要、引言、问题分析与模型建立、模型分析与求解、结果与讨论、结论等部分。
要注意使用清晰明了的图表和表格,使用规范的引用格式。
8. 语言表达:在论文写作中,要注重语言表达的准确性和流畅性。
使用科学的术语和符号,避免使用口语化的表达方式。
句子结构清晰,逻辑连贯,语法正确。
9. 修改和校对:完成初稿后,进行反复修改和校对。
检查论文的逻辑结构是否清晰,文字是否流畅,图表与公式是否规范准确。
同时注意查漏补缺,修正语法错误和拼写错误。
10. 合作与合理分工:在数学建模中,一般会涉及到团队合作。
在撰写论文时,要合理分工,根据各自的专长和贡献,明确每个人的责任和贡献度。
数学建模论文(精选4篇)
数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
数学建模论文(7篇)
数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。
如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。
数学建模所解决的问题不止现实的,还包括对未来的一种预见。
数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。
数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。
教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。
以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。
因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。
1.2数学建模在大学数学教学中的运用。
大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。
再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。
不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。
数学建模竞赛优秀大学生论文
数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。
下面是店铺为大家整理的数学建模优秀论文,供大家参考。
数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
数学建模论文写作技巧
数学建模论文写作技巧1.明确问题:首先要明确问题的背景和目标。
明确定义问题的主要内容,确定研究的范围和方向。
同时,要确定问题的重要性和实用性,以便制定合适的数学模型。
2.选择合适的数学模型:根据问题的特点和要求,选择适合的数学模型。
可以采用传统的数学模型,如线性规划、非线性规划、差分方程等,也可以结合现代数学方法,如优化理论、图论、统计学等进行数学建模。
3.获取和整理数据:在实际问题中,数据是非常重要的。
要经过系统地收集和整理数据,并对数据进行清洗、处理和分析。
可以借助于统计分析工具和软件,如Excel、MATLAB等。
4.建立数学模型:根据问题的要求和数据的特征,建立合适的数学模型。
要明确模型的假设和限制,并充分考虑实际问题的复杂性和不确定性。
5.模型求解与分析:根据所建立的数学模型,进行模型求解。
可以通过计算机程序、数值方法、数学推导等方式对模型进行求解。
在求解过程中,要注重结果的合理性和有效性,并进行结果的分析和解释。
6.模型验证与评价:对于建立的数学模型,要进行模型验证和评价。
验证模型的可靠性和准确性,并对模型的优点和不足进行评价。
可以通过实际数据的对比和实验的验证,进一步完善和改进模型。
7.结果展示与讨论:在论文中,要对研究结果进行展示和讨论。
可以通过图表、数据分析等方式对结果进行展示,以清晰明了的方式呈现。
对于结果的讨论,要深入思考和分析结果的原因和影响,并提出合理的建议和改进意见。
10.修改和完善:完成初稿后,要进行修改和完善。
对于文章中存在的问题和不足,要进行适当修改和改进。
可以请教导师或同行专家进行审稿和建议,以改进论文的质量和水平。
在写作数学建模论文的过程中,要注重问题的深入思考和逻辑推理,同时要善于运用所学的数学知识和方法进行分析和求解。
要注意结合实际问题进行建模,充分考虑问题的复杂性和多样性。
同时,要注意与其他学科的交叉融合,在建模和求解过程中综合利用各学科的优势和方法,提高研究的深度和广度。
数学建模论文的撰写以及注意事项
数学建模论文的撰写以及注意事项数学建模是一种通过数学模型来解决实际问题的方法。
撰写数学建模论文是一个重要的环节,下面将介绍一些注意事项和撰写步骤。
首先,一个好的数学建模论文应具备以下几个要点:清晰的问题陈述、合理的模型构建和准确的结果分析。
在撰写过程中,应该注意以下几点:1.问题陈述:介绍问题的背景和意义,明确问题的具体要求。
问题陈述应该准确、简洁,能够引起读者的兴趣。
2.模型构建:提出一个合适的数学模型来解决问题。
模型应该具有合理性和可行性,能够准确地描述问题的本质。
在模型构建过程中,应该考虑到问题的各个方面,包括影响因素、变量之间的关系等。
3.模型求解:选择适当的方法对模型进行求解。
这可能涉及到数值计算、优化方法、统计分析等。
求解过程中,要注意准确性和稳定性,避免误差的传递和累积。
4.结果分析:对求解结果进行分析和解释。
可以通过图表、数值等形式展示结果。
分析结果时要考虑结果的合理性,对结果的局限性和不确定性进行讨论。
在撰写数学建模论文时,还需要注意以下几个方面:1.文章结构:一般来说,数学建模论文分为引言、模型构建、模型求解、结果分析和结论等部分。
每个部分应该有明确的标题和内容,逻辑清晰,相互衔接。
2.符号说明:在论文中使用的符号应进行明确说明。
可以通过符号表或者在文章中逐次说明。
符号的选择要简洁一致,不要混淆。
3.文字表达:使用准确、简洁的语言来表达论文的内容。
句子要通顺易懂,避免冗长复杂的表达方式。
段落之间要有连接性,论述要有条理。
4.图表设计:使用合适的图表来展示数据和结果。
图表应该简洁明了,标注清晰,符合技术要求。
图表的标题和说明要与正文相一致。
最后,论文的撰写过程需要耐心和细致。
可以通过多次修改和校对来提高论文的质量。
同时,可以参考一些优秀的数学建模论文,了解其结构和写作风格,借鉴其经验和方法。
总之,撰写数学建模论文是一个需要认真对待的过程。
通过合理的问题陈述、模型构建和准确的结果分析,以及注意文中的结构、符号、文字表达和图表设计,可以写出一篇优秀的数学建模论文。
数学建模论文模板3篇
数学建模论文模板本文将以“动力学模型研究草地生态系统中植物物种多样性变化的机制”为例,介绍数学建模论文的写作模板。
第一篇:绪论在本篇论文中,我们将研究草地生态系统中植物物种多样性变化的机制。
植物物种多样性是生态系统中的重要指标之一,其变化与环境因素、人类干扰等因素密切相关。
我们希望通过建立动力学模型,揭示不同因素对植物物种多样性变化的影响机制,为草地生态系统保护与管理提供科学依据。
本文的具体框架如下:在第二部分中,我们将简要介绍植物物种多样性与草地生态系统的相关知识。
在第三部分中,我们将从环境因素、人类干扰、种间关系等因素入手,进行动力学模型的建立,并分析模型参数。
在第四部分中,我们将通过模型仿真和实验验证,探究不同因素对植物物种多样性的影响。
第二篇:文献综述植物物种多样性是生态系统中的重要指标之一,其变化涉及到复杂的生态因素和人类活动。
在草地生态系统中,植物群落的物种多样性变化受到许多因素的影响,例如环境因素、人类干扰、生物多样性等。
下面我们将分别对这些因素的影响机制进行综述。
环境因素:环境因素是影响生态系统中植物物种多样性变化的重要因素。
其中,土壤水分、光照等生态因素对植物的分布、生长和繁殖都有直接和间接的影响。
土壤养分、温度、氧气含量、酸碱度等也会对物种多样性产生影响。
人类干扰:人类干扰是导致生态系统中植物物种多样性下降的主要因素之一。
人类从事的采矿、建设等活动都会破坏生态系统的平衡,从而影响系统中不同物种的生存繁殖。
另外,过度放牧、过度利用等也会对植物群落的物种多样性造成一定的影响。
种间关系:物种之间的关系也是影响生态系统中植物物种多样性的重要因素之一。
其中,竞争、共生、捕食等种间关系都会直接或间接的影响植物群落的物种多样性。
第三篇:方法与结果基于在综述中分析的因素,我们建立了相应的生态动力学模型。
该模型以草地生态系统中植物群落的物种多样性为研究对象,考虑了土壤水分、光照、土壤养分等环境因素、过度放牧、过度利用等人类活动以及种间关系等多种因素对物种多样性的影响。
数学建模论文模板(10篇)
数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。
2.数学教学中渗透数学建模思想是大学数学教学的必然要求。
目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。
为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。
3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。
数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。
另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。
二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。
1.从教学内容上改进以促进数学建模思想的普及和深入。
科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。
为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。
(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。
数学建模论文六篇
数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。
题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。
本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。
(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。
(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。
本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。
同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。
有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。
数学建模论文写作方法与技巧
数学建模论文写作方法与技巧数学建模是通过数学方法解决实际问题的过程。
写作数学建模论文既需要表达清晰的数学逻辑,又需体现实际问题的实际意义。
下面是数学建模论文写作的方法与技巧:一、确定论文结构1.引言:引出问题,阐述问题的背景和意义,提出研究问题的目标和意义。
2.文献综述:对相关领域的研究成果进行综述,介绍已有的数学建模方法和应用。
3.问题分析:对问题进行准确定义,分析问题的性质和特点。
4.建模方法:根据问题的特点选择合适的数学模型和建模方法,并对其进行详细解释。
5.模型求解:利用数学模型进行求解,并描述求解过程和结果。
6.模型评价与分析:评价模型的可行性和有效性,并分析模型的局限性和改进方向。
7.结论:总结论文的主要工作和发现,提出进一步研究的方向和建议。
二、论文写作技巧1.清晰的语言:使用简明扼要的语言表达数学思想,避免过多的术语和复杂的句型。
尽量使用符号和公式来表示数学概念和问题,减少文字描述。
2.结构合理:将论文内容分为段落,每个段落只讨论一个主题或观点。
段落之间要有明确的逻辑连接,以确保整体结构的连贯性。
3.遵循学术规范:引用文献时要注明出处,避免抄袭。
数学符号和公式要按照规定的格式书写,以便读者理解和参考。
4.提供详细的推导过程:对于公式的推导和证明要有详细的步骤和解释,以便读者能够理解推导的逻辑过程。
5.结合实际应用进行解释:对于建模问题要结合实际应用进行解释,说明模型的实际意义和应用前景。
6.数据分析和结果呈现:对于模型求解的结果,要进行合理的数据分析和结果呈现。
可以通过表格、图表等方式进行结果展示。
7.审稿和修改:写完论文后要请教他人进行审稿,听取对论文内容和结构的意见和建议。
在修改时要注意保持论文的逻辑一致性和完整性。
以上是数学建模论文写作的一些方法与技巧。
在写作过程中,需要充分理解问题、运用数学工具和方法,兼顾问题的实际意义和学术规范,从而完成一篇优秀的数学建模论文。
数学建模优秀论文(精选范文10篇)2021
数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。
通过收集历史空气质量数据,构建空气质量预测模型。
运用机器学习算法对模型进行训练和优化,提高预测精度。
通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。
二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。
建立物流配送模型,考虑配送成本、时间、距离等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。
三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。
构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。
运用风险度量方法对模型进行评估。
通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。
四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。
建立能源消耗模型,考虑设备运行、生产计划等因素。
运用优化算法对模型进行求解。
通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。
五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。
收集历史交通流量数据,构建交通流量预测模型。
运用时间序列分析方法对模型进行训练和优化。
通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。
数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。
建立医疗资源需求模型,考虑人口分布、疾病类型等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。
精选五篇数学建模优秀论文
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。
本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。
实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。
三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。
本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。
实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。
四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。
本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。
实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。
五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。
本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。
实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
数学建模论文的撰写以及注意事项
数学建模论文的撰写以及注意事项第一篇:数学建模论文的撰写以及注意事项数学建模论文的撰写以及注意事项摘要(200-300字,包括模型的主要特点、建模方法和主要结果。
) 关键词(求解问题、使用的方法中的重要术语)内容较多时最好有个目录1。
问题重述2。
问题分析3。
模型假设与约定4。
符号说明及名词定义5。
模型建立与求解①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);6。
进一步讨论(参数的变化、假设改变对模型的影响)7。
模型检验(使用数据计算结果,进行分析与检验)8。
模型优缺点(改进方向,推广新思想)9。
参考文献及参考书籍和网站10。
附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。
)小经验:1。
随时记下自己的假设。
有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。
2。
随时记录自己的想法,而且不留余地的完全的表达自己的思想。
3。
要有自己的特色,闪光点。
如何撰写数学建模论文当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。
撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。
事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。
首先要明确撰写论文的目的。
数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。
当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。
其次,要注意论文的条理性。
下面就论文的各部分应当注意的地方具体地来做一些分析。
(一)问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。
数学建模论文写作注意事项
数学建模论文写作注意事项数学建模是一种系统性、综合性的论文写作方式,旨在通过数学模型解决实际问题。
论文的写作过程需要经历问题分析、模型构建、模型求解以及结果分析等多个环节。
以下是数学建模论文写作的一些注意事项,希望对研究者们能有所帮助。
1. 理解问题要求:在开始写作之前,首先要深入理解论文选题的问题要求。
要认真阅读题目中的背景资料,并且理解问题的本质和目标。
这将在后续的模型构建和求解阶段提供指导和依据。
2. 做好问题分析:在写作之前,进行全面的问题分析至关重要。
需要明确问题的输入和输出,划分问题的子任务,找出问题中的关键因素,并确定问题的约束条件。
这有助于为后续的模型构建提供基本框架和思路。
3. 构建数学模型:选择合适的数学模型是数学建模论文的核心。
模型应该准确地反映实际问题,具有可解性,并且可以衡量问题的关键指标。
在构建模型时,要合理假设,尽量简化模型,避免过度复杂化。
4. 详尽的模型描述:在论文中详细描述所构建的数学模型。
包括模型的基本假设、变量的定义、模型的方程和约束条件等。
同时,要解释模型中使用的数学概念和符号,使读者能够理解模型的意义和思路。
5. 模型求解方法:为了解决模型,需要选择合适的数值方法或解析方法进行求解。
在论文中应详细介绍所选方法的理论基础以及求解步骤。
如果使用的是计算机软件进行模型求解,还应给出相关代码的具体实现。
6. 实验验证与结果分析:在数学建模中,实验验证是十分重要的一环。
需要将模型应用于真实数据,并依据所构建的模型,对结果进行分析和解释。
在论文中,应提供详细的实验过程和结果,并对实验结果进行定性和定量分析。
7. 论文写作规范:在写作论文时,要遵循学术论文的基本规范。
论文结构需合理,包括引言、问题描述、模型构建、模型求解、结果分析等部分。
需要注意参考文献的引用格式,确保引用的准确性和完整性。
8. 逻辑严谨性与可读性:论文中的逻辑严谨性是建模论文写作的重要要求。
要确保所使用的术语和符号的统一性,确保问题分析、模型构建、模型求解以及结果分析之间的逻辑关系合理清晰。
国际大学生数学建模竞赛论文
国际大学生数学建模竞赛论文数学建模不仅有助于提高学生的数学知识水平和数学应用能力,而且还能激发学生学习数学的兴趣。
下文是店铺为大家整理的关于国际大学生数学建模竞赛论文的范文,欢迎大家阅读参考!国际大学生数学建模竞赛论文篇1浅析数学建模培训中提高心理素质的方法数学建模是一项集数学、计算机水平和综合能力的工作,为了让学生更好地参加各类数学建模竞赛,通常准备参加的学生都要做一些准备,即参加学校举办的建模竞赛培训,在培训中,学生能尽早了解并掌握建模的基础理论知识及相关应用软件,有利于培养学生分析问题和解决实际问题的能力,并且有利于培养学生的团队合作精神,使队员间尽早磨合,相互了解,同时可以训练学生快速获取有用信息和资料的能力,有利于增强学生的写作技能和排版技术等。
数学建模竞赛培训是根据竞赛的发展动向,在认真进行调研和集体研究后,形成培训内容和培训方案,例如有线性与非线性优化、整数与多目标规划、多元统计分析、图论与网络方法、Matlab 与 Lingo 软件、各类竞赛题等等。
因此,指导教师讲授的内容是动态化和多样化的。
培训期间工作十分紧张,每天白天和晚上要进行,周六和周日也要进行,付出的辛苦是可想而知的。
特别是在模拟竞赛期间,要求学生按照竞赛规定的时间完成模拟训练赛题,并写成一篇完整的论文,由于题目比较难,学生往往就会在思想上出现各种畏难和波动情绪。
参加过建模的同学收获很多,不但领会到数学之美,建模之乐,还体会到团队合作的强大,专业交叉的益处,可以说对学生是一个专业,性格,心智等全方面的锻炼和提高。
1. 心理素质在竞赛中的作用心理素质是人综合素质的重要组成部分,一般指人的情绪、信心和意志力等。
很多学生通过《高等数学》、《概率统计》及《复变函数》等数学课程的学习,对数学的抽象性、实用性和理论性产生怀疑,或多或少的会对数学产生抵触情绪或者畏惧心理。
因此,每每提到"数学"都会产生疑问,对数学缺乏信心,失去兴趣,在比赛中,负面情绪占主导地位的学生,只要碰到一点弄不懂的地方,就容易焦躁沮丧,甚至于失去信心,中途放弃比赛,而意志力强的学生正好相反,同样的困难反而更能激发他们的斗志,往往坚持到最后,都取得不错的成绩。
数学建模论文的写作步骤与技巧
数学建模论文的写作步骤与技巧
1.确定研究问题:首先要确定研究的问题或主题。
这可能是一个现实世界中的具体问题,或者可能是一个更抽象的数学问题。
2.收集数据和信息:针对所选主题收集所需的数据和信息。
这可以通过文献研究、实地考察、调查问卷等方法进行。
3.规划建模方法:根据研究问题和收集到的数据,选择适当的数学建模方法。
这可能涉及到确定问题的数学模型、建立方程、设定变量和参数等。
4. 使用数学工具:使用适当的数学工具(如微分方程、优化算法、统计方法等)对所建立的模型进行分析和求解。
这可能需要运用数学软件(如MATLAB、Python等)来进行计算。
5.展示结果:将分析和计算结果整理成易于理解的形式,并用可视化方法(如图表、图像)展示。
用适当的统计指标评估模型的性能。
6.进行灵敏性分析:对建立的模型进行灵敏性分析,评估模型的鲁棒性。
这可以通过改变模型的参数、验证模型的稳定性等方式进行。
7.论证结果:对模型的结果进行解释和论证,确保建模结果与实际问题的可行性和有效性相符合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验验证
• 美国战后10年的人口增长 • 不同时间段的世界人口增长 • 进一步改进 (1)变参数 (2)多种群共存 (3)随机模型
2001年美国竞赛B题
飓风疏散问题建模 Strategies for Escaping a Hurricane’s Wrath
A Monumental Traffic Jam in 1999
Construct a Model
6. It has been suggested that in 1999 some of the coastal residents of Georgia and Florida, who were fleeing the earlier predicted landfalls of Hurricane Floyd to the south, came up I-95 and compounded the traffic problems. How big an impact can they have on the evacuation traffic flow?
Construct a Model
2. In 1999, the simultaneous evacuation of the state's entire coastal region was ordered. Would the evacuation traffic flow improve under an alternative strategy that staggers the evacuation, perhaps county-by-county over some time period consistent with the pattern of how hurricanes affect the coast?
• Traffic slowed to a standstill on Interstate I26, which is the principal route going inland from Charleston to the relatively safe haven of Columbia in the center of the state. • What is normally an easy two-hour drive took up to 18 hours to complete. • Many cars simply ran out of gas along the way. • Traffic leaving Columbia going northwest was moving only very slowly.
People in Different Cities
• Charleston has approximately 500,000 people • Myrtle Beach has about 200,000 people, and another 250,000 people are spread out along the rest of the coastal strip • Columbia, another metro area of around 500,000 people
The Principal Proposal
• Reversal of traffic on I-26, so that both sides, including the coastal-bound lanes, hm Charleston to Columbia. • Traffic reversal on principal roads leading inland from Myrtle Beach and Hilton Head is also planned.
即 假定初试时刻种群数量为N0,则有 N ' (t ) N (t ) 于是: N ( t ) N 0 e t
t 0
lim
N (t t ) N (t ) t
N (t )
N (t ) N (t )
'
N (0 ) N 0
模型假设
• 假设该环境下只有一种生物群体,或 者其它生物群体不影响此生物群体的 生成 • 假定该种群的自然增长率与时刻t 和 时刻t 时该种群的数量无关,记为 • 因为种群数量很大,故可设种群个体 N(t)是时间的连续可微函数 • 假定初始时刻,种群的数量为N0
2003 论文格式规范
• 参考文献按正文中的引用次序列出,其中 书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出 版年 期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号: 起止页码,出版年 网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间 (年月日)
(二)问题重述
• 正 文 10页左右,公式推导放在附录中 • 将原问题用数学的语言表达出来
• 重点解决的问题应着重说明,把 阅卷老师引导到自己的思路中, 把他们看成不懂本问题的读者。
(三)假
•
设
最关键的一步从假设开始。需要下 很大功夫,简明扼要、准确清楚 1)假设太多,阅卷老师记不住。要归 结出一些重要的假设,一般3~5条 ,有些不是很重要的假设在论文适 当的地方提一下 2)假设要数学化,重视逻辑性要求 3)设计好符号,使人看起来清楚
(四)建
模
• 说明建模的思路 • 有些简单的事情往往是最重要的东西 ,一定要说清楚 • 刚刚开始的原始想法,很重要 • 推导时,公式若很长,可放在附录中 • 一般要求设计2~3个模型(一个简单 的、再对模型进行改进,得到第二个 模型,就会生动)
(五)模型求解
(1)模型的定性 • 线性或非线性 • 连续、离散或混合 • 时变或非时变 (2)模型求解 • 利用现成的软件 • 自己解出来,实际意义更清楚
Construct a Model
3. Several smaller highways besides I-26 extend inland from the coast. Under what conditions would it improve evacuation flow to turn around traffic on these? 4. What effect would it have on evacuation flow to establish more temporary shelters in Columbia, to reduce the traffic leaving Columbia?
Others Factors
• The interstates have two lanes of traffic in each direction except in the metropolitan areas where they have three. • Columbia does not have sufficient hotel space to accommodate the evacuees (including some coming from farther north by other routes), so some traffic continues outbound on I-26 towards Spartanburg; on I-77 north to Charlotte; and on I-20 east to Atlanta.
Construct a Model
5. In 1999, many families leaving the coast brought along their boats, campers, and motor homes. Many drove all of their cars. Under what conditions should there be restrictions on vehicle types or numbers of vehicles brought in order to guarantee timely evacuation?
(六)模型优缺点及改进
• 提出一些新的思路,使问题更 精确、也使模型得到进一步优 化。 • 敢于讨论的学生,成绩会好。
举例说明
设某生物种群在其适应的 环境下生存,试预测该种群 的数量。
一般解法
记N(t)为t 时刻该种群的数量,设 该种群自然增长率为 ,则
N (t t ) N (t ) N (t ) t
数学建模竞赛论文写作
丁永生 东华大学信息学院
近年来获奖情况
• • • • • • • • 2003年美国大学生数学模型竞赛,国际特等奖 2002年全国大学生数学模型竞赛,上海赛区二等奖 2001年美国大学生数学模型竞赛,国际一等奖 2001年全国大学生数学模型竞赛,全国二等奖和上 海赛区一等奖 2001年全国大学生数学模型竞赛,上海赛区二等奖 2000年全国大学生数学模型竞赛,上海赛区二等奖 1999年全国大学生数学模型竞赛,上海赛区二等奖 1998年全国大学生数学模型竞赛,全国一等奖和上 海赛区一等奖
竞赛时间的安排
• 第二天: 晚上:得到第二个模型的初步结果 12:00 PM 休息 • 第三天: 上午:得到第二个模型的合理结果 下午:考虑对前二个模型的进一步优化, 得到第三个数学模型,或对前二个模型的 正确性进行验证 晚上:得到最后结果,完成整篇论文
2003 论文格式规范
• 论文(答卷)用白色A4纸,上下左右各留 出2.5cm 的页边距 • 第一页为保证书,具体格式按要求 • 第二页为空白页,用于论文编号 • 论文题目和摘要写在第三页上 • 第四页开始是论文正文 • 论文从第三页开始编写页码,页码必须位 于每页页脚中部,从“1”开始连续编号 • 论文不能有页眉,不能有任何可能显示答 案人身份的标志