高考全国卷Ⅱ理科数学(黑龙江吉林广西)

合集下载

版2019年高考全国2卷理科数学及答案(20200602114858)

版2019年高考全国2卷理科数学及答案(20200602114858)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证填写清楚,将条形码准确粘贴在条形码区域。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知AB u uu r=(2,3),AC uuu r =(3,t ),BC uuu r =1,则AB BC u u u r u u u r =A .-3B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r Rr rR.设r R,由于的值很小,因此在近似计算中34532333(1),则r 的近似值为A .21M R M B .212M R M C .2313M R M D .2313M R M5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差6.若a >b ,则A .ln(a -b )>0B .3a<3bC .a 3-b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是A .α有无数条直线与β平行B .α有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231xyp p的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2为周期且在区间(4,2)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos │x │D .f (x )=sin │x │10.已知α∈(0,2),2sin 2α=cos 2α+1,则sin α=A .15B .55C .33D .25511.设F 为双曲线C :22221(0,0)x y a bab的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x ya 交于P ,Q 两点.若PQOF ,则C 的离心率为A .2B .3C .2D .512.设函数()f x 的定义域为R ,满足(1)2 ()f xf x ,且当(0,1]x 时,()(1)f x x x .若对任意(,]x m ,都有8()9f x ,则m 的取值围是A .9(,]4B .7(,]3C .5(,]2D .8(,]3二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2019年高考理科数学全国2卷(附答案)

(完整版)2019年高考理科数学全国2卷(附答案)

n g 12B-SX-0000020绝密★启用前2019年普通高等学校招生全国统一考试理科数学 全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内对应的点位于z A .第一象限B .第二象限C .第三象限D .第四象限3.已知=(2,3),=(3,t ),=1,则=ABAC BC AB BC A .-3 B .-2 C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离:- - - - - - - - 密封线 -n g e ts o12B-SX-0000020R ,点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的2L延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,点到月球2L 的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:.121223()()M M M R r R r r R +=++设,由于的值很小,因此在近似计算中,则r R α=α34532333(1)ααααα++≈+r 的近似值为A B CD 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数 B .平均数C .方差D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面221x y +=A .2B .3C .4D .89.下列函数中,以为周期且在区间(,)单调递增的是2π4π2πA .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.已知α∈(0,),2sin 2α=cos 2α+1,则sin α=2πA .B15C .D .11.设F 为双曲线C :的右焦点,为坐标原点,以22221(0,0)x y a b a b -=>>O 为直径的圆与圆交于P ,Q 两点.若,则C 的离OF 222x y a +=PQ OF =心率为A .B C .2D .12.设函数的定义域为R ,满足,且当()f x (1) 2 ()f x f x +=时,.若对任意,都有(0,1]x ∈()(1)f x x x =-(,]x m ∈-∞,则m 的取值范围是8()9f x ≥-A .B .9,4⎛⎤-∞ ⎥⎝⎦7,3⎛⎤-∞ ⎥⎝⎦n g a gs 12B-SX-0000020C .D .5,2⎛⎤-∞ ⎥⎝⎦8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。

2016年高考理科数学全国卷2及答案

2016年高考理科数学全国卷2及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(3,1)-B .(1,3)-C .(1,)+∞D .(,3)∞--2.已知集合{1,2,3}A =,则{|(1)(2)0,}=+-<∈B x x x x Z ,则A B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{1,0,1,2,3}-3.已知向量a (1,)m =,b (3,2)-=,且(a +b )⊥b ,则m =( )A .—8B .—6C .6D .84.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34- CD .2 5.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A .24B .18C .12D .96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π7.若将函数2sin 2y x =的图象向左平移12π个单位长度,则平移后图象的对称轴为 ( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的=s( )A .7B .12C .17D .349.若3cos()45πα-=,则sin2α=( ) A .725B .15C .15-D .725-10.从区间[]0,1随机抽取2n 个数1x,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 ( )A .4n mB .2n mC .4m nD .2m n11.已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为 ( )AB .32C .3D .2 12.已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x +=与()y f x =图象的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( )A .0B .mC .2mD .4m姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = .14.α,β是两个平面,,m n 是两条直线,有下列四个命题: ①如果m n ⊥,m α⊥,n β∥那么αβ⊥; ②如果m α⊥,n α∥,那么m n ⊥; ③如果αβ∥,m α⊂,那么m β∥;④如果mn ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 (填写所有正确命题的编号).15.有三张卡片,分别写有1和2,1和3,2和3,甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .16.若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为等差数列{}n a 的前n 项和,且1=1a ,728S=.记[]=lg n n b a ,其中[]x 表示不超过x的最大整数,如[][]0.9=0lg99=1,. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1 000项和.18.(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BC 交于点O ,5=AB ,6=AC ,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△'D EF 的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.20.(本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4=t ,||||=AM AN 时,求AMN △的面积; (Ⅱ)当2||=||AM AN 时,求k 的取值范围.21.(本小题满分12分)(Ⅰ)讨论函数2()2-=+xx f x x e 的单调性,并证明当0x >时,(2)20x x e x -++>;(Ⅱ)证明:当[0,1)a ∈时,函数2=(0)()-->x e ax ag x x x 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE DG =,过D 点作DFCE ⊥,垂足为F .(Ⅰ)证明:B ,C ,G ,F 四点共圆;(Ⅱ)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin ,,αα=⎧⎨=⎩x t y t (t 为参数),l 与C 交于A ,B 两点,||AB =求l 的斜率.24.(本小题满分10分)选修4—5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集.(Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.数学试卷 第7页(共18页) 数学试卷 第8页(共18页) 数学试卷 第9页(共18页)2016年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,122(m 2)∴--.求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,【考点】平面向量的基本定理及其意义 2y 2x 8y --+11=,解得【解析】输入的:πcos 4⎛- ⎝:π2cos (sin 42⎛⎫-α= ⎪⎝⎭【提示】方法1:利用诱导公式化方法2:利用余弦二倍角公式将左边展开,可以得sin2α的值.22π1n 1,π∴=【提示】以面积为测度,建立方程,即可求出圆周率。

2019全国2卷高考数学理科含答案详解(珍藏版)

2019全国2卷高考数学理科含答案详解(珍藏版)

绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合A ={x|x 2﹣5x+6>0},B ={x|x ﹣1<0},则A ∩B =()A .(﹣∞,1)B .(﹣2,1)C .(﹣3,﹣1)D .(3,+∞)2.(5分)设z =﹣3+2i ,则在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知=(2,3),=(3,t ),||=1,则?=()A .﹣3B .﹣2C .2D .34.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:+=(R +r ).设α=.由于α的值很小,因此在近似计算中≈3α3,则r 的近似值为()A .RB .RC .R D .R5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A .中位数B .平均数C .方差D .极差6.(5分)若a >b ,则()A .ln (a ﹣b )>0B .3a<3bC .a 3﹣b 3>0D .|a|>|b|7.(5分)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(5分)若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =()A .2B .3C .4D .89.(5分)下列函数中,以为周期且在区间(,)单调递增的是()A .f (x )=|cos2x|B .f (x )=|sin2x|C .f (x )=cos|x |D .f (x )=sin|x|10.(5分)已知α∈(0,),2sin2α=cos2α+1,则sin α=()A .B .C .D .11.(5分)设F 为双曲线C :﹣=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF |,则C 的离心率为()A .B .C .2D .12.(5分)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学全国卷2含答案(A4打印版)

2020年高考理科数学全国卷2含答案(A4打印版)

绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10{2101}1{1223U A B --==-}=},,,,,,,,,,,则)(UA B = ( )A .{23-},B .{223-},,C .{2103--},,,D .{21023--},,,, 2.若α为第四象限角,则( )A .cos20α>B .cos20α<C .sin20α>D .sin20α<3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 ( ) A.3 699块B.3 474块C.3 402块D.3 339块4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3 699块B .3 474块C .3 402块D .3 339块5.若过点(2)1,圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( )ABCD6.数列{n a }中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A .2B .3C .4D .57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x yC a b a b -=>>的两条渐近线分别交于D E ,两点,若ODE △的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .32 9.设函数()ln 21ln 21f x x x =+--,则()f x( )A .是偶函数,且在1()2+∞,单调递增 B .是奇函数,且在11()22-,单调递减C .偶函数,且在1()-∞-,单调递增D .是奇函数,且在1()2-∞-,单调递减10.已知ABC △的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32C .1D 11.若2233x y x y ----<,则( )A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln 0x y ->D .ln 0x y -<12.01-周期序列在通信技术中有着重要应用.若序列12na a a 满足,且存在正整数m ,使得(12)i m i a a i +==,,成立,则称其为0-1周期序列,并称满足(12)i m i a a i +==,,的最小正整数m 为这个序列的周期.对于周期为的01-序列12na a a ,11()(121)mi i k i C k a a k m m +===-∑,,,是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1234)5C k k =≤,,,的序列是 ( )A .11010B .11011C .10001D .11001二、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量a b ,的夹角为45︒,ka b -与a 垂直,则=k ________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种.15.设复数1z ,1z 满足12|=||=2z z ,12i z z +=,则12||=z z -________. 16.设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内. 2p :过空间中任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)在ABC △中,222sin sin sin sin sin A B C B C =--. (1)求A ;(2)若3BC =,求ABC △周长的最大值.18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()1220i i x y i =⋯,,,,,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i ix x =-=∑(,2021)9000i i y y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()1220i i x y i =⋯,,,,的相关系数(精确到0.01); (3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数))ii nx y x y r --∑((.19.(12分)已知椭圆2221201()x y a bC a b +=>>:的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴垂直的直线交1C 于A B ,两点,交2C 于C D ,两点,且43CD AB =.(1)求1C 的离心率;(2)设M 是1C 与2C 的公共点,若5MF =,求1C 与2C 的标准方程.20.(12分)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA MN ∥,且平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若AO ∥平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.21.(12分)已知函数2sin n )si (2f x x x =.(1)讨论()f x 在区间(0)π,的单调性; (2)证明:()f x (3)设*n N ∈,证明:22223sin sin 2sin 4sin 24nnn x x x x ⋯≤.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分) 已知曲线12C C ,参数方程分别为2124cos 4sin x C y θθ⎧=⎨=⎩,:(θ为参数),21π1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,:(t 为参数). (1)将12C C ,的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设12C C ,的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.23.[选修4—5:不等式选讲](10分)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求()4f x 不等式的解集; (2)若()4f x ,求a 的取值范围.2020年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学答案解析一、选择题 1.【答案】A【解析】由题意可得:{}1012AB =-,,,,则{2()3UA B =-},.故选:A .【考点】并集、补集的定义与应用 2.【答案】D 【解析】当π6α=-时,πcos2cos 03α⎛⎫=- ⎪⎝⎭>,选项B 错误;当π3α=-时,2πcos 2cos 03α⎛⎫=- ⎪⎝⎭<,选项A 错误;由α在第四象限可得:sin 0cos 0αα,><,则sin22sin cos 0ααα=<,选项C 错误,选项D 正确;故选:D .【考点】三角函数的符号,二倍角公式,特殊角的三角函数值 3.【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.故选:B .【考点】函数模型的简单应用 4.【答案】C【解析】设第n 环天心石块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+,即29729n =,解得9n =,所以32727(9927)34022n S S +⨯===.故选:C .【考点】等差数列前n 项和有关的计算 5.【答案】B【解析】由于圆上的点()21,在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()11,或()55,,圆心到直线230x y --=距离均为d =230x y --=的距离为5.故选:B . 【考点】圆心到直线距离的计算6.【答案】C【解析】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=. 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n nn a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++--∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C .【考点】利用等比数列求和求参数的值 7.【答案】A【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E ,故选:A . 【考点】根据三视图判断点的位置 8.【答案】B 【解析】22221(00)x y C a b a b-=:>,> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线22221(00)x yC a b a b-=:>,>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故()D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故()E a b -,∴||2ED b =∴ODE △面积为:1282ODE S a b ab =⨯==△ 双曲线22221(00)x y C a b a b-=:>,>∴其焦距为22228c ab ==当且仅当a b ==∴C 的焦距的最小值:8.故选:B .【考点】双曲线焦距的最值问题 9.【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当1122x ⎛⎫∈- ⎪⎝⎭,时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+在1122⎛⎫- ⎪⎝⎭,上单调递增,()ln 12y x =-在1122⎛⎫- ⎪⎝⎭,上单调递减,()f x ∴在1122⎛⎫- ⎪⎝⎭,上单调递增,排除B ;当12x ⎛⎫∈-∞- ⎪⎝⎭,时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在12⎛⎫-∞- ⎪⎝⎭,上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在12⎛⎫-∞- ⎪⎝⎭,上单调递减,D 正确.故选:D . 【考点】函数奇偶性和单调性的判断 10.【答案】C【解析】设球O 的半径为R ,则24π16πR =,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC 是面积为4的等边三角形,21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C .【考点】球的相关问题的求解 11.【答案】A【解析】由2233x y x y ----<得:2323x x y y ----<,令()23t tf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD无法确定.故选:A . 【考点】数式的大小的判断问题 12.【答案】C 【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511()12345i i k i C k a a k +===∑,,,, 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=∑≤52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C【考点】数列的新定义问题 二、填空题 13.【解析】由题意可得:211cos452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-= ⎪⎝⎭, 即:2202k a a bk →→→⨯-=-=,解得:2k =.故答案为:2. 【考点】平面向量的数量积定义与运算法则 14.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,∴先取2名同学看作一组,选法有:246C =.现在可看成是3组同学分配到3个小区,分法有:336A =.根据分步乘法原理,可得不同的安排方法6636⨯=种.故答案为:36. 【考点】计数原理的实际应用 15.【答案】 【解析】122z z ==,可设12cos 2sin i z θθ=+,22cos 2sin i z αα=+,()()122cos cos 2sin sin i 3i z z θαθα∴+=+++=+,()()2cos cos 2sin sin 1θαθα⎧+=⎪∴⎨+=⎪⎩()422cos cos 2sin sin 4θαθα++=,化简得:1cos cos sin sin 2θαθα+=-()()122cos cos 2sin sin iz z θαθα∴-=-+-===.故答案为:. 【考点】复数模长的求解 16.【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④. 【考点】复合命题的真假,空间中线面关系有关命题真假的判断 三、解答题 17.【答案】(1)23π;(2)3+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-,()0πA ∈,,2π3A ∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-=++=,即()29AC AB AC AB +-=.22AC AB AC AB +⎛⎫⎪⎝⎭≤(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC ABAC AB AC AB +⎛⎫∴=+-+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴△周长3L AC AB BC =+++≤ABC ∴△周长的最大值为3+【考点】解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题 18.【答案】(1)12000; (2)0.94; (3)详见解析【解析】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(),i i x y的相关系数为20()()0.94ii xx y y r --===≈∑ (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样,先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【考点】平均数的估计值、相关系数的计算,抽样方法的选取 19.【答案】(1)12;(2)22113627x y C +=:,2212C y x =:.【解析】(1)()0F c ,,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =, 联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x c y c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2ac =,b =,椭圆1C 的方程为2222143x yc c +=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去),由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【考点】椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程 20.【答案】(1)证明见解析;(2. 【解析】(1)M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴.在ABC△中,M 为BC 中点,则BC AM ⊥.又侧面11BB C C 为矩形,1BC BB ∴⊥,1//MN BB ,MN BC ⊥,由MN AM M =,,MN AM ⊂平面1A AMN ,∴BC ⊥平面1A AMN .又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC .又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF∴//EF BC ∴又BC ⊥平面1A AMN ,∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F ,∴平面11EB C F ⊥平面1A AMN.(2)连接NP//AO 平面11EB C F ,平面AONP 平面11EB C F NP =,∴//AO NP .根据三棱柱上下底面平行,其面1A NMA平面ABC AM =,面1A NMA平面1111A B C A N =,∴//ON AP .故:四边形ONPA 是平行四边形.设ABC △边长是6m (0m >),可得:ON AP =,6NP AO AB m ===.O 为111A B C △的中心,且111A B C △边长为6m ,∴16sin 603ON =⨯⨯︒,故:ON AP =.//EF BC ,∴AP EPAM BM=,∴3EP=.解得:EP m =.在11B C 截取1B Q EP m ==,故2QN m =,1B Q EP =且1//B Q EP ,∴四边形1B QPE 是平行四边形,∴1//B E PQ .由(1)11B C ⊥平面1A AMN ,故QPN ∠为1B E 与平面1A AMN 所成角.在Rt QPN △,根据勾股定理可得:PQ =,sinQN QPN PQ ∴∠===∴直线1B E 与平面1A AMN . 【考点】证明线线平行和面面垂直,线面角21.【答案】(1)当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)证明见解析; (3)证明见解析.【解析】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()22423sin cos sin f x x x x'=-()2222sin 3cos sin x x x =-()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()0f x '=在()0πx ∈,上的根为:12π2π33x x ==,,当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)注意到()()()()22πsin πsin 2πsin sin2f x x x x x f x +=+⎡+⎤==⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()0π0f f ==,2π3f ⎛⎫= ⎪⎝⎭⎝⎭,223f π⎛⎛⎫=⨯= ⎪ ⎝⎭⎝⎭⎝⎭()max f x ⎡⎤=⎣⎦,()min f x ⎡⎤=⎣⎦,即()f x ≤. (3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x xx233333sin sin 2sin 4sin 2nx x xx ⎡⎤=⎣⎦()()()2222123sin sin sin 2sin 2sin 4sin2sin 2sin 2n nnx x x x x x x x -⎡⎤=⎣⎦23233sin sin 28n x x ⎡⎤⨯⨯⎢⎥⎣⎦≤ 238n⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎣⎦≤34n⎛⎫= ⎪⎝⎭.【考点】导数的应用22.【答案】(1)14C x y +=:;2224C x y -=:;(2)17cos 5ρθ=. 【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=. 【考点】极坐标与参数方程的综合应用23.【答案】(1)32x x ⎧⎨⎩≤或112x ⎫⎬⎭;(2)(][)13-∞-+∞,,. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-,解得:32x ≤;当34x <<时,()4314f x x x =-+-=,无解;当4x 时,()43274f x x x x =-+-=-,解得:112x;综上所述:()4f x 的解集为32x x ⎧⎨⎩≤或112x⎫⎬⎭. (2)()()()()22222121211f x x a x a x a x a aa a =-+-+---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-,解得:1a -≤或3a ,a ∴的取值范围为(][)13-∞-+∞,,. 【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值。

2005年高考理科数学全国卷二试题及答案

2005年高考理科数学全国卷二试题及答案

2005年高考理科数学全国卷Ⅱ试题及答案 (黑龙江 吉林 广西 内蒙古 新疆)第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k K n kn n P k C P P -=-一、选择题(1)函数()sin cos f x x x =+的最小正周期是(A )4π (B )2π(C )π (D )2π (2)正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是(A )三角形(B )四边形(C )五边形(D )六边形(3)函数1(0)y x =≤的反函数是(A )1)y x =≥-(B )1)y x =≥-(C )0)y x =≥(D )0)y x =≥ (4)已知函数tan y x ω=在(,)22ππ-内是减函数,则(A )0<ω≤1(B )-1≤ω<0(C )ω≥1(D )ω≤-1(5)设a 、b 、c 、d R ∈,若a bic di++为实数,则 (A )0bc ad +≠(B )0bc ad -≠ (C )0bc ad -=(D )0bc ad +=(6)已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为(A (B (C )65(D )56(7)锐角三角形的内角A 、B 满足1tan tan sin 2A B A-=,则有(A )sin 2cos 0A B -=(B )sin 2cos 0A B += (C )sin 2sin 0A B -=(D )sin 2sin 0A B +=(8)已知点A ,(0,0)B ,C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=,其中λ等于 (A )2(B )12(C )-3(D )-13(9)已知集合{}23280M x x x =--≤,{}260N x x x =-->,则MN 为(A ){42x x -≤<-或}37x <≤(B ){42x x -<≤-或}37x ≤< (C ){2x x ≤-或}3x > (D ){2x x <-或}3x ≥(10)点P 在平面上作匀速直线运动,速度向量(4,3)v =-(即点P 的运动方向与v 相同,且每秒移动的距离为v 个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为(A )(-2,4)(B )(-30,25)(C )(10,-5)(D )(5,-10) (11)如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则(A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a (12)将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为(A )3(B )2+3(C )4+3(D )3第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上 2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)圆心为(1,2)且与直线51270x y --=相切的圆的方程为_____________. (14)设a 为第四象限的角,若sin 313sin 5a a =,则tan 2a =_____________. (15)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有_____________个.(16)下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥. ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是_____________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤 (17)(本小题满分12分)设函数11()2x x f x +--=,求使()f x ≥x 取值范围.(18) (本小题满分12分)已知{}n a 是各项均为正数的等差数列,1lg a 、2lg a 、4lg a 成等差数列.又21nn b a =,1,2,3,n =….(Ⅰ)证明{}n b 为等比数列;(Ⅱ)如果无穷等比数列{}n b 各项的和13S =,求数列{}n a 的首项1a 和公差d . (注:无穷数列各项的和即当n →∞时数列前项和的极限)(19)(本小题满分12分)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6,本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令ξ为本场比赛的局数.求ξ的概率分布和数学期望.(精确到0.0001)(20)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PD 垂直于底面ABCD ,AD=PD ,E 、F 分别为CD 、PB 的中点. (Ⅰ)求证:EF 垂直于平面PAB ;(Ⅱ)设AB=2BC ,求AC 与平面AEF 所成的角的大小.(21)(本小题满分14分)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点.已知PF 与FQ 共线,MF 与FN 共线,且0=•MF PF .求四边形PMQN 的面积的最小值和最大值.(22)(本小题满分12分)已知0≥a ,函数xe ax x xf )2()(2-=.(Ⅰ)当x 为何值时,f(x)取得最小值?证明你的结论; (Ⅱ)设f(x)在[-1,1]上是单调函数,求a 的取值范围.参考答案1-6: CDBBCC 7-12:ACACBC(2)分析:本题主要考查学生对截面图形的空间想像,以及用所学知识进行作图的能力,通过画图,可以得到这个截面与正方体的六个面都相交,所以截面为六边形,故选D.(12) 解析一:由题意,四个半径为1的小球的球心1234,,,O O O O ,恰好构成一个棱长为2的正四面体,并且各面与正四面体的容器P ABC -的各对应面的距离都为1如图一所示显然1HO =设,N T 分别为23,AB O O 的中点,在棱长为2的正四面体1234O O O O -中,1O T HT ==∴1O H =,且11sin 3TO H ∠=. 作1O M PN ⊥,则11O M =, 由于11O PM TO H ∠=∠, ∴ 11111sin sin O M O MPO O PM TO H===∠∠∴ 11314PO PO O O HO =++=+=+故选C解析二:由题意,四个半径为1的小球的球心1234,,,O O O O ,恰好构成一个棱长为2的正四面体,并且各面与正四面体的容器P ABC -的各对应面的距离都为1如图二所示,正四面体1234O O O O -与P ABC -有共同的外接球球心O 的相似正四面体,其相似比为:1263126143OH k OQ ==+,所以1126132632643()434312643OO OP k +===+ 所以32612626()3(1)43433PQ OP OQ =+=+++=解析三:由题意,四个半径为1的小球的球心1234,,,O O O O ,恰好构成一个棱长为2的正四面体,并且各面与正四面体的容器P ABC -的各对应面的距离都为1 如图二所示,正四面体1234O O O O -与P ABC -有共同的外接球球心O 的相似正四面体,从而有113O P OO HQ OH==, 又1HQ =, 所以1O P =由于13O H =,所以111333PQ OP OQ O H HQ O P =+=++=++=+13.22(1)(2)4x y -+-=;14. 34-;15. 192;16. ①,④ (13)分析:本题就是考查点到直线的距离公式,所求圆的半径就是圆心(1,2)到直线5x-12y -7=0的距离:2r ==,再根据后面要学习的圆的标准方程,就容易得到圆的方程:222(1)(2)2x y -+-=(16)分析:②显然不对,比如三条侧棱中仅有一条不与底面边长相等的情况,侧面都是等腰三角形的三棱锥但不是正三棱锥. ③底面是等边三角形,侧面的面积都相等,说明顶点到底面三边的距离(斜高)相等,根据射影长的关系,可以得到顶点在底面的射影(垂足)到底面三边所在直线的距离也相等。

2021年高考全国卷II理科数学试题精析详解(黑龙江、吉林、广西、内蒙古、新疆等地区用)

2021年高考全国卷II理科数学试题精析详解(黑龙江、吉林、广西、内蒙古、新疆等地区用)

1n n 普通高等学校招生全国统一考试数学(全国Ⅱ卷理科)试题精析详解本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 9页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3. 本卷共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是 符合题目要求的。

参考公式:如果事件 A 、B 互斥,那么球是表面积公式P ( A + B ) = P ( A ) + P (B )S = 4πR 2如果事件 A 、B相互独立,那么其中 R 表示球的半径P ( A ⋅ B ) = P ( A ) ⋅ P (B )如果事件 A 在一次试验中发生的概率是 P ,那么球的体积公式V = 4πR 33n 次独立重复试验中恰好发生 k 次的概率其中 R 表示球的半径P (k ) = C k P K (1 - P )n -k 一、选择题(5 分⨯12=60 分)(1)函数 f(x)=|sinx+cosx|的最小正周期是 π(A )4π(B )2(C )π(D )2π【思路点拨】本题考查三角函数的化简和绝对值的概念和数形结合的思想.【正确解答】 f (x ) =| sin x + cos x |=| 2 sin(x + ϕ) | ,f(x)的最小正周期为π. 选 C【解后反思】三角函数的周期可以从图象上进行判断,但是一个周期函数加绝对值后的周期不一定减半.如 y = tan x 的最小正周期为π,但是, y =| tan x | 的最小正周期也是π,2(x + 1)3因此,对函数的性质的运用必须从定义出发,要学会用定义来研究问题.(2)正方体 ABCD -A 1B 1C 1D 1 中,P 、Q 、R 分别是 AB 、AD 、B 1C 1 的中点.那么,正方体的过 P 、Q 、R 的截面图形是(A )三角形(B )四边形(C )五边形(D )六边形【思路点拨】本题考查平面的作法和空间想象能力,根据公理 1 可从 P 、Q 在面内作直线,根据公理 2,得到面与各棱的交点,与棱相交必与棱所在的两个面都有交线段.【正确解答】画图分析.作直线 PQ 交 CB 的延长线于 E ,交 CD 的延长 F ,作直线 ER 交 CC 1 的延长线于 G ,交 BB 1 于 S ,作直线1GF 交 DD 1 于 H ,交C 1D 1 H ,连结 PS,RT,HQ 则过 P 、Q 、R 的截面图形为六边形 PQHTRS , 故选 D.【解后反思】要理解立体几何中的三个公 理及 3 个推论是确定平面的含义,但不必深入F 研究..(3)函数 y=是-1(x ≤0)的反函数A(A )y= (x ≥-1)(B )y=- (x ≥-1)(C )y= (x ≥0)(D )y=- (x ≥0)【思路点拨】本题考查反函数的求法.要求反函数的三步曲(一是反解、二是 x 、y 对调, 三是求出反函数的定义域,即原函数的值域)进行,或用互为反函数的性质处理.【正确解答】解法 1:由 y= -1,且 x ≤0,解得 x = ,其中, y ≥ -1.则所求反函数为 y=- (x ≥-1).解法 2:分析定义域和值域,用排除法.选 B.【解后反思】选择题中考查反函数的解法时,一般只需验证定义域和值域即可,以达到3 x 2 (x + 1)3(x + 1)3(x + 1)3(x + 1)33 x 2 C3- 快速高效之目的,因此,深刻理解互为反函数的概念和性质是关键,并要注意在求出反函数后注明定义域,这是求反函数必不可少的一步.(4)已知函数 y = tan ωx 在(- π, 2 π)内是减函数,则2(A )0<ω≤1(B )-1≤ω<0(C )ω≥0(D )ω≤-1【思路点拨】本题考查参数ω对于函数 y = tan ωx 性质的影响.π π【正确解答】由正切函数的性质,正切函数 y = tan x 在(- , )上是增函数,而22y = tan ωx 在(- π π π2 , 2 )内是减函数,所以- ω≥ π,即 -1 ≤ ω< 0 .选 B【解法 2】可用排除法,∵当ω>0 时正切函数在其定义域内各长度为一个周期的连续区间内为增函数,∴排除(A),(C),又当|ω|>1 时正切函数的最小正周期长度小于π,∴ y = tan ωxπ π在(-, ) 内不连续,在这个区间内不是减函数,这样排除(D),故选(B)。

高考全国卷2数学(理科)

高考全国卷2数学(理科)

2018高考全国卷II数学真题试卷(理科)果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密,布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发,威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿,出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的,景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳,绚丽多彩五彩缤纷草绿草如,标准答案一、填空题。

(2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷 新课标Ⅱ卷(含部分解析)

(2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷 新课标Ⅱ卷(含部分解析)

2024年普通高等学校招生全国统一考试数学试卷新课标Ⅱ卷养成良好的答题习惯,是决定成败的决定性因素之一。

做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。

1.已知1i z =--,则||z =( ).A.0B.1 D.22.已知命题::R p x ∀∈,|1|1x +>,命题:0q x ∃>,3x x =,则( ).A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a =,|2|2a b +=,且(2)b a b -⊥,则||b =( ).A.12B.2C.2D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是( )A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过40%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ). A.221(0)164x y y +=> B.221(0)168x y y +=> C.221(0)164y x y +=> D.221(0)168y x y +=> 6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =( )A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ). A.12 B.1 C.2 D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( ). A.18 B.14 C.12 D.19.对于函数()sin 2f x x =和π()sin 24g x x ⎛⎫=- ⎪⎝⎭,下列正确的有( ). A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴10.拋物线2:4C y x =的准线为l ,P 为C 上的动点,对P 作22:(4)1A x y +-=的一条切线,Q 有切点,对P 作C 的垂线,垂足为B .则( ).A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB ⊥D.满足||||PA PB =的点A 有且仅有2个 11.设函数32()231f x x ax =-+,则( ).A.当1a >时,()f x 有一个零点B.当0a <时0x =是()f x 的极大值点C.存在a ,b 使得x b =为曲线()y f x =的对称轴D.存在a 使得点(1,(1))f 为曲线()y f x =的对称中心12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =__________.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=__________.14.在如图的44⨯方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有__________种选法,在所有符合上述要求的选法中,选中方格的4个数之和的最大值是__________.15.记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A +=.(1)求A ;(2)若2a =sin 2C c B =,求ABC △周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =90APC ∠=︒,30BAD ∠=︒,点E ,F 满足25AE AD =,12AF AB =,将AEF △沿EF 对折至PEF △,使得PC =(1)证明:EF PD ⊥:(2)求面PCD 与PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分,若至少被投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分,该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5的概率;(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,则该由谁参加第一阶段的比赛? (ii )为使得甲、乙,所在队的比赛成绩的数与期望最大,应该由谁参加第一阶段比赛?19.已知双曲线22:(0)C x y m m -=>,点1(5,4)P 在C 上,k 为常数,01k <<,按照如下公式依次构造点(2,3,)n P n =,过点1n P -作斜率为k 的直线与C 的左支点交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求2x ,2y ; (2)证明:数列{}n n x y -是公比为11k k +-的等比数列; (3)设n S 为12n n n P P P ++△的面积,证明:对任意的正整数n ,1n n S S +=.1. 2024年普通高等学校招生全国统一考试数学答案 新课标Ⅱ卷答案:C解析:||z =.2. 答案:B解析:1x =-时,|1|1x +<,p ∴错误,P ∴⌝和q 是真命题.3. 答案:A解析:(2)0b a b -⋅=,220b a b ∴-⋅=又||1a =,|2|4a b +=, 得1||2b =. 4. 答案:C解析:中位数错误,标差介于200kg ~300kg 之间,∴选C.5. 答案:A解析:设(,)P x y ,将坐标代入原方程联立,得M 方程221(0)164x y y +=>. 6. 答案:D解析:联立()()f x g x =,2(1)1cos 2a x x ax ∴+-=+,2a =代入方程,恰好得到一个极点,2a ∴=.7. 答案:B 解析:πtan 4α=,tan 1α∴=. 8. 答案:C解析:()()ln()f x x a x b =++,()()()f x x a h x =+⋅,(1)0g b -=, 10b a -+=,1a b ∴=-,222221(1)2212a b b b b b +=-+=-+=. 9. 答案:BC解析:A.令()0f x =,()0g x =,零点不同;B.()f x ,()g x 最大值相同;C.π()sin 22f x x Tf ===,π()2g x =,∴C 正确; D.()f x ,()g x 对称轴显然不同,∴D 错误.10. 答案:ABD解析:依次代入抛物线方程,联立求解,所以C 错,ABD 对.11. 答案:D解析:依次带入质检即可12AF F △后为直角三角形12212c F F =≥=,6C =,22||8a AF AF =-=,4a =,32c e a ==. 12. 答案:95解析:命题意图是考察正确应用等差数列的通项公式和求和公式以及会解相关方程 3412512573475a a a d a a a d +=+=⎧⎨+=+=⎩得143a d =-⎧⎨=⎩, 10110931040135952S a ⨯⨯∴=+=-+= 13.答案:3 解析:考察三角恒等式变形tan tan tan()1tan tan αβαβαβ⋅+===--⋅ 222sin ()cos ()19cos ()1a αββαβ+++=⇒+=1cos()3αβ∴+=-1sin()33αβ⎛⎫+=--= ⎪⎝⎭14. 答案:24;58解析:(1)41432124=⨯⨯⨯=(2)分别列出,13,14,15,16最大,1314151658+++=.15. 答案:(1)π6A =(2)2ABC C =+△解析:(1)sin 2A A +=2R ===2sin()2A φ+=π2A φ+=tan φ=π6A =. (2)24πsin 6aR ==sin 2sin cos C c B B =⋅2cos B =,π4B ∴= 54sin π12c =⋅22ABC C a b c ∴=++=+=+△16. 答案:(1)(e 3)2y x =-+(2)2e 8a > 解析:(1)(1)e 1f =-当1a =,1x =时(1)e 3f '=-(e 1)(e 3)(1)y x --=--(e 3)3e e 1y x ∴=-+-+-(e 3)2x =-+;(2)2()e 3x f x ax '=-,()0f x '=2e 30x ax -=2e 3x ax =()e 6x f x ax ''=-,2e 3x ax =,()3(2)f x ax x ''=-2x =时,2e 12a = 232(2)e 2e 8f a a =-⋅=- 代入,得2222e 2e (2)e 8e e 1233k f =-⋅=-= (2)0f <2e 80a ∴-<28e a >2e 8a > 2e ,8a ⎡⎫∴∈+∞⎪⎢⎣⎭. 17. 答案:(1)EF PD ⊥(2)正弦值为0解析:(1)证明:设A 的坐标为(0,0),则B 为(8,0),依次求出E ,(4,0)F ,(1,EF =,152D ⎛ ⎝⎭P 关于EF 的中点M 对称,3407,,2222M ⎛⎫⎛⎫+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设(,)P x y ,7(2x t =+⋅,12y t =+⋅1593,,2222C ⎛⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭PC ∴=将x ,y 表达式代PC ==15,22PD x y ⎛⎫∴=-- ⎪ ⎪⎝⎭ 0EF PD ⋅=EF PD ∴⊥建立坐标系求出各点坐标,再利用向量相乘之积为0证明垂直(2)(8,0)PC =求出面PCD 与面PBF 的法向量1a ,2a 又1212sin 0||a a a a θ⋅==⋅ ∴正弦值为0.18. 答案:(1)0.686(2)(i )乙(ii )甲19. 答案:(1)23x =,20y =(2)证明见解析(3)证明见解析解析:(1)设(),n n n P x y2221n n x x a m∴-= ()n n y y k x x -=-()12n n y y x x -=--.22211221n n x x y x a m⎛⎫-++ ⎪⎝⎭-= 1122n y x xn yn -=-++ 2n n x x y =- 代入222()1x yn y a m+-=得23x =,20y =. (2)()2221n n kx y kx x a m +--= 22222222221n n n n n n k x kxx kx y k x y k x x a m++-+∴-= 111n n x k x k++=- 利用等性证明。

2020年高考全国II卷理科数学试题(含解析)

2020年高考全国II卷理科数学试题(含解析)

2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。

2015年高考理科数学全国卷2及答案

2015年高考理科数学全国卷2及答案

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷2)数学(理科)使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、云南、内蒙古、青海、贵州、甘肃、广西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则AB =( )A .{1,0}A =-B .{0,1}C .{1,0,1}-D .{0,1,2} 2.若a 为实数,且(2i)(2i)4i a a +-=-,则a =( )A .1-B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{}n a 满足13a =,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .845.设函数211log (2),1,()2, 1,x x x f x x -+-⎧=⎨⎩<≥则2(2)(log 12)f f -+=( )A .3B .6C .9D .126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B .17C .16D .157.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .108.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .149.已知A ,B 是球O 的球面上两点,∠AOB =90°, C 为该球面上的动点.若三棱锥O-ABC 体积的 最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )ABCD11.已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .5B .2C .3D .2 12.设函数'()f x 是奇函数()()f x x ∈R 的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.14.若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为________.15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =________. 16.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC △面积的2倍.(Ⅰ)求sin sin BC∠∠;(Ⅱ)若1AD =,22DC =,求BD 和AC 的长. 18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆222 9(0)C x y m m +=>:,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,请说明理由.21.(本小题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e --≤,求m 的取值范围.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,O 为等腰三角形ABC 内一点,⊙O 与ABC △的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (Ⅰ)证明:EF BC ∥;(Ⅱ)若AG 等于⊙O 的半径,且23AE MN ==,求四边形EBCF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0πα≤<.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:23cos C ρθ=. (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 最大值.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c ,d 均为正数,且a b c d +=+,证明: (Ⅰ)若ab cd >,则a b c d +>+; (Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】由已知得{|21}B x x =-<<,故,}10{AB -=,故选A .【提示】解一元二次不等式,求出集合B ,然后进行交集的运算即可. 【考点】集合的交集运算和一元二次方程求根. 2.【答案】B【解析】由已知得24+(4)i 4i a -=-,所以40a =,244a -=-,解得0a =,故选B .【提示】首先将坐标展开,然后利用复数相等解之. 【考点】复数的四则运算. 3.【答案】D【解析】解:A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B .2004~2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误. 故选:D【提示】A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A 正确;B .从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误. 【考点】柱形图信息的获得. 4.【答案】B51AB CB k =-,所以径为5,所以面积为:4π144πS R ==,选C .。

2020年高考试题高三数学全国卷2(理科)全解全析

2020年高考试题高三数学全国卷2(理科)全解全析

2020 年一般高等学校招生全国一致考试理科数学(全国 2 卷)全解全析一、选择题10i1、=2 i(A ) -2+4i (B) -2-4i (C) 2+4i (D)2-4i【答案】 A【分析】 运用复数基本运算化为复数代数形式、设会合A= { x | x 3}, ={ x |x12Bx 4(A ) (B ) (3,4) (C ) (-2,1)【答案】 B【分析】 解分式不等式并求交集3、已知 V ABC 中, cotA= 12 ,则 cosA=5(A )125 512( B )( C ) (D) 1313 13 13 【答案】 D0}则 A I B=(D ) (4+)【分析】 由 cotA=12A ,清除( A )、(B );若 cosA 5 12,知,213,则 sin A513则 cot Acos A 5 与题设不符,清除( C ),应选 Dsin A12或由 cotA=12 tan A5secA1 tan2 A13 ,512 12∴ cos A112secA13【易错提示】 同角三角函数基本关系并注意所在象限的符号x4、 .曲线 y=2x 1在点( 1, 1)处的切线方程为(A ) x-y-2=0 (B)x+y-2=0 (C)x+4y-5=0(D)x-4y-5=0【答案】 B【分析】 y'1( 2x 1) x 2 1 ,切线的斜率 k y' x 111( 2x ( 2 11)2( 2x 1)2 1)2∴切线方程为 y 1( x 1) x y 2 05.、已知正四棱柱 ABCD A 1 B 1C 1 D 1 中,AA 1 2AB ,E 为 AA 1 中点,则异面直线 BE 与 CD 1所成角的余弦值为(A )10(B)1(C)3 10 (D)3 105105【答案】 C【分析】如图,取DD 1的中点 F,连结 CF,则 CF ∥BE ,∴∠ D1CF为所求。

设 AB= 1,则CF 2.CD15, FD1=1由余弦定理得:cos D1CF( 2)2( 5)216310225 2 10。

2005年高考理科数学全国卷Ⅱ试题含答案(黑龙江、吉林、广西、内蒙古、新疆等地区用)

2005年高考理科数学全国卷Ⅱ试题含答案(黑龙江、吉林、广西、内蒙古、新疆等地区用)

2005年高考理科数学全国卷Ⅱ试题及答案(黑龙江吉林广西内蒙古新疆)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页第Ⅱ卷3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径 ()(1)kKn kn n P k C P P −=−一、选择题(1)函数()sin cos f x x x =+的最小正周期是(A )4π (B )2π(C )π (D )2π (2)正方体1111ABCD A B C D −中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是(A )三角形(B )四边形(C )五边形(D )六边形(3)函数1(0)y x =≤的反函数是(A )1)y x =≥−(B )1)y x =≥−(C )0)y x =≥(D )0)y x =≥(4)已知函数tan y x ω=在(,)22ππ−内是减函数,则 (A )0<ω≤1(B )-1≤ω<0(C )ω≥1(D )ω≤-1 (5)设a 、b 、c 、d R ∈,若a bic di++为实数,则 (A )0bc ad +≠(B )0bc ad −≠ (C )0bc ad −=(D )0bc ad +=(6)已知双曲线22163x y −=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为(A )5(B )6(C )65(D )56(7)锐角三角形的内角A 、B 满足1tan tan sin 2A B A−=,则有(A )sin 2cos 0A B −=(B )sin 2cos 0A B += (C )sin 2sin 0A B −=(D )sin 2sin 0A B +=(8)已知点A ,(0,0)B ,C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=,其中λ等于 (A )2(B )12(C )-3(D )-13(9)已知集合{}23280M x x x =−−≤,{}260N x x x =−−>,则MN 为(A ){42x x −≤<−或}37x <≤(B ){42x x −<≤−或}37x ≤< (C ){2x x ≤−或}3x > (D ){2x x <−或}3x ≥(10)点P 在平面上作匀速直线运动,速度向量(4,3)v =−(即点P 的运动方向与v 相同,且每秒移动的距离为v 个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为(A )(-2,4)(B )(-30,25)(C )(10,-5)(D )(5,-10) (11)如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则(A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a (12)将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为(A)3(B )2+3(C )4+3(D)3第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上 2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)圆心为(1,2)且与直线51270x y −−=相切的圆的方程为_____________. (14)设a 为第四象限的角,若sin 313sin 5a a =,则tan 2a =_____________. (15)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有_____________个.(16)下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥. ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是_____________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤 (17)(本小题满分12分)设函数11()2x x f x +−−=,求使()f x ≥的x 取值范围.(18) (本小题满分12分)已知{}n a 是各项均为正数的等差数列,1lg a 、2lg a 、4lg a 成等差数列.又21nn b a =,1,2,3,n =….(Ⅰ)证明{}n b 为等比数列;(Ⅱ)如果无穷等比数列{}n b 各项的和13S =,求数列{}n a 的首项1a 和公差d . (注:无穷数列各项的和即当n →∞时数列前项和的极限)(19)(本小题满分12分)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6,本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令ξ为本场比赛的局数.求ξ的概率分布和数学期望.(精确到0.0001)(20)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PD 垂直于底面ABCD ,AD=PD ,E 、F 分别为CD 、PB 的中点. (Ⅰ)求证:EF 垂直于平面PAB ;(Ⅱ)设AB=2BC ,求AC 与平面AEF 所成的角的大小.(21)(本小题满分14分)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点.已知PF 与FQ 共线,MF 与FN 共线,且0=•MF PF .求四边形PMQN 的面积的最小值和最大值.(22)(本小题满分12分)已知0≥a ,函数xe ax x xf )2()(2−=.(Ⅰ)当x 为何值时,f(x)取得最小值?证明你的结论; (Ⅱ)设f(x)在[-1,1]上是单调函数,求a 的取值范围.2005年高考理科数学全国卷Ⅱ试题及答案(必修+选修Ⅱ)(黑龙江吉林广西内蒙古新疆)参考答案1-6: CDBBCC 7-12:ACACB C(2)分析:本题主要考查学生对截面图形的空间想像,以及用所学知识进行作图的能力,通过画图,可以得到这个截面与正方体的六个面都相交,所以截面为六边形,故选D.(12) 解析一:由题意,四个半径为1的小球的球心1234,,,O O O O ,恰好构成一个棱长为2的正四面体,并且各面与正四面体的容器P ABC −的各对应面的距离都为1如图一所示显然1HO =设,N T 分别为23,AB O O 的中点,在棱长为2的正四面体1234O O O O −中,1OT HT ==, ∴1O H =,且11sin 3TO H ∠=.作1O M PN ⊥,则11O M =, 由于11O PM TO H ∠=∠, ∴ 11111sin sin O M O MPO O PM TOH===∠∠∴ 11314PO PO O O HO =++=++=故选C解析二:由题意,四个半径为1的小球的球心1234,,,O O O O ,恰好构成一个棱长为2的正四面体,并且各面与正四面体的容器P ABC −的各对应面的距离都为1如图二所示,正四面体1234O O O O −与P ABC −有共同的外接球球心O 的相似正四面体,其相似比为:1263126143OH k OQ ==+,所以1126132632643()434312643OO OP k +===+所以32612626()3(1)43433PQ OP OQ =+=+++=+解析三:由题意,四个半径为1的小球的球心1234,,,O O O O ,恰好构成一个棱长为2的正四面体,并且各面与正四面体的容器P ABC −的各对应面的距离都为1 如图二所示,正四面体1234O O O O −与P ABC −有共同的外接球球心O 的相似正四面体,从而有113O P OO HQ OH==, 又1HQ =, 所以1O P=由于13O H =, 所以1113PQ OP OQ O H HQ O P =+=++=++=+13.22(1)(2)4x y −+−=;14.34−;15. 192;16. ①,④ (13)分析:本题就是考查点到直线的距离公式,所求圆的半径就是圆心(1,2)到直线5x -12y -7=0的距离:2r ==,再根据后面要学习的圆的标准方程,就容易得到圆的方程:222(1)(2)2x y −+−=(16)分析:②显然不对,比如三条侧棱中仅有一条不与底面边长相等的情况,侧面都是等腰三角形的三棱锥但不是正三棱锥. ③底面是等边三角形,侧面的面积都相等,说明顶点到底面三边的距离(斜高)相等,根据射影长的关系,可以得到顶点在底面的射影(垂足)到底面三边所在直线的距离也相等。

2023年高考数学试题全国卷2(理)全解全析

2023年高考数学试题全国卷2(理)全解全析

2023年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己地姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出解析后,用铅笔把答题卡上对应题目地解析标号涂黑.如需改动,用橡皮擦干净后,再选涂其他解析标号.不能答在试卷卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.参考公式:如果事件A B ,互斥,那么球地表面积公式()()()P A B P A P B +=+ 24πS R=如果事件A B ,相互独立,那么 其中R 表示球地半径()()()P A B P A P B = 球地体积公式如果事件A 在一次试验中发生地概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次地概率 其中R 表示球地半径()(1)(012)k kn k k n P k C p p k n -=-= ,,,,一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,, C .{}012,,D .{}1012-,,,【解析】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合地运算,整数集地符号识别2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( )A .223b a=B .223a b=C .229b a=D .229a b=【解析】A【解析】i b b a ab a i b ab bi a a bi a )3()3(33)(322332233-+-=--+=+,因是实数且 0b ≠,所以2232303a b b b a =⇒=-【高考考点】复数地基本运算3.函数1()f x x x=-地图像关于( )A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【解析】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称【高考考点】函数奇偶性地性质4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( )A .a <b <c B .c <a <bC . b <a <cD . b <c <a【解析】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=地最小值( )A .2-B .4-C .6-D .8-【解析】D【解析】如图作出可行域,知可行域地顶点是A (-2,2)、B(32,32)及C(-2,-2)于是8)(min -=A z 6.从20名男同学,10名女同学中任选3名参加体能测试,则选到地3名同学中既有男同学又有女同学地概率为( )A .929B .1029C .1929D .2029【解析】D【解析】2920330110220210120=+=C C C C C P 7.64(1(1-地展开式中x 地系数是( )A .4-B .3- C .3D .4【解析】B【解析】324156141604262406-=-+=-+C C C C CC【易错提醒】容易漏掉1416C C 项或该项地负号8.若动直线x a =与函数()sin f x x =和()cos g x x =地图像分别交于M N ,两点,则MN 地最大值为( )A .1BCD .2【解析】B【解析】在同一坐标系中作出x x f sin )(1=及x x g cos )(1=在]2,0[π地图象,由图象知,当43π=x ,即43π=a 时,得221=y ,222-=y ,∴221=-=y y MN 【高考考点】三角函数地图象,两点间地距离【备考提示】函数图象问题是一个常考常新地问题9.设1a >,则双曲线22221(1)x y a a -=+地离心率e 地取值范围是( )A .2)B .C .(25),D .(2【解析】B【解析】222222)11(1)1()(a aa a a c e ++=++==,因为a 1是减函数,所以当1a >时 110<<a,所以522<<e ,即52<<e 【高考考点】解析几何与函数地交汇点10.已知正四棱锥S ABCD -地侧棱长与底面边长都相等,E 是SB 地中点,则AE SD ,所成地角地余弦值为( )A .13B C D .23【解析】C【解析】连接AC 、BD 交于O,连接OE,因OE ∥SD.所以∠AEO 为所求。

2015年高考理科数学(全国二卷)真题版

2015年高考理科数学(全国二卷)真题版

2015年普通高等学校招生全国统一考试理科数学(全国卷Ⅱ)(青海、西藏、甘肃、贵州、内蒙古、新疆、宁夏、吉林、黑龙江、云南、辽宁、广西、海南等)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-2,-1,0,1,2},B={X|(X-1)(X+2)<0},则A B=()A.{-1,0} B.{0,1} C.{-1,0,1}D.{0,1,2}2.若a为实数,且(2+ai)(a-2i)= - 4i,则a=()A.-1 B.0 C.1 D.23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫排放量呈减少趋势D.2006年以来我国二氧化硫排放量与年份正相关4.已知等比数列{错误!未找到引用源。

} 满足错误!未找到引用源。

=3,错误!未找到引用源。

+错误!未找到引用源。

=21,则错误!未找到引用源。

+错误!未找到引用源。

+错误!未找到引用源。

=()A.21 B.42 C.63 D.845.设函数f(x)=错误!未找到引用源。

则f(-2)+f(错误!未找到引用源。

)=()A.3 B.6 C.9 D.126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

7.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则IMNI=()A.2错误!未找到引用源。

(完整版)2019年高考理科数学全国2卷(附答案)

(完整版)2019年高考理科数学全国2卷(附答案)

学校:___________________________年_______班姓名:____________________学号:________---------密封线---------密封线---------绝密★启用前2019年普通高等学校招生全国统一考试理科数学全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A ∩B=A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z=-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知AB uuu r=(2,3),AC uuu r =(3,t),BC uuu r =1,则AB BC uu u r uuu r =A .-3B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r rR.设r R,由于的值很小,因此在近似计算中34532333(1),则r 的近似值为A .21M RM B .212M RM C .2313M RM D .2313M RM 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差6.若a>b ,则A .ln(a-b)>0B .3a<3bC .a 3-b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若抛物线y 2=2px(p>0)的焦点是椭圆2231xypp的一个焦点,则p=A .2B .3C .4D .89.下列函数中,以2为周期且在区间(4,2)单调递增的是A .f(x)=│cos 2x │B .f(x)=│sin 2x │C .f(x)=cos │x │D .f(x)= sin │x │10.已知α∈(0,2),2sin 2α=cos 2α+1,则sin α=A .15B .55C .33D .25511.设F 为双曲线C :22221(0,0)x ya b ab的右焦点,O为坐标原点,以OF 为直径的圆与圆222xy a交于P ,Q 两点.若PQ OF,则C 的离心率为A .2B .3C .2D .512.设函数()f x 的定义域为R ,满足(1)2 ()f xf x ,且当(0,1]x时,()(1)f x x x .若对任意(,]x m ,都有8()9f x ,则m的取值范围是A .9,4B .7,3C .5,2D .8,3二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年高考全国卷Ⅱ理科(黑龙江、吉林、广西)数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第I 卷注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试卷卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A·B)=P(A)·P(B)如果事件A 在一次实验中发生的概率是 球的体积公式 P ,那么n 次独立重复实验中恰好发生k 334R V π=次的概率kn k k n n P P C k P --=)1()( 其中R 表示球的半径一、选择题:1.函数f (x )=|sin x +cos x |的最小正周期是 ( )A .4πB .2π C .πD .2π2.正方体ABCD —A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点。

那么,正方体的过P 、Q 、R 的截面图形是( )A .三角形B .四边形C .五边形D .六边形 3.函数)0(132≤-=x x y 的反函数是( )A .)1()1(3-≥+=x x y B .)1()1(3-≥+-=x x yC .)0()1(3≥+=x x y D .)0()1(3≥+-=x x y4.已知函数)2,2(tan ππω-=在x y 内是减函数,则( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-1 5.设a 、b 、c 、d ∈R ,若dic bia ++为实数,则( )A .bc+a d ≠0B .bc -a d ≠0C .bc -a d=0D .bc+a d=06.已知双曲线13622=-y x 的焦点为F 1、F 2,点M 在双曲线上且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )A .563 B .665 C .56 D .65 7.锐角三角形的内角A 、B 满足tanA -A2sin 1=tanB ,则有( )A .sin2A -cosB=0B .sin2A+cosB=0C .sin2A -sinB=0D .sin2A+sinB=08.已知点A (3,1),B (0,0)C (3,0).设∠BAC 的平分线AE 与BC 相交于E , 那么有λλ其中,CE BC =等于 ( )A .2B .21C .-3D .-31 9.已知集合M={x |x 2-3x -28≤0}, N={x |x 2-x -6>0},则M ∩N 为 ( )A .{x |-4≤x <-2或3<x ≤7}B .{x |-4<x ≤-2或3≤x <7}C .{x |x ≤-2或x >3}D .{x |x <-2或x ≥3}10.点P 在平面上作匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)11.如果a 1, a 2, …,a 8为各项都大于零的等差数列,公差d ≠0,则 ( )A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 512.将半径都为1的4个铅球完全装人形状为正四面体的容品里,这个正四面体的高最小值为 ( )A .3623+B .3622+C .3624+D .36234+第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试卷卷中。

2.答卷前将密封线内的工程填写清楚。

3.本卷共10小题,共90分。

二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.圆心为(1,2)且与直线5x -12y -7=0相切的圆的方程为. 14.设α为第四象限的角,若ααα2tan ,513sin 3sin 则==. 15.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有个.16.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是(写出所有真命题的编号).三、解答题:(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)设函数x x f x f x x 22)(,2)(|1||1|≥=--+求使的取值范围. 18.(本小题满分12分)已知}{n a 是各项均为正数的等差数列,1lg a 、2lg a 、4lg a 成等差数列.又.,3,2,1,12 ==n a b nn (Ⅰ)证明}{n b 为等比数列;(Ⅱ)如果无穷等比数列}{n b 各项的和31=S ,求数列}{n a 的首项a 1和公差d.(注:无穷数列各项的和即当∞→n 时数列前n 项和的极限) 19.(本小题满分12分)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001) 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,AD=PD ,E 、F 分别为CD 、PB 的中点.(Ⅰ)求证:EF ⊥平面PAB ;(Ⅱ)设AB=2BC ,求AC 与平面AEF 所成的角的大小.21.(本小题满分14分)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点.已知.0,,=⋅且线与共线与求四边形PMQN 的面积的最小值和最大值.22.(本小题满分12分)已知.)2()(,02xe ax x xf a -=≥函数(Ⅰ)当x 为何值时,f (x )取得最小值?证明你的结论; (Ⅱ)设)(x f 在[-1,1]上是单调函数,求a 的取值范围.2005年高考全国卷Ⅱ理科(黑龙江、吉林、广西)参考答案1-6: CDBBCC 7-12: ACACBC 13. 22(1)(2)4x y -+-=。

14.34-. 15. 192;16. ①,④ 17.本小题主要考查指数函数的性质、不等式性质和解法,考查分析问题的能力和计算能力,满分12分解:由于2xy =是增函数,()f x ≥3|1||1|2x x +--≥① (1) 当1x ≥时,|1||1|2x x +--=,∴①式恒成立。

(2) 当11x -<<时,|1||1|2x x x +--=,①式化为322x ≥,即314x ≤< (3) 当1x ≤-时,|1||1|2x x +--=-,①式无解综上x 的取值范围是3,4⎡⎫+∞⎪⎢⎣⎭18.本小题主要考查等差数列、等比数列的基本知识以及运用这些知识的能力。

满分12分。

(Ⅰ)证明:1lg a 、2lg a 、4lg a 成等差数列,2142lg lg lg a a a ∴=+,即2214a a a =又设等差数列{}n a 的公差为d ,则2111()(3)a d a a d +=+,即21d a d =10,0d d a ≠∴=≠,12(21)2n n n a a d d =+-=,21112n n n b a d ==⋅ 这时{}n b 是首项112b d =,公比为12的等比数列。

(Ⅱ)解:如果无穷等比数列{}n b 的公比1q =,则当n →∞时其前n 项和的极限不存在。

因而10d a =≠,这时公比12q =,112b d =,这样{}n b 的前n 项和11[1()]22.112n n dS -=- 则11[1()]122lim lim .112n n n n dS S d →∞→∞-===-由13S =得公差3d =,首项1 3.a d ==19.本小题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。

满分12分解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=330.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。

因而P (ξ=4)=2230.60.40.6C ⨯⨯⨯+2230.40.60.40.3744C ⨯⨯⨯=比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。

因而P (ξ=5)=22240.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯=所以ξ的概率分布为ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.065620.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识、及思维能力和空间想象能力。

满分12分。

证明:(Ⅰ)证明:连结EP ,PD ⊥底面ABCD ,DE 在平面ABCD 内,PD DE ∴⊥。

又CE =ED ,PD =AD =BC ,,.Rt BCE Rt PDE PE BE ∴∆≅∆∴=F 为PB 中点,∴.EF PB ⊥由三垂线定理得PA AB ⊥,∴在Rt PAB ∆中,PF =AF 。

又PE =BE =EA ,,.Rt EFP Rt EFA EF FA ∴∆≅∆∴⊥PB 、FA 为平面PAB 内的相交直线,∴EF ⊥平面PAB 。

(Ⅱ)解:不妨设BC =1,则AD =PD =1,AB,PA AC ∴∆PAB 为等腰直角三角形,且PB =2,F 为其斜边中点,BF =1,且AF ⊥PB 。

PB 与平面AEF 内两条相交直线EF 、AF 都垂直,∴PB ⊥平面AEF 。

连结BE 交AC 于G ,作GH ∥BP 交EF 于H ,则GH ⊥平面AEF ,∠GAH 为AC 与平面AEF 所成的角。

相关文档
最新文档