7年级(上)图形的平移旋转翻折
乐课力七年级数学秋季班第8讲图形的平移与翻折
例题12
【提高】如图, △COD是△AOB绕点O顺时针方向旋转40° 后所得的图形, 点C恰好在AB上, ∠AOD =95° ,求∠D的度数.
例题12
【尖子】如图, △ABC中, ∠BAC =90° ,AB=AC,D、E在BC
上, ∠DAC =45°,△AEC按顺时针方向转动一个角后成△AFB ⑴图中哪一点是旋转中心? ⑵旋转了多少度? ⑶ △AEF是什么三角形?
a
1 2
b
2
随堂测试
5、如图,Rt △ABC中, ∠ACB =90° , ∠A=50° ,将其折
叠,使点A落在边CB上 A' 处,折痕CD为,则A' DB ( )
A.40° B. 30° C. 20°
D. 10°
a
1 2
b
2
随堂测试
6、如右上图所示,把矩形ABCD沿EF折叠,使点B落在边AD 上的点 B' 处,点A落在点 A'处.若AE=a、AB=b、BF=c,请写
图形的翻折
二、轴对称与轴对称图形: ⑴轴对称图形:把一个图形沿某一条直线翻折过来,直线两旁的部 分能够相互重合,这个图形叫做轴对称图形,这条直线就是它的对 称轴.
⑵成轴对称:如果把一个图形沿某一条直线翻折,能与另一个图形 重合,那么叫做这两个图形关于这条直线成轴对称,这条直线叫做 对称轴,两个图形中的对应点叫做关于这条直线的对称点.
出a、b、c之问的一个等量关系_________.
a
1 2
b
2
随堂测试
7、如下图所示,已知AH⊥BC于H, ∠C=35°,且AB+BH=HC, 求∠C的度数
a
1 2
七年级秋季班-第17讲图形的平移与旋转(教师版)
图形的平移与旋转内容分析本讲内容需要理解平移与旋转的基本概念.理解对应点、对应角、对应线段、旋转中心、旋转角的意义.掌握图形平移后图形的形状、大小保持不变,图形在旋转运动过程中的不变性.重点是能够画出平移、旋转后得图形.难点是掌握旋转对称图形与中心对称图形的区别与联系.知识结构模块一:图形的平移知识精讲1、平移将图形上的所有点都按照某个方向作相同距离的位置移动,叫做平移.2、平移的特征图形平移后,对应点之间的距离、对应线段的长度、对应角的大小都相等,图形平移后,图形的形状、大小都不变.3、平移距离平移后各对应点之间的距离叫做图形平移的距离.例题解析【例1】下列运动形式是平移的是()A.时钟计时B.汽车转弯C.风扇旋转D.飞机起飞【难度】★【答案】D【解析】A.时钟计时(旋转);B.汽车转弯(旋转);C.风扇旋转(旋转).【总结】考查图形旋转、平移的概念.【例2】观察图案,在A、B、C、D四幅图案中,能通过图案的平移得到的是( )A B C D【难度】★【答案】C【解析】A、D通过旋转得到,B通过翻折得到.【总结】考查图形旋转、平移、翻折的概念.【例3】在下面的六幅图中,(1)(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.【难度】★【答案】(4).【解析】(2)翻折;(3)旋转180 ;(5)形状发生改变;(6)形状发生改变.【总结】考查图形旋转、平移、翻折的概念.FECBA【例4】 图形经过平移后,图形的性质:①线段的长度;②两条线段或直线的相对位置关系;③角度的大小;④图形的面积.中不变的有( ) A .1个 B .2个 C .3个 D .4个【难度】★ 【答案】D【解析】平移的特征:图形平移后,对应点之间的距离、对应线段的长度、对应角的大小都相等,图形平移后,图形的形状、大小都不变.【总结】考查平移的特征.【例5】 经过平移,△ABC 的边AB 移到了EF ,作出平移后的三角形.【难度】★★ 【答案】略【解析】分别过点E 、F 做////ED AC FD BC ,交于点D ,即EFD 如图即为所求.【总结】根据平移的定义:将图形上的所有点都按照某个方向作相同距离的位置移动,叫做平移.即可画出图形.【例6】 作线段AB 和CD ,且AB ⊥CD ,交点为O ,AB = 2CD .分别取OA 、OB 、OC 、OD的中点A ’、B ’、C ’、D ’,连接A ’、C ’、B ’、D ’,得到一个四边形,将四边形沿水平方向向右平移两个单位,画出平移后的图形. 【难度】★★ 【答案】略 【解析】【总结】考察学生的画图能力.虚线图形为所求OE DCBAC'B'CBA【例7】 平行四边形ABCD 中,4AB =,6BC =.O 是对角线交点,将OAB ∆平移至EDC∆位置.(1)说出平移的方向与距离.(2)四边形OCED 是什么四边形,为什么?(3)若平行四边形ABCD 的面积是20,求五边形ABCED 面积. 【难度】★★【答案】(1)沿BC 方向平移6个单位; (2)四边形OCED 是平行四边形,////AO DE BO CE ,;(3)五边形ABCED 面积为25.【解析】根据题意,易证得:14S CDE S ABCD =,25ABCED S ∴=.【总结】主要考察平行四边形的性质以及图形运动的综合应用.【例8】 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC . 【难度】★★ 【答案】略【解析】分别过点B 、C 作AP 、DP 的平行线BM ,CM , 相较于点M ,联结PM ,交BC 于点N ,则可证明四边形BPCM 为满足条件的四边形.【总结】主要考察平行四边形的性质以及图形运动的综合应用.【例9】 如图,三角形ABC 的底边BC 长3厘米,BC 边上的高是2厘米,将该三角形以每秒3厘米的速度沿高的方向向上平形移动2秒,求这时该三角形扫过的面积(阴影部分). 【难度】★★★ 【答案】218cm .【解析】将'''A B C 填补到ABC ,∴阴影部分的面积S =矩形2'''32318()BCC B BC BB cm =⋅=⨯⨯=.【总结】本题主要考查与图形运动相结合的综合应用.DPCBAMDCBA【例10】 如图所示,长方形ABCD 中,AB = 12cm ,BC = 8cm ,试问将长方形沿着AB 方向平移多少才能使平移后的长方形与原来的长方形ABCD 重叠部分的面积为224cm .【难度】★★★ 【答案】9cm .【解析】解:设平移距离为xcm , 重叠部分的面积()812968x x =⋅-=-, 96824x ∴-=,9x ∴=【总结】考查动点问题与图形运动相结合的综合应用.1、旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角.从以下几点理解定义:① 旋转中心在旋转过程中保持不变;② 图形的旋转是由旋转中心,旋转角度和旋转方向决定的;③ 旋转角度一般小于360°.2、旋转的特征(1)旋转后图形上每一点都绕着旋转中心旋转了同样的角度; (2)旋转后的图形与原图形对应线段相等、对应角相等; (3)对应点到旋转中心的距离相等;(4)旋转后的图形与原来的图形的形状和大小都没有发生变化. 3、旋转对称图形的定义把一个图形绕着一个顶点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形.这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角0360α<<).如电风扇、五角星、圆等都是旋转对称图形,对旋转对称图形可从以下几个方面理解:模块二:图形的旋转知识精讲(1)旋转中心在旋转的图形上;(2)旋转的角度小于360°.4、图形的旋转与旋转对称图形的区别和联系(1)图形的旋转是指一个图形从一个位置旋转到另一个位置,即同一个图形在位置上的变化;旋转对称图形,是指一个图形所具有的特性,即旋转一定角度后位置没有变化,仍与自身重合;(2)图形的旋转随着旋转角度的不同从一个位置旋转到不同位置;旋转对称图形旋转一定角度后仍在原处与自身重合.图形的旋转与旋转对称图形都是绕旋转中心旋转.例题解析【例11】一个图形进行旋转运动,可以作为旋转中心的点是()A.有且仅有一个B.有且仅有两个C.有有限多个D.有无限多个【难度】★【答案】D【解析】由旋转定义可知:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角.【总结】考察旋转的定义.【例12】下列图不是中心对称图形的是()①②③④A.①③B.②④C.②③D.①④【难度】★【答案】D【解析】旋转180 后能与自身完全重合的图形是中心对称图形.【总结】考察中心对称图形的定义.【例13】 在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个【难度】★ 【答案】B【解析】H 、I 、N 是中心对称图形;E 、A 是轴对称图形. 【总结】考察中心对称图形的定义.【例14】 图中的“笑脸”是图(1)逆时针旋转90 形成的是( )【难度】★ 【答案】C【解析】由旋转定义可得. 【总结】考察旋转定义.AH I NE(1)ABC DC 'B 'A 'OBAC【例15】 下列图形中,绕某个点旋转180︒能与自身重合的有( )① 正方形 ②长方形 ③等边三角形 ④线段 ⑤角 A .5个B .2个C .3个D .4个【难度】★★ 【答案】C【解析】①,②,④.【总结】考察中心对称图形的定义.【例16】 请在下列网格图中画出所给图形绕点O 顺时针依次旋转900︒、1800︒、2700︒后所成的图形.(注意:有阴影部分图形旋转后的对应图形要涂上阴影.不要求写画法)【难度】★★ 【答案】详见解析【解析】将旋转角度除以180︒,所得偶数与原图重合,所得奇数与原图形成中心对称.【总结】考察学生运用规律寻找最小旋转角及画图能力.【例17】 如图,画出ABC ∆绕点O 顺时针旋转100︒所得到的图形. 【难度】★★ 【答案】详见解析. 【解析】【总结】考察学生的画图能力,注意看清楚旋转方向.D'D CBADB'A'CBA【例18】 如图,已知ABC ∆绕某一点逆时针转动一个角度.得到旋转后的'''A B C ∆,其中A 、B 、C 的对应点分别是'A 、'B 、'C .试确定旋转中心O .【难度】★★【答案】联结任意两对对称点,连线的垂直平分线的交点即旋转中心O . 【解析】【总结】考察学生的画图能力以及对旋转中心的理解.【例19】 D 是等腰Rt ABC ∆内一点,BC 是斜边,如果将ABD ∆绕点A 逆时针方向旋转到'ACD ∆的度数是( ).A .30︒B .45︒C .60︒D .90︒【难度】★★ 【答案】D【解析】根据旋转角相等可得'90D AD CAB ∠=∠=︒. 【总结】考察旋转角的概念及性质.【例20】 如图,把ABC ∆绕点C 顺时针旋转35︒,得到'''A B C ∆,''A B 交AC 于点D ,若'90A DC ∠=︒,则A ∠度数为( ). A .45︒ B .55︒ C .90︒ D .75︒【难度】★★ 【答案】B【解析】'35'90'55ACA A DC A A ∠=︒∠=︒∴∠=∠=︒,,. 【总结】图形经过旋转之后,对应角不发生改变.CBAC‘B’A‘OF AP'CB PA【例21】 矩形的对角线相交于点O ,过点O 的直线交AD ,BC 于点E ,F ,2AB =,3BC =,则图中阴影部分的面积为_____.【难度】★★ 【答案】3. 【解析】BOF DOE SS=,S 阴12S =矩形12332=⨯⨯= 【总结】根据图形特征寻找到面积相等的部分,考察学生的观察力.【例22】 自行车的两个轮胎的外径(直径)是66.0米.如果自行车每分钟行66米,那么自行车的车轮每分钟转多少圈?【难度】★★【答案】100π圈.【解析】661000.66ππ=(圈). 【总结】考察学生对圆周长的运用.【例23】 将一图形绕着点O 顺时针方向旋转70°后,再绕着点O 逆时针方向旋转120°,这时如果要使图形回到原来的位置,需要将图形绕着点O 如何旋转( ).A .顺时针方向50°B .逆时针方向50°C .顺时针方向190°D .逆时针方向190°【难度】★★ 【答案】A【解析】根据旋转特征,第二次旋转后相当于图形逆时针旋转了50°,因此只要顺时针旋转50°即可回到原来的位置.【总结】考察图形的旋转特征.【例24】 如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC ∆绕点A 逆时针旋转后,得到'P AB ∆,则点P 与点'P 之间的距离为______________,APB ∠=___________.【难度】★★★【答案】'6PP =,150APB ∠=︒.【解析】''60PAC P AB P AP ∠=∠∴∠=︒,,''6AP AP PP ∴===, 8'10BP CP BP ===,,'90BPP ∴∠=︒, ''9060150APB BPP P PA ∴∠=∠+∠=︒+︒=︒.【总结】考察学生对旋转图形性质的综合应用.【例25】 如图,将边长为2的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B【难度】★★★ 【答案】30︒. 【解析】 解:联结BH易证'RT BA H ≌RT BCH30HBC ∴∠=︒,'60A BC ∴∠=︒,'30CBC ∴∠=︒.【总结】考察图形旋转性质的应用,本题综合性较强,教师可选择性讲解.【例26】 (1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同 侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求AEB ∠的大小.(2)如图2,OAB ∆固定不动,保持COD ∆的形状和大小不变,将COD ∆绕着点O 逆时针旋转15︒,求AEB ∠的大小.【难度】★★★【答案】(1)60︒;(2)60︒.【解析】(1)易证AOC ≌BOD ,OAC OBD ∴∠=∠,AOB AEB ∴∠=∠,60AEB ∴∠=︒; (2)同理60AEB ∠=︒.【总结】考察图形运动及几何图形性质的综合应用,本题综合性较强,教师可选择性讲解.图1ABCDEO 图2ABCDEOAE DCBA【例27】 如图,在△ABC 中,90BAC ∠=,AB AC =,90EAD ∠=,AE AD =. (1)试问△ADC 可以通过何种运动可以得到△AEB ? (2)联结ED ,△AED 是什么三角形?(3)若2AD =,4AC =,求AED ABC SS .【难度】★★★【答案】(1)ADC 绕点A 顺时针旋转90︒得到AEB ; (2)AED 是等腰直角三角形;(3)14AED ABC S S =.【解析】(1)略; (2)易证ADC ≌AEB ,可得:AD AE =,DAC EAB ∠=∠,90BAC EAD ∴∠=∠=︒,AED ∴是等腰直角三角形;(3)14482S ABC =⨯⨯=,12222S ADE =⨯⨯=,14AED ABC S S ∴=.【总结】考察图形运动及几何图形性质的综合应用.【习题1】以下现象:①电梯的升降运动;②飞机在地面沿直线滑行;③风车的转动;④ 汽车轮胎的转动.其中属于平移的是( )A .②③B .②④C .①②D .①④【难度】★ 【答案】C【解析】根据图形运动特征,①②是平移运动,③④是旋转运动 【总结】考察学生图形运动的特征.随堂检测【习题2】下列说法正确的是().A.平移就是将一个图形的某些线段平行移动B.平移后的图形与原图形大小相同,形状不同C.平移后的图形与原图形大小不同,形状相同D.平移后的图形与原图形大小、形状都相同【难度】★【答案】D【解析】根据平移运动的特征可知选D.【总结】考察平移运动的特征.【习题3】等边三角形是旋转对称图形,它的最小旋转角是_____度.【难度】★【答案】120︒.【解析】由等边三角形的特征可知,最小旋转角是120︒.【总结】考察最小旋转角的计算.【习题4】如图,是中心对称图形的是()【难度】★【答案】A【解析】A是中心对称图形,B、C、D是轴对称图形.【总结】考察中心对称图形和轴对称图形的特征.【习题5】如图,在平行四边形ABCD 中,AE 垂直于BC ,垂足为E .试画出将ABE ∆平移 后的图形,使其平移的方向为点A 到点D 的方向,平移的距离为线段AD 的长. 【难度】★★ 【答案】详见解析. 【解析】△DCF 就是ABE ∆平移后的图形. 【总结】考察图形平移的画法.【习题6】正方形网格中,ABC ∆为格点三角形(顶点都是格点),将ABC ∆绕点A 按逆时针方向旋转90︒得到11AB C ∆.(1)在正方形网格中,作出11AB C ∆;(不要求写作法)(2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π) 【难度】★★【答案】94π.【解析】(1)如图所示;(2)S 阴影=S 扇1C AC +11S ABC S AB C S --扇1B AB =S 扇1C AC S -扇1B AB221144AC AB ππ=-()11925169444πππ=-=⋅=.【总结】考察图形运动的综合应用.EDCBAFAB CB 1C 1ABCB'C'A BCD EF【习题7】如图,将ABC ∆绕点A 逆时针旋转80︒得到AB C ''∆.若50BAC ∠=︒,则CAB '∠的度数为( ) A .30︒ B .40︒ C .50︒ D .80︒【难度】★★ 【答案】A【解析】将ABC ∆绕点A 逆时针旋转80︒得到AB C ''∆ '8050'30BAB BAC CAB ∴∠=︒∠=︒∴∠=︒,,. 【总结】考察图形的旋转运动,注意旋转过程中旋转角始终相等.【习题8】钟表的分针绕其轴心转动,分针经过15分钟后,转过的角度是______度,分针从 12出发,转过150°后,则它指的数字是_______. 【难度】★★ 【答案】90︒,5.【解析】表盘一圈360︒,共分成12个格,所以每一个30︒,15分钟转过3格,因此90︒;150︒是5格,从12走5格后是数字5.【总结】考察钟表的运动特征,主要是利用旋转的思想去解题.【习题9】如图,三个圆是同心圆,则图中阴影部分的面积为 . 【难度】★★【答案】14π.【解析】通过旋转可将阴影部分拼成14圆,21144S r ππ==. 【总结】考察学生观察力及圆的面积公式.【习题10】如图,四边形ABCD 是正方形,F 是BA 延长线上的点,ADF ∆旋转一定角度后 得到ABE ∆,如果4AF =,7AB =. (1)指出旋转中心和旋转角度;(2)求DE 的长度. 【难度】★★【答案】(1)旋转中心是点A ;旋转角为90︒;(2)3DE =. 【解析】由旋转可得ADF ≌ABE ,47AF AE AB AD ∴====,,743DE AD AE ∴=-=-=.【总结】考察图形旋转的性质的应用.PAC DA'B'【习题11】如图所示,ABC ∆是直角三角形,BC 是斜边,将ABP ∆绕点A 逆时针旋转后, 能与'ACP ∆重合,如果2AP =,那么'PP =______. 【难度】★★ 【答案】22.【解析】由旋转可得'PAP 是等腰直角三角形,2AP =,'22PP ∴=.【总结】考察图形旋转的性质的应用.【习题12】如图所示,在直角ABC ∆中,90C ∠=︒,4BC =,4AC =,现将ABC ∆沿CB 方向平移到A B C '''∆的位置.(1)若平移的距离为3,求ABC ∆与A B C '''∆重叠部分的面积;(2)若平移的距离为(04)a a ≤≤,求ABC ∆与A B C '''∆重叠部分的面积S 的取值范围. 【难度】★★★【答案】(1)12;(2)21482S a a =-+,(04)a ≤≤.【解析】S 阴()()22221111''4482222C B BC CC a a a ==-=-=-+.【总结】考察平移的特征及三角形的面积公式的运用.【习题13】如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为12A A A →→,其中第二次翻滚被桌面上一小木 块挡住,使木板与桌面成30︒角,求点A 翻滚到2A 位置时共走过的路径长. 【难度】★★★【答案】72π.【解析】两次运动是分别以B 、C 为圆心,5cm 、3cm 为半径,圆心角为90°、60°的两段弧长,故走过的路径长为:9060575318018022l πππππ=⋅+⋅=+=.【总结】考察图形的运动,主要发现点的运动路程就所经过的弧长.AA 1A 2B'A'CBA 虚线图形为所求CBA【作业1】如图,作出ABC ∆绕旋转中心A ,逆时针旋转75︒,得到的图形. 【难度】★ 【答案】【解析】以A 为圆心,将线段AB 、AC 分别逆时针旋转75︒,即可得到旋转后图形. 【总结】考察学生的画图能力.【作业2】如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是().A .30°B .60°C .90°D .120° 【难度】★ 【答案】C【解析】由旋转性质可得. 【总结】考察旋转性质的运用.【作业3】ABC ∆中,108ACB ∠=︒,将它绕着C 逆时针旋转30︒后得到''A B C ∆,则'ACB ∠的度数是多少? 【难度】★ 【答案】138︒.【解析】''10830138ACB ACB BCB ∠=∠+∠=︒+︒=︒. 【总结】考察旋转性质的运用.课后作业P'DCBAP 'PCB A【作业4】在下图的网格中按要求画出图象,并回答问题.(1)先画出ABC ∆向下平移5格后的111A B C ∆,再画出ABC ∆以O 点为旋转中心,沿顺时针方向旋转90︒后的222A B C ∆;(2)在与同学交流时,你打算如何描述⑴中所画的222A B C ∆的位置. 【难度】★★ 【答案】略【解析】根据图形旋转特征画出图形. 【总结】考查图形运动中的图形旋转的画法.【作业5】正方形ABCD 中的ABP ∆绕点B 顺时针旋转能与'CBP ∆重合,若4BP =,求点P 所走过的路径长. 【难度】★★ 【答案】2π.【解析】点P 所走过的路径是以B 为圆心,4BP =为半径的14圆的弧, 根据弧长公式9042180180n r l πππ⋅=== 【总结】在图形旋转的过程中,图形上任意一点经过的路程都是一段弧长.【作业6】如图,P 是正ABC ∆内的一点,若将PBC ∆绕点B 旋转到PBA'∆,则PBP '∠的度 数是( ) A .45︒ B .60︒ C .90︒ D .120︒【难度】★★ 【答案】B【解析】'60P BP ABC ∠=∠=︒.【总结】图形旋转的过程中,旋转角处处相等.A'C'B'C BA【作业7】如果一个旋转对称图形的最小旋转角为︒n,那么n满足怎样的条件时,这个图形一定是中心对称图形?【难度】★★【答案】n是180°的因数.【解析】图形旋转180︒后能与自身完全重合的图形是中心对称图形.【总结】考查中心对称图形与旋转对称图形的关系.【作业8】线段AB =4厘米,将线段AB绕着AB的中点O旋转180°,它所扫过的平面部分是_________形,面积等于________平方厘米.【难度】★★【答案】圆、4π.【解析】线段AB绕着AB的中点O旋转180°扫过的图形是以O为圆心,2厘米为半径的圆,再根据圆的面积公式求出圆的面积.【总结】考查对图形运动的特征的理解及运用.【作业9】如右图所示,Rt ABC∆沿AC边所在的直线向上平移2cm,若4cmBC=,求Rt ABC∆扫过的面积.【难度】★★★【答案】28cm.【解析】平移的距离是2cm,则'2AA cm=,又4cmBC =,则平行四边形''ABB A的高为4cm,S∴=底⨯高=()2248cm⨯=.【总结】平移所扫过的图形为平行四边形,根据面积公式可以算出面积28cm.【作业10】小明和小红玩一种游戏,他们要将甲图和乙图中的三角形通过水平或竖直平移的方法得到图丙,平移的过程中,每次水平或竖直平移一格,先拼完的为胜,小明选择了图甲,小红选择了图乙,那么谁先获胜?【难度】★★★【答案】小明.【解析】小明需要4312<,所以小明获胜.⨯=步,1216⨯=步,小红需要4416【总结】本题主要考查图形平移的特征.。
七年级数学尖子生培优竞赛专题辅导第十八讲 平移、对称、旋转(含答案)
第十八讲平移、对称、旋转趣题引路】如图18-1,已知△ABC内有一点M,沿着平行于边BC的直线运动到CA边上时,再沿着平行于AB的直线运动到BC边时,又沿着平行于AC直线运动到AB边时,再重复上述运动,试证:点M最后必能再经过原来的出发点证明设点M运动过程中依次与三角形的边相遇于点A1,B1,B2,C2,C3,A3,A4,B5,….易知△AC2B₂≌△A1CB1≌△A3C3B.按点M平移的路线,△A C2B2可由△A1CB1平移得到;△A3C3B可由△AC2B2平移得到;△A1CB1可由△A3C3B平移得到,此时,A3应平移至A4,所以A4与A1重合.而这时的平移方向恰与点M开始平移时的方向一致,因此从A3平移到A1的过程中必经过点M,这表明在第七步时,点M又回到了原来的出发点.图18-1知识拓展】1.平移、对称和旋转是解决平面几何问题常用的三种图形变换方法,它们零散地分布在初中几何教材之中.例如,平行四边形的对边可以看成是平行移动而形成,这里的平行移动,就是平移变换.2.一般地,把图形F上的所有点都按照一定的方向移动一定距离形成图形F'.则由F到F'的变换叫做平移变换,简称平移.由此可知,线段平移可以保持长短、方向不变,角、三角形等图形平移保持大小不变.将平面图形F变到关于直线l成轴对称的图形F',这样的几何变换简称为对称,它可使线段、角大小不变.3.将平面图形F绕着平面内的一个定点O旋转一个定角a到图形F',由F到F'的变换简称为旋转.旋转变换下两点之间的距离不变,两直线的夹角不变,且对应直线的夹角等于旋转角.4.运用平移、对称或旋转变换,能够集中图形中的已知条件,沟通各条件间的联系.例1 已知:如图18-2,△ABC中,AD平分∠CAB,交BC于D,过BC中点E作AD的平行线交AB于F,交CA的延长线于C.求证:2ACAB=CG=BF.图18-2解析直接证三角形全等或者用角平分线定理显然不能解决问题.注意到要证式的形式,条件中又有角平分线和中点,如果能切分BF、CG,使分出的两部分一部分是AB的一半,余下的是AC的一半,问题就解决了.由中点,我们不难想到中位线,两条有推论效力的辅助线(EH和EI)就产生了,H、I切分了BF、CG,由平行线性质∠1=∠2=∠3=∠4=∠6,再由中位线定理,等腰三角形的判定定理,切分后的结论不难证明.略证过E作AC、AB的平行线交AB、AC于H、I,由平行线性质及已知条件得,∠1=∠2=∠3=∠4=∠6, ∴EI =GI ,EH =FH .∵E 为BC 中点,EH ∥AC ,EI ∥AB , ∴EI =2AB =BH ,EH =2AC=CI , ∴EI =GI =2AB=BH , FH =EH =2AC=CI . 由于BF =BH +FH , CG =GI +CI , ∴2ACAB =BF =CG .例2 如图18-3,E 是正方形ABCD 的BC 边上的一点,F 是∠DAE 的平分线与CD 的交点,求证:AE =FD +BE .图18-3解析 表面上看所要证等式的各边分布在正方形不同的边上,欲证它们之间的关系,似乎不可能.但我们可以将某一条边作适当的延伸,使等量关系转移(比如证某两个三角形全等,中位线的关系等).此题中可将FD 延长至G ,使得DG =BE ,于是易证△AGD ≌△AEB ,则将AE 与AG ,BE 与GD 联系了起来,转而只需证明AG =GF ,即只要证明△AGF 为等腰三角形即可,由∠1=∠2,∠3=∠4及AB ∥CD 即证得.略证 延长FD 至G 使DG =BE , ∵△ADG ≌△ABE ,∴AG =AE ,GD =BE ,∠1=∠2. 又∵ ∠3=∠4, ∴∠1+∠4=∠2+∠3. 由于DC ∥AB ,∴∠DFA =∠2+∠3, ∴∠1+∠4=∠DFA , ∴GF =AG .即GD +DF =BE +FD =AE .例3 已知∠MON =40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上的点,则△PAB 的周长取最小值时,求∠APB 的度数.图18-4解析 如图18-4,若在OM 上A 点固定,不难在ON 上找出点B (B 为P 关于ON 的对称点P ''与A 点的连线与ON 的交点),同样若在ON 上B 点已固定,则点P 关于OM 的对称点P'与B 点的连线与OM 交于A ,因此A 、B 应为P'P ''与0M 、ON 的交点,这时可求得∠A .解 作P'为P 关于OM 的对称点,P ''为P 关于ON 的对称点,连接P'P ''分别交OM 、ON 于A 、B 两点,则△PAB 周长为最小,这时△ABP 的周长等于P'P ''的长(连接两点间距离最短).∵OM P P ⊥',ON P P ⊥''垂足分别为C 、D , ∴∠OCP =∠ODP =90°. ∵∠M O N=40°,∴∠CPD =180°-40°=140°.∴∠PP'P ''=∠P P ''P'=180°-140°=40°.由对称性可知:∠PAB =2∠P',∠PBA =2∠P '', ∴∠APB =180°-(∠PAB -∠PBA )=180°-(2∠P'-2∠P '')=100°.例4 如图18-5,在ABC 中,BC =h ,AB +AC =l ,由B ,C 向∠BAC 外角平分线作垂线,垂足为D 、E , 求证:BD ·CE =定值.图18-5解析 BC =h 是定值,AB +AC =l 是定值,要证BD ·CE 是定值,设法使BD ·CE 用h ,l 的代数式来表示,充分利用DE 是BAC 的外角平分线,构造对称图形,再利用勾股定理。
平移和旋转评课稿(3篇)
平移和旋转评课稿(3篇)平移和旋转评课稿(3篇)平移和旋转评课稿1看了潘老师的《平移和旋转》这节课,我受益匪浅,也知道了像这类型的课应该这样上,那么我就以潘老师的这节课,谈谈以下几点看法:1 、能够把数学知识与生活现象密切联系起来。
数学源于生活,又用于生活。
这节课中一个突出的特色就是以学生已有的生活经验为背景,将数学知识与生动形象的现实生活密切联系起来,使学生在一种很真实,自然的状态下感受、体验、理解数学知识形成的过程。
潘老师收集一些图片,比如银行的自动门、电梯、汽车行驶、风扇、风车等许多真实的生活事例,让学生从这些活生生的现象中感受平移和旋转,体会到原来数学是这么地贴近我们的日常生活,它就在我们的身边。
2、能够充分发挥学生主题作用,让学生积极主动地参与。
在课堂上,潘老师始终将学生放在主体地位,创设情境与活动,给予足够的时间,使他们在自主观察、思考、操作中逐步感知,理解平移和旋转。
比如在数学移图时,潘老师先让学生整个图平移,接着引导学生找出对应点的方法,让学生一步步的掌握移图的方法。
而且整个环节都重视学生的真实感受,重视知识的形成过程,使学生在获得知识的同时,思维能力得到进一步的锻炼与提高。
3、通过实践操作,丰富学生对空间图形的认识和感受,发展空间观念。
整堂课中,潘老师十分重视实践活动,比如在上课一开始,就让学生用手势比划出自动门、电梯、风扇、风车是怎样运动的,在画移图时,让学生通过动手画一画的实践中,感受平移和旋转的奇妙,在动手、动脑、动口的.过程中“做数学”。
培养学生的空间观念,发展学生的数学思维。
平移和旋转评课稿2曾老师的《平移和旋转》一课,有趣生动、贴近生活、互动有序、令人印象深刻,现就本课的进程谈谈个人的一些感想。
(一)深入挖掘生活素材、初步建构数学概念在教学进程中曾老师提供大量感性生活素材,如在新课伊始情境图中出现的电梯、摩天轮、风车、转转椅、缆车、滑滑梯等;通过学生用眼观察、动手操作及自身的体验,把抽象的数学概念渗透在直观的生活素材中;使学生在感性的数学活动中体会生活处处有数学的乐趣。
五年级第二讲图形的平移和旋转
五年级第二讲图形的平移和旋转(共9页)-本页仅作为预览文档封面,使用时请删除本页-图形的平移和旋转知识点讲解:平移的概念:平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移特征:1、平移前后图形的形状、大小不变,只是位置发生改变。
2、新图形与原图形的对应点所连的线段平行且相等(或在同一直线上)。
3、新图形与原图形的对应线段平行且相等,对应角相等。
旋转的概念:在平面内,把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
在画旋转图形时,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。
旋转的特征:1、对应点到旋转中心的距离相等。
2、对应点与旋转中心所连线段的夹角等于旋转角。
3、旋转前、后的图形全等。
旋转三要素:①旋转中心②旋转方向③旋转角度课堂练一练一.涂色1、把图形向右平移7格后得到的图形涂上颜色。
2、把图形向左平移5格后得到的图形涂上颜色。
3、把图形向右平移4格后得到的图形涂上颜色。
二、利用平移知识画图或填空1.画出小船向右平移6格后的图形2.、画出向右平移6格后的图形3、(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)小飞机向()平移了()格。
4、(1)绕O点顺时针旋转 90度。
(2)向右平移5格78平移和旋转练习题(一)一、连一连。
升旗时国旗的运动时针的运动在算盘上拨珠平移电梯的运动风扇叶片的运动火车的运动光盘在电脑里的运动旋转把握汽车的方向盘二、操作。
1、向( )平移了( )格。
2、把上面的小船图向上平移5格3、把上图中的三角形绕垂足顺时针旋转180°小学数学平移和旋转练习题(二)一、看图填一填。
1、长方形向()平移了()格。
2、六边形向()平移了()格。
3、五角星向()平移了()格。
【学情分析】平移和旋转学情分析_数学_小学_孙海涛_3707820755
《平移和旋转》学情分析
学生在三年级已经认识了两种基本的运动——平移和旋转,知道了生活中哪些运动是平移,哪些运动是旋转。
这节课,主要让学生学会会把简单图形在方格纸上沿竖直或水平一次平移的方法,并在此基础上进一步探究图形的两次平移,再就是让学生注意旋转中必须围绕一个点,注意旋转的方向,旋转的角度。
通过课前检测可知,学生能知道生活中的一些平移和旋转现象,知道平移过程中图形的形状没有发生变化,位置变了的学生占67%,而学生在判断图形一次平移的格数时,找对应点容易出现错误,能正确找出对应点的学生仅占24%,学生对移动几格会产生错觉,有的理解成是两个图形之间的距离是四格,有的误以为数四个点。
因此,教学时,注重强调平移距离很关键。
另外,注重严格要求学生,让学生养成用直尺画图的好习惯,不要把平移后的图形画变了形。
2020年苏科 版七年级上册数学《第5章 走进图形世界》单元测试卷
2020年苏科新版七年级上册数学《第5章走进图形世界》单元测试卷一.选择题(共10小题)1.足球的表面是由什么图形缝制而成的()A.圆形B.五边形和六边形C.六边形D.不规则图形2.用小刀截小正方体,不可能是()A.三角形B.四边形C.六边形D.七边形3.下列五个结论,其中属于旋转、平移和轴对称三种变换的共同性质的有()①对应点连线平行;②对应点连线相交于一点;③对应线段相等;④变换前后的图形是全等形,形状和大小都没有改变;⑤位置发生了改变.A.2个B.3个C.4个D.5个4.如图是正方形纸盒的展开图,若在三个正方形A,B,C内分别填入适当的实数,使得它们折成正方体后相对面上的两个数互为相反数,则填人三个正方形A,B,C内的三个实数依次为()A.﹣π,,0B.,﹣π,0C.﹣π,0,D.,0,﹣π5.如图所示是由三个立方体组成几何体.从上面看到的形状图是()A.B.C.D.6.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个7.如图,其主视图是()A.B.C.D.无法确定8.如图,Rt△ABC中,若把Rt△ABC绕线斜边AB所在直线旋转一周,则所得的几何体为()A.两个三角形拼接成正方形B.正方体C.长方体D.两个共底的圆锥9.用各种不同的方法把图形分割成三角形,至少可以分割成5个三角形的多边形是()A.五边形B.六边形C.七边形D.八边形10.如图形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.二.填空题(共10小题)11.图形运动常见的基本形式有三种,它们是、、.12.在如图所示的几何体中,柱体的是.(填写序号)13.如图所示是某些多面体的平面展开图,请将这些多面体的名称写出来.(1);(2);(3).14.一个正六棱柱的模型,它的上、下底面形状相同,底面边长都是5cm,侧棱长是4cm,则它所有侧面的面积这和为cm2.15.用一个平面将一个长方体截去一个三棱柱,剩下的几何体是.16.下面4个图形均由6个相同的小正方形组成,折叠能围成一个正方体的是.17.指出图(1)、图(2)、图(3)是几何体从哪个方向看到的图形.(1)(2)(3).18.图形在平移、旋转、翻折变换过程中,有一个共同的特征,图形的和不变.19.一个正方体的平面展开图如图所示,将它折成正方体后“设”字对面是.20.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.三.解答题(共7小题)21.如图所示的正方体被竖直截取了一部分,求被截取的那一部分的体积.(棱柱的体积等于底面积乘高)22.如图需再添上一个面,折叠后才能围成一个正方体,请在原图上画出所添的面.(画出两种情况即可)23.如图,圆柱形钢管的内径是d,外径是D,高是h.(1)用d,D,h把这个钢管的体积表示出来;(2)求出当d=0.80米,D=1.20米,h=2米时,该圆柱形管的体积.(π≈3.14)24.一个透明的玻璃正方体内镶嵌了一条铁丝(如图所示的粗线),请指出右边的两个图是从正方体的哪个方向看到的视图.;.25.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.26.有一个正方体木块,它的六个面上分别标有数字1~6,图①②③是这个正方体从不同方向观察到的数字情况,请分析数字1和5对面的数字分别是什么.27.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图(如图),请你按照三视图确定制作每个茶叶罐所需面板的面积.(单位:mm)参考答案与试题解析一.选择题(共10小题)1.解:足球表面是有一些正五边形和正六边形形构成的.故选:B.2.解:用小刀去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选:D.3.解:①对应点连线平行旋转变换不具有;②对应点连线相交于一点只有旋转变换具有;③对应线段相等三种变换都具有;④变换前后的图形是全等形,形状和大小都没有改变,三种变换都具有;⑤位置发生了改变轴对称变换位置不一定改变,例如轴对称图形关于对称轴变换;综上所述,三种变换都具有的性质有③④共2个.故选:A.4.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A与﹣是相对面,B与π是相对面,C与0是相对面,∵折成正方体后相对面上的两个数互为相反数,∴A,B,C内的三个实数依次为,﹣π,0.故选:B.5.解:从上面看易得有两列,每一列各有一个正方形,是一个横写的“日”字.故选:C.6.解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选:B.7.解:主视图是从正面看到的图形,从正面看是长方形,故选:B.8.解:根据题意可知是两个共底的圆锥.故选:D.9.解:5边形最少分成3个三角形,6边形最少分成4个三角形,8边形最少分成6个三角形,要分割成最少三角形,就要尽可能多的利用已有多边形的边(最多只能利用2条边).故至少分割成5个三角形的多边形是7边形.故选:C.10.解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成直三棱柱;B、D的两底面不是三角形,故也不能围成直三棱柱;只有C经过折叠可以围成一个直三棱柱.故选:C.二.填空题(共10小题)11.解:图形运动常见的基本形式有三种,它们是平移、旋转和轴对称,故答案为:平移、旋转和轴对称.12.解:棱柱和圆柱都是柱体,①②⑥是四棱柱,⑦是三棱柱,④是圆柱,故答案为:①②④⑥⑦.13.解:(1)有四个三角形的面,折叠后可得到三棱锥,也称四面体;(2)两个底面是三角形的,三个侧面是长方形的,折叠后可得三棱柱;(3)有六个面,折叠后可得长方体,也称四棱柱;故答案为:(1)三棱锥,(2)三棱柱,(3)四棱柱.14.解:正六棱柱的侧面有六个小长方形组成,长方形的长为5cm,宽为4cm,故侧面面积S=6×5×4=120cm2.故答案为:120cm2.15.解:如图所示:用一个平面将一个长方体截去一个三棱柱,剩下的几何体是:三棱柱或四棱柱或五棱柱.故答案为:三棱柱或四棱柱或五棱柱.16.解:由展开图可知:①②能围成正方体,符合题意;③④围成几何体时,有两个面重合,故不能围成正方体,不符合题意.故答案为:①②.17.解:从正面看易得第一层左边有1个正方形,第二层有2个正方形,故(1)是从正面看所得到的视图;从左面看易得第一层有个正方形,第二层有1个正方形,成“日”字,故(3)是从左边看所得到的视图;从上面看易得第一列有1个正方形,第二列最有一个正方形,成横“日”字,故(2)是从上边看所得到的视图;故答案为:正面;上面;左面.18.解:图形在平移、旋转变化过程中,有一个共同的特征,图形的形状和大小不变.故答案为:形状;大小.19.解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上“设”字对面是“谐”.故答案为:谐.20.解:半圆绕它的直径旋转360度形成球.故答案为360.三.解答题(共7小题)21.解:如图所示:根据题意可知被截取的一部分为一个直三棱柱,三棱柱的体积==5.22.解:如图,添加一个正方形,折叠后才能围成一个正方体,,,,.23.解:(1)钢管的体积=V 大圆柱﹣V 小圆柱,=π()2×h ﹣π()2×h ,=πh ,答:钢管的体积为πh ;(2)当d =0.80米,D =1.20米,h =2米时,原式=×π×2≈1.256(立方米),答:该圆柱形管的体积约为1.256立方米.24.解:细心观察右边的两个图,其中第一个图中间有一条粗线,可判断该图为俯视图;第二个图的上边和右边是两条粗线,故应该是主视图.故答案为:俯视图;主视图.25.解:设底面圆的半径为r ,①如图1,高为a ,2πr =b ,解得r =,所以,表面积为S =ab +2•π()2=ab +;②如图2,高为b ,2πr =a ,解得r =, 所以,表面积为S =ab +2•π()2=ab +.26.解:由图可得5的相对面是4,6的相对面是2,则1的相对面是3.27.解:由三视图可知,茶叶罐的形状为圆柱体,并且茶叶罐的底面半径r为50mm,高h 为150mm.∵每个茶叶罐所需面板的面积即为该圆柱体的表面积,∴S=2πr2+2πrH=2π×502+2π×50×150=20000π(mm2).表面积答:制作每个茶叶罐所需面板的面积为20000πmm2.。
图形的旋转课件(通用7篇)
图形的旋转课件(通用7篇)图形的旋转课件1一、教学目标1、知道图形旋转的概念,能找出旋转图形中的旋转中心、旋转角度和对应关系。
2、通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、观察能力,以及与人合作交流的能力。
3、经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感。
二、教学重点掌握旋转的有关概念,探索和发现旋转后图形的形状和大小都没有发生变化;会准确找出对应点、对应线段、对应角,旋转中心、旋转角。
三、教学难点对图形旋转过程中旋转角相等的理解,会准确找出旋转角。
旋转中心不在三角形顶点时旋转角的确定。
四、课时安排:一课时五、教学过程一、出示学习目标1、板书课题同学们,本节课我们一同来学习“图形的旋转”。
本节课的学习目标是(投影)2、出示学习目标(1)通过实例观察,认识并描述图形的旋转。
(2)了解一个简单的图形经过旋转制作复杂图形的过程,知道图形旋转的三要素(点、方向、度数)。
(3)欣赏图形的旋转变换所创造出的美,感受旋转在生活中的应用,体会数学的价值。
二、出示生活图片(一)图形的旋转,旋转中心,旋转角,方向1、[演示]:演示生活中常见的转动,观察转动时各点的运动情况得到图形在转动时,位置始终不变的那一点叫做旋转中心。
图形转动的角度叫做旋转角。
区分顺时针旋转和逆时针旋转,以及旋转的三要素。
2、由钟表的旋转,得到线段转动的旋转角,学生描述钟表的旋转,加深旋转三要素的记忆,同时培养学生的语言表达能力。
再由线段的旋转引申到几何图形的旋转,进一步得到:旋转前后的两个图形形状和大小不变,只是位置发生变化。
(二)感受生活中的旋转在日常生活中,我们可以看到,一些图形绕着某一个点旋转一定角度时,能与自身重合。
你能举出这样的例子吗?(三)全课,巩固方法今天我们学习了图形的一种运动————旋转。
通过学习你有什么收获?(四)布置作业:1、课本习题2、32、动手操作:请设计一个绕一点旋转一定角度后能与自身重合的图形。
华师大版数学七年级上册《 第4章 图形的初步认识 》教学设计
华师大版数学七年级上册《第4章图形的初步认识》教学设计一. 教材分析华东师范大学版数学七年级上册《第4章图形的初步认识》是学生在小学阶段对图形学习的基础上,进一步深化对图形性质和图形变换的理解。
本章主要内容有:图形的平移、旋转,视图,以及相交线和平行线。
这些内容在日常生活和进一步学习数学中都有广泛的应用。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们可以通过观察、操作、思考来进一步理解图形的性质和图形变换。
但同时,学生的空间想象力还需要进一步培养,他们对于一些抽象的图形变换的理解可能还存在一定的困难。
三. 教学目标1.了解平移、旋转的概念,能进行简单的图形变换。
2.能通过观察、操作、思考,进一步理解图形的性质。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:图形平移、旋转的性质,视图的概念。
2.教学难点:图形变换的理解和应用,空间想象能力的培养。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考来理解图形的性质和图形变换。
2.利用多媒体辅助教学,提供丰富的图形资源,帮助学生直观地理解图形变换。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.多媒体教学设备。
2.图形素材。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些生活中的图形变换,如旋转门、滑滑梯等,引导学生思考:这些现象的本质是什么?它们有什么共同的特点?2.呈现(10分钟)介绍平移、旋转的概念,并通过多媒体展示一些图形的平移、旋转实例,让学生直观地理解这两个概念。
3.操练(10分钟)让学生通过实际操作,尝试进行图形的平移、旋转,并观察、分析平移、旋转前后的图形有什么变化,进一步理解平移、旋转的性质。
4.巩固(10分钟)通过一些练习题,让学生运用所学的平移、旋转知识,解决实际问题,巩固所学内容。
5.拓展(5分钟)引导学生思考:除了平移、旋转,还有哪些图形变换?它们之间有什么联系和区别?6.小结(5分钟)对本节课的主要内容进行小结,强调平移、旋转的性质和应用。
苏教版七年级数学 第五章走进图形世界知识点与典题
夯实基础融会贯通苏教版七年级数学精准训练提升能力第五章走进图形世界知识点与典题第一节丰富的图形世界一、知识点1、几何图形由点、线、面组成。
面与面相交得到线,线与线相交得到点。
2、棱柱、棱锥中,相邻两个面的交线叫做棱, (其中相邻两个侧面的交线叫侧棱),棱柱中的棱与棱的交点叫棱柱的顶点,棱锥的各侧棱的公共点叫棱锥的顶点.3、棱柱的侧棱长都相等,棱柱的上、下底面都是相同的多边形,直棱柱的侧面都是长方形,棱锥的侧面都是三角形。
4、七巧板的构成:它是用一个正方形分割成五个三角形、一个正方形形和一个平行四边形形。
二、典题1、如图,将下列图形与对应的图形名称用线连接起来:2、五棱柱有个面,条棱,有个顶点.六棱柱有个面,条棱,有个顶点.n棱柱有个面,条棱,有个顶点.3、一个棱锥有7个面,这是棱锥,它有个侧面.4、下图是图(1)的正方体切去一块,得到图(2)~(5)的几何体,①它们各有多少个面?多少条棱?多少个顶点?②举例说明其他形状的几何体也切去一块,所得到的几何体的面数、棱数和顶点数各是多少.③若面数记为f,棱数记为e,顶点数记为v,则f+v-e满足什么关系?用其它的几何体验证上面的结论,还成立吗?5、如图,长方体ABCD-A′B′C′D′有个面,条棱,个顶点.与棱AB垂直相交的棱有条,与棱AB平行的棱有条.6、一个棱柱的底面是七边形,则它的侧面有个长方形,它一共有个面.7、有一个几何体,有9个面,16条棱,那么它有个顶点.第二节图形的运动一、知识点1、图形的运动主要有图形的平移、旋转、翻折。
2、如图所示:(1)将图形A平移到图形B;(2)将图形B沿图中虚线翻折到图形C;(3)将图形C沿其右下方的顶点旋转180°到图形D.二、典题1、下列现象中是平移的是()A.将一张纸沿它的中线折叠 B.飞蝶的快速转动 C.电梯的上下移动 D.翻开书中的每一页纸张2、如图,是由9个相同的小三角形组成的三角形(1)图形2绕它下面的顶点旋转180°度,可以变换到图形.(2)图形1沿它的下边缘线翻折可得到图形.(3)涂出图形1通过平移可以到达的三角形,这样的三角形共有个.(4)图形1通过可以变换到图形3.3、阅读下列材料:如图②,把△ABC沿直线平移线段BC的长度,可以变到△ECD 的位置;如图③,以BC为轴把△ABC翻折180°可以变到△DBC的位置;如图④,以点A为中心,把△ABC旋转1800,可以变到△AED的位置,像这样其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.问:在图①中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF 的位置.ABCDAB CD////A B CD123456789第三节展开与折叠一、知识点1、将几何体展开成展开图,在几何体展开图中,能识别多个面在几何体中的对应位置。
初二数学图形的平移和旋转教案
一、复习预习(1)平移的概念(2)平移的特点(3)平移的基本性质火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变? 哪些发生了变化?这种运动就叫做什么?为解决这一问题,我们讲今天的内容。
二、知识讲解知识点1 平移、旋转和轴对称的区别和联系(1)区别。
①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。
如果它能够与另一个图形重合,那么这两个图形成轴对称。
②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。
旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。
③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。
轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。
旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。
④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。
(2)联系。
①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。
③都要借助尺规作图及全等三角形的知识作图。
知识点2 组合图案的形成(1)确定图案中的“基本图案”。
(2)发现该图案各组成部分之间的内在联系。
(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。
要用运动的观点、整体的思想分析“组合图案”的形成过程。
运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。
《图形的平移》教学反思(精选16篇)
•••••••••••••••••《图形的平移》教学反思《图形的平移》教学反思(精选16篇)反思是教师以自己的职业活动为思考对象,对自己在职业中所做出的行为以及由此所产生的结果进行审视和分析的过程。
下面由小编为您整理出的《图形的平移》教学反思,一起来看看吧。
《图形的平移》教学反思篇1在上课开始的时候,我先让学生回忆生活中见过的平移,学生说出了很多,如窗户的推拉、地铁的运动、火车的行驶等等,这个时候我及时地指出:你们说的这些平移都是简单的沿水平方向或者竖直方向进行平移的,那你们认为如果一个图形从左上方移动到右下方,这样的平移与之前学的一样吗?为什么?学生很快就意识到这样的平移与之前所学的平移是不同的,之前所学的单一方向的平移,而今天要学习的平移不是单一方向的平移,是两个方向各平移一次的结果。
新授过程中我组织学生小组讨论从左上放移到右下方的图形是怎么平移的,学生通过讨论总结出了两种不同的方法。
其中我发现,有四到五个学生在数平移格数时出现了问题,那几个不会的学生的问题还是出现在不知道该怎么数,这也是三年级平移时候的难点所在,在上课之前,我以为,学生能回忆起数格子的方法,所以就没有在预习中让学生数平移的格数,到数格子的时候我才发现自己想的太好了,学生学过的.知识点不会永远记住,一部分人能通过提示回忆起学过的知识,当然还有一部分人在回忆的时候没认真回忆或者联想,根本想不起来学过的知识,其实也说明这一部分人在学习知识的时候没有真正的掌握,所以记忆不够牢固。
这一部分的教学内容是在方格纸上把一个简单图形沿水平方向和竖直方向各平移一次,平移到指定的位置。
学生在三年级的学习中已经会在方格纸上把一个简单图形沿水平方向或者竖直方向平移,初步体会了平移的特征。
以后遇到这样需要知识储备的新课的时候,一定要让学生先回忆起之前的相关知识,有了这些相关的知识才能进入新课的学习。
学生独立回忆是一个方面,新课前的复习更重要,所以在上课之前一定要设计复习题,根据复习题来回顾相关的知识。
上海七年级上数学压轴题 图形的运动 解答题之压轴题训练
上海市七年级第一学期数学压轴题训练专题07 图形的运动解答题之压轴题训练1.(奉贤十二校2021期末28)如图,在△ABC中,∠C=90°,BC=a,AC=b,(b>a>0),将△ABC绕点B顺时针旋转90°得△A1BC1.(1)画出△A1BC1.(2)将△ABC沿射线CB方向平移,平移后得△A2B2C2.①当平移距离等于a(点C2和点B重合)时,求四边形A1A2C2B2的面积.(用a,b的代数式表示)②若a=1,b=2,当△A1A2C2的面积和△A1C2B2的面积相等时,平移距离多少?(直接写出答案)2.(奉贤区五校2021期末28)如图,正方形ABCD的边长为4cm,等腰直角三角形EFG 在正方形ABCD的左侧,边EF与AB在一条直线上,且点A和点F重合,∠FEG=90°,EF=EG=4cm.(1)当三角形EFG向右平移1cm时,两图形重叠部分面积为_______cm2;(2) 当三角形EFG向右平移7cm时,两图形重叠部分面积为_______cm2;(3)当三角形EFG向右平移x(cm)时,两图形重叠部分面积表示为S(cm2),用含x的代数式表示S,并写出x满足的条件.3.(浦东2021期末29)如图,在正方形ABCD 中,点E 是AB 边上的一点(与A 、B 两点不重合),将BCE ∆绕点C 旋转,使CB 与CD 重合,这时点E 落在点F 处,联结EF. (1)按照题目要求画出图形;(2)若正方形边长为3,BE=1,求AEF ∆的面积;(3)若正方形边长为m ,BE=n ,比较AEF ∆与CEF ∆的面积大小,并说明理由.4.(浦东新区2021期末28)ABC ∆是一块含有45︒角的直角三角板,四边形DEFG 是正方形,点D 、G 分别在AB 、AC 上,点E 、F 在BC 上,BC=12,DG=4. 现在将正方形DEFG 向右沿BC 方向平移,设水平移动的距离为d ,正方形与直角三角板的重叠面积为S. (1)当平移的距离d= 时,正方形DEFG 恰好完全移出三角板;(2)当平移的距离d=2时,正方形与直角三角板的重叠面积为S= ;当平移的距离d=5时,正方形与直角三角板的重叠面积为S= ;(3)在移动过程中,请你用含有d 的代数式表示重叠面积S ,并写出相应d 的取值范围.E D CB A AB C A B C G F AB C D E5.(川中南2020期末29)如图1,150AOD ∠=︒,50AOB ∠=︒,30COD ∠=︒,把AOB ∠绕O 点以每秒20︒的速度逆时针方向旋转一周,同时COD ∠绕O 点以每秒10︒的速度逆时针方向旋转,当AOB ∠停止旋转时COD ∠也随之停止旋转.设旋转后的两个角分别记为11AOB ∠、11C OD∠,旋转时间为t 秒.(1)如图2,直线MN 垂直于OA ,将COD ∠沿直线MN 翻折至''C OD ∠,请你直接写出BOD '∠的度数,不必说明理由;(2)如图1,在旋转过程中,若射线1OB 与1OC 重合时,求t 的值;(3)如图2,在旋转过程中,当1120B OC ∠=︒时,直接写出t 的值,不必说明理由.6.(黄浦卢湾2020期末27)如图1,长方形纸片ABCD 的两条边AB 、BC 的长度分别为a 、b (0)a b ,小明它沿对角线AC 剪开,得到两张三角形纸片(如图2),再将这两张三角纸片摆成如图3的形状,点A 、B 、D 、E 在同一条直线上,且点B 与点D 重合,点B 、F 、C 也在同一条直线上.(1)将图3中的△ABC 沿射线AE 方向平移,使点B 与点E 重合,点A 、C 分别对应点M 、N ,按要求画出图形,并直接写出平移的距离;(用含a 或b 的代数式表示) (2)将图3中的△DEF 绕点B 逆时针方向旋转60°,点E 、F 分别对应点P 、Q ,按要求画出图形,并直接写出∠ABQ 的度数;(3)将图3中的△ABC 沿BC 所在直线翻折,点A 落在点G 处,按要求画出图形,并直接写出GE 的长度.(用含a 、b 的代数式表示)7.(黄浦立达2020期末26)作图并回答下列问题已知方格图中每一小格单位长度为1cm ,长方形ABCD 的顶点都在方格的顶点上,将长方形ABCD 绕点A 逆时针旋转90°得到四边形AB 1C 1D 1.(1)画出四边形AB 1C 1D 1(2)如果将四边形AB 1C 1D 1沿射线AB 方向向右平移x cm ,①当线段C 1D 1在线段AD 的左侧时,用含x 的代数式表示四边形AB 1C 1D 1与长方形ABCD 重叠部分的面积S.②若四边形AB 1C 1D 1与长方形ABCD 重叠部分的面积为4.5 cm 2时,求x 的值.8.(嘉定区2020期末28)如图,在一个10×10的正方形网格中有一个△ABC.(1)在网格中画出△ABC 向下平移4个单位,再向右平移2个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 绕点P 逆时针方向旋转90°得到的△A 2B 2C 2;(3)在(1)(2)的画图基础上,联结B 1C 2、A 2C 1,若小正方形的单位长度为1,请求出四边形A 2C 2B 1C 1的面积.9.(闵行区2020期末28)如图,已知ABC ∆是直角三角形,其中90ACB ∠=︒,AB=13,BC=12,AC=5.(1)画出ABC ∆绕点A 顺时针方向旋转90︒后的11AB C ∆;(2)线段BC 在旋转过程中所扫过部分的周长是_________(保留π);(3)求线段BC 在旋转过程中所扫过部分的面积(结果保留π).10.(浦东南十六校2020期末26)在长方形纸片ABCD 中,10AB cm =,AD AB <. (1)当 6.5AD cm =时,如图(a )所示,将长方形纸片ABCD 折叠,使点D 落在AB 边上,记作点1D ,折痕为AE ,如图(b )所示.此时,图(b )中线段1D B 长是 厘米.(2)若AD x =厘米,先将长方形纸片ABCD 按问题(1)的方法折叠,再将1AED △沿1D E 向右翻折,使点A 落在射线1D B 上,记作点1A .若翻折后的图形中,线段112BD BA =,请根据题意画出图形(草图),并求出x 的值.11.(长宁延中2020期末32)在ABC 中,点D 在边BC 上,联结,AD ADC n ∠=︒. ()1如图,将ADC 沿着AD 翻折,点C 的对应点是点'C ,若DB 平分'ADC ∠,则n 的值等于 ;()2若90,2,3,4n AD BD CD ====.将ABC 绕着点D 旋转,使得点A 的对应点'A 落在边BC 上,点B C 、的对应点分别是点'B C '、,则''A B C 的面积等于 .12.(2019复旦二附12月27)已知,如图:在△ABC 中,AC=3,BC=6,∠C=600;(1)将△ABC 绕着点C 旋转,使点A 落在直线BC 上的点A′,点B 落在B′,在下图中画出旋转后的△A′B′C.(2)直接写出A′B 的长,A′B=___________.13.(崇明区2020期末27)如图(1),已知ABC ∆中,90ACB ∠=︒,BC=a ,AC=b ,将ABC ∆绕点A 逆时针旋转90°得到11ABC ∆.(1)联结1BB ,请直接写出1ABB ∆是 三角形,并求出1ABB ∆的面积.(用含字母a 、b 的代数式表示)C'D C B ACB A(2)将11ABC ∆向左平移,使点1C 与点A 重合,点1B 落在AC 边上,标记为2B ,A 点平移后的对应点标记为1A ,请在图(2)中画出平移后的图形12AA B ∆,联结1A B 、2BB .如果AB=3,求四边形12AA BB 的面积.14.(静安区2020期末28)如图,在正方形ABCD 中,点E 是AB 边上的一点,AE =a ,BE=b.(1)将ADE ∆绕点D 旋转,使DA 与DC 重合,点E 落在点F 处,画出DCF ∆;(2)联结EF ,求出DEF ∆的面积.(结果用含a 、b 的代数式表示)15.(普陀区2020期末28)如图,已知正方形ABCD ,点M 是线段CB 延长线上一点,联结AM ,AB=a ,BM=b.(1)将线段AM 沿着射线AD 方向平移,使得点A 与点D 重合. 用代数式表示线段AM 扫过平面部分的面积 .(直接写出答案)(2)将三角形ABM绕着点A旋转,使得AB与AD重合,点M落在点N,联结MN. 用代数式表示三角形CMN的面积.(直接写出答案)(3)将三角形ABM顺时针旋转,使旋转后的三角形有一边与正方形的一边完全重合(第(2)小题的情况除外). 请在下图中画出符合条件的3种情况,并写出相应的旋转中心和旋转角.。
初中图形的平移和旋转知识点
一、知识回顾 1.平移的概念 2.平移的性质 二、新知要点1.平移图形的规律,作图的顺序;2.平行线的作法及对应点的连结;3.平移三要素:原图形位置,平移方向,平移距离。
例1:观察理解平移后的图形。
例2: 把图中的三角形ABC (可记为△ABC )向右平移8个格子,画出所得的△'''C B A 。
度量△ABC 与△'''C B A 的边,角的大小,你发现什么呢?解:(1)、经过平移的图形与原来的图形的对应线段 ,对应角 ,图形的形状和大小都 。
(2)、平移的对应点所连线段 。
(3)、其中BC 与B ′C ′的关系是 (位置关系和数量关系)。
线段AB 与A ′B ′的关系是 (位置关系和数量关系)。
若AC=5,则A ′C ′= ,若∠BAC=60°,则∠B ′A ′C ′= 。
若△ABC 周长为30,则△A ′B ′C ′周长为 。
BCA若△ABC面积为S,则△A′B′C′面积为。
例3:画出平移后的图形。
通过操作我们发现:1.在方格纸上平移图形时,把一个图形向某个方向平移几格,不是指原图形和平移后得到的新图形两个图形之间的空格有几格,而是指原图形的每个顶点都向这一方向平移了几格。
2.在方格纸上平移图形时,可以把这个图形的各个顶点按指定的方向平移到新位置,先分别描出各点,再把各点按原来的顺序连接起来,成为按要求平移后得到的新图形。
3.用平移的方式画一排或一列图形时,可以在第一个图形的底部或左右画一条横线或竖线,以这条横线或竖线为基准,画出的图形就是平移得到的。
4.平移图形或物体时,可以一次平移,也可以两次平移,物体的方向都不会改变。
例4:如图,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形。
分析:因为A与D是对应点,而平移的对应点的连线段平行且相等所以平移方向——射线AD,平移距离——线段AD的长,作法:1.分别过点B、C沿AD方向作线段BE、CF,使它们与AD平行且相等2.顺次连结D、E、F则△DEF即为所求。
图形的平移 (核心考点讲与练)-2021-2022学年七年级数学下学期考试满分全攻略(苏科版)
第03讲图形的平移 (核心考点讲与练)一.平行线之间的距离(1)平行线之间的距离从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.(2)平行线间的距离处处相等.二.生活中的平移现象1、平移的概念在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.2、平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3、确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.三.平移的性质(1)平移的条件平移的方向、平移的距离(2)平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.四.作图-平移变换(1)确定平移后图形的基本要素有两个:平移方向、平移距离.(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.五.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.一.平行线之间的距离(共3小题)1.(2019春•桂平市期末)如图,AB∥DC,ED∥BC,AE∥BD,那么图中和△ABD面积相等的三角形(不包括△ABD)有()A.1个B.2个C.3个D.4个【分析】根据两平行直线之间的距离相等,再根据等底等高的三角形的面积相等,找出与△ABD等底等高的三角形即可.【解答】解:∵AB∥DC,∴△ABC与△ABD的面积相等,∵AE∥BD,∴△BED与△ABD的面积相等,∵ED∥BC找不到与△ABD等底等高的三角形,∴和△ABD的面积相等的三角形有△ABC、△BDE,共2个.故选:B.【点评】本题主要考查了平行线间的距离相等,等底等高的三角形面积相等的性质,找出等底等高的三角形是解题的关键.2.(2021春•宁德期末)如图,MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是点M到直线CD的距离,线段MN的长度是点M到直线EF的距离,又是平行线AB、EF间的距离,点N到直线MG的距离是线段GN的长度.【分析】点到直线的距离是指直线外一点到这条直线的垂线段的长度,根据这一定义结合图形进行填空即可.【解答】解:线段GM的长度是点M到直线CD的距离;线段MN的长度是点M到直线EF的距离,又是平行线AB、EF间的距离;点N到直线MG的距离是线段GN的长度.【点评】正确理解点到直线的距离的定义是解决此类问题的关键.3.(2019春•如东县期末)如图,两条平行线间依次有三个图形:△ABC,▱CDEF和梯形DGMN.根据图中所标数据比较它们的面积,其中面积最大的是()A.△ABC B.▱CDEF C.梯形DGMN D.无法比较【分析】根据两条平行线之间的距离处处相等,分别算出三个图形的面积进行比较,即可得出答案.【解答】解:设平行线之间的距离为x,三角形ABC的面积==6x,平行四边形CDEF的面积=7x,梯形DGMN的面积==5.5x,∴面积最大的是平行四边形CDEF.故选:B.【点评】此题考查三角形、平行四边形、梯形的面积公式,利用平行线之间的距离处处相等是解决问题的关键.二.生活中的平移现象(共10小题)4.(2021春•大丰区月考)下列现象是数学中的平移的是()A.树叶从树上落下B.电梯从底楼升到顶楼C.骑自行车时轮胎的滚动D.钟摆的摆动【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:A、树叶从树上落下,不是平移,故此选项不符合题意;B、电梯从底楼升到顶楼是平移,故此选项符合题意;C、骑自行车时的轮胎滚动是旋转,故此选项不符合题意;D、钟摆的摆动,不是平移,故此选项不符合题意;故选:B.【点评】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动叫平移,学生混淆图形的平移与旋转或翻转,而误选.5.(2021春•海州区期末)如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A.甲和乙同时到B.甲比乙先到C.乙比甲先到D.无法确定【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【解答】解:∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选:A.【点评】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.6.(2021春•许昌期末)下列运动属于平移的是()A.小朋友荡秋千B.自行车在行进中车轮的运动C.地球绕着太阳转D.小华乘手扶电梯从一楼到二楼【分析】在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.根据平移的概念进而得出答案.【解答】解:A、小朋友荡秋千,属于旋转变换,此选项错误;B、行驶的自行车的车轮,属于旋转变换,此选项错误;C、地球绕着太阳转,属于旋转变换,此选项错误;D、小华乘手扶电梯从一楼到二楼,属于平移变换,此选项正确;故选:D.【点评】此题主要考查了生活中的平移,正确掌握平移的概念是解题关键.7.(2021春•徐州期末)木匠有32m的木板,他想要在花圃周围做围栏.他考虑将花圃设计成以下的造型上述四个方案中,能用32m的木板来围成的是①③④(写出所有可能的序号).【分析】根据平移的性质以及矩形的周长公式分别求出各图形的周长即可得解.【解答】解:①周长=2(10+6)=32(m);②∵垂线段最短,∴平行四边形的另一边一定大于6m,∵2(10+6)=32(m),∴周长一定大于32m;③周长=2(10+6)=32(m);④周长=2(10+6)=32(m);故答案为:①③④.【点评】本题考查了矩形的周长,平行四边形的周长公式,平移的性质,根据平移的性质第一个图形,第三个图形的周长相当于矩形的周长是解题的关键.8.(2021春•南开区期末)一个长方形花园,长为a,宽为b,中间有两条互相垂直的宽为c的路,则可种花的面积为ab﹣ac﹣bc+c2.【分析】将路平移到花园的两边,即可找到种花的两边的长度即可求面积.【解答】解:将路平移到花园两边,所得种花的两边的长度分别为:(a﹣c)、(b﹣c).∴种花的面积为:(a﹣c)(b﹣c)=ab﹣ac﹣bc+c2故答案为:ab﹣ac﹣bc+c2.【点评】本题考查了列代数式,以及平移的知识,能根据题意正确列出代数式是解此题的关键.9.(2021春•江都区校级期末)白云宾馆在装修时,准备在主楼梯上铺上红地毯.已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图所示,则购买这种地毯至少需要504元.【分析】根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【解答】解:如图,利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为5.8米,2.6米,即可得地毯的长度为2.6+5.8=8.4(米),地毯的面积为8.4×2=16.8(平方米),故买地毯至少需要16.8×30=504(元).故答案为:504.【点评】此题考查了平移的应用,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.10.(2021春•依安县期末)如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为98米.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.11.(2020秋•海州区校级期中)某公园准备修建一块长方形草坪,长为30米,宽为20米,并在草坪上修建如图所示的十字路,已知十字路宽x米,请回答下列问题:(1)草坪(阴影部分)的面积是多少平方米?(2)修建十字路的面积是多少平方米?(3)如果十字路宽4米,那么草坪(阴影部分)的面积是多少平方米?【分析】(1)阴影面积等于矩形面积减去道路面积;(2)根据修建的十字路面积=两条路的面积和﹣重叠部分的面积得出;(3)根据长方形草坪的面积﹣十字路的面积=草坪(阴影部分)的面积得出.【解答】解:(1)30×20﹣(30x+20x﹣x2)=600﹣50x+x2(平方米),答:草坪(阴影部分)的面积是(600﹣50x+x2)平方米;(2)30x+20x﹣x2=50x﹣x2(平方米),答:修建十字路的面积是(50x﹣x2)平方米;(3)600﹣50x+x2=600﹣50×4+4×4=416(平方米),答:草坪(阴影部分)的面积416平方米.【点评】本题考查了列代数式及代数式求值的问题,解题的关键是灵活运用公式:整体面积=各部分面积之和,阴影部分面积=原面积﹣空白的面积.12.(2020秋•江阴市校级月考)根据图中标示的数据,计算图形的周长(单位:mm)【分析】经过线段的平移,该图形可变为一个长为(29+14),宽为(10+11+2)的长方形.【解答】解:如图形的周长=(29+14+10+11+2)×2=132mm.【点评】本题主要考查的是平移的性质,经过线段的平移将原图形转化为一个矩形的周长是解题的关键.13.(2015春•宝应县期中)在长为12m,宽为9m的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,求其中一个小长方形花圃的长和宽.【分析】由图形可看出:小矩形的2个长+一个宽=12m,小矩形的2个宽+一个长=9m,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:,即小矩形的长为5m,宽为2m.答:小矩形花圃的长和宽分别为5m,2m.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.三.平移的性质(共10小题)14.如图,△ABC向右平移2cm得到△DEF,如果△ABC的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.22cm【分析】根据平移的性质得到BE=AD=CF,DF=AC,根据四边形的周长公式计算,得到答案.【解答】解:∵△ABC向右平移2cm得到△DEF,∴BE=AD=CF=2(cm),DF=AC,∵△ABC的周长是16cm,∴AB+AC+BC=16cm,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=16+2+2=20(cm),故选:C.【点评】本题考查的是平移的性质,根据平移的性质求出AD和CF以及DF=AC是解题的关键.15.如图,在△ABC中,BC=7,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF 的位置,若CF=4,则下列结论中错误的是()A.DF=7B.∠F=30°C.AB∥DE D.BE=4【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=7,∠A=80°,∠B=70°,∴EF=BC=7,CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴B、C、D正确,A错误,故选:A.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.16.(2021春•凤山县期末)如图,△ABC沿着BC方向平移到△DEF,已知BC=6、EC=2,那么平移的距离为()A.2B.4C.6D.8【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=6﹣2=4,进而可得答案.【解答】解:由题意平移的距离为BE=BC﹣EC=6﹣2=4,故选:B.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.17.(2021春•罗湖区校级期末)如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.18.(2021春•河源期末)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20B.24C.25D.26【分析】由S△ABC=S△DEF,推出S四边形ABEH=S阴即可解决问题;【解答】解:∵平移距离为4,∴BE=4,∵AB=8,DH=3,∴EH=8﹣3=5,∵S△ABC=S△DEF,∴S四边形ABEH=S阴∴阴影部分的面积为=×(8+5)×4=26故选:D.【点评】此题主要考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,要熟练掌握.19.(2021春•江都区期中)如图,直线m与∠AOB的一边射线OB相交,∠3=120°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2﹣∠1=60°.【分析】作OC∥m,如图,利用平移的性质得到m∥n,则判断OC∥n,根据平行线的性质得∠1=∠OBC=30°,∠2+∠AOC=180°,从而得到∠2+∠3的度数.【解答】解:作OC∥m,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴OC∥n,∴∠1=∠BOC,∠2+∠AOC=180°,∠AOC=∠3﹣∠1,∴∠2+∠3﹣∠1=180°,∴∠2﹣∠1=180°﹣120°=60°,故答案为:60°.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.20.(2021春•兴化市期末)把一副直角三角尺如图摆放,∠C=∠F=90°,∠CAB=60°,∠FDE=45°,斜边AB、DE在直线l上,△ABC保持不动,△DEF在直线l上平移,当以点A、E、F三点为顶点的三角形是直角三角形时,则∠CAF的度数是15或30.【分析】有两种情形,当点D运动到与A重合时,△AEF是直角三角形,当点D运动到A是DE中点时,△AEF是直角三角形.【解答】解:当点D运动到与A重合时,△AEF是直角三角形,此时∠CAF=60°﹣45°=15°当点D运动到A是DE中点时,△AEF是直角三角形,此时∠CAF=90°﹣60°=30°,∴∠CAF的度数为15或30,故答案为:15或30.【点评】本题考查平移的性质,直角三角形的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.21.(2021春•镇江期末)如图,在三角形ABC中,∠ABC=90°,BC=7,把△ABC向下平移至△DEF后,AD=CG=4,则图中阴影部分的面积为20.【分析】先根据平移的性质得到AD=BE=4,EF=BC=6,S△ABC=S△DEF,则BG=3,由于S阴影部分=S梯形BEFG,所以利用梯形的面积公式计算即可.【解答】解:如图,∵△ABC向下平移至△DEF,∴AD=BE=4,EF=BC=6,S△ABC=S△DEF,∵BG=BC﹣CG=7﹣4=3,∴S梯形BEFG=(3+7)×4=20,∵S阴影部分+S△DBG=S△DBG+S梯形BEFG,∴S阴影部分=S梯形BEFG=20.故答案为:20.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.22.(2020春•惠来县期末)如图,AD∥BC,∠B=∠D=50°,点E、F在BC上,且满足∠CAD =∠CAE,AF平分∠BAE.(1)∠CAF=65°;(2)若平行移动CD,那么∠ACB与∠AEB度数的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(3)在平行移动CD的过程中,是否存在某种情况,使∠AFB=∠ACD?若存在,求出∠ACD 度数;若不存在,说明理由.【分析】(1)证明∠CAF=∠BAD,求出∠BAD即可.(2)证明∠EAC=∠ECA,再利用三角形的外角的性质解决问题即可.(3)设∠ACD=x,∠CAD=y.则有x+y=130°,构建方程组解决问题即可.【解答】解:(1)∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=50°,∴∠BAD=130°,∵AF平分∠BAE,∴∠BAF=∠EAF,∵∠CAD=∠CAE,∴∠CAF=∠BAE+∠DAE=∠BAD=65°,故答案为65.(2)结论:∠ACB与∠AEB度数的比值不变.理由:∵AD∥BC,∴∠CAD=∠ACE,∵∠CAD=∠CAE,∴∠ACE=∠CAE,∵∠AEB=∠ACE+∠CAE=2∠ACB,∴∠ACB:∠AEB=1:2.(3)设∠ACD=x,∠CAD=y.则有x+y=130°,∵∠AFB=∠ACD=∠ACB+∠CAF,∴x=65°+y,解得x=97.5°,∴∠ACD=97.5°.【点评】本题考查平行线的性质,平移变换,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(2019春•江宁区期中)如图1,已知直线a∥b,点A、E在直线a上,点B、F在直线b上,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧.若将线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.试探索∠1的度数与∠EPB的度数有怎样的关系?为了解决以上问题,我们不妨从EF的某些特殊位置研究,最后再进行一般化.【特殊化】(1)如图2,当∠1=40°,且点P在直线a、b之间时,求∠EPB的度数;(2)当∠1=70°时,求∠EPB的度数;【一般化】(3)当∠1=n°时,求∠EPB的度数.(直接用含n的代数式表示)【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P 在直线a上方或直线b下方时.【解答】解:(1)如图2,作PG∥a,∴∠EPG=∠EFC=40°∵a∥b∴PG∥b∴∠GPB+∠CBD=180°,又∵BD是∠ABC平分线,且∠ABC=100°,∴∠GPB=180°﹣2(1)∠ABC=130°∴∠EPB=∠EPG+∠GPB=170°,(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当n>50°时,交点P在直线a上方,∠EPB=n﹣50°,交点P在直线a、b之间,∠EPB=230°﹣n交点P在直线b下方,∠EPB=n﹣50°,②当n<50°时,交点P在直线a上方,∠EPB=50°﹣n交点P在直线a、b之间,∠EPB=130°+n交点P在直线b下方,∠EPB=50°﹣n.【点评】本题考查了平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.四.作图-平移变换(共2小题)24.(2009春•宿豫区期中)将图中的三角形ABC向右平移6格.略.【分析】分别作出点A、B、C的对应点,顺次连接即可.【解答】解:【点评】本题需注意,作平移图形时,找关键点的对应点是主要的一步.25.(2021春•睢宁县月考)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.(1)请在图中画出△ABC向上平移3个单位后的△A1B1C1;(2)图中AC与A1C1的关系是:AC=A1C1,AC∥A1C1.(3)画出△ABC的AB边上的高CD;垂足是D;(4)图中△ABC的面积是8.【分析】(1)将各点的横坐标不变、纵坐标加3可得;(2)根据平移的性质解答即可.(3)从C点向AB的延长线作垂线,垂足为点D,CD即为AB边上的高;(4)根据三角形面积公式即可求出△ABC的面积.【解答】解:(1)如图所示:(2)AC=A1C1,AC∥A1C1;故答案为:AC=A1C1,AC∥A1C1;(3)如图所示;(4)△ABC的面积=;故答案为:8.【点评】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.五.利用平移设计图案(共3小题)26.(2021春•江都区期中)下列所示的车标图案,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的概念;在平面内,将一个图形整体沿某一方向移动,这种图形移动,叫做平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知C符合题意,故选:C.【点评】本题主要考查了图形的平移,注意区分图形的平移、旋转、翻折是解题的关键.27.(2021春•鼓楼区校级月考)平移小平行四边形◇可以得到美丽的“中国结”图案,下面四个图案是由小平行四边形◇平移后得到的类似“中国结”的图案,按图中规律,在第n个图案中,小平行四边形◇的个数是2n2个【分析】仔细观察图形发现第一个图形有2×12个小平行四边形,第二个图形有2×22个小平行四边形,第三个图形有2×32个小平行四边形,…由此规律得到第n个图形有2n2个小平行四边形,可求得答案.【解答】解:第一个图形有2×12=2个小平行四边形,第二个图形有2×22=8个小平行四边形,第三个图形有2×32=18个小平行四边形,…第n个图形有2n2个小平行四边形.故答案为:2n2.【点评】此题考查了图形的变化类规律,解题的关键是仔细观察图形的变化,并找到图形的变化规律,利用规律解决问题.28.(2021春•新吴区月考)请把下面的小船图案先向上平移3格,再向右平移4格.【分析】分别作出△MNE和梯形ABCD向上平移3格,再向右平移4格的对应位置即可.【解答】解:如图所示:.【点评】此题主要考查了图形的平移,关键是掌握平移后图形的大小和形状不发生改变.题组A 基础过关练一.选择题(共4小题)1.(2021春•高邮市期末)现实世界中,平移现象无处不在,中国的方块字中有些也具有平移性,下列汉字是由平移构成的是()A.B.C.D.【分析】根据平移的基本性质,汉字只需由两或三个完全相同的部分组成即可.【解答】解:根据题意,由两或三个完全相同的部分组成的汉字即可,∴“朋”可以通过平移得到.故选:B.【点评】本题考查了平移的基本性质的运用,熟知图形平移不变性的性质是解答此题的关键.2.(2020•如皋市一模)如图,△ABC沿着由点B到点E的方向,平移到△DEF.若BC=5,EC =3,则平移的距离为()A.7B.5C.3D.2分层提分【分析】根据平移的性质即可解决问题.【解答】解:由题意得平移的距离为:BE=BC﹣EC=5﹣3=2,故选:D.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.3.(2021春•汉阳区期末)下列生活现象中,属于平移的是()A.足球在草地上滚动B.拉开抽屉C.把打开的课本合上D.钟摆的摆动【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【解答】解:A.足球在草地上滚动方向变化,不符合平移的定义,不属于平移,故本选项错误;B.拉开抽屉符合平移的定义,属于平移,故本选项正确;C.把打开的课本合上,不符合平移的定义,不属于平移,故本选项错误;D.钟摆的摆动是旋转运动,不属于平移,故本选项错误;故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移与旋转或翻转,而选择错误.注意平移是图形整体沿某一直线方向移动.4.(2021春•郫都区校级期中)如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC 沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是()A.BE=4B.∠F=30°C.AB∥DE D.DF=5【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=5,∠A=80°,∠B=70°,∴CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴A、B、C正确,D错误,故选:D.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.二.填空题(共10小题)5.(2020•蠡县一模)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为20cm.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.6.(2021春•鼓楼区期中)如图,这个图形的周长是18.【分析】本题可将图形的边长拆分、拼成一个矩形,从而求得周长.【解答】解:将图形的上面部分的边都向上和向左右、平移,可得一个长为5、宽为4的矩形,∴这个图形的周长为4+4+5+5=18.故答案为:18.【点评】解答本题的关键是将这个图形拼成学过的简单图形,从而求解.7.(2018春•新沂市期中)如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为3cm.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.(2018春•镇江期末)如图所示,一块长为m,宽为n的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d的长度,则由此产生的裂缝面积是dn.【分析】利用新长方形的面积减去原长方形的面积得到产生的裂缝的面积.【解答】解:产生的裂缝的面积=(m+d)n﹣mn=dn.答:产生的裂缝的面积是dn.故答案为:dn.【点评】本题考查了生活中的平移现象.解题的关键是掌握平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.9.(2021春•姜堰区期末)如图,在△ABC中,D是BC的中点,将△ABC沿BC向右平移得△A'DC',若点A平移的距离AA'=4cm,则BC=8cm.。
沪教版 七年级数学 图形的平移
图形的平移课前测试【题目】课前测试如图,将网格中的三条线段沿网格的水平方向或垂直方向平移后组成一个首尾顺次相接的三角形,那么这三条线段在水平方向与垂直方向移动的总格数最小是()A.6 B.7 C.8 D.9【答案】B.【解析】要使平移的个数最少,可将它们朝同一方向共同移动,此时需要平移的格数最少.解:如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,根据平移的基本性质知:左边的线段向右平移3格,中间的线段向下平移2格,最右边的线段先向左平移1格,再向上平移1格,此时平移的格数最少为:3+2+1+1=7,其它平移方法都超过7格,所以至少需要移动7格.故选:B.总结:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.【难度】4【题目】课前测试如图,已知△ABC平移后得到△DEF,则以下说法中,不正确的是()A.AC=DF B.BC∥EFC.平移的距离是BD D.平移的距离是AD【答案】C【解析】根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等结合图形与所给的选项即可得出答案.解:A.对应线段相等可得AC=DF,正确,故此选项不符合题意;B.对应线段平行可得BC∥EF,正确,故此选项不符合题意;C.平移的距离应为同一点移动的距离,错误,故此选项符合题意;D.平移的距离为AD,正确,故此选项不符合题意.故选:C.总结:此题主要考查了平移的性质,属于基础题,难度不大,灵活应用平移性质是解决问题的关键.【难度系数】3知识定位适用范围:沪教版,七年级知识点概述:本章重点部分是图形的平移。
了解,掌握平移概念以及图形平移的基本性质,并且能画出的平移后的图形,在考试中会出现图形平移的问题,平移的距离问题,以及平移距离最短的题目,题目有难有容易的,需要多见一些题型,很好掌握出题方向。
适用对象:基础差,成绩中等的学生注意事项:所有同学要牢牢掌握平移的性质,多做一些题目,在考试中这部分题目不要丢分,要多积累一些好题,新题。
2024年青岛版七年级数学上学期教学计划(六篇)
2024年青岛版七年级数学上学期教学计划第一章:整数1.1 整数的概念和表示法- 整数的概念和扩展自然数的方式- 整数的表示法:正整数、负整数、零- 整数的数轴表示法和扩展1.2 整数的加法- 整数的加法规则和性质- 整数的加减法运算:同号相加、异号相减- 整数的加法计算1.3 整数的减法- 整数的减法规则和性质- 整数的减法计算1.4 整数的乘法- 整数的乘法规则和性质- 整数的乘法计算1.5 整数的除法- 整数的除法规则和性质- 整数的除法计算1.6 整数的混合运算- 整数的加减乘除混合运算- 解决实际问题第二章:分数2.1 分数的概念和表示法- 分数的概念和定义- 分数的表示法:真分数和假分数- 分数的数轴表示法和扩展2.2 分数的加法- 分数的加法规则和性质- 分数的加法计算2.3 分数的减法- 分数的减法规则和性质- 分数的减法计算2.4 分数的乘法- 分数的乘法规则和性质- 分数的乘法计算2.5 分数的除法- 分数的除法规则和性质- 分数的除法计算2.6 分数的混合运算- 分数的加减乘除混合运算- 解决实际问题第三章:代数表达式3.1 代数表达式的概念和含义- 代数表达式的基本概念和形式- 代数表达式和实际问题的联系3.2 代数式的运算- 代数表达式的运算法则和性质- 代数表达式的合并和展开3.3 简单的代数方程- 单变量一次方程的概念和解法- 解一元一次方程的步骤和方法3.4 实际问题的代数建模- 将实际问题转化为代数表达式- 利用代数表达式解决实际问题第四章:图形与坐标4.1 基本图形的认识- 点、线、面的认识和性质- 常见的线段、直线、射线- 基本图形的绘制和识别4.2 二维坐标系- 坐标的概念和含义- 二维坐标系的建立和使用4.3 点的坐标和图形的位置关系- 点的坐标表示法和性质- 图形的位置关系:平行、垂直、相交4.4 图形的运动和变换- 图形的平移、旋转、翻折变换- 图形变换的规律和性质4.5 图形的面积和周长- 矩形、正方形、三角形的面积和周长计算- 基本图形的面积和周长计算4.6 图形的应用- 图形的应用问题解决- 利用图形解决实际问题第五章:数据的收集和统计5.1 数据的概念及其收集方法- 数据的概念和分类- 数据的收集方法:观察、测量、调查、统计5.2 统计图形和统计量- 条形统计图和折线统计图的绘制和解读- 统计量的计算和应用5.3 数据的分析和应用- 数据的分析和描述- 利用统计数据解决实际问题第六章:平面几何6.1 直线和角的关系- 平行直线和垂直直线的性质- 角的分类和性质6.2 三角形的分类和性质- 三角形的分类及其性质- 三角形的判定和计算6.3 四边形的分类和性质- 四边形的分类及其性质- 四边形的判定和计算6.4 圆的基本性质和计算- 圆的基本性质和相关公式- 圆的计算和应用6.5 平面镜像和平移- 平面镜像和平移的性质和变换- 利用平面镜像和平移解决实际问题6.6 平面几何的应用- 平面几何的应用问题解决- 利用平面几何解决实际问题注:本教学计划仅为参考,具体实施内容需根据学校教学大纲和实际情况进行调整。
苏科版初中七年级数学图形的平移练习题分析解答
苏科版初中七年级数学图形的平移练习题分析解答1.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移2格,再向上平移3格,其中每个格子的边长为1个单位长度.(1)画出△ABC边AB上的高;(2)请在图中画出平移后的三角形A′B′C′;(3)若连接BB′,CC′,则这两条线段之间的关系是平行且相等.【分析】(1)依据三角形高线的概念即可得到△ABC边AB上的高;(2)依据平移的方向和距离,即可得到平移后的三角形A′B′C′;(3)依据平移的性质,即可得到BB′,CC′这两条线段之间的关系是平行且相等.【解答】解:(1)如图所示,CD即为△ABC的边AB上的高;(2)如图所示,△A'B'C'即为所求;(3)若连接BB′,CC′,则这两条线段之间的关系是平行且相等.故答案为:平行且相等.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.2.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.(1)现将△ABC 平移,使点A 变换为点A ′,点B ′、C ′分别是B 、C 的对应点.请画出平移后的△A ′B ′C ′;(2)线段BC 与B ′C ′的关系是 平行且相等 ;(3)△A ′B ′C ′的面积为 72 .【分析】(1)利用点A 和A ′的位置确定平移的方向与距离,然后利用此平移规律画出B 、C 的对应点B ′、C ′即可;(2)根据平移的性质进行判断;(3)用一个矩形的面积分别减去三个三角形的面积计算△A ′B ′C ′的面积.【解答】解:(1)如图,△A ′B ′C ′为所作;(2)线段BC 与B ′C ′的关系是平行且相等;(3)△A ′B ′C ′的面积=3×3−12×1×2−12×2×3−12×3×1=72.故答案平行且相等;72. 【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.3.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△A′B′C′的高C′D′.【分析】(1)根据平移的性质即可在图中画出平移后的△A′B′C′;(2)根据网格即可在图中画出△A′B′C′的高C′D′.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,高C′D′即为所求.【点评】本题考查了作图﹣平移变换,解决本题的关键是掌握平移的性质.4.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向下平移1格,请在图中画出平移后的△A'B'C';(2)利用网格线在图中画出△ABC的中线CD,高线AE;(3)△A'B'C'的面积为8.【分析】(1)根据平移的性质即可将△ABC向左平移4格,再向下平移1格,进而画出平移后的△A'B'C';(2)利用网格线即可在图中画出△ABC的中线CD,高线AE;(3)根据网格即可求出△A 'B 'C '的面积.【解答】解:(1)如图,△A 'B 'C '即为所求;(2)如图,中线CD ,高线AE 即为所求;(3)△A 'B 'C '的面积为:12×4×4=8. 故答案为:8.【点评】本题考查了作图﹣平移变换,解决本题的关键是掌握平移的性质.5.如图,在方格纸中,将△ABC 水平向右平移4个单位,再向下平移1个单位,得到△A ′B ′C ′(1)画出平移后的三角形;(2)画出AB 边上的中线CD 和高线CE ;(利用网格和直尺画图)(3)△BCD 的面积是 4 .【分析】(1)利用网格特点和平移的性质画出点A 、B 、C 的对应点A ′、B ′、C ′即可;(2)利用网格特点确定AB 的中点得到CE ,再把AD 逆时针旋转90°得到AM ,然后把MA 平移使M 点与C 点重合,平移后的直线与直线AB 的交点为E 点,从而得到CE ⊥AB ;(3)用一个直角三角形的面积分别减去2个直角三角形的面积和一个正方形的面积可计算出△BCD 的面积.【解答】解:(1)如图,△A ′B ′C ′为所作;(2)如图,CD 和CE 为所作;(3)△BCD的面积=12×4×4−12×3×1−12×1×3﹣1=4.故答案为4.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.6.在如图所示的方格纸中,小正方形的顶点叫做格点,△ABC是一个格点三角形(即△ABC 的三个顶点都在格点上),根据要求回答下列问题:(1)画出△ABC先向左平移6格,再向上平移1格所得的△A′B′C′;(2)利用网格画出△ABC中BC边上的高AD.(3)过点A画直线,将△ABC分成面积相等的两个三角形;(4)画出与△A′B′C′有一条公共边,且与△A′B′C′全等的格点三角形.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用网格结合三角形高线的定义得出答案;(3)直接利用三角形中线的性质得出答案;(4)直接利用网格结合全等三角形的性质得出答案.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:AD 即为所求;(3)如图所示:直线l 即为所求;(4)如图所示:△B ′C ′E 即为所求.【点评】此题主要考查了平移变换以及三角形中线的性质,正确得出对应点位置是解题关键.7.如图,在方格纸中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点就是小正方形的格点.(1)将△ABC 向右平移3个单位长度再向下平移1个单位长度,得到△DEF (A 与D 、B 与E 、C 与F 对应),请在方格纸中画出△DEF ;(2)在(1)的条件下,连接AD 、CF ,AD 与CF 之间的关系是 AD =∥CF ;(3)在(1)的条件下,连接AE 和CE ,求△ACE 的面积S .【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用平移的性质结合网格即可得出答案;(3)利用△ACE 所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:△DEF 即为所求;(2)如图所示:AD 与CF 之间的关系是:AD =∥CF ;故答案为:AD =∥CF .(3)△ACE 的面积S =4×5−12×3×4−12×1×4−12×1×5=9.5.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.8.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△ABC 的高CD ,中线BE ;(3)在右图中能使S △ABC =S △PBC 的格点P 的个数有 4 个(点P 异于点A ).【分析】(1)利用网格特点和平移的性质,分别画出点A 、B 、C 的对应点A ′、B ′、C ′即可;(2)利用网格特点,作CD ⊥AB 于D ,找出AC 的中点可得到BE ;(3)利用平行线的性质过点A 作出BC 的平行线进而得出符合题意的点.【解答】解:(1)如图所示:△A ′B ′C ′即为所求;(2)如图所示:CD 即为所求;(3)如图所示:能使S △PBC =S △ABC 的格点P 的个数有4个.故答案为:4.【点评】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.9.如图,在6×6的正方形网格中,每个小正方形的边长为1,点A、B、C、D、E、F、M、N、P均为格点(格点是指每个小正方形的顶点).(1)利用图①中的网格,过P点画直线MN的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF通过平移使之首尾顺次相接组成一个三角形(在图②中画出三角形).(3)第(2)小题中线段AB、CD、EF首尾顺次相接组成一个三角形的面积是 3.5.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)依据割补法进行计算,即可得到三角形的面积.【解答】解:(1)如图①,PQ∥MN,PN⊥MN;(2)如图②,△EFG或△EFH即为所求;(3)三角形的面积为:3×3−12×1×2−12×1×3−12×2×3=9﹣1﹣1.5﹣3=3.5,故答案为:3.5【点评】本题考查的是作图﹣平移变换,平行线的作法以及垂线的作法,熟知图形平移不变性的性质是解答此题的关键.10.某公园准备修建一块长方形草坪,长为30m,宽为20m.并在草坪上修建如图所示的十字路,回答下列问题:(1)如果十字路宽2m,那么草坪(阴影部分)的面积是多少?(2)已知十字路宽xm,求修建的十字路面积是多少平方米?【分析】(1)利用长方形的面积公式即可计算(2)利用长方形的面积公式即可计算【解答】解:依题意(1)草坪的面积:20×30﹣(50x﹣x2)=600﹣50x+x2将x=2代入得:600﹣50×2+2×2=504m2故当十字路宽2m时,草坪(阴影部分)的面积是504m2(2)十字路的面积:30x+20x﹣x2=50x﹣x2答:修建十字路的面积是50x﹣x2平方米【点评】此题主要考查平移在生活中的应用.灵活运用面积计算公式即可.。
苏科版-数学-七年级上册-《图形的运动》导学案1
5.2图形的运动【学习目标】1、通过动手试验了解平面图形如何通过旋转变化成立体图形,了解点动成线、线动成面、面动成体的原理。
2、通过图形的平移、旋转、翻折变化,初步探索图形之间的变换关系,积累对图形的认识,发展空间观念。
【学习重点】平面图形通过旋转而形成立体图形,简单图形拼成复杂的图形。
【学习难点】培养空间想象能力。
【学法指导】1.在学习过程中,注意想象和动手实际操作相结合,在操作中体会图形的变化。
2.运用动体的思想、分类的思想及运动的观点解决有关图形变化的问题。
【课前预习】1.填一填(1)图形是由、、组成的,面与面相交得到,线与线相交得到。
(2)立体图形都是由围成的。
(3)圆柱的侧面展开图是,圆锥的侧面展开图是。
2.想一想(1)长方形纸绕它的一条边旋转1周;直角三角尺绕它的一条直角边旋转1周;一枚硬币在桌面上竖直快速旋转;它们分别形成怎样的几何体呢?(2)你能把一张纸片沿一条直线剪去,然后能组成梯形、三角形、平行四边形吗?动手做一做。
【问题情境】你能从下面的现象中分别联想到什么图形?(1)夏天的夜晚,天空中一颗流星飞逝而过;(2)动画片中,孙悟空舞动如意金箍棒;(3)把一元的硬币竖立在桌面上,让它快速旋转。
【自主探究】1、想一想从上面问题中可以看出,点、线、面、体之间有什么关系?你能再举出一些例子吗?2、连一连如图所示第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。
3、说一说构成下面每个图形的一个基本图形是什么?它们是如何由基本图形变换而成的?【应用探究】例1:右图中,旋转1周得到左图立体图形的为()A B C D例2:如果把下列直角三角形和直角梯形相等的边拼在一起,可以拼出几个不同的平面?并画出图形。
做一做:1. 两块相同的直角三角板的相等的边拼在一起,你能拼出几种不同的平面图形?并说出每个图形名称。
2.下图沿点划线折叠后形成怎样的图形?请试着画出来。
(1) (2) (3)3.下图是由图“回”向右平移而成,将图沿虚线剪开。
《图形的旋转》说课稿(精选6篇)
《图形的旋转》说课稿(精选6篇)《图形的旋转》说课稿(精选6篇)作为一位兢兢业业的人民教师,可能需要进行说课稿编写工作,说课稿有助于顺利而有效地开展教学活动。
那么什么样的说课稿才是好的呢?以下是小编收集整理的《图形的旋转》说课稿,希望能够帮助到大家。
《图形的旋转》说课稿篇1一、说教学内容北师大版小学数学第七册第四单元第一节《图形的旋转》二、教材的地位和作用我在尊重教材的基础上,,让学生在充分的经历与欣赏中感悟旋转;同时针对学生思维活跃的特点,引导学生对比图形旋转前后的变化,以渗透刚体变换的思想。
三、说教学目标知识目标:了解一个简单图形经过旋转形成复杂图案的过程,并能在方格纸上将简单图形旋转90度,运用旋转设计图案。
能力目标:运用观察、操作、归纳、联想等思维方法培养学生抽象思维能力,发展空间观念。
情感目标:感悟数学的美,培养学生学习数学的兴趣和热爱生活的情感。
教学难点:认识图形的旋转,解一个简单图形经过旋转形成复杂图案的过程,能在方格纸上将简单图形旋转90度。
教学难点是:能在方格纸上将简单图形旋转90度,并运用旋转设计图案。
三、说教法与学法学习本单元前,学生只初步感受到了生活中的平移和旋转现象,接触了两种图形变换方式:对称、平移。
本课是把学生的视角引入到第三种图形变换——旋转,意在通过欣赏、探索、创作等一系列活动,使学生体验到简单图形变成复杂图案的过程,理解旋转的中心点、方向、角度不同,形成的图案也不同,进一步发展学生的空间观念,为今后继续学习图形变换奠定基础。
四年级学生,形象思维在其认知过程中仍占主导地位。
因此,要本着“边操作边感悟”的原则,让学生在经历中体会旋转的三要素,感受图形旋转带来的变换美。
四、说教学准备图片、小黑板、方格纸、自制风车五、流程设计:(一)游戏激趣,感受图形的旋转此环节通过创设情景,初步感受旋转。
利用学生比较喜欢的情景,即风车,美丽的图形等引入,极大地激发了学生的学习热情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形练习题 姓名:_____________
基本作图
1.如图,三角形C B A '''是通过三角形ABC 平移得到的,平移的方向是_______,平移的距离是____________;请你在图1中找出与一条线段A A '相等的线段: .
2.分别画出△ABC、四边形ABCD 关于点O中心对称的三角形。
3.画出关于△ABC 绕点O 逆时旋转30°的三角形。
画出关于△ABC 绕点O 顺时旋转90°的三角形。
B
B
4.分别画出关于△ABC 关于直线L 对称的三角形
L
B
L
一、选择题
1. 下列图形中,既是轴对称图形又是中心对称图形的是…………( )
2下列图形中,中心对称图形是( )
3.以下是2008
年国家中医药管理局徽标征集20件入围作品中的4件,其中是中心对称图
形但不是轴对称图形的是…………………………………………………( )
(A ) (B ) (C ) (D ) 4下列图案中是轴对称图形的是……………………………………………( )
5下列图形中是旋转对称图形但不是中心对称图形的是……………………………( )
(A) (B) (C) (D)
2008年北京 2004年雅典 1988年汉城 1980年莫斯科
(A ) (B ) (C ) (D )
8号作品 9号作品 11号作品 16号作品
6下列图案都是由宁母“m ”经过变形、组合而成的.其中不是中心对称图形的是( )
(A) (B) (C) (D)
7.下列图形中,不是轴对称图形的为……………………………………………………( )
(B)
(C)
(D)
8.下列图形中,是中心对称图形的是---------------------------------------( )
9.下列图案中,不是轴对称图形的是---------------------------------------(
)
A B
C D
10. 下列图形中,是轴对称图形的为 ………………………………………………………( )
11. 在俄罗斯方块游戏中,所有出现的方格体自由下落,如果一行中九个方格齐全,那么这一行会自动消失。
已拼好的图案如图所示,现又出现一小方格体,必须进行以下哪项操作,才能拼成一个完整图案,使其自动消失( )
(A )顺时针旋转90°,向下平移; (B )逆时针旋转90°,向下平移; (C )顺时针旋转90°,向右平移; (D )逆时针旋转90°,向右平移.
正三角形 等腰梯形 正五边形
正六边形
(第8题图)
A
B
C D
(c )
二、填空题
1.等边三角形有___________条对称轴. 2、在你学过图形中,既是轴对称又是中心对称的图形是 (填一个即可). 3、任意写出一个是旋转对称图形,也是轴对称图形,但不是中
心对称的图形 ;
4、如图所示的五角星______旋转对称图形.(填“是”或“不是”) 5. 在线段、正三角形、正方形、等腰梯形和圆中,共有 个为旋转对图形.
6、在等腰三角形、平行四边形、等腰梯形、五角星及圆中共有 个旋转对称图形.
7、正方形有______条对称轴.
8.小强站在镜子前,从镜子中看到镜子对面墙上挂着的电子表, 其读数如图2所示,则电子表的实际时刻是_____________.
9.小杰从镜子中看到电子钟的示数是 ,那么此时实际时间是____________. 10.小杰照镜子时,发现T 恤上的英文单词在镜子中呈现 的样子,请你
判断这个英文单词是____________.
11.五角星是一个旋转对称图形,它至少旋转 度后,能与自身重合. 12.等边三角形是一个旋转对称图形,它绕其旋转对称中心至少旋转_______度后,能与自身重合. 13.将等腰直角三角形的三角板,绕着它的一个锐角顶点旋转后它的直角顶点落到原斜边所
在的直线上, 那么最小的旋转角是________.
14.正方形是一个旋转对称图形,它至少旋转_______度后,能与自身重合.
15.如图1中②③④⑤分别由①图顺时针旋转180°变换而成的是____________.
16、将三角形ABC 向右平移3厘米得到三角形A ’B ’C ’,那么线段AA ’的长度是 厘米.
17. 如果将一个四边形ABCD 向上平移3个单位长度得到四边形1111D C B A ,点1D 是点D 的
对应点,则线段 1DD .
18
.如图,一块含有60°角(∠BCA =60°)的直角三角板ABC ,在水平的桌面上绕C 点按顺时针方向旋转到A’B’C 的位置,那么旋转角是________度.
第8题
姓名:___________ 1、在5×5方格纸中,将图①中的图形N 平移到如图②所示
的位置,那么下面平移中正确的是………………( ) (A)先向下移动1格,再向左移动1格; (B)先向下移动1格,再向左移动2格; (C)先向下移动2格,再向左移动1格; (D)先向下移动2格,再向左移动2格.
2、下面A 、B 、C 、D 四幅图案中,能通过对图案(1)进行一次翻折得到的图案是( )
3、在以下日常生活中,不属于平移运动的是 ( ) (A) 物体随直升电梯上、下移动; (B )物体随自动扶梯斜向移动; (C )轻轨列车在笔直轨道上行驶; (D )旗帜随风飘动.
4、对于字母“D ,E ,F ,G ,H ,M ,N ,S ,T ,U ,X ,Y ,Z ”,下列判断正确的是( )
(A) 既是中心对称又是轴对称的有2个; (B )是中心对称但不是轴对称的有2个; (C )是轴对称但不是中心对称的有5个; (D )既不是轴对称也不是中心对称的有3个。
5.下列图形既是轴对称图形,又是中心对称图形的是 ………………………… ( ) (A )平行四边形; (B )长方形; (C )等边三角形; (D )梯形.
6、在下图右侧的四个三角形中,不能由ABC △经过旋转或平移得到的是………( )
7.如图, 画出方格上的小鱼图形向右平移4格,再向上平移3格后的图形. 8.如图,把图中的某两个..小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.
(1) (A ) (B) (C) (D) A
B
C
(A ) (B ) (C ) (D )
9、如图,一块等腰直角的三角板ABC ,在水平桌面上
绕点C 按顺时针方向旋转到A ’B ’C ’的位置,使A ,C ,B ’三点共线,那么旋转角的大小是 度. 10.已知:如图,在正方形ABCD 中,点E 在边BC 上 将△DCE 绕点D 按顺时针方向旋转,与△DAF 重合, 那么旋转角等于_________度.
11.已知圆O 的半径为2,将其向左平移2个单位后,再向下平移3个单位,则平移后所得圆的面积是__________(π取3.14). 12. 如图,将△AOC 绕点O 顺时针旋转90°
得△BOD ,已知3=OA ,1=OC ,
那么图中阴影部分的面积为 .
13、在我国的建筑中,很多建筑图形具有对称性,右图是 一个破损瓷砖的图案,请把它补画成中心对称图形.
14、把图中的某两个..白色..小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.
15、如图,已知△ABC 平移后得到△DEF
不正确的是( )
(A) AC=DF ; (B )B C ∥EF ;
(C )平移的距离是BD ; (D )平移的距离是AD 。
A
B
C D
E
F
(第10题图)
O。