2021年北京市中学生数学竞赛复赛(高一)试题 答案和解析

合集下载

北京市中学生数学竞赛高一级复赛参考解答

北京市中学生数学竞赛高一级复赛参考解答

2020年北京市中学生数学竞赛高一年级复赛参考解答一、选择题(总分值40分,每题8分,将答案写在下面相应的空格中)1.二次三项式x 2+ax +b 的根是实数,其中a 、b 是自然数,且ab =22020,那么如此的二次三项式共有 个.答:1341.咱们发觉,事实上,数a 和b 是2的非负整数指数的幂,即,a =2k ,b =22020–k ,那么判别式Δ=a 2– 4b =22k – 422020–k =22k – 22021–k ≥0,得2k ≥2021–k ,因此k ≥32013=671,但k ≤2020,因此k 能够取2020–671+1=1341个不同的整数值.每一个k 恰对应一个所求的二次三项式,因此如此的二次三项式共有1341个.2.如右图,在半径为1的圆O 中内接有锐角三角形ABC ,H 是△ABC 的垂心,角平分线AL 垂直于OH ,那么BC = .解:易知,圆心O 及垂心H 都在锐角三角形ABC 的内部,延长AO 交圆于N ,连接AH 并延长至H 1与BC 相交,连接CN ,在Rt △CAN 和Rt △AH 1B 中,∠ANC =∠ABC ,于是有∠CAN =∠BAH 1,再由AL 是△ABC 的角平分线,得∠1=∠2.由条件AP ⊥OH ,得AH=AO=1.连接BO 交圆于M ,连接AM 、CM 、CH ,可知AMCH 为平行四边形,因此CM=AH=AO =1,BM =2,因为△MBC 是直角三角形,由勾股定理得BC ==3.已知概念在R 上的函数f (x )=x 2和g (x )=2x +2m ,假设F (x )=f (g (x )) – g (f (x ))的最小值为14,那么m = .答:14-.解:由f (x )=x 2和g (x )=2x +2m ,得F (x )= f (g (x )) – g (f (x ))=(2x +2m )2–(2x 2+2m )=2x 2+8mx +4m 2–2m ,F (x )=2x 2+8mx +4m 2–2m 的最小值为其图像极点的纵坐标()2222242(42)84284242m m m m m m m m ⨯⨯--=--=--⨯.由已知,21424m m --=,得21202m ⎛⎫+= ⎪⎝⎭,因此1.4m =-4.tan 37.5= . 答:6232-+-.解1:作Rt △ADB ,使得∠ADB =90º,AD =1,AB =2,那么∠B =30º,BD =3.延长BD 到C ,使BC =2,那么DC =23-.连接AC ,那么∠ACB =(180º–30º)÷2=75º.作∠ACD 的平分线交AD 于E ,那么∠ECD =º. 由于AC 2=AD 2+DC 2=1+(2–3)2=8–43,因此 ()2843621226262AC =-=-+=-=-.由三角形的角平分线定理,得AE AC ED DC=,于是AE ED AC DCED DC ++=,即()()()()322162233221ED AD DC AC CD ====-++-+-+-,因此()()tan 37.53221EDDC==-+6232=-+-.解2:作等腰直角三角形ABC ,使∠C =90º,AC =BC =1,那么AB =2. 作∠CAD =30º,那么CD =33,AD =233,那么∠DAB =15º. 作∠BAD 的平分线AE ,记CE =x ,那么BE =1–x ,DE =x –3. 因此33232x -=,整理得 ()()213221623 2.3232x +-+===-+--+tan 37.562321CE xAC ===-+-. 5.设f (x ) =113xx+-,概念f 1(x ) = f (f (x )),f n (x )=f (f n –1(x )) (n =2, 3,…),f 2020(2020)= . 答:10053017.A21 30º解:记01()()13x f x f x x +==-,那么()111113()()1131313xx x f x f f x x x x++--===--+-⋅-; ()211113()()11313xx f x f f x x x x--+===-+⋅+;()3201()()()()13x f x f f x f x f x x +====-; 接下来有41()()f x f x =,52()()f x f x =,63()()f x f x =,…,f n (x )的表达式是循环重复的,以3项为一周期.因此,20113670111()()()13x f x f x f x x ⨯+-===+,20112011120101005(2011)13201160343017f -===+⨯.二、(总分值15分)D 是正△ABC 的边BC 上一点,设△ABD 与△ACD 的内心别离为I 1,I 2,外心别离为O 1,O 2,求证:(I 1O 1)2+(I 2O 2)2=(I 1I 2)2. 证明:作以A 为中心、逆时针旋转60的变换(,60)R A ,使△ABD 到△ACD 1,由于∠ADC +∠AD 1C =∠ADC +∠ADB =180º,因此A 、D 、C 、D 1共圆,因此2O 是△AD 1C 的外心,也确实是(,60)12R A O O −−−−→,因此AO 1=DO 1=AO 2=DO 2=O 1O 2,因此∠O 1AO 2=∠O 1DO 2=60º.由∠AO 1O 2+∠ACB =120º+60º=180º,O 1在△ACD 的外接圆⊙O 2上.由于111(180)6012012022AI D ABD ABD ∠=∠+-∠=+⨯=,因此I 1在⊙O 2上,因此11118018030150O I D O AD ∠=-∠=-=,111118015030I O D I DO ∠+∠=-=.同理可证,I 2在△ABD 的外接圆⊙O 1上,因此22150DI O ∠=.由于12118090,2I DI ∠=⨯=而22111212906030I DO I DO I DI O DO ∠+∠=∠-=-=,比较可得1122I O D I DO ∠=∠.在△O 1I 1D 与△DI 2O 2中,因为已证O 1D=DO 2,1122150,O I D DI O ∠=∠=又1122.I O D I DO ∠=∠因此 △O 1I 1D ≌△DI 2O 2.因此,I 1O 1=DI 2,DI 1= I 2O 2.由于1290,I DI ∠=△I 1DI 2是直角三角形.依照勾股定理,有()()()2221212,DI DI I I +=而I 1O 1=DI 2,DI 1=I 2O 2. 因此()()()222112212.I O I O I I +=三、(总分值15分)n 是正整数,记n !=1×2×3×…×n ,如1!=1,2!=1×2=2,3!= 1×2×3=6,又记[a ]表示不超过a 的最大整数,求方程120111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的所有正整数解.解1:由于当x 是正整数时,[]1!x x ⎡⎤=⎢⎥⎣⎦,2!2x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦≥12x -,3!6x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦>6x –1,因此1126x x x -++-<2020即53x <120122,得方程的正整数解x 知足0<x <. 由于6!=720,7!=5040,因此方程的正整数解x <7!,即07!8!9!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. 因此,方程20111!2!3!4!5!6!x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的解与原方程的解是一样的.设小于7!的正整数x 为上述方程的解,咱们写出(1,2,3,4,5,6)!xk k =的带余除法表达式:设16!6!r x a =+,0≤r 1<6!,(0≤a ≤6,a ∈N );因此.6!x a ⎡⎤=⎢⎥⎣⎦① 12665!5!5!r r x a a b =+=++,0≤r 2<5!,(0≤b ≤5,b ∈N ),因此65!x a b ⎡⎤=+⎢⎥⎣⎦. ② 323053054!4!4!r r xa b a b c =++=+++,0≤r 3<4!,(0≤c ≤4,c ∈N ), 因此3054!x a b c ⎡⎤=++⎢⎥⎣⎦. ③341202*********!3!3!r r xa b c a b c d =+++=++++,0≤r 4<3!,(0≤d ≤3,d ∈N ); 因此1202043!x a b c d ⎡⎤=+++⎢⎥⎣⎦. ④5436060123360601232!2!2!r r xa b c d a b c d e =++++=+++++,0≤r 5<2, (e =0,1,2);因此360601232!x a b c d e ⎡⎤=++++⎢⎥⎣⎦. ⑤5720120246272012024621!1!r xa b c d e a b c d e f =+++++=+++++,(f =0,1); 因此72012024621!x a b c d e f ⎡⎤=+++++⎢⎥⎣⎦. ⑥①~⑥相加得1237a +206b +41c +10d +3e +f =2020. 显然a =1,因此206b +41c +10d +3e +f =2020–1237=774; 易知b =3,因此41c +10d +3e +f =774–206×3=156; 易知c =3,于是10d +3e +f =156–41×3=33;类似求得d =3,e =1,f =0.所求的x =1×720+3×120+3×24+3×6+1×2+0×1=1172.x =1172是方程20111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的唯一正整数解. 解2:设f (x )=1!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,因为关于所有的正整数k ,!x k ⎡⎤⎢⎥⎣⎦都是单调增的,其和f (x )确实是增函数;又因为关于正整数x ,11!x +⎡⎤⎢⎥⎣⎦=1!x ⎡⎤⎢⎥⎣⎦+1,因此f (x )是严格单调的.经估数,将x =1172带入,求f (1172)的值,得f (1172)=2020,因此,x =1172是方程20111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的唯一正整数解.四、(总分值15分)平面上的n 个点,假设其中任3个点中必有2个点的距离不大于1,那么称如此的n 个点为“标准n 点组”.要使一个半径为1的圆纸片,对任意“标准n 点组”都能至少盖住其中的25个点,试求n 的最小值. 答案:49.解:第一证明,n min >48.在平面上画长为5的线段AB ,别离以A 、B 为圆心,画半径为的两个圆,在每一个圆内,取24个点,那么平面上有48个点满足题设条件(其中任意3点中必有2点的距离不大于1),显然,不可能画出一个半径为1的圆,其包括有25个所选的点,因此n >48.下面证明n min =49.若49=n ,设A 是其中的一点,作以A 为圆心半径为1的⊙A ,假设所有的点都在圆A 中,那么就知足题设条件.假设不是所有的点都在圆A 中,那么至少有一点B 不在圆A 中,再作以B 为圆心、半径为1的⊙B ,那么A 、B 的距离大于1(如右图),除A ,B 外,余下的47个点中每一点P 都与A 、B 组成3点组,必有两个点的距离不大于1,因此要么P A ≤1,要么PB ≤1,即点P 要么在⊙A 中,要么在⊙B 中,依照抽屉原理,必有一个圆至少包括了这47个点中的24个点,不妨设那个圆确实是⊙A ,再加上圆心A 点,就有很多于25个点在那个半径为1的⊙A 中(圆内或圆周上).因此n 的最小值是49.五、(总分值15分)已知函数f :R →R ,使得对任意实数x y z ,,都有11()()()()22f xy f xz f x f yz +-≥14, 求[1×f (1)]+[2×f (2)]+[3×f (3)]+…+[2020×f (2020)]的值.其中关于实数a ,[a ]表示不超过a 的最大整数.解:由于已知函数f R R →:,使得对任意实数x y z ,,都知足11()()()()22f xy f xz f x f yz +-≥14,可令0x y z ===,有 ()211(0)(0)(0)22f f f +-≥14,即21(0)2f ⎛⎫- ⎪⎝⎭≤0, 由于f (0)是一个实数,因此1(0).2f =再令1x y z ===,有()211(1)(1)(1)22f f f +-≥14,即21(1)2f ⎛⎫- ⎪⎝⎭≤0, 由于f (1)是一个实数,因此1(1).2f =又令0y z ==,有11(0)(0)()(0)22f f f x f +-≥14,代入1(0)2f =得对任意实数x ,都有()f x ≤12. ①又令1y z ==,有11()()()(1)22f x f x f x f +-≥14,代入1(1)2f =得对任意实数x ,都有()f x ≥12. ②综合①、②可得,对任意实数x ,都有1()2f x =.验证:函数1()2f x =知足题设条件,取的是等号,因此知足题设条件的函数的唯一解为1()2f x =.于是[][][][]1(1)2(2)3(3)2011(2011)f f f f ⨯+⨯+⨯++⨯1234201122222⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦011223310051005=+++++++++()21231005=⨯++++(11005)1005=+⨯.1011030。

2020北京高一数学竞赛试题及参考解答

2020北京高一数学竞赛试题及参考解答

2020年北京市中学生数学竞赛(邀请)高一年级试题及参考解答2020年6月 27日 8:30~10:30一、填空题(满分40分,每小题8分)1.已知实函数f (x )满足f (x +y )=f (x )+f (y )+4xy ,且f (−1)·f (1)≥4.则29()3f -=______.解:令x =y =0得f(0)=0,令x =−1,y =1,得f (1)+f (−1)=4. 平方得f 2(1)+2f (1)·f (−1)+f 2(−1)=16,又因为f (−1)·f (1)≥4,所以f 2(1)+2f (1)·f (−1)+f 2(−1)≤4f (1)·f (−1).即(f (1)−f (−1))2≤0. 所以f (1)=f (−1)=2.因为)32)(31(4)32()31()32(31)1(--⋅+-+-=⎪⎭⎫ ⎝⎛-+-=-f f f f1118=3()4()()3339f , 所以 .234)31(3=+-f 因此.92)31(=-f所以.9894)31(2)32(=+-=-f f 于是29()3f -=8.2.等腰梯形ABCD (AB =CD )的内切圆与腰CD 的切点为M ,与AM 、BM 的交点分别为K 和L .则AM BMAK BL+的值等于______. 解:设N 是边AD 的中点,a =AN ,x =AK ,y =AM ,α=∠ADM ,(如图).则ND=DM=a ,且根据余弦定理,对于△ADM ,有y 2=4a 2+a 2−4a 2cos α=a 2(5−4cos α).另一方面,根据切割线定理,有xy=a 2,所以2AM y y AK x xy===5−4cos α. 类似地对于△BCM ,得到54cos .BMBLα=+ 因此,10.AM BMAK BL+= CBD ANLK ayαMx3.四位数abcd 比它的各位数字的平方和大2020,在所有这样的四位数中最大的一个是______.解: 设abcd 为所求的自然数,则根据条件1000a +100b +10c +d =a 2+b 2+c 2+d 2+2020.考虑到 2000<a 2+b 2+c 2+d 2+2020≤92+92+92+92+2020=2344, 可以断定a =2,于是100b +10c +d =b 2+c 2+d 2+24. 即 b (100−b )+c (10−c )=d (d −1)+24 (*)由于c (10−c )>0,当b ≥1时,b (100−b )≥99,所以(*)式左边大于99,而(*)式右边小于9×8+24=96,因此要(*)式成立,必须b =0. 当b =0时,(*)式变为 d 2−d =10c −c 2−24.由于四位数abcd 中a =2,b =0,要使20cd 最大,必需数字c 最大.若c =9,c 2−c −24=90−92−24<0,而d 2−d ≥0故(*)式不能成立.同理,c =8和c =7时,(*)式均不能成立.当c =6时,c 2−c −24=60−62−24=0,这时,d =0及d =1,均有d 2−d =0,即(*)式均成立.于是abcd =2060或2061.所以满足题设条件的四位数中最大的一个是2061.4.已知点O 在△ABC 内部,且2021202020193AB BC CA AO ++=,记△ABC的面积为S 1,△OBC 的面积为S 2,则12SS =______.解:由2021202020193AB BC CA AO ++=,得22019()3AB BC AB BC CA AO ++++=,因为0AB BC CA ++=,所以23AB BC AO +=,故23AB AC AB AO +-=. 所以3AB AC AO +=,取BC 的中点D ,则23AD AO =.于是A 、D 、O 三点共线,且3AD OD =.所以123S ADS OD==.5.有4个不同的质数a , b , c , d ,满足a +b +c +d 是质数,且a 2+bc 、a 2+bd 都是完全平方数,那么a +b +c +d = ______.解:由a +b +c +d 是质数,可知a , b , c , d 中有2.如果a ≠2,那么b , c , d 中有2,从而a 2+bc 、a 2+bd 中有一个模4余3,不是完全平方数.故a =2.假设22+bc =m 2,那么bc =(m −2)(m +2).如果m −2=1,那么m =3,bc =5,与已知矛盾.故不妨设b =m −2,c =m +2,则c =b +4.同理d =b −4,所以{a , b , c , d }={a , b , b +4, b −4}.而b −4, b , b +4中有一个是3的倍数,又是质数,所以只能是b −4=3,此时a +b +c +d =2+3+7+11=23.二、(满分15分)面积为S 1,S 2,S 3,S 4,S 5,S 6的正方形位置如图所示.求证:S 4+S 5+S 6=3(S 1+S 2+S 3).证明:见右图:AKLB ,BMNC ,ACPQ 都是正方形,对应的面积为S 1、S 2和S 3.设,,βα=∠=∠ABC BAC .γ=∠ACB因为,,,321S AC S BC S AB === 则根据余弦定理,有αcos 232321S S S S S -+= βcos 231312S S S S S -+=γcos 221213S S S S S -+=由此,.cos 2cos 2cos 2321213132S S S S S S S S S ++=++γβα ①又因为 ,180,180,180γβα-=∠-=∠-=∠ NCP LBM QAK 以及,,,465S NP S LM S QK === 则有αcos 231315S S S S S ++= ②βcos 221216S S S S S ++= ③γcos 232324S S S S S ++= ④由等式①~④得 S 4+S 5+S 6=3(S 1+S 2+S 3).三、(满分15分)存在2020个不是整数的有理数,它们中任意两个的乘积都是整数吗?如果存在,请给出例证,如果不存在,请说明理由.解:存在. 例证如下:因为质数有无限多个,所以任选2020个两两不同的质数122020,,,p p p ,构造2020个两两不同的数:1220202iip p p x p,i =1, 2, 3, …, 2020.易知,因为122020,,,x x x 的分子不被分母整除,皆为不是整数的有理数.而任意两个数的乘积12202012202022i ii jp p p p p p x x p p2222222222122020121111202022ii j ji jp p p p p p p p p p p p . 这2018个质数平方的乘积是整数,满足题意要求.ABCMI 1 I 2 • • D FE 四、(满分15分)如图,已知D 为等腰△ABC 底边BC 上任一点,⊙I 1、⊙I 2分别为△ABD 、△ACD 的内切圆,M 为BC 的 中点.求证:I 1M ⊥I 2M .证明: (1)当D 与M 重合时,显然有 ∠I 1MI 2=90°,即I 1M ⊥I 2M .(2)当D 不与M 重合时,不妨设BD >DC , 过I 1作I 1E ⊥BC 于点E ,过I 2作I 2F ⊥BC 于点F ,连结I 1D ,I 2D ,I 1I 2.因为⊙I 1为△ABD 的内切圆,⊙I 2为△ACD 的内切圆,所以2AB BD AD BE +-=,2DC AD ACDF +-=所以,EM =BM −BE=22BC AB BD AD +--()2BC BD AD AB -+-=.2DF ACAD DC =-+= 进而有 ED=MF .因为I 1、I 2分别为△ABD 、△ACD 的 内心,易知∠I 1DI 2=90°. 由勾股定理得 I 1D 2+I 2D 2=I 1I 22.(*)在Rt △I 1DE 与Rt △DI 2F 中,由勾股定理得I 1E 2+ED 2=I 1D 2,I 2F 2+DF 2=I 2D 2,代入(*)式,得(I 1E 2+ED 2)+(I 2F 2+DF 2)= I 1I 22.注意EM=DF ,ED=MF 代换得(I 1E 2+MF 2)+(I 2F 2+EM 2)= I 1I 22.即 (I 1E 2+EM 2)+(I 2F 2+MF 2)= I 1I 22. 所以 I 1M 2+I 2M 2=I 1I 22.根据勾股定理的逆定理,有△I 1MI 2为直角三角形,∠I 1MI 2=90°,即I 1M ⊥I 2M .五、(满分15分)将集合I ={1, 2, 3, 4, 5, 6, 7, 8, 9}划分为两个子集A ={a , b , c , d , e }和B ={w , x , y , z },使得A ∪B =I ,A ∩B =Ø,且A 与B 的元素至少有一种排列组成的正整数满足2wxyz abcde ,则称A 与B 为集合I 的一个“两倍型2分划”.(1)写出集合I 的所有“两倍型2分划”,并给出理由;(2)写出集合I 的每个“两倍型2分划”对应的所有可能的2wxyz abcde .解:(1)集合I 共有2个“两倍型2分划”:A ={1, 3, 4, 5, 8},B ={2, 6, 7, 9}及A ={1, 4, 5, 6, 8},B ={2, 3, 7, 9}.理由简述如下:1° 由易知,a =1,所以a ∈A .ABCD MI 1 I 2• •2° 由0∉ I ={1, 2, 3, 4, 5, 6, 7, 8, 9}=A ∪B ,而5×2=10,所以5∈A . 3° 试验知,a , b , c , d , e 均不能等于9,所以9∈B ,进而有8∈A .4° 因为数wxyz abcde 和的9个数字和恰为1+2+3+4+5+6+7+8+9=45是9的倍数,可判知+abcde wxyz 是9的倍数,即+abcde wxyz ≡0(mod9).又2wxyz abcde ,所以3wxyz ≡0(mod9).于是wxyz ≡0(mod3).所以)(wxyz S 是3的倍数,进而推得)(abcde S 也是3的倍数.5° 同样试验可判定7∈B .此时分配剩下的4个元素:2, 3, 4, 6.由于A 中的1+5+8=14,被3除余2,所以从2, 3, 4, 6中选出的两个数之和被3除余1.于是只能选3, 4或4, 6属于A ,对应剩下的2, 6或2, 3归属于B .因此,找到集合I 的两个“两倍型2分划”:A ={1, 3, 4, 5, 8},B ={2, 6, 7, 9}及A ={1, 4, 5, 6, 8},B ={2, 3, 7, 9}. (2)集合I 的“两倍型2分划”满足的不同的2wxyz abcde 共12个.1° 当B={2, 6, 7, 9}时,得到6个不同的式子:6729×2=13458, 6792×2=13584, 6927×2=13854, 7269×2=14538, 7692×2=15384, 9267×2=18534. 2° 当B={2, 3, 7, 9}时,得到6个不同的式子:7293×2=14586, 7329×2=14658, 7923×2=15846, 7932×2=15864, 9273×2=18546, 9327×2=18654.。

2016年北京市中学生数学竞赛高一年级复赛试题及解答_

2016年北京市中学生数学竞赛高一年级复赛试题及解答_

圆 O1,半 圆 O2,形 成 的 阴
图5
影图形称作“皮匠刀形”,过 C 的AB 的垂线交大
半圆于 D,两个小 半 圆 的 外 公 切 线 是 EF.求 证:
CD=EF.
证 明 如 图 6,设 O1C=a,CO2 =b,则 AB
=2a+2b.
知 CD2=AC×CB,
图6
所 以,CD2 =2a×2b
=4ab

连接 O1E,O2F,过 O2 作 EF 的 平 行 线 交
O1E 于P,易知△O1O2P 中,∠O2PO1=90°,O1P
=a-b,O1O2=a+b,
故 EF2=O2P2=O1O22-O1P2 = (a+b)2 -
(a-b)2=4ab

由①、②得 CD2=EF2,所以 CD=EF.
三、(满分10分)在黑板 上 写 有 方 程 x2+2x
答 10108.
解 构 造 一 个 函 数 g(x)=x f(x)-1, 则 g(1)=g(2)= … =g(2015)=0. 所 以 g(x)=a(x-1)(x-2)… (x-2015), 其中g(x)中的系数a 是一个待定常数. 由f(x)=g(xx)+1=a(x-1)(x-2)x…(x-2015)+1
于点 B、C,PO 交 ⊙O 于
点 D,AE⊥PO 于 E,联
结 BE 并 延 长 交 ⊙O 于
图3
点F,联 结 OC、OF、AD、
AF.若∠BCO=30°,∠BFO=20°.确 定 ∠DAF
的度数.
答 115°.
解 如 图 4,连 结
OA,CD,CF,因 为 PA 切
⊙O 于 点 P,所 以 OA ⊥
答 {1980}. 解 显然x<2016,不 难 见 到,小 于 2016 的 自然数中数字和最 大 为 28,如 S(1999)=28,这 意味着S(x)≤28,进 一 步 S(S(x))≤S(19)= 10,最 后 S(S(S(x)))≤9. 由 方 程 得 出 x=2016-S(x)-S(S(x))-S (S(S(x)))≥2016-28-10-9=1969, 所 以 x∈ {1969,1970,…,2015};另 外,x, S(x),S(S(x)),S(S(S(x)))被 9 除 的 余 数 相 同,而2016被9除 的 余 数 为 0,所 以 每 个 数 被 9 除 的 余 数 为 0.因 此 x 只 可 能 在 1971,1980, 1989,1998 和 2007 中.经 检 验 得 只 有 1980+18 +9+9=2016,所 以 方 程 的 解 集 为 {1980}. 2.如图 1 所 示,⊙O 与 正 方 形 ABCD 的 边 AB 和AD 分别切于点L 和 K ,交边 BC 于点 M 和P,BM=8厘米,MC=17厘米.问⊙O 的 面 积 是多少平方厘米? 答 1 的 半 径 OK ,OL 和

2020年北京市中学生数学竞赛高一年级试题(含答案)

2020年北京市中学生数学竞赛高一年级试题(含答案)

2020年北京市中学生数学竞赛高一年级试题2020年6月 27日8:30~10:30一、填空题(满分40分,每小题8分)1.已知实函数f (x )满足f (x +y )=f (x )+f (y )+4xy ,且f (−1)·f (1)≥4.则293f ⎛⎫-= ⎪⎝⎭______. 2.等腰梯形ABCD (AB =CD )的内切圆与腰CD 的切点为M ,与AM 、BM 的交点分别为K 和L .则AM BM AK BL+的值等于______. 3.四位数abcd 比它的各位数字的平方和大2020,在所有这样的四位数中最大的一个是______.4.已知点O 在△ABC 内部,且2021202020193AB BC CA AO ++=,记△ABC 的面积为S 1,△OBC 的面积为S 2,则12S S =______. 5.有4个不同的质数a , b , c , d ,满足a +b +c +d 是质数,且a 2+bc 、a 2+bd 都是完全平方数,那么a +b +c +d = ______.二、(满分15分)面积为S 1,S 2,S 3,S 4,S 5,S 6的正方形位置如右图所示.求证:S 4+S 5+S 6=3(S 1+S 2+S 3).三、(满分15分)存在2020个不是整数的有理数,它们中任意两个的乘积都是整数四、(满分15分)如右图,已知D 为等腰△ABC BC 上任一点,⊙I 1、⊙I 2分别为△ABD 、△ACD 内切圆,M 为BC 的中点.求证:I 1M ⊥I 2M .五、(满分15分)将集合I ={1, 2, 3, 4, 5, 6, 7, 8, 9}B ={w , x , y , z },使得A ∪B =I ,A ∩B =Ø,且A 与B 的元素至少有一种排列组成的正整数满足2wxyz abcde ,则称A 与B 为集合I 的一个“两倍型2分划”.(1)写出集合I 的所有“两倍型2分划”,并给出理由;(2)写出集合I 的每个“两倍型2分划”对应的所有可能的2wxyz abcde .2020年北京市中学生数学竞赛(邀请)高一年级试题及参考解答2020年6月 27日8:30~10:30一、填空题(满分40分,每小题8分)1.已知实函数f (x )满足f (x +y )=f (x )+f (y )+4xy ,且f (−1)·f (1)≥4.则29()3f -=______. 解:令x =y =0得f (0)=0,令x =−1,y =1,得f (1)+f (−1)=4.平方得f 2(1)+2f (1)·f (−1)+f 2(−1)=16,又因为f (−1)·f (1)≥4,所以f 2(1)+2f (1)·f (−1)+f 2(−1)≤4f (1)·f (−1).即(f (1)−f (−1))2≤0.所以f (1)=f (−1)=2. 因为)32)(31(4)32()31()32(31)1(--⋅+-+-=⎪⎭⎫ ⎝⎛-+-=-f f f f 1118=3()4()()3339f , 所以 .234)31(3=+-f 因此.92)31(=-f 所以.9894)31(2)32(=+-=-f f 于是29()3f -=8.2.等腰梯形ABCD (AB =CD )的内切圆与腰CD 的切点为M ,与AM 、BM 的交点分别为K 和L .则AM BM AK BL+的值等于______. 解:设N 是边AD 的中点,a =AN ,x =AK ,y =AM ,α=∠ADM ,(如图).则ND=DM=a ,且根据余弦定理,对于△ADM ,有y 2=4a 2+a 2−4a 2cos α=a 2(5−4cos α). 另一方面,根据切割线定理,有xy=a 2,所以 2AM y y AK x xy ===5−4cos α. 类似地对于△BCM ,得到54cos .BM BLα=+ 因此,10.AM BM AK BL+= C BD A LK a y αMx3.四位数abcd 比它的各位数字的平方和大2020,在所有这样的四位数中最大的一个是______.解: 设abcd 为所求的自然数,则根据条件1000a +100b +10c +d =a 2+b 2+c 2+d 2+2020.考虑到 2000<a 2+b 2+c 2+d 2+2020≤92+92+92+92+2020=2344,可以断定a =2,于是100b +10c +d =b 2+c 2+d 2+24.即 b (100−b )+c (10−c )=d (d −1)+24 (*)由于c (10−c )>0,当b ≥1时,b (100−b )≥99,所以(*)式左边大于99,而(*)式右边小于9×8+24=96,因此要(*)式成立,必须b =0.当b =0时,(*)式变为 d 2−d =10c −c 2−24. 由于四位数abcd 中a =2,b =0,要使20cd 最大,必需数字c 最大.若c =9,c 2−c −24=90−92−24<0,而d 2−d ≥0故(*)式不能成立.同理,c =8和c =7时,(*)式均不能成立.当c =6时,c 2−c −24=60−62−24=0,这时,d =0及d =1,均有d 2−d =0,即(*)式均成立. 于是abcd =2060或2061.所以满足题设条件的四位数中最大的一个是2061.4.已知点O 在△ABC 内部,且2021202020193AB BC CA AO ++=,记△ABC的面积为S 1,△OBC 的面积为S 2,则12S S =______. 解:由2021202020193AB BC CA AO ++=,得22019()3AB BC AB BC CA AO ++++=,因为0AB BC CA ++=,所以23AB BC AO +=,故23AB AC AB AO +-=. 所以3AB AC AO +=,取BC 的中点D ,则23AD AO =.于是A 、D 、O 三点共线,且3AD OD =.所以123S AD S OD==.5.有4个不同的质数a , b , c , d ,满足a +b +c +d 是质数,且a 2+bc 、a 2+bd 都是完全平方数,那么a +b +c +d = ______.解:由a +b +c +d 是质数,可知a , b , c , d 中有2.如果a ≠2,那么b , c , d 中有2,从而a 2+bc 、a 2+bd 中有一个模4余3,不是完全平方数.故a =2.假设22+bc =m 2,那么bc =(m −2)(m +2).如果m −2=1,那么m =3,bc =5,与已知矛盾.故不妨设b =m −2,c =m +2,则c =b +4.同理d =b −4,所以{a , b , c , d }={a , b , b +4, b −4}.而b −4, b , b +4中有一个是3的倍数,又是质数,所以只能是b −4=3,此时a +b +c +d =2+3+7+11=23.二、(满分15分)面积为S 1,S 2,S 3,S 4,S 5,S 6的正方形位置如图所示.求证:S 4+S 5+S 6=3(S 1+S 2+S 3).证明:见右图:AKLB ,BMNC ,ACPQ 都是正方形,对应的面积为S 1、S 2和S 3.设,,βα=∠=∠ABC BAC .γ=∠ACB 因为,,,321S AC S BC S AB === 则根据余弦定理,有αcos 232321S S S S S -+=βcos 231312S S S S S -+=γcos 221213S S S S S -+= 由此,.cos 2cos 2cos 2321213132S S S S S S S S S ++=++γβα ①又因为 ,180,180,180γβα-=∠-=∠-=∠ NCP LBM QAK 以及,,,465S NP S LM S QK === 则有αcos 231315S S S S S ++= ②βcos 221216S S S S S ++= ③ γcos 232324S S S S S ++= ④由等式①~④得 S 4+S 5+S 6=3(S 1+S 2+S 3).三、(满分15分)存在2020个不是整数的有理数,它们中任意两个的乘积都是整数吗?如果存在,请给出例证,如果不存在,请说明理由.解:存在. 例证如下:因为质数有无限多个,所以任选2020个两两不同的质数122020,,,p p p ,构造2020个两两不同的数: 1220202ii p p p x p ,i =1, 2, 3, …, 2020. 易知,因为122020,,,x x x 的分子不被分母整除,皆为不是整数的有理数.而任意两个数的乘积 12202012202022i i i j p p p p p p x x p p 2222222222122020121111202022ii j j i j p p p p p p p p p p p p . 这2018个质数平方的乘积是整数,满足题意要求.A B C I 1 I 2 • • F 四、(满分15分)如图,已知D 为等腰△ABC 底边BC 上任一点,⊙I 1、⊙I 2分别为△ABD 、△ACD 的内切圆,M 为BC 的中点.求证:I 1M ⊥I 2M .证明: (1)当D 与M 重合时,显然有∠I 1MI 2=90°,即I 1M ⊥I 2M .(2)当D 不与M 重合时,不妨设BD >DC , 过I 1作I 1E ⊥BC 于点E ,过I 2作I 2F ⊥BC 于点F ,连结I 1D ,I 2D ,I 1I 2.因为⊙I 1为△ABD 的内切圆,⊙I 2为△ACD 的内切圆,所以 2AB BD AD BE +-=,2DC AD AC DF +-= 所以,EM =BM −BE=22BC AB BD AD +--()2BC BD AD AB -+-=.2DF AC AD DC =-+= 进而有 ED=MF .因为I 1、I 2分别为△ABD 、△ACD 的内心,易知∠I 1DI 2=90°. 由勾股定理得I 1D 2+I 2D 2=I 1I 22.(*)在Rt △I 1DE 与Rt △DI 2F 中,由勾 股定理得I 1E 2+ED 2=I 1D 2,I 2F 2+DF 2=I 2D 2,代入(*)式,得(I 1E 2+ED 2)+(I 2F 2+DF 2)= I 1I 22.注意EM=DF ,ED=MF 代换得(I 1E 2+MF 2)+(I 2F 2+EM 2)= I 1I 22.即 (I 1E 2+EM 2)+(I 2F 2+MF 2)= I 1I 22.所以 I 1M 2+I 2M 2=I 1I 22.根据勾股定理的逆定理,有△I 1MI 2为直角三角形,∠I 1MI 2=90°,即I 1M ⊥I 2M .五、(满分15分)将集合I ={1, 2, 3, 4, 5, 6, 7, 8, 9}划分为两个子集A ={a , b , c , d , e }和B ={w , x , y , z },使得A ∪B =I ,A ∩B =Ø,且A 与B 的元素至少有一种排列组成的正整数满足2wxyz abcde ,则称A 与B 为集合I 的一个“两倍型2分划”.(1)写出集合I 的所有“两倍型2分划”,并给出理由;(2)写出集合I 的每个“两倍型2分划”对应的所有可能的2wxyz abcde . 解:(1)集合I 共有2个“两倍型2分划”:A ={1, 3, 4, 5, 8},B ={2, 6, 7, 9}及A ={1, 4, 5, 6, 8},B ={2, 3, 7, 9}.理由简述如下:1° 由易知,a =1,所以a ∈A . A B C I 1 I 2 • •2° 由0∉ I ={1, 2, 3, 4, 5, 6, 7, 8, 9}=A ∪B ,而5×2=10,所以5∈A .3° 试验知,a , b , c , d , e 均不能等于9,所以9∈B ,进而有8∈A .4° 因为数wxyz abcde 和的9个数字和恰为1+2+3+4+5+6+7+8+9=45是9的倍数,可判知+abcde wxyz 是9的倍数,即+abcde wxyz ≡0(mod9). 又2wxyz abcde ,所以3wxyz ≡0(mod9).于是wxyz ≡0(mod3).所以)(wxyz S 是3的倍数,进而推得)(abcde S 也是3的倍数.5° 同样试验可判定7∈B .此时分配剩下的4个元素:2, 3, 4, 6.由于A 中的1+5+8=14,被3除余2,所以从2, 3, 4, 6中选出的两个数之和被3除余1.于是只能选3, 4或4, 6属于A ,对应剩下的2, 6或2, 3归属于B .因此,找到集合I 的两个“两倍型2分划”:A ={1, 3, 4, 5, 8},B ={2, 6, 7, 9}及A ={1, 4, 5, 6, 8},B ={2, 3, 7, 9}.(2)集合I 的“两倍型2分划”满足的不同的2wxyz abcde 共12个.1° 当B={2, 6, 7, 9}时,得到6个不同的式子:6729×2=13458, 6792×2=13584, 6927×2=13854,7269×2=14538, 7692×2=15384, 9267×2=18534.2° 当B={2, 3, 7, 9}时,得到6个不同的式子:7293×2=14586, 7329×2=14658, 7923×2=15846,7932×2=15864, 9273×2=18546, 9327×2=18654.。

2021年北京市中学生数学竞赛复赛(高一)试题答案和解析

2021年北京市中学生数学竞赛复赛(高一)试题答案和解析

2021年北京市中学⽣数学竞赛复赛(⾼⼀)试题答案和解析2009年北京市中学⽣数学竞赛复赛(⾼⼀)试题学校:___________姓名:___________班级:___________考号:___________⼀、填空题1.已知a 和b 都是单位向量,并且向量2c a b =+与54d a b =-互相垂直.则a 和b 的夹⾓,=<>a b ______.2.1cos 290+?______. 3.如图,过O 外⼀点M 引圆的切线切O 于点B ,联结MO 交O 于点A ,已知4MA =,MB =N 为弧AB 的中点.则曲边三⾓形(阴影⾯积)的⾯积等于______.4的值是______.5.在平⾯直⾓坐标系中,不论m 取何值时,抛物线()()22132y mx m x m =++-+都不通过的直线1y x =-+上的点的坐标是______(写出全部符合条件点的坐标).⼆、解答题6.Rt ABC ?内切圆的半径为r ,直⾓的⾓平分线的长为t .求证:Rt ABC ?的两条直⾓边的长a 、b 是关于x 的⼀元⼆次⽅程()22220t x x tr -+-=的根. 7.求函数:N N f ++→,使得(1)()11f =;(2)对于所有的N x y +∈、,()()()f x y f x f y xy +=++都成⽴.8.如图,在ABCD 中,BAD ∠的平分线与BC 交于点M 、与DC 的延长线交于点N ,CMN ?的外接圆O 与CBD ?的外接圆的另⼀交点为K .证明:(1)点O 在CBD ?的外接圆上;(2)90AKC ∠=?.9.证明:任给7个实数,其中必存在两个实数x 、y 满⾜013x y xy -≤<+.参考答案1.3π【解析】【详解】设a 和b 的夹⾓,a b θ=.则根据向量垂直的条件得()()220=254=51048c d a b a b a a b a b b ?=+?-+?-?-=56cos 86cos 3θθ+-=-.由此1cos 2θ=.所以=3πθ. 2【解析】【详解】11cos290cos70+-??=4sin 70303?-?= 3.48.3π-【解析】【详解】根据条件,延长MO 交O 于点C .设O 的半径为r .则42MC r =+.由切割线定理得2MB MA MC =?,即 48 ()=442r +.解得 4.r =所以, 4.OC OA AM ===联结OB .在Rt OBM ?中,sin 60MB MOB MOB OM ∠===?∠=?.因此,弧AB 的度数为60?,⽽N 为弧AB 的中点,则弧AN 的度数为30?.联结ON .则30MON ∠=?.从⽽,111sin30=848.222MON S OM ON ?== ⽽扇形AON 的⾯积为23044=.3603ππ?? 故阴影图形的⾯积为48.3π- 4.4【解析】【详解】.x两边⽴⽅并整理得36400.x x --=观察知,4是⽅程的⼀个根.所以,()()244100.x x x -++= 由2=4410=240?-?-<,知⽅程24100x x ++=⽆实根.故⽅程36400x x --=只有唯⼀的实根 4.x =5.()()311034.22??--,,,,,【解析】【详解】由()()()()()22132312y mx m x m m x x x =++-+=+-+- 可知,抛物线⼀定过点()()1,13,5.A B ---、过点A B 、分别作y 轴的平⾏线交直线1y x =-+于点()()1,03,4.C D 、-过点A B 、的直线1y x =-+交于点31,22E ??-.则C D E 、、三点满⾜条件.6.()22220.t x x tr -+-=【解析】【详解】如图,设Rt ABC ?中,90C ∠=?,,,AB c AC b CB a ===,内切圆的圆⼼为O .联结OA OB 、.则1.2ABC S ab ?= ①⼜()11=sin45sin45.22ABC ADC BDC S S S bt at a b =+?+?+ 故().ab a b =+ ②⽽()12ABC OBC OAC OAB S S S S r a b c =++=++ ()()()21=2=.2r a b c b r r a b r a b r r +++-+-=+- 与式①⽐较得()222.ab a b r r =+- ③联⽴式②、③得22a b ab +== 据韦达定理知,以,a b 为根的⼀元⼆次⽅程为222x x =,即()22220.t x x tr -+-=7.见解析【解析】【详解】设函数:N N f ++→满⾜题设条件.对于正整数n k 、有()()()()21.f k n f kn f n kn +=++ 令1,2,,1k m =-并相加得()()()()()221121=2m m f mn mf n m n mf n n -??=++++-+??,对所有的正整数m n 、都成⽴.特别地,当1n =时,()()1.2m m f m += ①式①定义了在正整数集合上的函数.f经检验,()()12m m f m +=是问题的唯⼀解.由函数的解析式可知函数满⾜题中的结论(1)(2).8.(1)见解析;(2)见解析【解析】【详解】(1)如图,由题设知.BMA MAD BAM ∠=∠=∠因此,.BA BM =同理,.MC CN =联结OC .则OC 平分.NCM ∠联结OB OM OD 、、.设.BAD θ∠=则()1=180=9022COD BCD OCM θθθ∠=∠+∠+?-?+, 180=18090.2BMO OMC OCM θ∠=?-∠?-∠=?+因此,.BMO OCD ∠=∠故OBM ? ≌ ODC ?.从⽽,.OBC ODC ∠=∠于是,B O C D 、、、四点共圆,也就是点O 在CBD ?的外接圆上.(2)由(1)知.OB OD =⼜KO OC =,由B K O C 、、、和D 都在同⼀个圆上,则点K C 、关于BD 的中垂线对称,且.BK CD AB ==⼜因KBD CDB ABD ∠=∠=∠,所以,点K 与A 是关于BD 的对称点,即.AK BD ⊥⼜因KC BD ,所以,AK KC ⊥,即90.AKC ∠=?9.见解析【解析】【详解】设7个实数分别为127tan tan tan θθθ,,,,且不妨设127ππ22θθθ-<≤≤≤<. 将区间ππ,22??- 平均分成6个⼦区间:ππππππππππ,,,00,,,2336666333,,,,,----- ? ? ? ? ?. 由抽屉原理,上述7个()17i i θ≤≤中必有某两个数在同⼀个⼦区间内,不妨设j θ、()116j j θ+≤≤在同⼀个⼦区间内.因1π06j j θθ+≤-<,所以,()1π 0tan tan 63j j θθ+≤-<=,即11tan tan 01tan tan j jj j θθθθ++-≤<+?. 记1tan ,tan j j x y θθ+==,即得所要证的不等式.。

北京市中学生数学竞赛高一级复赛参考解答

北京市中学生数学竞赛高一级复赛参考解答

2011年北京市中学生数学竞赛高一年级复赛参考解答一、选择题(满分40分,每小题8分,将答案写在下面相应的空格中)题 号 1 234 5答 案1341314- 623 2.-+-100530171.二次三项式x 2+ax +b 的根是实数,其中a 、b 是自然数,且ab =22011,则这样的二次三项式共有 个.答:1341.我们发现,实际上,数a 和b 是2的非负整数指数的幂,即,a =2k ,b =22011–k ,则判别式Δ=a 2– 4b =22k – 422011–k =22k – 22013–k ≥0,得2k ≥2013–k ,因此k ≥32013=671,但k ≤2011,所以k 能够取2011–671+1=1341个不同的整数值.每个k 恰对应一个所求的二次三项式,所以这样的二次三项式共有1341个.2.如右图,在半径为1的圆O 中内接有锐角三角形ABC ,H 是△ABC 的垂心,角平分线AL 垂直于OH ,则BC = . 答:3.解:易知,圆心O 及垂心H 都在锐角三角形ABC 的内部,延长AO 交圆于N ,连接AH 并延长至H 1与BC 相交,连接CN ,在Rt △CAN 和Rt △AH 1B 中,∠ANC =∠ABC ,于是有∠CAN =∠BAH 1,再由AL 是△ABC 的角平分线,得∠1=∠2.由条件AP ⊥OH ,得AH=AO=1.连接BO 交圆于M ,连接AM 、CM 、CH ,可知AMCH 为平行四边形,所以CM=AH=AO =1,BM =2,因为△MBC 是直角三角形,由勾股定理得2221 3.BC =-=3.已知定义在R 上的函数f (x )=x 2和g (x )=2x +2m ,若F (x )=f (g (x )) – g (f (x ))的最小值为14,则m = .答:14-.解:由f (x )=x 2和g (x )=2x +2m ,得F (x )= f (g (x )) – g (f (x ))=(2x +2m )2–(2x 2+2m )=2x 2+8mx +4m 2–2m ,F (x )=2x 2+8mx +4m 2–2m 的最小值为其图像顶点的纵坐标ABCOHL MPNH 1 1 2()2222242(42)84284242m m m m m m m m ⨯⨯--=--=--⨯.由已知,21424m m --=,得21202m ⎛⎫+= ⎪⎝⎭,所以1.4m =-4.tan 37.5= . 答:6232-+-.解1:作Rt △ADB ,使得∠ADB =90º,AD =1,AB =2,则∠B =30º,BD =3.延长BD 到C ,使BC =2,则DC =23-.连接AC ,则∠ACB =(180º–30º)÷2=75º.作∠ACD 的平分线交AD 于E ,则∠ECD =37.5º.由于AC 2=AD 2+DC 2=1+(2–3)2=8–43,所以 ()2843621226262AC =-=-+=-=-.由三角形的角平分线定理,得AE AC ED DC=,于是AE ED AC DCED DC ++=,即()()()()1322162233221ED AD AD DC AC CD ====-++-+-+-,所以()()tan 37.53221EDDC==-+6232=-+-.解2:作等腰直角三角形ABC ,使∠C =90º,AC =BC =1,则AB =2. 作∠CAD =30º,则CD =33,AD =233,则∠DAB =15º. 作∠BAD 的平分线AE ,记CE =x ,则BE =1–x ,DE =x –33. 所以3132323x x --=,整理得 ()()213221623 2.3232x +-+===-+--+tan 37.562321CE xAC ===-+-. 5.设f (x ) =113xx+-,定义f 1(x ) = f (f (x )),f n (x )=f (f n –1(x )) (n =2, 3,…),f 2011(2011)= .答:10053017.AC D E B21 30º解:记01()()13x f x f x x +==-,则()111113()()1131313xx x f x f f x x x x++--===--+-⋅-; ()211113()()11313xx f x f f x x x x--+===-+⋅+;()3201()()()()13x f x f f x f x f x x +====-; 接下来有41()()f x f x =,52()()f x f x =,63()()f x f x =,…,f n (x )的表达式是循环重复的,以3项为一周期.所以,20113670111()()()13x f x f x f x x ⨯+-===+,20112011120101005(2011)13201160343017f -===+⨯.二、(满分15分)D 是正△ABC 的边BC 上一点,设△ABD 与△ACD 的内心分别为I 1,I 2,外心分别为O 1,O 2,求证:(I 1O 1)2+(I 2O 2)2=(I 1I 2)2. 证明:作以A 为中心、逆时针旋转60的变换(,60)R A ,使△ABD 到△ACD 1,由于∠ADC +∠AD 1C =∠ADC +∠ADB =180º,所以A 、D 、C 、D 1共圆,因此2O 是△AD 1C 的外心,也就是(,60)12R A O O −−−−→,因此AO 1=DO 1=AO 2=DO 2=O 1O 2,所以∠O 1AO 2=∠O 1DO 2=60º.由∠AO 1O 2+∠ACB =120º+60º=180º,O 1在△ACD 的外接圆⊙O 2上.由于111(180)6012012022AI D ABD ABD ∠=∠+-∠=+⨯=,所以I 1在⊙O 2上,因此11118018030150O I D O AD ∠=-∠=-=,111118015030I O D I DO ∠+∠=-=.同理可证,I 2在△ABD 的外接圆⊙O 1上,所以22150DI O ∠=.由于12118090,2I DI ∠=⨯=而22111212906030I DO I DO I DI O DO ∠+∠=∠-=-=,比较可得1122I O D I DO ∠=∠.在△O 1I 1D 与△DI 2O 2中,因为已证O 1D=DO 2,1122150,O I D DI O ∠=∠=又1122.I O D I DO ∠=∠因此 △O 1I 1D ≌△DI 2O 2.所以,I 1O 1=DI 2,DI 1= I 2O 2.由于1290,I DI ∠=△I 1DI 2是直角三角形.根据勾股定理,有()()()2221212,DI DI I I +=而I 1O 1=DI 2,DI 1=I 2O 2. 因此()()()222112212.I O I O I I +=三、(满分15分)n 是正整数,记n !=1×2×3×…×n ,如1!=1,2!=1×2=2, 3!= 1×2×3=6,又记[a ]表示不超过a 的最大整数,求方程ABCDO 1I 2I 1D 1O 220111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的所有正整数解.解1:由于当x 是正整数时,[]1!x x ⎡⎤=⎢⎥⎣⎦,2!2x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦≥12x -,3!6x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦>6x –1,所以1126x x x -++-<2011即53x <120122,得方程的正整数解x 满足0<x <1207.5. 由于6!=720,7!=5040,所以方程的正整数解x <7!,即07!8!9!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. 因此,方程20111!2!3!4!5!6!x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的解与原方程的解是一样的.设小于7!的正整数x 为上述方程的解,我们写出(1,2,3,4,5,6)!xk k =的带余除法表达式:设16!6!r x a =+,0≤r 1<6!,(0≤a ≤6,a ∈N );因此.6!x a ⎡⎤=⎢⎥⎣⎦① 12665!5!5!r r x a a b =+=++,0≤r 2<5!,(0≤b ≤5,b ∈N ),因此65!x a b ⎡⎤=+⎢⎥⎣⎦. ② 323053054!4!4!r r xa b a b c =++=+++,0≤r 3<4!,(0≤c ≤4,c ∈N ), 因此3054!x a b c ⎡⎤=++⎢⎥⎣⎦. ③341202*********!3!3!r r xa b c a b c d =+++=++++,0≤r 4<3!,(0≤d ≤3,d ∈N ); 因此1202043!x a b c d ⎡⎤=+++⎢⎥⎣⎦. ④5436060123360601232!2!2!r r xa b c d a b c d e =++++=+++++,0≤r 5<2, (e =0,1,2);因此360601232!x a b c d e ⎡⎤=++++⎢⎥⎣⎦. ⑤5720120246272012024621!1!r xa b c d e a b c d e f =+++++=+++++,(f =0,1); 因此72012024621!x a b c d e f ⎡⎤=+++++⎢⎥⎣⎦. ⑥①~⑥相加得1237a +206b +41c +10d +3e +f =2011. 显然a =1,因此206b +41c +10d +3e +f =2011–1237=774; 易知b =3,因此41c +10d +3e +f =774–206×3=156; 易知c =3,于是10d +3e +f =156–41×3=33;类似求得d =3,e =1,f =0.所求的x =1×720+3×120+3×24+3×6+1×2+0×1=1172.x =1172是方程20111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的唯一正整数解. 解2:设f (x )=1!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,因为对于所有的正整数k ,!x k ⎡⎤⎢⎥⎣⎦都是单调增的,其和f (x )就是增函数;又因为对于正整数x ,11!x +⎡⎤⎢⎥⎣⎦=1!x ⎡⎤⎢⎥⎣⎦+1,所以f (x )是严格单调的.经估数,将x =1172带入,求f (1172)的值,得f (1172)=2011,所以,x =1172是方程20111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的唯一正整数解.四、(满分15分)平面上的n 个点,若其中任3个点中必有2个点的距离不大于1,则称这样的n 个点为“标准n 点组”.要使一个半径为1的圆纸片,对任意“标准n 点组”都能至少盖住其中的25个点,试求n 的最小值. 答案:49.解:首先证明,n min >48.在平面上画长为5的线段AB ,分别以A 、B 为圆心,画半径为0.5的两个圆,在每一个圆内,取24个点,则平面上有48个点满足题设条件(其中任意3点中必有2点的距离不大于1),显然,不可能画出一个半径为1的圆,其包含有25个所选的点,所以n >48.下面证明n min =49.若49=n ,设A 是其中的一点,作以A 为圆心半径为1的⊙A ,若所有的点都在圆A 中,那么就满足题设条件.若不是所有的点都在圆A 中,则至少有一点B 不在圆A 中,再作以B 为圆心、半径为1的⊙B ,则A 、B 的距离大于1(如右图),除A ,B 外,余下的47个点中每一点P 都与A 、B 组成3点组,必有两个点的距离不大于1,所以要么P A ≤1,要么PB ≤1,即 点P 要么在⊙A 中,要么在⊙B 中,根据抽屉原理,必有一个圆至少包含了这47个点中的24个点,不妨设这个圆就是⊙A ,再加上圆心A 点,就有不少于25个点在这个半径为1的⊙A 中(圆内或圆周上).所以n 的最小值是49.五、(满分15分)已知函数f :R →R ,使得对任意实数x y z ,,都有11()()()()22f xy f xz f x f yz +-≥14, 求[1×f (1)]+[2×f (2)]+[3×f (3)]+…+[2011×f (2011)]的值.其中对于实数a ,[a ]表示不超过a 的最大整数.解:由于已知函数f R R →:,使得对任意实数x y z ,,都满足11()()()()22f xy f xz f x f yz +-≥14,可令0x y z ===,有 ()211(0)(0)(0)22f f f +-≥14,即21(0)2f ⎛⎫- ⎪⎝⎭≤0, 由于f (0)是一个实数,所以1(0).2f =再令1x y z ===,有()211(1)(1)(1)22f f f +-≥14,即21(1)2f ⎛⎫- ⎪⎝⎭≤0, 由于f (1)是一个实数,所以1(1).2f =又令0y z ==,有11(0)(0)()(0)22f f f x f +-≥14,代入1(0)2f =得对任意实数x ,都有()f x ≤12. ①又令1y z ==,有11()()()(1)22f x f x f x f +-≥14,代入1(1)2f =得对任意实数x ,都有()f x ≥12. ②综合①、②可得,对任意实数x ,都有1()2f x =.验证:函数1()2f x =满足题设条件,取的是等号,所以满足题设条件的函数的唯一解为1()2f x =.于是[][][][]1(1)2(2)3(3)2011(2011)f ff f ⨯+⨯+⨯++⨯ 1234201122222⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦011223310051005=+++++++++()21231005=⨯++++(11005)1005=+⨯1011030=.。

2021 年全国中学生数学奥林匹克竞赛(初赛)暨2021年全国高中数学联合竞赛一试试题

2021 年全国中学生数学奥林匹克竞赛(初赛)暨2021年全国高中数学联合竞赛一试试题

2021年全国中学生数学奥林匹克竞赛(初赛)暨2021年全国高中数学联合竞赛一试试题(A2卷)一、填空题:本大题共8小题,每小题8分,满分64分.1.若等比数列}{n a 满足2,33121=-=-a a a a ,则}{n a 的公比为.2.函数x x x f 22tan sin 2)(-=的最大值为.3.若圆锥的高为5,侧面积为π30,则该圆锥的体积为.4.在边长为1的正六边形的六个顶点中随机取出三个顶点,则这三点中有两点的距离为3的概率为.5.复数10021,,,z z z 满足:i 231+=z ,z z n =+1·i )99,,2,1( =n n (i 为虚数单位),则10099z z +的值为.6.定义域为R 的函数)(x f 满足:当)1,0[∈x 时,x x f x -=2)(,且对任意实数x ,均有1)1()(=++x f x f .记3log 2=a ,则表达式)3()2()(a f a f a f ++的值为.7.设集合}10,,3,2,1{ =S ,S 的子集A 满足∅≠}3,2,1{ A ,S A ≠}6,5,4{ ,这样的子集A 的个数为.8.在平面直角坐标系xOy 中,1Γ是以)1,2(为圆心的单位圆,2Γ是以)11,10(为圆心的单位圆.过原点O 作一条直线l ,使得l 与21,ΓΓ各有两个交点,将21,ΓΓ共分成四段圆弧,且这四段圆弧中有两段等长.所有满足条件的直线l 的斜率之和为.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)已知ABC ∆满足1cos cos ,2,1=+==C B AC AB ,求BC 边的长.10.(本题满分20分)在平面直角坐标系xOy 中,椭圆)0(1:2222>>=+Γb a by a x .设A 为Γ的一个长轴端点,B 为F 的一个短轴端点,F 为Γ的一个焦点.已知Γ上存在关于O 对称的两点Q P ,,使得2··AB FB FA FQ FP =+.)1(证明:焦点F 在AO 的延长线上;)2(求Γ的离心率的取值范围.11.(本题满分20分)设b a ,为实数,函数bx ax x x f ++=23)(.若存在三个实数321,,x x x 满足11321-≤≤+x x x ,且)()()(321x f x f x f ==,求b a 2+的最小值.金华一中高一数竞ZR。

2020年北京市中学生数学竞赛高一年级初赛试题及答案

2020年北京市中学生数学竞赛高一年级初赛试题及答案

2020年北京市中学生数学竞赛高一年级初赛试题及答案一、选择题(满分36分)1. 满足条件f(x2)=[f(x)]2的二次函数是A. f(x)=x2B. f(x)=ax2+5C. f(x)=x2+xD. -x2+20042. 在R上定义的函数y=sinx、y=sin2004、、中,偶函数的个数是A. 0B. 1C. 2D. 33. 恰有3个实数解,则a等于A. 0B. 0.5C. 1D.4. 实数a、b、c满足a+b>0、b+c>0、c+a>0,f(x)是R上的奇函数,并且是个严格的减函数,即若x1<x2,就有f(x1)>f(x2),则A. 2f(a)+f(b)+f(c)=0B. f(a)+f(b)+f(c)<0C. f(a)+f(b)+f(c)>0D. f(a)+2f(b)+f(c)=20045. 已知a、b、c、d四个正整数中,a被9除余1,b被9除余3,c 被9除余5,d被9除余7,则一定不是完全平方数的两个数是A. a、bB. b、cC. c、dD. d、a6. 正实数列a1,a2,a3,a4,a5中,a1,a2,a3成等差数列,a2,a3,a4成等比数列,且公比不等于1,又a3,a4,a5的倒数成等比数列,则A. a1,a3,a5成等比数列B. a1,a3,a5成等差数列C. a1,a3,a5的倒数成等差数列D. 6a1,3a3,2a5的倒数成等比数列二、填空题(满分64分)1. 已知,试确定的值。

2. 已知a=1+2+3+4+…+2003+2004,求a被17除的余数。

3. 已知,若ab2≠1,且有,试确定的值。

4. 如图所示,等腰直角三角形ABC的直角顶点C在等腰直角三角形DEF的斜边DF上,E在△ABC的斜边AB上,如果凸四边形ADCE的面积等于5平方厘米,那么凸四边形ABFD的面积等于多少平方厘米?5. 若a,b∈R,且a2+b2=10,试确定a-b的取值范围。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年北京市中学生数学竞赛复赛(高一)试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知 和 都是单位向量,并且向量 与 互相垂直.则 和 的夹角 ______.
2. 的值是______.
3.如图,过 外一点 引圆的切线切 于点 ,联结 交 于点 ,已知 , , 为弧AB的中点.则曲边三角形(阴影面积)的面积等于______.
【详解】
3.
【解析】
【详解】
根据条件,延长 交 于点 .设 的半径为 .则 .
由切割线定理得 ,
即 48 .
解得
所以,
联结 .在 中, .
因此,弧AB的度数为 ,而 为弧AB的中点,则弧AN的度数为 .
联结 .则 .从而,
而扇形 的面积为
故阴影图形的面积为
4.4
【解析】
【详解】

两边立方并整理得
观察知,4是方程的一个根.所以,
8.如图,在 中, 的平分线与 交于点 、与 的延长线交于点 , 的外接圆 与 的外接圆的另一交点为 .证明:
(1)点 在 的外接圆上;
(2) .
9.证明:任给7个实数,其中必存在两个实数 、 满足 .
参考答案
1.
【解析】
【详解】
设 和 的夹角 .则根据向量垂直的条件得

由此 .所以 .
2.
【解析】

因此,
故 .
从而,
于是, 四点共圆,也就是点 在 的外接圆上.
(2)由(1)知
又 ,由 和 都在同一个圆 的对称点,即
又因 ,所以, ,即
9.见解析
【解析】
【详解】
设7个实数分别为 ,
且不妨设 .
将区间 平均分成6个子区间: .
由抽屉原理,上述7个 中必有某两个数在同一个子区间内,不妨设 、 在同一个子区间内.
由 ,知方程 无实根.
故方程 只有唯一的实根
5.
【解析】
【详解】

可知,抛物线一定过点
过点 分别作 轴的平行线交直线 于点
过点 的直线 交于点 .
则 三点满足条件.
6.
【解析】
【详解】
如图,设 中, , ,内切圆的圆心为 .联结 .则


故 ②

与式①比较得

联立式②、③得
据韦达定理知,以 为根的一元二次方程为
因 ,所以, ,
即 .
记 ,即得所要证的不等式.
4. 的值是______.
5.在平面直角坐标系中,不论 取何值时,抛物线 都不通过的直线 上的点的坐标是______(写出全部符合条件点的坐标).
二、解答题
6. 内切圆的半径为 ,直角的角平分线的长为 .求证: 的两条直角边的长 、 是关于 的一元二次方程 的根.
7.求函数 ,使得
(1) ;
(2)对于所有的 , 都成立.


7.见解析
【解析】
【详解】
设函数 满足题设条件.
对于正整数 有
令 并相加得

对所有的正整数 都成立.
特别地,当 时,

式①定义了在正整数集合上的函数
经检验, 是问题的唯一解.
由函数的解析式可知函数满足题中的结论(1)(2).
8.(1)见解析;(2)见解析
【解析】
【详解】
(1)如图,由题设知 因此, 同理, 联结 .则 平分 联结 .设 则
相关文档
最新文档