吴中区高一数学寒假作业参考答案第一天
高一数学(必修一)寒假作业1Word版含答案
高一数学(必修一)寒假作业1一、选择题,每小题只有一项是正确的。
1.已知全集{}1,2,3,4U =,集合{}{}1,2,2A B == ,则∁U (A ∪B ) =( )A .{}134,,B .{}34,C . {}3D . {}4 2.已知集合A ={x|a -1≤x≤a+2},B ={x|3<x <5},则使A ⊇B 成立的实数a 的取 值范围是 ( )A.{a|3<a≤4}B.{a|3≤a≤4}C. {a|3<a <4}D.φ3.函数 的定义域为M , 的定义域为N ,则M ∩N =( )A .[-2,+∞)B .[-2,2)C .(-2,2)D .(-∞,2) 4.下列式子中成立的是 ( ) A.1122log 4log 6< B. 0.30.311()()23> C. 3.4 3.511())22<( D.32log 2log 3> 5.下列函数是偶函数的是 ( )A. 2lg y x =B. 1()2xy = C. 21y x =- ,(11]x ∈- D. 1y x -=6.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( )A .9B .19 C .9- D .19- 7.下列各个对应中,构成映射的是( )8.设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()()12x f x =-,则在区间(2,6]-内关于x 的方程2()log (2)0f x x -+=的零点的个数是( )A .1B .2C .3D .49.若函数()(1)(0x x f x k a a a -=-->且1)a ≠在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )二、填空题10.函数32,1()log 1x x f x x x ⎧≤=⎨>⎩,,则(f f =__________11.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 。
高一数学寒假作业答案
高一数学寒假作业答案高一数学寒假作业答案参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D D A D D B C A C B C13. ; 14. 4 ; 15. 0.4; 16. ②③17.(1)∵A中有两个元素,∴关于的方程有两个不等的实数根,∴ ,且,即所求的范围是,且;……6分(2)当时,方程为,∴集合A= ;当时,若关于的方程有两个相等的实数根,则A也只有一个元素,此时 ;若关于的方程没有实数根,则A没有元素,此时,综合知此时所求的范围是,或.………13分18 解:(1) ,得(2) ,得此时,所以方向相反19.解:⑴由题义整理得 ,解方程得即的不动点为-1和2. …………6分⑵由 = 得如此方程有两解,则有△=把看作是关于的二次函数,则有解得即为所求. …………12分20.解: (1)常数m=1…………………4分(2)当k<0时,直线y=k与函数的图象无交点,即方程无解;当k=0或k 1时, 直线y=k与函数的图象有唯一的交点,所以方程有一解;当0所以方程有两解.…………………12分21.解:(1)设,有, 2取,则有是奇函数 4(2)设,则,由条件得在R上是减函数,在[-3,3]上也是减函数。
6当x=-3时有最大值 ;当x=3时有最小值,由,,当x=-3时有最大值6;当x=3时有最小值-6. 8(3)由,是奇函数原不等式就是 10由(2)知在[-2,2]上是减函数原不等式的解集是 1222.解:(1)由数据表知,(3)由于船的吃水深度为7米,船底与海底的距离不少于4.5米,故在船航行时水深米,令,得 .解得 .取,则 ;取,则 .故该船在1点到5点,或13点到17点能安全进出港口,而船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,下午17点离港,在港内停留的时间最长为16小时.高一数学寒假作业参考【1.1(1)】1.否,是,是,是,否;/,3,1/2,-π,/2.x≠0的全体实数,1/4,-13.答案不唯一.如函数解析式为y=12/x,此时有:(1)3(2)3/2(3)-3/24.(1)v=240/t(2)当t=3.2h时,v=75km/h5.(1)S=600/x(2)a=300/b6.(1)a=16/h,h取大于0的`全体实数(2)上、下底的和为8cm,腰AB=CD=2√2cm,梯形的周长为(8+4√2)cm【1.1(2)】1.-122.y=10/x,x≠0的全体实数3.y=-√6/x.当x=√6时,y=-14.(1)y=2z,z=-3/x(2)x=-3/5,y=10(3)y=-6/x,是5.(1)D=100/S(2)150度6.(1)y=48/x,是,比例系数48的实际意义是该组矩形的面积都为48cm^2(2)设矩形的一边长是a(cm),则另一边长是3a(cm).将x=a,y=3a代入y=48/x,可得a=4,故该矩形的周长是2(a+3a)=32(cm)【1.2(1)】1.y=-√2/x2.B3.(1)表略(2)图略4.(1)y=4/x(2)图略5.(1)反比例函数的解析式为y=8/x,一个交点的坐标为(2,4),另一个交点的坐标为(-2,-4)6.根据题意得{3m-1>0,1-m>0,解得1/3高一数学寒假作业答案【1.2(2)】1.二、四;增大2.C3.m<3/24.反比例函数为y=5/x.(1)0 05.(1)t=6/v(2)18km/h6.(1)y=-2/x,y=-x-1(2)x<-2或0【1.3】1.D2.y=1200/x3.r=400/h,204.(1)y=2500/x(2)125m5.(1)t=48/Q(2)9.6m^3(3)4h6.(1)图象无法显示,选择反比例函数模型进行尝试.若选点(1,95),可得p=95/V.将其余四点的坐标一一带入验证,可知p=95/V是所求的函数解析式(2)63kPa(3)应不小于0.7m^3*7.(1)y=14x+30,y=500/x(2)把y=40分别代入y=14x+30和y=500/x,得x=5/7和x=25/2,一共可操作的时间为25/2-5/7=165/14(分)复习题1.函数是y=(-12)/x.点B在此函数的图象上,点C不在图象上2.①③,②④3.函数解析式为y=-3/x.答案不唯一,如(-3,1),(-1,3),…4.y=-2/x,x轴5.(1)y2(2)y2>y1>y36.(1)p=600/S,自变量S的取值范围是S>0(2)略(3)2400Pa,至少为0.1m^27.二、四8.A′(2,4),m=89.(1)由{-2k^2-k+5=4,k<0得k=-1.y=(-1)/x(2)m=±√310.(1)将P(1,-3)代入y=-(3m)/x,得m=1,则反比例函数的解析式是y=-3/x.将点P(1,-3)代入y=kx-1,得k=-2,则一次函数的解析式是y=-2x-1(2)令y=-2x-1=0,得点P′的横坐标为-1/2,所求△POP′的面积为1/2×|-1/2|×|-3|=3/411.(1)设点A的坐标为(-1,a),则点B的坐标为(1,-a).由△ADB的面积为2,可求得a=2.因此所求两个函数的解析式分别是y=-2/x,y=-2x(2)将AD作为△ADP的底边,当点P的横坐标是-5或3时,△ADP的面积是4,故所求点P的坐标是(3,-2/3),(-5,2/5)12.作AB⊥x轴.∵AB=A″B″=|b|,BO=B″O=|a|,∴Rt△ABO≌Rt△A″B″O,∴OA=OA″,∠AOB=∠A″OB″.当PQ是一、三象限角平分线时,得∠AOQ=∠A″OQ,∴PQ是AA″的中垂线,所以反比例函数的图象关于一、三象限的角平分线成轴对称。
2023年高一数学寒假作业答案
2023年高一数学寒假作业答案新的学期即将来临,在剩下的美好的寒假时光,我们要认真完成自己的寒假作业,那么高一数学寒假作业答案有哪些呢下面是小编给大家整理的2023年高一数学寒假作业答案,欢迎大家来阅读。
高一数学寒假作业答案一、1~5 CABCB6~10 CBBCC11~12 BB二、13 ,14 (1) ;(2){1,2,3} N; (3){1} ;(4)0 ;15 -116.略。
三、17 .{0.-1,1};18.略;19. (1) a2-4b=0 (2) a=-4, b=320.略.p2一.1~5 C D B B D6~10 C C C C A11~12 B B二. 13. (1,+∞) 14.13 15 16,三.17.略18、略。
19.解:⑴ 略。
⑵略。
20.略。
p3一、选择题:1.B2.C3.C4.A5.C6.A7.A8.D9.A 10.B 11.B 12.C二、填空题:13. 14. 12 15. ; 16.4-a,三、解答题:17.略18.略19.解:(1)开口向下;对称轴为 ;顶点坐标为 ;(2)函数的值为1;无最小值;(3)函数在上是增加的,在上是减少的。
20.Ⅰ、Ⅱ、p4一、1~8 C B C D A A C C 9-12 B B C D二、13、[—,1] 14、 15、 16、x 2或0三、17、(1)如图所示:(2)单调区间为, .(3)由图象可知:当时,函数取到最小值18.(1)函数的定义域为(—1,1)(2)当a 1时,x (0,1) 当019. 略。
p5一、1~8 C D B D A D B B9~12 B B C D13. 19/6 14. 15. 16.17.略。
20. 解:p7一、选择题:1.D2. C3.D4.C5.A6.C7.D8. A9.C 10.A 11.D 1.B二、填空题13.(-2,8),(4,1) 14.[-1,1] 15.(0,2/3)∪(1,+∞) 16.[0.5,1)17.略 18.略19.略。
高一数学寒假作业详细答案
高一数学寒假作业1参考答案(1)集合与函数1~9. D D C C B A D B B 10. 1; 11.4x x --. 12.12; 13.4231,,,c c c c 14.52a b -= 15.解:由AB B =,得B A ⊆.当B =∅时,有:231m m -≥+,解得14m ≤. 当B ≠∅时,如右图数轴所示,则23121317m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得124m <≤.综上可知,实数m 的取值范围为2m ≤. 16.解:(Ⅰ)当a =0时,函数2()()||1()f x x x f x -=-+-+=,此时()f x 为偶函数. 当a ≠0时,2()1f a a =+,2()2||1f a a a -=++,()()f a f a -≠.此时函数f (x )为非奇非偶函数.(Ⅱ)当x ≥a 时,函数2213()1()24f x x x a x a =+-+=+-+.若a ≤-12,则函数()f x 在[,)a +∞上的最小值为13()24f a -=-.若a >-12,则函数()f x 在[,)a +∞上单调递增,从而,函数()f x 在[,)a +∞上的最小值为f (a )=a 2+1.综上,当a ≤-12时,函数f (x )的最小值是34-a . 当a >-12时,函数f (x )的最小值是a 2+1.17.解:(Ⅰ)x =234时,22121133236242424211log log log 4log 4log 2log 442369x x ---===-⨯=-. (Ⅱ)122242224111log log (log log 4)(log log 2)(2)()(32)42222x x y x x t t t t ==--=--=-+.∵ 2≤x ≤4, ∴ 222log 2log log 4x ≤≤,即[1,2]t ∈.∴ 21(32),[1,2]2y t t t =-+∈.18.解:(1)∵ f (-x )=-f (x ),∴111222111log log log 111ax ax x x x ax +--=-=----. ∴1111ax x x ax+-=---,即(1)(1)(1)(1)ax ax x x +-=-+-,∴a =-1. (2)由(1)可知f (x )=121log 1x x +-122log (1)1x =+-(x >1) 记u (x )=1+21x -,由定义可证明u (x )在(1,)+∞上为减函数, ∴ f (x )=121log 1x x +-在(1,)+∞上为增函数.(3)设g (x )=121log 1x x +--1()2x .则g (x )在[3,4]上为增函数. ∴g (x )>m 对x ∈[3,4]恒成立,∴m <g (3)=-98.高一寒假作业2——函数的应用答案一、 选择题BAADC DDAC 二、 填空题10. (16,)+∞ 11. 1 12. 3 13. ⎪⎭⎫⎢⎣⎡+∞,23lg 14. 7- 三、 解答题15.证明:(I )因为(0)0,(1)0f f >>,所以0,320c a b c >++>.由条件0a b c ++=,消去b ,得0a c >>;由条件0a b c ++=,消去c ,得0a b +<,20a b +>. 故21ba-<<-. (II )抛物线2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a--, 在21b a -<<-的两边乘以13-,得12333b a <-<. 又因为(0)0,(1)0,f f >>而22()0,33b ac acf a a+--=-< 所以方程()0f x =在区间(0,)3b a -与(,1)3ba-内分别有一实根.故方程()0f x =在(0,1)内有两个实根.16.解:设水塔进水量选择第n 级,在t 时刻水塔中的水容量y 等于水塔中的存水量100吨加进水量nt 10吨,减去生产用水t 10吨,在减去工业用水t W 100=吨,即t t nt y 1001010100--+=(160≤<t );若水塔中的水量既能保证该厂用水,又不会使水溢出,则一定有3000≤<y .即30010010101000≤--+<t t nt , 所以1102011010++≤<++-tt n t t 对一切(]16,0∈t 恒成立. 因为272721110110102≤+⎪⎪⎭⎫ ⎝⎛--=++-t t t , 4194141120110202≥-⎪⎪⎭⎫ ⎝⎛+=++t t t ,所以41927≤≤n ,即4=n . 即进水选择4级.高一寒假作业3——必修1综合一、选择题 DADAB DC二、填空题8.21.09 9.14元 10.-1 11.三.解答题12.(1)a=3,b=1 (2) [2,14] 13.解:(1)∵f(t)=34+a ·2-t ×100%(t 为学习时间),且f(2)=60%,则34+a ·2-2×100%=60%,可解得a =4. ∴f(t)=34+a ·2-t ×100%=34(1+2-t )×100%(t ≥0),∴f(0)=34(1+1)×100%=38=37.5%.f(0)表示某项学习任务在开始学习时已掌握的程度为37.5%. (2)令学习效率指数1()2t f t y -=,t ∈(1,2), 即1()322(21)t t f t y -==+,因32(21)ty =+在(0,+∞)上为减函数. t ∈(1,2) ∴31,102y ⎛⎫∈ ⎪⎝⎭.故所求学习效率指数的取值范围是31,102⎛⎫ ⎪⎝⎭14.15.(3)f(x)=x 2-ax +2,x ∈[a ,a +1],其对称轴为x =a 2.①当a 2≤a ,即a ≥0时,函数f(x)min =f(a)=a 2-a 2+2=2.若函数f(x)具有“DK ”性质,则有2≤a 总成立,即a ≥2. ②当a<a2<a +1,即-2<a<0时,f(x )min =f(a 2)=-a24+2.若函数f(x)具有“DK ”性质,则有-a24+2≤a 总成立,解得a ∈∅.③当a2≥a +1,即a ≤-2时,函数f(x)的最小值为f(a +1)=a +3.若函数f(x)具有“D K ”性质,则有a +3≤a ,解得a ∈∅.综上所述,若f(x)在[a ,a +1]上具有“DK ”性质,则a 的取值范围为[2,+∞).高一数学寒假作业(4)——立体几何答案1. 解析:选B. 由正视图与俯视图可知小正方体最多有7块,故体积最多为7 cm3 2.解析:选D.设直观图中梯形的上底为x ,下底为y ,高为h .则原梯形的上底为x ,下底为y ,高为22h ,故原梯形的面积为4.3.解析:选D.设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a ,∴V D -ABC =13·12a 2·22a =212a 3.4.解析:选B.有2条:A 1B 和A 1C 1,故选B.5.解析:选D.在A 图中分别连接PS 、QR ,易证PS ∥QR ,∴P 、S 、R 、Q 共面;在C 图中分别连接PQ 、RS ,易证PQ ∥RS ,∴P 、Q 、R 、S 共面.如图,在B 图中过P 、Q 、R 、S 可作一正六边形,故四点共面,D 图中PS 与RQ 为异面直线,∴四点不共面,故选D.6.解析:选B.如图所示,连结AC 交BD 于O 点,易证AC ⊥平面DD 1B 1B ,连结B 1O ,则∠CB 1O 即为B 1C 与对角面所成的角,设正方体棱长为a ,则B 1C =2a ,CO =22a ,∴sin ∠CB 1O =12.∴∠CB 1O =30°.7.答案:①或③ 解析:根据直线与平面平行的性质和平面与平面平行的性质知①③满足条件,在条件②下,m ,n 可能平行,也可能异面.8.答案:3∶1解析:设圆锥底面半径为r ,则母线长为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3.9.答案:9π2解析:由题意,三角形DAC ,三角形DBC 都是直角三角形,且有公共斜边.所以DC 边的中点就是球心(到D 、A 、C 、B 四点距离相等),所以球的半径就是线段DC 长度的一半,V =43πR 3=9π2.10.答案:①解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确; a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确; 当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 11. 解:(1)证明:因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1.又B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以B 1C ⊥平面A 1BC 1.又B 1C ⊂平面AB 1C ,所以平面AB 1C ⊥平面A 1BC 1.(2)设BC 1交B 1C 于点E ,连结DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线.因为A 1B ∥平面B 1CD ,所以A 1B ∥DE .又E 是BC 1的中点,所以D 为A 1C 1的中点, 即A 1D ∶DC 1=1.12. 解:(1)证明:连接BD ,∵ABCD 为正方形,∴BD ⊥AC ,又SD ⊥底面ABCD ,∴SD ⊥AC ,∵BD ∩SD =D , ∴AC ⊥平面SDB ,∵BP ⊂平面SDB ,∴AC ⊥BP .(2)当P 为SD 的中点时,连接PN ,则PN ∥DC 且PN =12DC .∵底面ABCD 为正方形,∴AM ∥DC 且AM =12DC ,∴四边形AMNP 为平行四边形,∴AP ∥MN . 又AP ⊄平面SMC ,∴AP ∥平面SMC .(3)V B -NMC =V N -MBC =13S △MBC ·12SD =13·12·BC ·MB ·12SD =16×1×12×12×2=112. 高一数学寒假作业(5)参考答案1、B 2.A 3.B 4. C 5、B 6、A 7、①④ 8、13:9、(1)(2)(4) 10、2+611、(1)∵B 1D ⊥平面ABC ,AC ⊂平面ABC ,∴B 1D ⊥AC . 又∵BC ⊥AC ,B 1D ∩BC =D , ∴AC ⊥平面BB 1C 1C .(2)⎭⎬⎫AB 1⊥BC 1AC ⊥BC 1AB 1与AC 相交⇒⎭⎬⎫BC 1⊥平面AB 1C B 1C ⊂平面AB 1C ⇒BC 1⊥B 1C ,∴四边形BB 1C 1C 为菱形,∵∠B 1BC =60°,B 1D ⊥BC 于D ,∴D 为BC 的中点.连接A 1B ,与AB 1交于点E ,在三角形A 1BC 中,DE ∥A 1C , ∴A 1C ∥平面AB 1D . 12、(1)解:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,AB ⊂平面ABCD ,故PA AB ⊥. 又AB AD ⊥,PAAD A =,从而AB ⊥平面PAD .故PB 在平面PAD 内的射影为PA ,从而APB ∠为PB 和平面PAD 所成的角. 在Rt PAB △中,AB PA =,故45APB =∠.所以PB 和平面PAD 所成的角的大小为45.(2)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故CD PA ⊥. 由条件CD AC ⊥,PAAC A =,CD ∴⊥面PAC .又AE ⊂面PAC ,AE CD ∴⊥.由PA AB BC ==,60ABC =∠,可得AC PA =.E 是PC 的中点,AE PC ∴⊥,A BCDPE MPC CD C ∴=.综上得AE ⊥平面PCD .(3)解:过点E 作EM PD ⊥,垂足为M ,连结AM .由(2)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则AM PD ⊥.(三垂线定理)因此AME ∠是二面角A PD C --的平面角.由已知,得30CAD =∠.设AC a =,得PA a =,3AD a =,3PD a =,2AE a =. 在Rt ADP △中,AM PD ⊥,AD PA PD AM ⋅=⋅∴,则a a aa PDAD PA AM 772321332=⋅=⋅=.在Rt AEM △中,414sin ==∠AM AE AME . 高一数学寒假作业(6)——直线与圆答案1——6 C C D D B B7. [-2,2] 8. ①⑤ 9. (-∞,4)10.3+11.[解析]∵AB 所在直线的方程为3x -4y -4=0,且AD 与AB 垂直,∴直线AD 的斜率为-43. 又点N 在直线AD 上,∴直线AD 的方程为y -13=-43(x +1),即4x +3y +3=0. 由⎩⎨⎧3x -4y -4=04x +3y +3=0,解得点A 的坐标为(0,-1). 又两条对角线交于点M ,∴M 为矩形ABCD 的外接圆的圆心.而|MA |=⎝ ⎛⎭⎪⎫0-122+(-1-0)2=52,∴外接圆的方程为⎝ ⎛⎭⎪⎫x -122+y 2=54.12.[解析] 当0≤x ≤10时,直线过点O (0,0),A (10,20),∴k OA =2010=2, ∴此时直线方程为y =2x ;当10<x ≤40时,直线过点A (10,20),B (40,30),此进k AB =30-2040-10=13,∴此时的直线方程为y -20=13(x -10),即y =13x +503;当x >40时,由题意知,直线的斜率就是相应放水的速度,设进水的速度为v 1,放水的速度为v 2,在OA 段时是进水过程,∴v 1=2.在AB 段是既进水又放水的过程,由物理知识可知,此时的速度为v 1+v 2=13,∴2+v 2=13.∴v 2=-53. ∴当x >40时,k =-53. 又过点B (40,30),∴此时的直线方程为y =-53x +2903.令y =0得,x =58,此时到C (58,0)放水完毕.综上所述:y =⎩⎪⎨⎪⎧2x ,0≤x ≤1013x +503,10<x ≤40-53x +2903,40<x ≤58.高一数学期末复习答案1--8 DDCBC ADB 9. (3,1) ; 10. 3 ; 11. 370x y --=和1x = 12. 5 ; 13. -314.解:(1)由四边形ABCD 为平行四边形知,AC 中点与BD 中点重合.∵ BD 中点为(11),, ∴ 点C 的坐标(33),. (2)由(11)A --,、(22)B -,知,直线AB 方程为340x y ++=,AB =又点(04)D ,到直线AB 的距离d ==∴ 平行四边形ABCD 的面积16S == 15.解:(1)由内角ABC ∠的平分线所在直线方程为2100x y -+=知,点B 在直线2100x y -+=上,设(210)B m m +,,则AB 中点D 的坐标为2214()22m m ++,. 由AB 边上的中线所在直线方程为250x y +-=知,点D 在直线250x y +-=上, ∴221425022m m +++⨯-= ,解得4m =-. ∴ 点B 的坐标为(42)-,. (2)设点()E a b ,与点(24)A ,关于直线2100x y -+=对称,则AE 中点在直线2100x y -+=上,且直线AE 与直线2100x y -+=垂直.∴ 242100224212a b b a ++⎧⨯-+=⎪⎪⎨-⎪⨯=-⎪-⎩,即220210a b a b -=-⎧⎨+=⎩,解得68a b =-⎧⎨=⎩. ∴ 点E 的坐标为(68)-,.由直线2100x y -+=为内角ABC ∠的平分线所在直线,知点E 在直线BC 上.∴ 直线BC 方程为822(4)6(4)y x --=+---,即3100x y ++=.16.解:因为V 半球=V 圆锥=因为V 半球<V 圆锥所以,冰淇淋融化了,不会溢出杯子.17. 解:(1)证明:设AC 和BD 交于点O ,连PO ,由P ,O 分别是DD 1,BD 的中点,故PO ∥BD 1,∵PO ⊂平面PAC ,BD 1⊄平面PAC ,所以,直线BD 1∥平面PAC .(2)长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=1,底面ABCD 是正方形,则AC ⊥BD ,又DD 1⊥面ABCD ,则DD 1⊥AC .∵BD ⊂平面BDD 1B 1,D 1D ⊂平面BDD 1B 1,BD ∩D 1D=D ,∴AC ⊥面BDD 1B 1.∵AC ⊂平面PAC ,∴平面PAC ⊥平面BDD 1B 1 .(3)由(2)已证:AC ⊥面BDD 1B 1,∴CP 在平面BDD 1B 1内的射影为OP ,∴∠CPO是CP 与平面BDD 1B 1所成的角. 依题意得,,在Rt △CPO 中,,∴∠CPO=30°∴CP 与平面BDD 1B 1所成的角为30°.18.解:(1)由()0f x ≤的解集为区间[]02,知,0a >,且()(2)f x ax x =-.又2()(2)(1)f x ax x a x a =-=--,0a >,且()f x 在在区间[]03,上的最大值为3, ∴ (3)33f a ==,1a =. ∴ 2()2f x x x =-.(2)① 20m -<≤或94m =-;924m -<≤-. ② 3 (3)设2()()(1)1(1)1g x f x x x x x x =--=--=--,0x 是方程()1f x x =-在区间0313()28x ∈,内的解. 由331()10222g =⨯-<,13135()10888g =⨯->,25259()10161616g =⨯-<知, 02513()168x ∈,.∵ 132510.181616-=<,∴ 方程()1f x x =-在区间0313()28x ∈,内的一个近似解为2516.友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
高一数学寒假作业答案01—07
2022届高一数学寒假作业01答案一、填空题 1、1-;2、[2,1)[4,6]-⋃;3、[2,3)(,1]⋃-∞;4、()0,∞-5、(,3][3,)-∞-⋃+∞;6、2;7、4;8、(1)-;9、3(,)2+∞; 10、(,1][3,4]-∞⋃; 11、(2);12、(,6]-∞二、选择题 13、C ; 14、A ; 15、B ; 16、C三、解答题17、(1)2-≤a (2)4≥a18、2-=x y 向左平移2各单位,向上一个单位,图略。
性质,定义域{}2-≠x x ,值域()+∞,1,在()2,-∞-递增,在()+∞-,2递减,关于2-=x 对称19、解:2184xy x +=得84xy x =-(0x << 31622(1)2l x y x x=++=+≥此时8 2.343x =-≈, 2.828y =≈用料最省 20、(1)解:(,2]A =-∞,令2()6g x x x p =-+,则由题意()0g x <得12(,)B x x =,且12x < 即(2)0g <,得(,8)p ∈-∞ (2)22112(2)(2)022t t t t t m -+-≥对[1,2]t ∈恒成立 即22(21)(21)0tt m -++≥,又[1,2]t ∈时2213t -≥ 则2210t m ++≥即2(21)tm ≥-+恒成立 则5m ≥-21、(1)略 (2)111121x x -≤+<≤-得3[,1)2x ∈-- (3)2min ()(1)121f x f t at ==-≥--即220t at -≤对所有[1,1]a ∈-均成立设2()2h a at t =-+ [1,1]a ∈-则由题意得(1)0(1)0h h ≤⎧⎨-≤⎩得0t =2022届高一数学寒假作业02答案一、填空题(1~6题每题4分,7~12每题5分,共54分)1. 22. [6,4)-3. 已知,a b R ∈,若2a ≤或2b ≤,则4a b +≤4.185.10)y x =-<≤6. 17. (,)b a+∞ 8. 9.5 10. 80 11. 2 12.32二、选择题(每小题5分,4题,共20分)13. A, 14.B 15.C 16.D三、解答题(本大题有5小题,共76分,14+14+14+16+18)17.(1)2232(2)()0x ax a x a x a -+=--<---------------------------------1分 当2a a >即0a >时,(,2)B a a =---------------------------------3分 当2a a =即0a =时,B =∅---------------------------------5分 当2a a <即0a <时,(2,)B a a =---------------------------------6分 (2)[2,4)A =---------------------------------8分当2a a >即0a >时,(,2)B a a =,(,2)[2,4)a a ⊆-,224a a ≥-⎧⎨≤⎩,所以(0,2]a ∈----------------10分当2a a =即0a =时,B =∅,B A ⊆符合---------------------------------11分 当2a a <即0a <时,(2,)B a a =-,(2,)[2,4)a a ⊆-,224a a ≥-⎧⎨≤⎩,所以[1,0)a ∈------------------13分所以[1,2]a ∈----------------------------------14分18、(1)函数2222()42(2)42f x x x m m x m m =--+=---+的对称轴为2x =. …1分①当22m >+,即0m <时,)(x f y =在]2,1[+-m m 上单调递减,min ()()(2)24g m f x f m m ==+=-; …3分②当122m m -≤≤+,即03m ≤≤时,此时顶点是函数图像的最低点,2min ()()(2)24g m f x f m m ===-+-; ……5分1-○3当12m ->,即3m >时,)(x f y =在]2,1[+-m m 上单调递增,min ()()(1)45g m f x f m m ==-=-+; …7分综上,有224(0)()24(03)45(3)m m g m m m m m m -<⎧⎪=-+-≤≤⎨⎪-+>⎩. ……8分(2) 当0m <时,()4g m <-; …10分 当03m ≤≤时,2()(1)3g m m =---,max ()(1)3g m g ==- ;…12分 当3m >时,()7g m <- ; …13分 因此,函数)(m g 的最大值是-3. …14分19.设函数xxx f 2323)(+-=R)(∈x . (1)求函数)(x f y =的值域和零点;(2)请判断函数)(x f y =的奇偶性和单调性,并给予证明.(1)xx x x f 23612323)(++-=+-=,02>x ,∴3+2x >3⇒0<132x +<13⇒0<632x+<2, 1)(1<<-∴x f ,故)(x f y =的值域为()1,1-;----------------------------------------4分令f(x)=0,即6132x=+,解得2log 3x =, ∴()y f x =的零点为.3log 2=x ----------------------------------------6分 (2)对任意的x ∈R ,)1(51752323)1(11f f ±=±≠=+-=---, 故)(x f y =是非奇非偶函数. ------10分 所以,对任意的12,x x ∈R ,21x x <,)23)(23()22(6236236)()(21122121x x x x x x x f x f ++-=+-+=-.-------------------------------12分 因为022,023,0231221>->+>+xx x x , 所以)()(21x f x f >.故()y f x =在定义域R 上是减函数. ----------------------------------------14分20、(1)证明:1,1x y ==令()()()()11110f f f f =+∴=则--------------------------------------2分()()()111,1,y f f x f f f x x x x ⎛⎫⎛⎫==+∴=- ⎪ ⎪⎝⎭⎝⎭令则 ----------------------------------------4分 (2)证明:任取1212,+R x x x x ∈<,且()()2211x f x f x f x ⎛⎫∴-= ⎪⎝⎭---------------------------------------6分()()()()221211210,1,000+x x x x f x x f x f x f x ⎛⎫<<∴>∴< ⎪⎝⎭∴-<∴∞又在,上单调递减---------------------------------------9分(3)猜测:()()()()1111121212,.x x y f x f x x f x f x ----=+=⋅在的定义域内,有恒等式--------------------11分证明:设()()111122,fx y f x y --== ,()12,0,y y ∈+∞ ()()1122,f y x f y x ∴==()()()121212f y y f y f y x x ∴⋅=+=+()()()111121212,f x x y y f x f x ---∴+=⋅=⋅即证。
高一上册数学寒假作业高一上册数学寒假作业及答案
高一上册数学寒假作业高一上册数学寒假作业及答案高一上册数学寒假作业|高一上册数学寒假作业及答案高中新生应该根据自己的情况,以及高中阶段多学科知识、综合性强、知识与思维接触广泛的特点,寻找一套有效的学习方法。
今天,我们为全体学生整理了《高中一册数学寒假作业及答案》。
我希望这将有助于你的学习!高一上册数学寒假作业及答案(一)1.[0,1]上函数f(x)=x2的最小值为()a.1b.0c、 14天。
不存在解析:选b.由函数f(x)=x2在[0,1]上的图象(图略)知,F(x)=x2在[0,1]上单调增加,因此最小值为F(0)=02.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()a、 10,6b。
10,8c.8,6d.以上都不对分析:选择A.f(x)作为x的递增函数∈ [1,2],f(x)max=f(2)=10,f(x)min=f(-1)=63.函数y=-x2+2x在[1,2]上的值为()a、 1b。
二c.-1d.不存在分析:选择A。
因为函数y=-x2+2x=-(x-1)2+1,对称轴是x=1,开口是向下的,所以它是[1,2]上的单调递减函数,所以ymax=-1+2=14.函数y=1x-1在[2,3]上的最小值为()a、 2b。
十二c.13d.-12分析:选择B.函数y=1x-1作为[2,3]上的减法函数,∴ymin=13-1=12.5.一家公司同时在两地销售一辆品牌汽车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销量(单位:辆)如果公司在两地共销售15辆汽车,则可获得的利润为()a.90万元b.60万元c、 120万元d.1225万元解析:选c.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润l=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,l为120万元,故选c.6.给定函数f(x)=-x2+4x+A,x∈ [0,1],如果f(x)的最小值为-2,则f(x)的值为()a.-1b.0c、 1d。
高一数学寒假作业答案
一、 选择题
1~5 BBACA 6~9DBDD
二、填空题
10. [-3,Βιβλιοθήκη 3], 11 . ,12.5,13.
三、计算题
14.
15.证明:(1)取CE的中点G,衔接FG,BG.由于F为CD的中点,所以GF∥DE且GF= DE. ----2分
由于AB⊥平面ACD,DE⊥平面ACD,所以AB∥DE,所以GF∥AB.
由于BG∥AF,所以BG⊥平面CDE.由于BG 平面BCE,
教员范读的是阅读教学中不可缺少的局部,我常采用范读,让幼儿学习、模拟。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗诵磁带,一边放录音,一边幼儿重复倾听,在重复倾听中体验、品味。所以平面BCE⊥平面CDE. -------------------------------------------10分
又由于AB= DE,所以GF=AB. --------------------------------------------------2分
所以四边形GFAB为平行四边形,那么AF∥BG.由于AF?平面BCE,BG 平面BCE,
所以AF∥平面BCE. --------------------------------------------------5分
融会贯串是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的展开,融会贯串被作为一种僵化的、阻碍先生才干开展的教学方式,渐渐为人们所摒弃;而另一方面,教员们又为提高先生的语文素养煞费苦心。其实,只需运用妥当,〝融会贯串〞与提高先生素质并不矛盾。相反,它恰是提高先生语文水平的重要前提和基础。
(2)由于△ACD为等边三角形,F为CD的中点,所以AF⊥CD,由于DE⊥平面ACD,AF 平面ACD,所以DE⊥AF.又CD∩DE=D,故AF⊥平面CDE. ------------------------8分
高一寒假作业数学试题第一天 Word版含答案
第一天
一、选择题
1.若不等式的解集为,且,则实数的取值范围是
. . . .
2.已知集合,集合,则
. . . .
3.若全集,则.
. . .
4.已知集合,则
. . . .
5.设集合,则
. . . .
6.设集合,则集合
. . . .
7.设函数在上单调递减,且对于任意实数,总有,设
,若,则的取值范围是
. . 且
. .
8.设集合,则中元素的个数为
. . . .
9.设全集,函数的定义域为,则为
. . . .
10.集合,则.
. . .
二、填空题
11.设集合,集合中所有元素的个数
为;集合中满足条件“”的元素个数为.
12.设,若,则实数组成的集合.
13.从符号、、、、中选出适当的一个填空
;;
;;.
14.若使集合中的元素个数最少,则实数的取值范围
是.
三、解答题
.设函数.
在区间上画出函数的图象;
设集合试判断集合和之间的关系要写出判断过程;
当时,求证:在区间上,的图象位于函数图象的上方.
第一天
. . . . . . . . . .
. ;. . ;;;;.
. 解:设,当时,
即或时,当时,即时,
故作图如下:
方程的解分别是和,由于在和
上单调递减,
在和上单调递增,
.
由于.
当时,.
,。
2022-2023学年高一数学寒假作业一(1)
高一数学上学期寒假作业(一)一、选择题1.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}2.如果2,B A ∈∈并且2,则下列错误的是( )A. 2A B ∈⋂B. 2A B ∈⋃C. {}A B 2⋂=3.不等式123>-x 的解集为( )。
A .()+∞⎪⎭⎫ ⎝⎛-∞-,131, B. ⎪⎭⎫ ⎝⎛-1,31 C. ()+∞⎪⎭⎫ ⎝⎛∞-,131, D. ⎪⎭⎫ ⎝⎛1,31 4.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( );A.φB.AC.{}1- AD.B5.下列函数中是奇函数的是( )。
A .3+=x y B.12+=x y C.3x y = D.13+=x y 6.函数34+=x y 的单调递增区间是( )。
A .()+∞∞-, B. ()+∞,0 C. ()0,∞- D.[)∞+.07.f (x )是定义在[-6,6]上的偶函数,且f (3)>f (1),则下列各式一定成立的是( ).A .f (0)<f (6)B .f (3)>f (2)C .f (-1)<f (3)D .f (2)>f (0)8.下列图形是函数y =x |x |的图象的是( )9.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( )A .(],40-∞B .[40,64]C .(][),4064,-∞+∞D .[)64,+∞10.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4二、填空题1. 函数f (x )=1x -的定义域是2.不等式02≥++k kx x 的解集为R ,则k 的取值范围是_____________3.已知320()30x x f x x x ⎧+≥=⎨<⎩,若()11f x =,则x = 4.当=m ____________时,函数122)1()(-+-=m m x m x f 是二次函数。
高一数学寒假作业(一)答案
高一数学寒假作业(一)答案一、选择题:题号答案二、填空题:题号111213 1415答案1158a+4b(-∞(0,1)三、解答题:16.解:(1)原式=222log 2320322[()]log101)3----++ 1921344=--+=- (2)112122()29x x x x --+=++=得17x x -+=1222()249x x x x --+=++=得2247x x -+=原式=47245734-=- 17 解:(1),0,2512cos sin 251cos sin 21)cos (sin 2π<<-==+=+x x x x x x x 又即34tan ,53cos ,54sin -=-==∴x x x(2)x x 33cos sin - =12591。
18 解:(1)由 41(21)(216)0x x ++--≤可化为112168x +≤≤则314x -≤+≤得43x -≤≤故集合{}43A x x =-≤≤ (2) 集合B 为函数的值域B φ∴≠A B B B A =∴⊆ 13141413313m m m m m +≤-⎧⎪∴+≥-≤≤⎨⎪-≤⎩得故实数m 的取值范围为4[1,]319 (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[∴⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022, 定义域为{}407<<∈+x N x (2) ∵⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022, ∴ 当720x <≤时,则16x =,max 32400y =(元) 当2040x <<时,则23x =或24,max 27200y =(元)综上:当16x =时,该特许专营店获得的利润最大为32400元.20.解:(1)(4)413n f =-=即44,1n n =∴= 4()f x x x∴=-函数定义域为(,0)(0,)-∞+∞ 关于原点对称4()()f x x f x x-=-+=-()f x ∴是奇函数 (2)任取120x x <<则212121212112444()()()f x f x x x x x x x x x x x -=--+=-+-⋅ 120x x << 21120,0x x x x ∴->⋅> 21()()f x f x ∴> ()f x ∴在区间(0,)+∞上单调递增 (3)依题意只需 12max ()()t f x f x ≥-又12max min max 14()()()()3f x f x f x f x -=-=143t ∴≥m i n 143t ∴= 21. (1)证法一:(0)()()f f x f x ⋅=即()[(0)1]0f x f -=又()0f x ≠(0)1f ∴=当0x <时,()1,f x > 0x ->()()(0)1f x f x f ⋅-== 则1()(0,1)()f x f x -=∈ 故对于x R ∈恒有()0f x >证法二:2()()[()]0222x x xf x f f =+=≥ ()f x 为非零函数 ()0f x ∴>(2)令12x x >且12,x x R ∈有1212()()()f x f x x f x ⋅-=, 又210x x -< 即21()1f x x -> 故2211()()1()f x f x x f x =-> 又()0f x > 21()()f x f x ∴> 故()f x 为R 上的减函数(3)21(4)(22)(2)16f f f ==+=⇒故1(2)4f =, 则原不等式可变形为2(22)(2)f x ax f -+≤依题意有 220x ax -≥对[1,1]a ∈-恒成立2220220x x x x x ⎧-≥∴⇒≥⎨+≥⎩或2x ≤-或0x =故实数x 的取值范围为{}(,2]0[2,)-∞-+∞高一数学寒假作业(二)参考答案1-10 BDDBA DDBAA 11.6π 12.⎪⎭⎫⎢⎣⎡2,0π 13.[)9,1- 14.31 15.[)+∞,216.解:{}2,3-=M①当2=a 时,{}2=N ,满足题意;②当2≠a 时,{}a N ,2=,因为M N ⊆,则3-=a . 综上所述:3-2或=a 17.解:1)原式=()()01.0lg 2lg 332lg 35lg 2+++=()()22lg 32lg 12lg 132-++- =22lg 32lg 3322-+- =1 2)原式=165616561656131212131==-ba b a ba b a b a18解:(1)设0==x y ,有0)0(=f ,取x y -=,则有0)0()()(==-+f x f x f )()(x f x f -=-⇒)(x f ∴是奇函数 (2)设21x x <,则012>-x x ,由条件得0)(12<-x x f )()()()()(11121122x f x f x x f x x x f x f <+-=+-=∴∴)(x f 在R 上是减函数,在[-3,3]上也是减函数。
高一数学寒假作业答案
高一寒假作业集1参考答案一.选择题1.A2.A3.C4.B5.A6.C 二.填空题7.32 8. 222- 9. ⎪⎭⎫⎝⎛--21,65 三.解答题10.1 11. (1)()2,1 (2)(]⎪⎭⎫⎢⎣⎡+∞⋃-∞-,233, 12. [)+∞+,12作业集2参考答案一.选择题1.A2.B3.D4.C5.B6.D 二.填空题7.2618. 1 9. 2 三.解答题10.(1)1 (2)5 11. (1)略 (2)⎥⎦⎤⎢⎣⎡+-312,322k k ()z k ∈ 12. (1)奇函数(2)单调递增(3)516a ≥-作业集3参考答案一.选择题1.B2.C3.C4.D5.A6.C 二.填空题7.28. 29. 37π 三.解答题10.]2,(--∞ 11.(1)34-;(2)41 12. (1)2±=x ;(2)]1,45[--作业集4参考答案一.选择题1.C2.C3.C4.B5.B6.A二.填空题7.3 8. 9. 三.解答题10.(1)略;(2)),21[)2,(+∞⋃--∞ 11.(1);(2) [13,+∞) 12. (1);(2)最大值为41,最小值为21-作业集5参考答案一.选择题1.B2.C3.B4.A5.D6.C 二.填空题7. 12008. 1a ≤- 9. 18 三.解答题10.(1)5;(2)3.511. (1)3π;(2)等边三角形. 12.(1)R ; (2)31>a (3)3-≥a 作业集6参考答案一.选择题1.C2.A3.C4.B5.A6.D 二.填空题7. 228. 349. 1 三.解答题10.(1) 2323tan()tan(4)tan 6663ππππ-=-==(2) 将sin 2cos x x =代入22sin cos 1x x +=得25cos 1x =21cos 5x ∴=,24sin 5x ∴= 227cos 2sin 5x x ∴-=-11.12DE a b =-;12BF b a=- 12. (1)()2sin(2)6f x x π=+(2)()g x 的单调减区间为[,],63k k k Z ππππ-++∈.2log 23=x ]1,23(),3()0,(+∞⋃-∞π=T作业7答案一、选择题1.D2.D3.C4.A5.D6.C 二、填空题7. 198.(,3]-∞- 9.1-三、解答题10.(1)3 (2)7/4 11.解:πtan 2,02x x =--<<且cos x x ∴== (1)sin cos x x -=-=(2)原式=22(sin )(cos )sin (cos )sin cos x x xx x x-⋅---⋅+=222sin cos sin tan tan 242cos sin cos tan 121x x x x x x x x x ----===--+-++12. 解:(1)()f x A ∈,()g x A ∉.对于()f x A ∈的证明. 任意12,x x R ∈且12x x ≠,22222121212121122212()()2()()222241()04f x f x x x x x x x x x x x f x x ++++-+-=-==-> 即1212()()()22f x f x x xf ++>. ∴()f x A ∈对于()g x A ∉,举反例:当11x =,22x =时,1222()()11(log 1log 2)222g x g x +=+=,122221231()log log log 2222x x g ++==>=,不满足1212()()()22g x g x x xg ++>. ∴()g x A ∉.3-2πφω==,⑵函数2()3xf x ⎛⎫= ⎪⎝⎭,当(0,)x ∈+∞时,值域为(0,1)且21(1)32f =>任取12,(0,)x x ∈+∞且12x x ≠,则121211221221212222222222()()1222()2222333122221222023333233x x x x x x x x x x f x f x x x f +⎡⎤++⎛⎫⎛⎫⎛⎫⎢⎥-=+-⋅ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎧⎫⎡⎤⎡⎤⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥⎢⎥=-⋅⋅+=->⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎣⎦⎩⎭即1212()()()22f x f x x x f ++>. ∴2()3xf x A ⎛⎫=∈ ⎪⎝⎭.说明:本题中()f x 构造类型()x f x a =1(1)2a <<或()kf x x k=+(1)k >为常见.作业8答案一、选择题 1.A 2.A 3. C 4.C 5.D 6.C 二、填空题7. ()12,8 8.1,13⎛⎫⎪⎝⎭9、22sin(2)3y x π=+ 三.解答题10..解:(1)当1a =-时,2()22f x x x =-+在[-5,5]上先减后增 故max min ()max{(5),(5)}(5)37,()(1)1f x f f f f x f =-=-=== (2)由题意,得55a a -≤--≥或,解得(,5][5,)a ∈-∞-+∞.11.解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+ 3(1,2)3(3,2)(10a b -=--=- (1)()ka b +⊥(3)a b -,得()ka b +(3)10(3)4(22)2380,19a b k k k k -=--+=-== (2)()//ka b +(3)a b -,得14(3)10(22),3k k k --=+=- 此时1041(,)(10,4)333ka b +=-=--,所以方向相反。
高一数学寒假作业1及答案
(第15题图)寒假作业(1)一、选择题:1.已知MP 、OM 、AT 分别为θ(42ππθ<<)的正弦线、余弦线、正切线,则一定有( )A .MP OM AT << B.OM MP AT <<C.AT OM MP << D.OM AT MP <<2.半径为3cm 的圆中,有一条弧,长度为2πcm ,则此弧所对的圆心角为 ( )A. 30 B .15 C .40 D .203.设34sin ,cos 55αα=-=,那么下列各点在角α终边上的是 ( )A .(3,4)-B .(4,3)-C .(4,3)-D .(3,4)-4.设集合,{|0},A B x x ==>R 则从集合A 到集合B 的映射f 只可能是 ( ) A .||x y x =→ B .xy x 2=→ C .x y x 2log =→ D .22x y x x →=-5.若1tan 2α=-,则2212sin cos sin cos αααα+-的值为 ( ) A .3- B .13- C .13D .36.已知α为第四象限角,则πα-是第几象限角 ( )A.一 B .二 C .三 D .四7.已知函数()sin,()tan()2x f x g x x ππ+==-,则 ( )A .()f x 与()g x 都是奇函数B .()f x 与()g x 都是偶函数C .()f x 是奇函数,()g x 是偶函数D .()f x 是偶函数,()g x 是奇函数8.要得到y=tan2x 的图像,只需把y=tan(2x+6π)的图像 ( )A.向左平移6π个单位 B.向右平移6π个单位C.向左平移12π个单位 D.向右平移12π个单位 9.已知θ为第二象限角,则下列四个值中,一定大于0的是 ( )A. sin 2θ B.cos2θ C.tan2θD.sin2θ10.函数xy a =≠-b(a>0且a 1)的图像不经过第一象限,则 ( )A 、11><-a b 且B 、11<<-a b 且C 、11<≥a b 且D 、11<≤a b 且11.实数x 满足θsin 1log 3+=x ,则|)9||1(|log 2-+-x x 的值为 ( )A .22B .3C .4D .与θ有关12.若函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a= ( ) A .12B C .2 D .2二、填空题:13.函数1x sin 2y -=的定义域为_____________________________. 14.函数2sin cos 1y x x =-+15.电流强度I (安培)随时间t I = A sin (ωt+ϕ))0,0(>>A ω则当t = 120716.设)(x f 是定义域为R,且最小正周期为π2的函数,并且 ⎩⎨⎧<<-<≤=)0(cos )0(sin )(x x x x x f ππ则)411(π-f =_______________________.三、解答题:本题17—21小题每题12分,22小题14分,共74分,解答应写出文字说明、证明过程或演算步骤.17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合..18.(12分)(1)已知2tan =α,求)sin()tan()23sin()2cos()sin(αππαπααπαπ----+---的值 (2)已知1cos(75),180903αα+=-<<- 其中,求sin(105)cos(375)αα-+- 的值.19.(12分)如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA → =3,CB →=2,试用,表示、CD → 、CE →20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
吴中区高一数学寒假作业参考答案第一天
吴中区高一数学寒假作业参考答案(第一天)1.1,2,4 2. ()∞+,0 3.[0,2] 4.(2,3] 5.[)∞+-,2 6.(0,2) 7.[2,4] 8.()+∞,2 9. 解:因为{}1,U C A =-所以11a ,所以2a 。
检验:此时{}{}2,4,1,2,4,{1}u U A C A =-==-。
符合10.解:由题意得:{4,0}A =-,因为AB A =,所以B A , 所以{4}{0}{4,0}B B BB 或或或 ①当φ=B 时, a a 42-=∆ ,所以此时04a 。
②当{4}B 时, ⎩⎨⎧=+-=04160a a ∆ ,所以此时无解。
③当{0}B时, ⎩⎨⎧==00a ∆ ,所以此时0a 。
④当{}40-=,B 时,由韦达定理得⎩⎨⎧=-⨯-=-aa )4(040,所以此时无解。
所以,40<≤a11.(1)""C C B =⋂6-≤m (2)4≥m12.由已知,4,2A B ∈∈分别代入解得712,78-==b a ,再代入集合A,B 检验 A C I ∩}2{=B ,A ∩}4{=B C I 成立。
吴中区高一数学寒假作业参考答案(第二天)一、填空题1.(3)解析:(1)(4)(5)定义域不同;(2)解析式不同()g x x =;(3)为同一函数;2.12(1,)(,1)23--,解析:由210x ->得(1,1)A =- ;由2260x x +-≥得12[,]23B =-12(,)(,)23U C B ∴=-∞-+∞ 12()(1,)(,1)23U A C B ∴=-- 3.(2,0]-,解析:考察函数单调性 1()22x f x -=-在定义域内单调递增,值域为(2,0]- 4.[0,1),解析:考察抽象函数定义域 由题知{02210x x ≤≤-≠ 所以定义域为[0,1) 5.10[2,]3,解析:令()t f x =则1()()()F x f x f x =+的值域等价于11,[,3]2y t t t =+∈的值域,由“耐克”函数的图象知值域为10[2,]3a =,解析:1()log a a f x x >∴=在区间[,2]a a 上单调递增 即21log log 2a a a a -= 7.② 解析:定义域为{|385}x x x -≤≤≠且投影到x 轴上横坐标的取值范围;值域为{|120}y y y -≤≤≠且投影到y 轴上纵坐标的取值范围8.()0()g a f b <<,解析:法一:图像法; 法二:单调性()f x 在R 单调递增,()g x 在(0,)+∞单调递增。
2022数学高一上学期寒假作业参考答案参考
2022数学高一上学期寒假作业参考答案参考数学高一上学期寒假作业参考答案1一、1,5cabcb6,10cbbcc11,12bb二、13,14(1);(2){1,2,3}n;(3){1};(4)0;15-116或;;或。
三、17。
{0。
-1,1};18。
;19。
(1)a2-4b=0(2)a=-4,b=320。
高一数学寒假作业2参考答案:一。
1,5cdbbd6,10cccca11,12bb二。
13、(1,+∞)14、131516,三。
17。
略18、用定义证明即可。
f()的值为:,最小值为:19。
解:⑴设任取且即在上为增函数。
⑵20。
解:在上为偶函数,在上单调递减在上为增函数又,由得解集为。
高一数学寒假作业3参考答案一、选择题:1、b2、c3、c4、a5、c6。
a7。
a8。
d9。
a10。
b11、b12、c二、填空题:13、14、1215、;16。
4-a,三、解答题:17。
略18。
略19。
解:(1)开口向下;对称轴为;顶点坐标为;(2)函数的值为1;无最小值;(3)函数在上是增加的,在上是减少的。
20。
ⅰ、ⅱ、高一数学寒假作业4参考答案一、1~8cbcdaacc9-12bbcd二、13、[—,1]14、15、16、>2或0三、17、(1)如图所示:(2)单调区间为,。
(3)由图象可知:当时,函数取到最小值18。
(1)函数的定义域为(—1,1)(2)当a>1时,(0,1)当019。
解:若a>1,则在区间[1,7]上的值为,最小值为,依题意,有,解得a=16;若0,值为,依题意,有,解得a=综上,得a=16或a=20、解:(1)在是单调增函数,(2)令,原式变为:,,当时,此时,当时,此时,高一数学寒假作业5参考答案一、1~8cdbdadbb9~12bbcd13、19、614、15、16。
17。
解:要使原函数有意义,须使:解:要使原函数有意义,须使:即得所以,原函数的定义域是:所以,原函数的定义域是:(-1,7)(7,)。
高一上学期数学寒假作业(含答案)
高一数学寒假作业(必修1、必修2)高一寒假作业第1天 集合1.(2012湖南高考)设集合{1,0,1}M =-,2{}N x x x ==,则MN =( )A .{1,0,1}-B .{0,1}C .{1}D .{0}2.(2012广东高考)设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则U M =ð( ) A .{2,4,6} B .{1,3,5} C .{1,2,4} D .U3.(2012门头沟一模)已知集合2{230}A x x x =--=,那么满足B A ⊆的集合B 有( )A . 1个B . 2个C . 3个D . 4个4.(2012江西高考)若集合{1,1}A =-,{0,2}B =,则集合{,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2 5.(2012四川高考)设集合{,}A a b =,{,,}B b c d =,则A B =( )A .{}bB .{,,}b c dC .{,,}a c dD .{,,,}a b c d 6.(2012顺义二模)已知集合{0,1,3}M =,{}|3,N x x a a M ==∈,则集合M N =( )A .{0}B .{0,1}C . {0,3}D . {1,3} 7.(2012广州二模)已知集合A 满足{1,2}A ⊆,则集合A 的个数为( ) A .4 B .3 C .2 D .18.(2012惠州调研)已知集合{(,)0,,}A x y x y x y R =+=∈,{(,)0,,}B x y x y x y R =-=∈,则集合A B =( )A .)0,0(B .{}0C .{})0,0(D .∅9.(2012汕头质检)已知全集R,U = 集合{}1,2,3,4,5A =,[2,)B =+∞,则图中阴影部分所表示的集合为( )A . {0,1,2}B . {0,1}C . {1,2}D . {1}10.已知集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈B .0x N ∉C . 0x N ∈ 或0x N ∉D .不能确定11.已知集合A ={|25}x x -<≤,}121|{-≤≤+=m x m x B 且A B A =,求实数m 的取值范围.12.设S 为满足下列两个条件的实数所构成的集合:①S 内不含1; ②若a S ∈,则11S a∈- 解答下列问题:(1)若2S ∈,则S 中必有其他两个元素,求出这两个元素; (2)求证:若a S ∈,则11S a-∈; (3)在集合S 中元素的个数能否只有一个?请说明理由.高一寒假作业第2天 函数的概念1.(2012广州一模)函数y =) A .(,1]-∞- B .(,1)-∞- C .[1,)-+∞D .(1,)-+∞2.(2012茂名一模)已知函数2y x x =-的定义域为{0,1,2},那么该函数的值域为( ) A .{0,1,2} B .{0,2}C .1{|2}4y y -≤≤ D .{|02}y y ≤≤3.(2012湛江一模)函数2log (1)y x =-的定义域为( ) A .{|1}x x >B .{|1}x x ≥C .{|12}x x x ≥≠且D .R4.函数222, [0,3],()6, [2,0)x x x f x x x x ⎧-∈⎪=⎨+∈-⎪⎩的值域是( )A .RB .[9,)-+∞C .[8,1]-D .[9,1]-5.(2012海淀二模)函数21,12<≤-+-=x x y 的值域是( )A .(3,0]-B . (3,1]-C . [0,1]D . [1,5)6.(2012江西高考)设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ( )A .15 B .3 C .23 D .1397.已知函数f (x )的图象如图所示,则此函数的定义域、值域分别是( )A .(3,3)-,(2,2)-B .[3,3]-,[2,2]-C .[2,2]-,[3,3]-D .(2,2)-,(3,3)-8.(2012朝阳质检)已知x ∈R ,用[]x 表示不超过x 的最大整数,记{}[]x x x =-,若(0, 1)a ∈,则{}a 与1{}2a +的大小关系是( )A .不确定(与a 的值有关)B .{}a <1{}2a +C .{}a =1{}2a +D .{}a >1{}2a +9.(2012广东高考)函数y =的定义域为 . 10.集合}4,3{=A ,}7,6,5{=B ,集合A 到集合B 的映射共有 个.11.已知()f x 是二次函数,若(0)0f =,且(1)()1f x f x x +=++,求函数()f x 的解析式.12.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.高一寒假作业第3天 函数的单调性1.函数2y x =+在区间[3,0]-上( )A .递减B .递增C .先减后增D .先增后减2.(2012广东高考)下列函数中,在区间(0,)+∞上为增函数的是( ) A .ln(2)y x =+ B.y = C .1()2xy = D .1y x x=+3.(2012肇庆二模)已知()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( )A . (,1)-∞B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 4.已知)(x f 在R 上是减函数,若0≤+b a ,则下列正确的是( ) A .)]()([)()(b f a f b f a f +-≤+ B .)()()()(b f a f b f a f -+-≤+ C .)]()([)()(b f a f b f a f +-≥+ D .)()()()(b f a f b f a f -+-≥+ 5.函数322-+=x x y 的单调减区间是( )A .]3,(--∞B .),1[+∞-C .]1,(--∞D .),1[+∞6.(2012烟台质检)定义在R 上的偶函数()f x 满足:对任意的正实数1x ,212()x x x ≠,恒有1212()()0f x f x x x -<-.则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<- 7.函数21()1f x x x =-+的最大值是 ( )A .45B .54C .34D .438.(2012济宁质检)若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[9.(2012舟山调研)函数1()1f x x =-在[2,3]上的最小值为______,最大值为______. 10.(2012金华质检)函数1y x x =--的单调增区间为________.11.已知函数()y f x =在定义域为[1,1]-是减函数,且(1)(21)f a f a -<-,求a 的取值范围.12.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.高一寒假作业第4天 奇偶性1.(2012梅州一模)函数3()2f x x =的图象( ) A .关于y 轴对称 B .关于x 轴对称 C .关于直线y x =对称 D .关于原点对称 2.下列函数为偶函数的是( )A .2y x =B .3y x =C .x y e =D .lny =3.(2012广州二模)已知函数()1x x f x e e -=-+ (e 是自然对数的底数),若()2f a =,则()f a -=( )A .3B .2C .1D .04.(2012佛山二模)设函数0()(),0x f x g x x ≥=<⎪⎩ ,若()f x 是奇函数,则(4)g -的值是( )A .2-B .12-C .14- D .2 5.(2012陕西高考)下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .3y x =-C .1y x=D .||y x x = 6.(2012揭阳质检)已知奇函数()f x 在R 上单调递增,且1(21)()02f x f -+<. 则x 的取值范围为( )A .1(,)4-∞B .1(,)4+∞C .3(,)4-∞D .3(,)4+∞7.(2012房山一模)已知函数2221,0()21,0x x x f x x x x ⎧+-≥=⎨--<⎩,则对任意12,x x R ∈,若120x x <<,下列不等式成立的是( ) A .12()()0f x f x +< B . 12()()0f x f x +>C .12()()0f x f x ->D .12()()0f x f x -<8.(2012潍坊联考)奇函数()f x 在(0,)+∞上单调递增,若(1)0f =,则不等式[()()]0x f x f x --<的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(,1)(1,)-∞-+∞D .(1,0)(0,1)-9.(2012重庆高考)函数)4)(()(-+=x a x x f 为偶函数,则实数a = .10.(2012上海高考)已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= .11.已知函数2()(0,)af x x x a R x=+≠∈ (1)判断函数()f x 的奇偶性;(2)若()f x 在区间[)+∞,2是增函数,求实数a 的取值范围.12.(2012德州联考)已知函数)(x f 是定义在R 上的单调函数满足(3)2f -=,且对任意的实数R a ∈有0)()(=+-a f a f 恒成立.(1)试判断)(x f 在R 上的单调性,并说明理由; (2)解关于x 的不等式2)2(<-xxf .高一寒假作业第5天 指数与指数函数1.函数21(0,1)x y a a a -=+>≠的图象必经过点( ) A .(0,1) B .(2,1)C .(2,2)D .(1,2)2.(2012广州调研)已知函数1,0,(),0.x x x f x a x -≤⎧=⎨ >⎩若(1)(1)f f =-,则实数a =( )A .1B .2C .3D .43.(2012北京模拟)在同一坐标系中,函数2x y =与1()2xy =的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y x =对称4.(2012四川高考)函数(0,1)x y a a a a =->≠的图象可能是( )A.C.D.5.(2012房山一模)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( ) A . 1y x=-B . e x y =C . 23y x =-+ D . cos y x = 6.(2012韶关二模)设 2.52a =,02.5b =, 2.51()2c =,则,,a b c 的大小关系是( )A .a c b >>B .c a b >>C . a b c >>D .b a c >>7. (2012济南质检)设函数2 0()() 0.x x f x g x x ⎧<=⎨>⎩,,,若()f x 是奇函数,则(2)g 的值是( )A. 14-B. 4-C. 14D. 4 8.定义运算, ,a ab a b ≤⎧⊕=⎨,则函数()12xf x =⊕的图象是( )A .B .C .D .9.(2011门头沟一模)已知函数221,0,()2,0.x x f x x x x ⎧-≥=⎨--<⎩,若1)(=a f ,则实数a 的值是 .10.(2012上海高考)已知函数()x af x e -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .11.函数()(0,1)x f x a a a =>≠在区间[1,2]上的最大值比最小值大2a,求a 的值.12.设a 是实数,2()()21x f x a x R =-∈+, (1)求a 的值,使函数()f x 为奇函数;(2)试证明:对于任意,()a f x 在R 上为增函数.高一寒假作业第6天 对数与对数函数1.(2012安徽高考)23(log 9)(log 4)⋅=( ) A .14 B . 12C .2D .42.(2012天津高考)已知 1.22a =,0.21()2b -=,52log 2c =,则( )A .c b a <<B .c a b <<C .b a c <<D .b c a <<3.(2012陕西高考)集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]4. (2012济南质检)若函数()log (1)(0,1)a f x x a a =->≠的图象恒过定点,则定点的坐标为( ) A .(1,0) B . (2,0) C .(1,1) D .(2,1)5.(2012丰台一模)设 4.20.6a =,0.67b =,0.6log 7c =,则a ,b ,c 的大小关系是( )A .c b a <<B .c a b <<C .a c b <<D .a b c <<6.(2012西城二模)已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若AB B =,则c的取值范围是( )A .(0,1]B .[1,)+∞C .(0,2]D .[2,)+∞7.函数2()log (31)x f x =+的值域为( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞8.(2012门头沟一模)函数log (0a y x a =>且1)a ≠的图象经过点)1,2(-,函数(0xy b b =>且1)b ≠的图象经过点)2,1(,则下列关系式中正确的是( ) A .22b a > B .ba 22>C . b a )21()21(> D .2121b a >9.(2012江苏高考)函数x x f 6log 21)(-=的定义域为 .10.(2012北京高考)已知函数x x f lg )(=,若1)(=ab f ,则=+)()(22b f a f .11.(2012石景山一模)设函数21,,2()1log ,2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩的最小值为1-,求实数a 的取值范围.12.(2012济南质检)设函数)1ln()(2++=ax x x f 的定义域为A . (1)若1A ∈,3A -∉,求实数a 的范围;(2)若函数=y ()f x 的定义域为R ,求实数a 的取值范围.高一寒假作业第7天 幂函数1.(2012曲阜质检)幂函数()y f x =)的图象经过点1(4,)2,则1()4f =( ) A .1B .2C .3D .42.(2012广州一模)已知幂函数226(57)m y m m x -=-+在区间(0,)+∞上单调递增,则实数m =( ) A .3 B .2 C .2或3 D .2-或3- 3.(2012淄博模拟)若0a <,则下列不等式成立的是 ( ) A .12()(0.2)2a a a >> B .1(0.2)()22aaa >> C .1()(0.2)22a a a >> D .12(0.2)()2aaa >> 4.函数()(1)2f x x α=-+过定点( )A .(1,3)B .(1,2)C .(2,3)D .(0,1)5.(2012济宁质检)设1{1,,1,2,3}2n ∈-,则使得()n f x x =为奇函数,且在(0,)+∞上单调 递减的n 的个数是( )A .1B .2C .3D .46.(2012韶关一模)下列函数在其定义域内既是奇函数又是增函数的是( )A .1y x=- B .3xy = C .13y x = D .lg y x =78.(2012海淀质检)函数1()x f x x+=图象的对称中心为( ) A .(0,0) B .(0,1) C . (1,0) D . (1,1) 9.函数25()3x y x A x -=∈-的值域是[4,)+∞,则集合A = . 10.(2011北京高考)已知函数32,2,()(1), 2.x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.11.(2012淮北模拟)已知函数1()f x x -=,若(1)(102)f a f a +<-,求a 的取值范围.12.已知幂函数39* ()m y x m N -=∈的图象关于y 轴对称,且在()0,+∞上单调递减,求满足()()22132m m a a +<-的a 得取值范围.高一寒假作业第8天 函数与方程1.(2012北京高考)函数xx x f )21()(21-=的零点个数为( ) A .0 B .1 C .2 D .32.(2012东莞二模)方程 03log 3=-+x x 的解所在的区间是( ) A . (0,1) B . (1,2) C .(2,3) D . (3,4)3.(2011丰台二模)用max{}a b ,表示a ,b 两个数中的最大数,设22()max{84,log }f x x x x =-+-,若函数()()g x f x kx =-有2个零点,则k 的取值范围是( )A .(0,3)B . (0,3]C . (0,4)D . [0,4]4.函数()2ln f x x x =--在定义域内零点的个数为( )A .0B .1C .2D .35.(2012天津高考)函数22)(3-+=x x f x 在区间(0,1)内的零点个数是( )A .0B .1C .2D .36.(2013揭阳质检)函数()lg 3f x x x =+-的零点所在区间为( ) A .(3,)+∞B .(2,3))C .((1,2)D .(0,1)7.已知1()ln f x x x=-在区间(1,2)内有一个零点0x ,若用二分法求0x 的近似值(精确度0.1),则需要将区间等分的次数为( )A .3B .4C .5D .6 8.(2012汕头一模)已知a 是函数15()5log x f x x =-的零点,若00x a <<,则0()f x 的值( )A .0()0f x =B .0()0f x >C .0()0f x <D .0()f x 的符号不能确定9.已知函数()24f x mx =+,在[2,1]-上存在0x ,使0()0f x =,则实数m 的取值范围是____________.10.(2012朝阳一模)已知函数213(),2,()24log ,0 2.x x f x x x ⎧+≥⎪=⎨⎪ <<⎩若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是 .11.(2012西城一模)已知函数12,09,(),20.x x f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩(1)求()f x 的零点; (2)求()f x 的值域.12.证明方程24xx +=在区间(1,2)内有唯一一个实数解,并求出这个实数解(精确到0.2).高一寒假作业第9天 函数模型及应用1.资费调整后,市话费标准为:通话时间不超过3min 收费0.2元,超过3min 以后,每增加1min 收费0.1元,不足1min 按1min 付费,则通话费s (元)与通话时间(min)t 的函数图象可表示成图中的( )2.(2012浦东质检)某工厂从2006年开始,近八年以来生产某种产品的情况是:前四年年产量的增长速度越来越慢,后四年年产量的增长速度保持不变.则该厂这种产品的年产量y 与时间t 的函数图象可能是3.某商人将彩电先按原价提高40,然后在广告上写上"大酬宾,八折优惠"结果是每台彩电比原价多赚了270元,则每台彩电的原价为 元.4.某工厂12年来某产品总产量s 与时间t (年)的函数关系如图所示,下列四种说法:① 前三年总产量增长的速度越来越快.② 前三年总产量增长的速度越来越慢. ③ 第3年后至第8年这种产品停止生产了. ④ 第8年后至第12年间总产量匀速增加. 其中正确的说法是 .5.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,求截取的矩形面积的最大值.6.(2012山东省实)某民营企业生产甲、乙两种产品,根据市场调查与预测,甲产品的利润与投资成正比,其关系如图①;乙产品的利润与投资的算术平方根成正比,其关系如图②.(1)分别将A、B两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?高一寒假作业第10天空间几何体的结构1.下列命题正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点2.一个棱锥的侧面都是正三角形,那么这个棱锥底面多边形边数最多是()A.4B.5C.6D.73.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是()A.30B.45C.60D.904)A.B.C.6D5.(2012温州联考)下图是一个正方体的展开图,将其折叠起来,变成正方体后的图形可能是()6.如图,是一个无盖正方体盒子的表面展开图,A、B、C为其上三点,则在正方体盒子中,∠ABC等于()A.45°B.60°C.90°D.120°72,母线与轴的夹角为030,求圆锥的母线长以及圆锥的高.8.如图,已知三棱柱111ABC A B C 的所有棱长都相等,且侧棱垂直于底面,由B 沿棱柱侧面经过棱1CC到点1A 的最短路线长为1CC 的交点为D .求三棱柱的棱长.高一寒假作业第11天 三视图和直观图1.(2012梅州一模)一个几何体的三视图如图所示,则该几何体的体积为( )A .32aB .36aC .312aD .318a2.(2012浙江高考)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .31cmB .32cmC .33cmD .36cm3.(2012汕头质检)如图,一个空间几何体的主视图和俯视图都是边长为1的正方形,侧视图是一个直径为1的圆,那么这个几何体的表面积为( )A .π4B .π3C .π2D .π234.(2012汕头一模)一个体积为( )A .12B .8 C. D.正视图侧视图俯视图侧视图正视图正视图侧视图俯视图主视图侧视图俯视图5.(2012新课标高考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B . 9C .12D .186.(2012东城二模)若一个三棱柱的底面是正三角形,其正(主)视图如图所示,则它的体积为 ( )AB .2C. D .47.(2012湛江一模)一个几何体的三视图如图所示,正视图是正方形, 俯视图为半圆,侧视图为矩形,则其表面积为( ) A .3π B .4π+ C .42π+ D .43π+8.(2012西城一模)已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其侧视图的面积是( )A.2 B.2 C .28cm D .24cm侧视图正视图俯视图高一寒假作业第12天空间几何体的表面积与体积1.正三棱柱的高为3,底面边长为2,则它的体积为()A.2B.3CD.2)A.3πB.C.6πD.9π3.已知正方体的外接球的体积是43π,则这个正方体的棱长是()A.3BC.3D4.(2012新课标高考)平面α截球O的球面所得圆的半径为1,球心O到平面α体积为()AB.C.D.5.(2012上海高考)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为______.6.(2012韶关一模)如图BD是边长为3的ABCD为正方形的对角线,将BCD∆绕直线AB旋转一周后形成的几何体的体积等于______.C7.(2012江苏高考)如图,在长方体1111ABCD A B C D -中,3AB AD ==,12AA =,求四棱锥11A BB D D -的体积.8.如图,三棱柱111ABC A B C -中,若E 、F 分别为AB 、AC 的中点,平面11EB C 将三棱柱分成体积为1V 、2V 的两部分,求1V :2V 的值.B 1D AB CC 1D 1A 1ABC A 1B 1C 1E F高一寒假作业第13天 空间点、线、面的位置关系1.如果两条直线,a b 没有公共点,那么,a b 的位置关系是( )A .共面B .平行C .异面D .平行或异面 2.下列说法正确的是( )A .空间中不同三点确定一个平面B .空间中两两相交的三条直线确定一个平面C .梯形确定一个平面D .一条直线和一个点确定一个平面3.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.(2012广州调研)在正四棱锥V ABCD -中,底面正方形ABCD 的边长为1,侧棱长为2,则异面直线VA 与BD 所成角的大小为( )A .6π B .4π C .3π D .2π 5.下列四个命题:①若直线a 、b 是异面直线,b 、c 是异面直线,则a 、c 是异面直线; ②若直线a 、b 相交,b 、c 相交,则a 、c 相交; ③若a ∥b ,则a 、b 与c 所成的角相等; ④若a ⊥b ,b ⊥c ,则a ∥c . 其中真命题的个数是( ) A .4B .3C .2D .16.(2012江门一模)如图是某个正方体的侧面展开图,1l 、2l 是两条侧面对角线,则在正方体中,1l 与2l ( )A .互相平行B .异面且互相垂直C .异面且夹角为3πD .相交且夹角为3πl 2l 17.如图,在正方体1111ABCD A BC D -中,E 是AB 的中点,F 是1A A 的中点,求证: (1)E 、C 、1D 、F 四点共面; (2)CE 、1D F 、DA 三线共点.8.如图所示,平面ABD 平面BCD =BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ 是以PN 、QM 为腰的梯形.证明:三直线BD 、MQ 、NP 共点.D 1C 1B 1A 1FEDCBAQN PMD CBA高一寒假作业第14天 空间中的平行关系1.(2012湛江一模)对两条不相交的空间直线a 和b ,则( ) A .必定存在平面α,使得,a b αα⊂⊂B .必定存在平面α,使得a α⊂,b ∥αC .必定存在直线c ,使得a ∥c ,b ∥cD .必定存在直线c ,使得a ∥c ,b c ⊥2.(2012东莞二模)已知直线l m n ,,及平面α,下列命题中是假命题的是( ) A .若l ∥m ,m ∥n ,则l ∥n B .若l ∥α,n ∥α,则l ∥n C .若l m ⊥,m ∥n ,则l n ⊥ D .若,l n α⊥∥α,则l n ⊥3.(2012四川高考)下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行4.(2012全国高考)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为( )A .2BCD .15.(2012梅州一模)如图,在多面体ABCDEFG 中,平面ABC //平面DEFG ,AD ⊥平面DEFG ,AB AC ⊥,ED DG ⊥,EF ∥DG ,且1AC EF ==,2AB AD DE DG ====.(1)求证:BF //平面ACGD ; (2)求三棱锥A BCF -的体积.6.(2012湛江一模)在三棱锥P ABC -中,2PA AC BC ===,PA ⊥平面ABC ,BC AC ⊥,D 、E 分别是PC 、PB 的中点.(1)求证:DE //平面ABC ; (2)求证:AD ⊥平面PBC ; (3)求四棱锥A BCDE -的体积.ACPED EFGABCD高一寒假作业第15天 空间中的垂直关系1.(2012浙江高考)设l 是直线,α,β是两个不同的平面( ) A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥β C .若α⊥β,l ⊥α,则l ⊥β D .若α⊥β, l ∥α,则l ⊥β2.(2012东城二模)设n m ,是两条不同的直线,,αβ是两个不重合的平面,那么下面给出的条件中一定能推出m β⊥的是( )A .⊥αβ,且m ⊂αB .m ∥n ,且n ⊥βC .⊥αβ,且m ∥αD .m ⊥n ,且n ∥β3.(2012密云一模)已知α,β是平面,m ,n 是直线,给出下列命题 ①若α⊥m ,β⊂m ,则βα⊥.②若α⊂m ,α⊂n ,m ∥β,n ∥β,则α∥β.③如果,m n αα⊂⊄,m 、n 是异面直线,那么n 与α相交. ④若m αβ=,n ∥m ,且βα⊄⊄n n ,,则n ∥α且n ∥β.其中正确命题的有 .(填命题序号) 4.(2012惠州一模)给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中正确命题的有 .(填命题序号)5.(2012济南一模)如图,四棱锥S ABCD -中,M 是SB 的中点,//AB DC ,BC CD ⊥,SD ⊥平面SAB ,且22AB BC CD SD ===. (1)证明:CD SD ⊥;(2)证明:CM ∥平面SAD .6.(2012济宁质检)如图,四棱锥P ABCD -的底面ABCD 为矩形,且1PA AD ==,2AB =,120PAB ∠=,90PBC ∠=.(1)求证:平面PAD ⊥平面PAB ; (2)求三棱锥D PAC -的体积.ABCDPSABCDM高一寒假作业第16天 空间直角坐标系1.在空间直角坐标系中,P 点坐标为(1,2,3)-,则点P 到xOy 平面的距离为( ) A .1 B .2 C .3 D .142.到(1,0,0)A 的距离除以到(4,0,0)B 的距离的值为12的点(,,)P x y z 的坐标满足( ) A .2224x y z ++= B .22212x y z ++=C .2225()42x y z -++= D .2225()122x y z -++=3.已知点(1,2,11),(4,2,3),(6,1,4)A B C --,则ABC ∆的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形4.已知ABC ∆的三个顶点坐标分别为(2,3,1),(4,1,2),(6,3,7)A B C -,则ABC ∆的重心坐标为( ) A .7(6,,3)2 B .7(4,,2)3 C .14(8,,4)3D .7(2,,1)65.在x 轴上与(4,1,7)A -和(3,5,2)B --等距离的点为 .6.已知(3,1,1)A -和(2,4,3)B -,则线段AB 在坐标平面yOz 上的射影长度为 .7.已知(,5,21),(1,2,2)A x x x B x x --+-,求AB 取最小值时x 的值.8.正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 和平面ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若(0CM BN a a ==<<.(1)求MN 的长;(2)a 为何值时,MN 的长最小?高一寒假作业第17天 直线的方程1.(2012烟台质检)过两点(0,3),(2,1)的直线方程为( )A .30x y --=B .30x y +-=C .30x y ++=D .30x y -+=2.(2012潍坊质检)设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a 、b 满足( ) A .1a b += B .1a b -= C .0a b += D .0a b -=3.过点(2,1)M 的直线与,x y 轴分别交于,P Q ,若M 为线段PQ 的中点,则这条直线的方程为( ) A .230x y --= B .250x y +-= C .240x y +-= D .230x y -+=4.若直线(23)60t x y -++=不经过第二象限,则t 的取值范围是( ) A .(23, +∞) B .3(,]2-∞ C .3[,)2+∞ D .3(,)2-∞5.倾斜角是直线30x -=的倾斜角的2倍,且过点P 的直线方程是______________.6.若经过点(1,1)P a a -+和(3,2)B a 的直线的倾斜角为锐角,则实数a 的取值范围是 .7.在ABC ∆中,已知点(5,2)A -、(7,3)B ,且边AC 的中点M 在y 轴上,边BC 的中点N 在x 轴上. (1)求点C 的坐标; (2)求直线MN 的方程.8.已知直线l :120()kx y k k R -++=∈. (1)证明直线l 过定点;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,AOB ∆的面积为S ,求S 的最小值并求此时直线l 的方程.高一寒假作业第18天 两直线的位置关系1.与直线032=--y x 相交的直线的方程是( ) A .0624=--y x B .x y 2= C .52+=x y D .32+-=x y2.过点(1,0)且与直线220x y --=平行的直线方程是( ) A .210x y --= B .210x y -+= C .220x y +-= D .210x y +-=3.如果直线013=++y ax 与直线0322=-+y x 互相垂直,那么a 的值等于( ) A .3B .31-C .3-D .314.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) A .1133y x =-+ B .113y x =-+ C .33y x =- D .113y x =+5.过点(1,2)A ,且在两坐标轴上的截距相等的直线方程为 .6.若y x ,满足01332=--y x ,则22y x +的最小值为 .7.求经过直线1l :250x y +-=与直线2l :3210x y -+=的交点M ,且满足下列条件的方程:(1)与直线012=++y x 平行; (2)与直线012=++y x 垂直.8.已知点(2,1)P -,求:(1)过P 点与原点距离为2的直线l 的方程;(2)过P 点与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点与原点距离为3的直线?若存在,求出方程;若不存在,请说明理由. ∴ 过P 点不存在与原点距离为3的直线.高一寒假作业第19天 圆的方程1.圆心为(1,0)-,半径为2的圆的标准方程为( ) A .22(1)4x y ++= B .22(1)4x y +-= C .22(1)4x y ++= D .22(1)4x y -+=2.已知圆:C 22450x y x +--=,点(3,1)P 为弦AB 的中点,则直线AB 的方程是( )A .240x y --=B .40x y +-=C .240x y -+=D .20x y --=3.(2012辽宁高考)将圆222410x y x y +--+=平分的直线是( ) A .10x y +-= B .30x y ++= C .10x y -+= D .30x y -+=4.(2012银川一模)圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .22100x y y ++= B .22100x y y +-= C .22100x y x ++= D .22100x y x +-=5.(2012西城一模)圆22430x y x +-+=的圆心到直线0x =的距离是_____.6.(2012肇庆一模)如果实数,x y 满足等式22(2)3x y -+=,那么xy的最大值是 .7.已知直线l 经过两点(2,1),(6,3).(1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程.8.直角三角形ABC 的顶点坐标(2,0)A -,直角顶点(0,B -,顶点C 在x 轴上. (1)求BC 边所在的直线方程;(2)M 为ABC ∆的外接圆的圆心,求圆M 的方程.高一寒假作业第20天直线与圆的位置关系1.(2012湛江二模)过点(0,2)且与圆221x y +=相切的直线方程为( ) A .2y x =+ B .2y x =±+C .2y +D .2y =+ 2.(2012重庆高考)设,A B 为直线y x =与圆221x y += 的两个交点,则||AB =( )A .1 BC D .23.(2012陕西高考)已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( ) A .l 与C 相交 B . l 与C 相切 C .l 与C 相离 D . 以上三个选项均有可能4.(2012石景山一模)直线5x y +=和圆O :2240x y y +-= 的位置关系是( ) A .相离 B .相切 C .相交不过圆心 D .相交过圆心5.(2012东莞一模)从圆22(1)(1)1x y -+-=外一点(2,3)P 向这个圆引切线,则切线长为________.6.(2012北京模拟)若点P 在直线03:1=++y x l 上,过点P 的直线2l 与曲线C :22(5)16x y -+=只有一个公共点M ,则PM 的最小值为________.7.(2012房山一模)直线3y kx =+与圆22(1)(2)4x y -++=相交于N M ,两点,若MN ≥求k 的取值范围.8.(2013珠海一模)已知圆C :012822=+-+y y x ,直线l :02=++a y ax .(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程.高一寒假作业详细答案高一寒假作业第1天 集合1.B 【解析】∵{1,0,1}M =-,{0,1}N =,∴M N ={0,1}.2.A 【解析】U M =ð{2,4,6}.3.D 【解析】2{230}{1,3}A x x x =--==-,B 有∅,{1}-,{3},{1,3}-,共4个.4.C 【解析】∵B y A x ∈∈,,∴当1-=x 时,2,0=y ,此时1,1-=+=y x z , 当1=x 时,2,0=y ,此时3,1=+=y x z , ∴集合{1,1,3}{1,1,3}z z =-=-共三个元素. 5.D6.C 【解析】∵{0,3,9}N =,∴{0,3}M N =.7.A 【解析】集合A 有,{1},{2},{1,2}∅,共4个.8.C9.D 【解析】阴影部分表示()U A B ð,故选D . 10.A【解析】当2,k n n Z =∈时,1,22n N x x n Z ⎧⎫==+∈⎨⎬⎩⎭, 当21,k n n Z =-∈时,1,24n N x x n Z M ⎧⎫==+∈=⎨⎬⎩⎭, ∴M N ,∵0x M ∈,∴0x N ∈.11.【解析】 ∵ A B A =,∴ B A ⊆.(1)当B =∅时,则121m m +>-,解得2m <.(2)当B ≠∅时,则12121512m m m m +≤-⎧⎪-≤ ⎨⎪+>-⎩,解得23m ≤≤. ∴实数m 的取值范围是3m ≤. 12.【解析】(1) ∵2S ∈, ∴112S ∈-,即1S -∈, ∴()111S ∈--,即12S ∈; (2) 证明:∵a S ∈, ∴11S a∈-, ∴111111S a a=-∈--; (3) 集合S 中不能只有一个元素,用反证法证明如下:假设S 中只有一个元素,则有11a a=-,即210a a -+=,该方程没有实数解,∴集合S 中不能只有一个元素.1.D0≠,∴10x +>,解得1x >-.2.B 【解析】当0x =时,0y =;当1x =时,0y =;当2x =时,2y =. 3.A 【解析】由10x ->,解得1x >.4.C 【解析】∵22(1)+1, [0,3],()(3)9, [2,0).x x f x x x ⎧--∈⎪=⎨+-∈-⎪⎩, ∴当[0,3]x ∈时,()f x ∈[3,1]-;当[2,0)x ∈-时,()f x ∈[8,0)-; ∴()f x 的值域为[3,1][8,0)--=[8,1]-.5.B 【解析】∵21,12<≤-+-=x x y ,∴222101y -+<≤-+,即31y -<≤.6.D 【解析】∵32)3(=f ,∴9131941)32()32())3((2=+=+==f f f . 7.B 【解析】由图象可知,该函数的定义域为[3,3]-,值域为[2,2]-.8.A 【解析】当1(0,)2a ∈时,则{}0a a a =-=,111{}0222a a a +=+-=+,∴1{}{}2a a <+. 当1[,1)2a ∈时,则{}0a a a =-=,111{}1222a a a +=+-=-,∴1{}{}2a a >+.9.【答案】[)()1,00,-+∞【解析】由100x x +≥⎧⎨≠⎩,解得10x x ≥-≠且,∴定义域为[1,0)(0,)-+∞.10.9【解析】339⨯=.11.【解析】设2()(0)f x ax bx c a =++≠,∵(0)0f =,∴0c =,∴2()f x ax bx =+.又(1)()1f x f x x +=++.∴22(1)(1)1a x b x ax bx x +++=+++,∴21ax a b x ++=+,∴211a a b =⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=⎪⎩.∴211()22f x x x =+.12.【解析】211()(1)22f x x a =--+的对称轴为1x =.∴[1,]b 为()f x 的单调递增区间. ∴min 1()(1)12f x f a ==-=①,2max 1()()2f x f b b b a b ==-+=② 由①②解得323a b ⎧=⎪⎨⎪=⎩.1.C 2.A 3.B4.D 【解析】∵)(x f 在R 上是减函数,若0≤+b a ,∴a b ≤-,∴()()f a f b ≥-,同理:()()f b f a ≥-, ∴()()()()f a f b f a f b +≥-+-. 5.A6.A 【解析】由1212()()0f x f x x x -<-,则()f x 在(0,)+∞上单调递减,又()f x 是偶函数,∴(2)(2)f f -=,∵03>21>>,∴(3)(2)(1)f f f <-<.7.D 【解析】∵ 221331()244x x x -+=-+≥,∴214()13f x x x =≤-+. 8.B 【解析】220,1()12(2)2a a -<⎧⎪⎨-≥-⎪⎩,解得138a ≤.9.12,1【解析】1()1f x x =-在(1,)+∞上是减函数,∴1()1f x x =-在[2,3]上是减函数, ∴min 1()(3)2f x f ==,max ()(2)1f x f ==.10. (,1]-∞【解析】1,1,121, 1.x y x x x x ≥⎧=--=⎨-<⎩ 作出该函数的图象如图所示.由图象可知,函数的单调增区间是(,1]-∞.11.【解析】∵()y f x =在定义域为[1,1]-是减函数, ∴由(1)(21)f a f a -<-得:1211111211a a a a ->-⎧⎪-≤-≤⎨⎪-≤-≤⎩,解得203a ≤<, ∴a 的取值范围是2[0,)3.12.【解析】 (1)证明:设210x x >>,则12()()f x f x -1212121111()()x x ax a x x x -=---=, 又∵ 210x x >>,∴12120,0x x x x -<>,∴12120x x x x -<,即 12()()f x f x <, ∴()f x 在(0,)+∞上是单调递增函数.(2)∵()f x 在1[,2]2上的值域是1[,2]2,又()f x 在1[,2]2上单调递增, ∴11()22f =,(2)2f =.∴解得25a =.高一寒假作业第4天 奇偶性1.D 2.D 3.D 4.A 5.D6.A 【解析】∵()f x 为奇函数,1(21)()0.2f x f -+<, ∴(21)f x -<1()2f -,∴1212x -<-,解得14x <. 7.D 【解析】∵设0x <,则0x ->,∴22()()2()121()f x x x x x f x -=-+--=--=, 同理:设0x >,()()f x f x -=,∴()f x 为偶函数,图象关于y 轴对称, ∵22()21(1)2f x x x x =+-=+-在[0,)+∞上递增,∵120x x <<,∴1200x x -<-,∴12()()f x f x <.8.D 【解析】∵()f x 为奇函数,∴[()()]0x f x f x --<可化为()0xf x <,如图,根据()f x 的性质可以画出()f x 的草图,因此()010xf x x <⇔-<<,或0x <9.4【解析】()f x 为偶函数,∴(1)(1)f f -=,∴5(1)3(1)a a --+=-+,即4a =. 10.3【解析】由12)1()1(=+=f g ,得1)1(-=f ,∴32)1(2)1()1(=+-=+-=-f f g . 11.【解析】(1)当0=a 时,()2x x f =为偶函数;当0≠a 时,()x f 既不是奇函数也不是偶函数.(2)设212≥>x x ,()()22212121x a x x a x x f x f --+=-[]12121212()x x x x x x a x x -=+-, 由212≥>x x 得()162121>+x x x x ,0,02121><-x x x x要使()x f 在区间[)+∞,2是增函数只需()()021<-x f x f ,即()02121>-+a x x x x 恒成立,则16≤a . 12.【解析】(1))(x f 是R 上的减函数,∵对任意的实数R a ∈有0)()(=+-a f a f 恒成立.∴)(x f 在R 上的奇函数,∴0)0(=f . ∵)(x f 在R 上是单调函数,且(3)(0)f f ->,∴)(x f 在R 上是减函数. (2)∵(3)2f -=,2)2(<-xx f ,∴)3()2(-<-f x xf ,∵)(x f 在R 上是减函数∴32->-x x ,即022>+xx ,解得:1x <-,或0x >, ∴不等式的解集为(,1)(0,)-∞-+∞.高一寒假作业第5天 指数与指数函数1.C 【解析】2x =时,2y =,故图象必经过点(2,2).2.B 【解析】∵(1)f a =,(1)2f -=,(1)(1)f f =-,∴2a =.3.A 【解析】∵1()22x xy -==,∴它与函数2x y =的图象关于y 轴对称.4.C【解析】∵(0,1)x y a a a a =->≠恒过点(1,0),故C 正确. 5.B6.C 【解析】∵1a >,1b =,01c <<,∴a b c >>. 7. A 【解析】21(2)(2)24g f -=--=-=-.8.A 【解析】∵2, 0()12 1 , 0x xx f x x ⎧<=⊕=⎨≥⎩,∴选项A 正确.9. 1±【解析】0211a a ≥⎧⎨-=⎩或2021a a a <⎧⎨--=⎩,解得1a =±.10.【解析】∵)(x f 在区间),1[+∞上是增函数,∴a x t -=在区间[1,)+∞上单调递增,∴1≤a . 11.【解析】当1a >时,()x f x a =在区间[1,2]上为增函数,∴2max ()(2)f x f a ==,min ()(1)f x f a ==.∴22a a a -=,解得0a =(舍去),或32a =. 当01a <<时,()x f x a =在区间[1,2]上为减函数,∴max ()(1)f x f a ==,2min ()(2)f x f a ==. ∴22a a a -=,解得0a =(舍去),或12a =. 综上可知,12a =,或32a =. 12.【解析】(1)∵222()2112xx xf x a a -⋅-=-=-++,由()f x 是奇函数,∴()()0f x f x +-=,即2(12)2012x xa +-=+,∴1a =. (2)证明:设1212,,x x R x x ∈<,则12()()f x f x -1222()()2121x x a a =---++21222121x x =-++12122(22)(21)(21)x x x x -=++, ∵2xy =在R 上是增函数,且12x x <,∴1222x x <即12220x x-<,又∵1210x +>,2210x+>,∴12()()0f x f x -<,即12()()f x f x <. ∵此结论与a 取值无关,∴对于a 取任意实数,()f x 在R 上为增函数.高一寒假作业第6天 对数与对数函数1.D 【解析】23lg9lg 42lg32lg 2log 9log 44lg 2lg3lg 2lg3⨯=⨯=⨯=. 2.A 【解析】∵0.20.2 1.21()222b -==<,∴a b <<1, ∵14log 2log 2log 25255<===c ,∴a b c <<. 3.C 【解析】∵{|lg 0}{|1}M x x x x =>=>,2{|4}{|22}N x x x x =≤=-≤≤,∴(1,2]MN =.4. B 【解析】令11x -=,得2,0x y ==.5.B 【解析】∵01a <<,1b >,0c <,∴c a b <<. 6.D 【解析】∵{|02}A x x =<<,A B B =,∴2c ≥. 7.A 【解析】∵311x+>,∴22()log (31)log 10x f x =+>=. 8.C 【解析】∵1log 21log a a a -=-=,∴12a =,∵12b =,∴2b =,∴b a )21()21(>.9.【解析】∵612log 0x -≥,∴61log 2x ≤,∴12666log log 6log x ≤=0<x10.2【解析】∵x x f lg )(=,∴1)(=ab f ,1lg =ab ,∴2222()()lg lg f a f b a b +=+2(lg lg )2lg 2a b ab =+==. 11.【解析】当12x <时,1()(,)2f x a ∈-+∞, 当12x ≥时,()[1,)f x ∈-+∞, ∵()f x 的最小值为1-,∴1(,)[1,)2a -+∞⊆-+∞∴112a -≥-,即12a ≥-.∴实数a 的取值范围是21-≥a .12.【解析】(1)由题意,得1109310a a ++>⎧⎨-+≤⎩,解得310≥a .∴实数a 的范围为),310[+∞. (2)由题意,得012>++ax x 在R 上恒成立,则042<-=∆a ,解得22<<-a .∴实数a 的范围为(22)-,.高一寒假作业第7天 幂函数1.C 【解析】设()f x x α=,则142α=,∴12α=-,∴12()f x x -=,∴12(2)22f -==.2.A 【解析】由2257160m m m ⎧-+=⎪⎨->⎪⎩,解得3m =.3.B 【解析】∵0a <,a y x =在(0,)+∞上是减函数,∴1(0.2)()22aa a >>.4.C 【解析】令11x -=,得2,3x y == , ∴函数()(1)2f x x α=-+过定点(2,3).5.A 6.C7.B 【解析】先由一个图象的位置特征确定α的大小, 再由此α值判断另一图象位置特征是否合适,可判定选B .8.B 【解析】∵11()1x f x x x+==+,∴对称中心为(0,1). 9.7(3,]2【解析】∵2543x y x -=≥-,∴7203x x -≤-,∴732x <≤. 10.(0,1)【解析】2()f x x=在[2,)+∞上递减,故()(0,1]f x ∈,3()(1)f x x =-在(,2)-∞上递增,故(,1))(f x -∞∈,∵()f x k =有两个不同的实根,∴实数k 的取值范围是(0,1). 11.【解析】由函数1()f x x -=的图象可得,101020a a +<⎧⎨->⎩,或1010201102a a a a +>⎧⎪->⎨⎪+>-⎩,或1010201102a a a a+<⎧⎪-<⎨⎪+>-⎩,∴1a <-或35a <<. 12.【解析】∵函数在()0,+∞上的单调递减,∴390m -<,解得3m <;∵*m N ∈,∴1,2m =.当1m =时,396m -=-,当2m =时,393m -=-, 又函数图象关于y 轴对称,∴39m -是偶数,∴1m =.∵ 12y x =在[0,)+∞上单调递增,∴ 10320321a a a a +≥⎧⎪->⎨⎪->+⎩,解得213a -<≤.∴a 的取值范围是213a -<≤.高一寒假作业第8天 函数与方程1.B 【解析】∵12y x =和1()2xy =的图象只有一个交点,∴零点只有一个,故选B .2.C 【解析】令3()log 3f x x x =+-,∵(2)0f <,(3)0f >,∴(2)(3)0f f ⋅<,故选 C . 3.C 【解析】依题意函数()y f x =与直线y kx =有两个交点.当0k =显然不成立,排除D .其次,二次函数的顶点是(4,12),与原点连线的斜率是3,显然成立,排除A ,B .4.C 【解析】画出函数2y x =-和函数ln y x =的图象有两个交点,则原函数有两个零点. 5.B 【解析】令()0f x =,得322xx =-,∵2x y =和32y x =-的图象的交点有1个, ∵(0)10f =-<,(1)10f =>,∴在区间)1,0(内函数的零点个数为1.6.B 【解析】∵(1)20f =-<,(2)1210f g =-<,(3)130f g =>,∴(2)(3)0f f ⋅<,故选B . 7.B 【解析】1()0.12n<,解得4n ≥.8.C 【解析】∵15()5log x f x x =-在(0,)+∞上为增函数,∵00x a <<,∴0()()0f x f a <=.9.(,2][1,)-∞-+∞【解析】(2)(1)(44)(24)0f f m m -⋅=-++≤,∴1m ≥,或2m ≤-. 10.3(,1)4【解析】当2x ≥时,3()(,1]4f x ∈,当02x <<时,()(,1)f x ∈-∞,∴3(,1)4k ∈.11.【解析】(1)由1209x x ≤≤⎧⎪⎨=⎪⎩,解得0x =;由2200x x x -≤<⎧⎨+=⎩,解得1x =-; ∴()f x 的零点是1-和0.(2)∵当[2,0)x ∈-时,1()[,2]4f x ∈-,当[0,9]x ∈时,()[0,3]f x ∈,∴()f x 的值域是1[,3]4-.12.【解析】设函数()24xf x x =+-,∵(1)10,(2)40f f =-<=>,又∵()f x 是增函数,∴函数()24xf x x =+-在区间[1,2]有唯一的零点,则方程24xx +=在区间(1,2)有唯一一个实数解. 取区间[]1,0作为起始区间,用二分法逐次计算如下由上表可知区间[]1.375,1.5的长度为0.1250.2<, ∴函数)(x f 零点的近似值可取1.375(或1.5).。
高一数学寒假作业1答案
高一数学寒假作业(一)一、选择题1.下列图形中不一定是平面图形的是( )A. 三角形B. 四边相等的四边形C. 梯形D.平行四边形 2.图(1)是由下面哪个平面图形旋转得到的( )A B C D3.若直线经过(1,0)A 、(43B ,)两点,则直线AB 的倾斜角是( ) A. 30º B. 45º C. 60º D. 120º 4.以(1,2)-为圆心,5为半径的圆的方程为 ( )A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0 D .x 2+y 2-2x -4y =0 5.直线134x y+=与x 、y 轴所围成的三角形的周长等于( ) A. 6 B. 12 C. 24 D. 606.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.8π2cm B.12π2cmC.16π2cmD.20π2cmππ1243323222==⇒=⇒==⇒=R S R a R a7.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如右图(2)所示(单位cm ),则该三棱柱的表面积为( )A.24π2cm B.2483+2cmC.1432cmD.1832cm8.设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥;②若αβ//,βγ//,m ⊥α,则m ⊥γ;③若m //α,n //α,则m n //;④若αγ⊥,βγ⊥,则//αβ。
其中正确命题的序号是 ( ) A .①和② B .②和③C .③和④D .①和④9.已知实数,x y 满足2222(5)(12)25,x y x y ++-=+那么的最小值为( ) A .5B . 8C . 13D .1810.如图(3),正方体ABCD-A 1B 1C 1D 1中,1M A B ∈,1,N B C ∈111113A MB N A B BC ==,A A MN ⊥AC MN 正视图322侧视图俯视图图(2)图(1)平面ABCD .其中正确结论的序号是( )(请写出所有正确的结论) A .①②④ B .①④ C .①③④ D .②④11.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1: x – y – 5 =0 与l 2: x –y –15 =0 上移动,则P 1P 2 的中点到原点的距离的最小值是( ) A .522 B .52 C .1522D .152 12.如图(7),正方体ABCD -1111A B C D 的棱长为2,动点E 、F 在棱11A B 上,动点P ,Q 分别在棱AD ,CD 上,若EF=1,1A E= x ,DQ= y ,D P=z(x,y,z大于零),则三棱锥P-E FQ的体积A .与x,y,z都有关B .与x有关,与y,z无关C .与y有关,与x,z无关D .与z有关,与x,y无关 ; 其中正确的结论是( ). 二、填空题13.如图(4)所示,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,则直线AE 与平面11ADD A 所成的角的正弦值为32. 14.若直线12:310:2(1)10l ax y l x a y ++=+++=与平行,则a = -3或2 . 15.如果对任何实数k ,直线(3)(12)10k x k y ++-+=都过一个定点A ,那么点A 的坐标是 )71,72(--. 16.如图(5),AB 是⊙O 的直径,C 是圆周上不同于A 、B 的任意一点,⊥PA 平面ABC ,则四面体ABC P -的四个面中,直角三角形的个数有 4 个.17. 在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合(如右图(6)所示).将矩形沿斜率为1-的直线折叠一次,使点A 落在线段DC 上,则这条直线的方程为 1+-=x y .18.已知直线m 、n 及平面α,其中m//n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集.其中正确的是 (1)(2) (请填正确序号) 三、解答题19.已知直线l 经过直线1l :50ax y +-=与2l :20x y -=的交点P (1)若直线1l 和2l 垂直,求a 的值;(a =2)(2)在(1)的前提下,若点(5,0)A 到l 的距离为3,求直线l 的方程.(01134,2=-+=y x x) 图(4)图(7)CB o (A)xD y 图(6)图(5)20.如图,在三棱锥P ABC -中,E F 、分别为AC BC 、的中点. (1) 求证:EF 平面PAB ;(2) 若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=º,求证:平面PEF ⊥平面PBC21.如图所示是长方体截去一个角后得到的几何体,其中底面ABCD 是边长为23的正方形,且高2BE =,H 为AG 中点. (I )求四棱锥E-ABCD 的体积;(8)(II )正方形ABCD 内(包括边界)是否存在点M ,使三棱锥H-AMB 体积是四棱锥E-ABCD 体积的18?若存在,请指出满足要求的点M 的轨迹,并在图中画出轨迹图形;若不存在,请说明理由.22.如图(1),边长为2的正方形ABEF 中,D 、C 分别为EF 、AF 的点,且ED CF =.现沿DC 把CDF ∆剪切、拼接成如图(2)的图形,再将BEC ∆、CDF ∆、ABD ∆沿BC 、CD 、BD 折起,使E F A 、、三点重合于点A '. (1) 求证:BA CD '⊥; (2) 求四面体B A CD '-体积的最大值.(31)23、如图,已知点(0,3)A -,动点P 满足2PA PO =,其中O 为坐标原点,动点P 的轨迹为曲线C . 过原点O 作直线11:,l yk x 交曲线C 于点11(,)E x y 、22(,)F x y ,再过原点O 作直线22:l yk x ,交曲线C 于点33(,)G x y 、44(,)H x y (其中240,0y y ).(1)求曲线C 的轨迹方程;(4)1(22=-+y x ) (2)求证:2341121234k x x k x x x x x x 。
高一数学寒假作业答案
高一数学寒假作业cankaodaan第一天1.⑷.2. {(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.3.(1){}3>x x ; (2){}0,,),(<∈xy R y x y x4. x ≠-1,0,35. a +b ∈\A ,a +b ∈B ,6. ∅、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.7.(1) A =B; (2) B A. 8. a =3,b =9. 9.(1),,;(2),,,(3)∈∉∈∈∉∈∈ 10.(1)11.解:若k =0,则x =23,知A 中有一个元素,符合题设;若k ≠0,当Δ=9-8k =0即k =98 时,kx 2-3x +2=0有两相等的实数根,此时A 中有一个元素.又当9-8k <0即k >98时, kx 2-3x +2=0无解.此时A 中无任何元素,即A =∅也符合条件,综上所述 k =0或k ≥9812.解:由补集的定义及已知有:a 2-2a -3=5且|a -7|=3,由a 2-2a -3=5有a =4或a =-2,当a =4时,有|a -7|=3,当a =-2时|a -7|=9(舍),所以符合题条件的a =413.B =φ,即m +1>2m -1,m <2 φA 成立.B ≠φ,由题意得得2≤m ≤3∴m <2或2≤m ≤3 即m ≤3为取值范围.14.解:因P ={x |x 2+x -6=0}={2,-3},当a =0时,Q={x |ax +1=0}=∅,Q P 成立.又当a ≠0时,Q ={x |ax +1=0}={-1a },要Q P 成立,则有-1a =2或-1a=-3,a =-12 或a =13 .综上所述,a =0或a =-12 或a =1315.设全集为R ,若两个方程均没有实数根时由a 组成的集合为A ,则有⎩⎨⎧<--=∆<--=∆0)8(4160)1(4421a a 42<<⇒a ,即{}42<<=a a A ,从而R A={}24≤≥a a a 或 即实数a 的取值范围为{}24≤≥a a a 或。
高一数学寒假作业答案
高一数学寒假作业答案高一数学寒假作业答案高一数学寒假作业答案一、选择题1.对于集合A,B,AB不成立的含义是A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] AB成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,应选C.A.{a}?MB.a?MC.{a}MD.aM[答案] A[解析] ∵a=3536=6,aM,{a}?M.3.以下四个集合中,是空集的是[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,应选B.A.A=BB.A?BC.B?AD.以上都不对[答案] A[解析] A、B中的元素显然都是奇数,A、B都是有所有等数构成的集合.故A=B.选A.[探究] 假设在此题的根底上演变为kN.又如何呢?答案选B你知道吗?A.1B.-1C.0,1D.-1,0,1[答案] D[解析] ∵集合A有且仅有2个子集,A仅有一个元素,即方程ax2+2x+a=0(aR)仅有一个根.当a=0时,方程化为2x=0,x=0,此时A={0},符合题意.当a0时,=22-4aa=0,即a2=1,a=1.此时A={-1},或A={1},符合题意.a=0或a=1.A.PQB.PQC.P=QD.以上都不对[答案] D[解析] 因为集合P、Q代表元素不同,集合P为数集,集合Q为点集,应选D.二、填空题[答案] m1[解析] ∵M=,2mm+1,m1.8.集合x,yy=-x+2,y=12x+2{(x,y)}y=3x+b},那么b=________.[答案] 2[解析] 解方程组y=-x+2y=12x+2得x=0y=2代入y=3x+b得b=2.[答案] M=P[解析] ∵xy0,x,y同号,又x+y0,x0,y0,即集合M 表示第三象限内的点.而集合P表示第三象限内的点,故M=P.三、解答题10.判断以下表示是否正确:(1)a(2){a}{a,b};(3)?{-1,1};(4){0,1}={(0,1)};[解析] (1)错误.a是集合{a}的元素,应表示为a{a}.(2)错误.集合{a}与{a,b}之间的关系应用?表示.(3)正确.空集是任何一个非空集合的真子集.(4)错误.{0,1}是一个数集,含有两个元素0,1,{(0,1)}是一个以有序实数对(0,1)为元素的集合,所以{0,1}{(0,1)}.[解析] 由AB.(1)当A=时,应有2a-2a+24.得2a-212.设S是非空集合,且满足两个条件:①S{1,2,3,4,5};②假设aS,那么6-aS.那么满足条件的S有多少个?[分析^p ] 此题主要考察子集的有关问题,解决此题的关键是正确理解题意.非空集合S所满足的第一个条件:S是集合{1,2,3,4,5}的任何一个子集,第二个条件:假设aS,那么6-aS,即a和6-a都是S中的元素,且它们允许的取值范围都是1,2,3,4,5.[解析] 用列举法表示出符合题意的全部S:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5}.共有7个.[点评] 从此题可以看出,S中的元素在取值方面应满足的条件是:1,5同时选,2,4同时选,3单独选.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吴中区高一数学寒假作业参考答案(第一天)1.1,2,4 2. ()∞+,0 3.[0,2] 4.(2,3] 5.[)∞+-,2 6.(0,2) 7.[2,4] 8.()+∞,2 9. 解:因为{}1,U C A =-所以11a ,所以2a 。
检验:此时{}{}2,4,1,2,4,{1}u U A C A =-==-。
符合10.解:由题意得:{4,0}A =-,因为AB A =,所以B A , 所以{4}{0}{4,0}B B B B 或或或 ①当φ=B 时, a a 42-=∆ ,所以此时04a 。
②当{4}B 时, ⎩⎨⎧=+-=04160a a ∆ ,所以此时无解。
③当{0}B时, ⎩⎨⎧==00a ∆ ,所以此时0a 。
④当{}40-=,B 时,由韦达定理得⎩⎨⎧=-⨯-=-aa )4(040,所以此时无解。
所以,40<≤a11.(1)""C C B =⋂6-≤m (2)4≥m12.由已知,4,2A B ∈∈分别代入解得712,78-==b a ,再代入集合A,B 检验 A C I ∩}2{=B ,A ∩}4{=B C I 成立。
吴中区高一数学寒假作业参考答案(第二天)一、填空题1.(3)解析:(1)(4)(5)定义域不同;(2)解析式不同()g x x =;(3)为同一函数;2.12(1,)(,1)23--,解析:由210x ->得(1,1)A =- ;由2260x x +-≥得12[,]23B =-12(,)(,)23U C B ∴=-∞-+∞ 12()(1,)(,1)23U A C B ∴=-- 3.(2,0]-,解析:考察函数单调性 1()22x f x -=-在定义域内单调递增,值域为(2,0]- 4.[0,1),解析:考察抽象函数定义域 由题知{02210x x ≤≤-≠ 所以定义域为[0,1) 5.10[2,]3,解析:令()t f x =则1()()()F x f x f x =+的值域等价于11,[,3]2y t t t =+∈的值域,由“耐克”函数的图象知值域为10[2,]36.a =4,解析:1()log a a f x x >∴=在区间[,2]a a 上单调递增 即21log log 2a a a a -= 7.② 解析:定义域为{|385}x x x -≤≤≠且投影到x 轴上横坐标的取值范围;值域为{|120}y y y -≤≤≠且投影到y 轴上纵坐标的取值范围8.()0()g a f b <<,解析:法一:图像法; 法二:单调性()f x 在R 单调递增,()g x 在(0,)+∞单调递增。
由零点的存在性定理知01a <<,12b << 0()();()()0f a f b g a g b =<<= 所以()0()g a f b <<二、解答题9.解析:(1)令221227(6)9t x x x =--=--+,原函数等价为求3log y t =的值域 又3log y t =,39x ∴<< 因此09t <≤ 3log (,2]y t ∴=∈-∞即值域为(,2]-∞(2)23111x y x x -+==-+++ 21110x x -≤<-∴-≤+< , 331x ≤-+ 因此3141x -+≤-+ 值域为(,4]-∞-10.解析(1)令211a a -+= 01a a ∴==或 当0a =时 ()f x x =满足;当1a =时 2()f x x = 不是奇函数,舍去 0a ∴=(2)由(1)知()g x x = 令0t 则212t x -= 原函数等价为求 22111(1)1(0)222y t t t t =-++=--+≥ 所以1[,1]2y ∈ 即值域为1[,1]2 11.解析:由题知:2430kx kx ++≠对任意x R ∈恒成立(1)当0k =时 30≠ 满足(2)当0k ≠时 2(4)430k k ∆=-⋅⋅< 即304k <<,综上:304k ≤<12.解析;(Ⅰ){221,11()1,11x x f x x x x --<<=-≤-≥或,由()f x 图像可知,01m n ≤<<, ()()f m f n =即为2211m n -=-,所以222m n +=。
(Ⅱ)0x <,则{221,1()1,10x x f x x x -≤-=--<<,11(),(,0)22g x x x =-∈-∞ 当1x ≤-时,()()f x g x ≥,即为211122x x -≥-,解得32x ≤- 当10x -<<时,()()f x g x ≥,即为211122x x -≥-,解得102x -≤< 2231,23111(),222211,02x x F x x x x x ⎧-≤-⎪⎪=--<<-⎨⎪--≤<⎪⎩,当12x =-时,()F x 最小值为34。
吴中区高一数学寒假作业参考答案(第三天)一、填空题1、()1,∞-,解析:0232>+-x x 1<∴x 或2>x ,0.71<,23)(2+-=x x x g 的减区间为()1,∞- 2、奇函数,解析:092>-x 33<<-∴x , 229944x xx x y --=---= ∴此函数为奇函数3、(2,0),解析:()1+=x f y 的对称中心为(0,0)()1-=x f y 可由()1+=x f y 的图像向右平移2个单位得到 ∴(2,0)4、周期为85、-3,解析:01)0(=+=b f 1-=∴b ,3)122()1()1(-=-+-=-=-f f6、30≤≤a .解析:⎪⎩⎪⎨⎧<+-≥-=ax ax x a x ax x x f ,,)(22 作图 , 对称轴为2a x =,与x 轴交点为(0,0),(0,a ) ∴ 30≤≤a 7、12<<-a ,解析: 作出函数图象,知函数在R 上为增函数,a a >-22,022<-+a a ,8、181161>≤<∴a a 或,解析:10<<a 时,⎪⎩⎪⎨⎧>-≥0116421a a ,81161≤<∴a ; 1>a 时,⎪⎩⎪⎨⎧>-≤014221a a ,∴ 1>a , 181161>≤<∴a a 或 二、解答题 9、解:由题意可知)1(2--a a f >)54(--a f ,)(x f y = 为奇函数,∴ )1(2--a a f >)54(--a f )45(a f -=,又)(x f y = 在]1,1[-上为减函数, ∴a a a 4512-<--1112≤--≤-a a ,解得23331+-<≤a , 1451≤-≤-a10、解:(1)在②中令1x =,有()111f ≤≤,故()11f =.(2)当x R ∈时,()f x 的最小值为0且二次函数关于直线1x =-对称,故设此二次函数为()()()210f x a x a =+>.因为()11f =,的14a =.所以()()2114f x x =+. (3)记()()()()22111144h x f x x x x x =-=+-=-, 显然()0h x ≥ ,()f x 在区间[]1,m m -上恒有()1f x x -≤,即()1h x ≤,令()1h x ≤,得[]1,3x ∈-,由()h x 的图像只须113m m -≥-⎧⎨≤⎩,解得03m ≤≤. 11、证明:(1)令120x x ==,则(00)(0)(0)2f f f +=++,即(0)2f =-;---1分 令12,x x x x ==-,则()()2(0)2f x f x f +-+==-,∴[][]()2()20f x f x ++-+=, ∴()2f x +为奇函数;………………………………5分(2)任取12,x x ∈R ,且12x x <,则2121()()()2f x x f x f x -=+-+………………7分 ()2f x +为奇函数,∴[]()2()2f x f x -+=-+……………………8分∴[]2121()()()2f x x f x f x -=-+21()()2f x f x =--……………………9分2121()()()2f x f x f x x ⇒-=-+,12x x <,∴210x x ->,∴21()2f x x -+0> ∴21()()f x f x -0>,∴()f x 是R 上的增函数……………………12分(3)(1)1(2)2(1)20f f f =-⇒=+=(4)2(2)22f f ⇒=+=,…………14分 ∴2(log )2f m <,2(log )(4)f m f ⇒<;由(2)()f x 是R 上的增函数,∴2log 4m <160<<⇒m ……………………………………16分12、解:(1)函数1()2()y f x x x==+在(0,1]上单调递减,∴()y f x =的最小值为(1)4f =. (2)若函数()y f x =在定义域上是减函数,则任取12,x x ∈(0.1]且12x x <都有12()()f x f x > 成立, 即1212()(2)0a x x x x -+>,只要122a x x <-即可,由12,x x ∈(0.1],故122(2,0)x x -∈-,所以2a ≤-.故a 的取值范围是(,2]-∞-.(3)当0a ≥时,函数()y f x =在(0,1]上单调增,无最小值, 当1x =时取得最大值2a -;由(2)得当2a ≤-时,函数()y f x =在(0.1]上单调减,无最大值, 当x =1时取得最小值2-a ;当20a -<<时,函数()y f x =在上单调减,在上单调增,无最大值 .当x =时取得最小值。