六年级下第七章线段与角的画法
沪教版(上海)六年级数学第二学期第七章线段与角的画法必考点解析试题(含答案解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,下列说法中不正确的是( )A .1∠与AOB ∠是同一个角B .AOC ∠也可用O ∠来表示C .图中共有三个角:AOB ∠,AOC ∠,BOC ∠D .α∠与BOC ∠是同一个角2、如图,用同样大小的三角板比较∠A 和∠B 的大小,下列判断正确的是( )A.∠A>∠B B.∠A<∠BC.∠A=∠B D.没有量角器,无法确定3、把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°4、如图,C为线段AB上一点,点D为AC的中点,且2AD=,10AB=.若点E在直线AB上,且1BE=,则DE的长为()A.7 B.10 C.7或9 D.10或115、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是()A.∠1B.122∠-∠C.∠2D.122∠+∠6、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,射线最短;③38°15′和38.15°相等;④已知三条射线OA,OB,OC,若∠AOC=12∠AOB,则射线OC是∠AOB的平分线,其中错误说法的个数为()A.1个B.2个C.3个D.4个7、如图,甲从A处出发沿北偏东60°向走向B处,乙从A处出发沿南偏西30°方向走到C处,则∠BAC的度数是 ( )A.160B.150C.120D.908、以下3个说法中:①连接两点间的线段叫做这两点的距离;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.正确的是()A.①B.③C.①②D.②③9、下列的四个角中,是图中角的补角的是()A.B.C.D.10、下列结论中,正确的是( )A .过任意三点一定能画一条直线B .两点之间线段最短C .射线AB 和射线BA 是同一条射线D .经过一点的直线只有一条第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、3830'=___°.2、时钟上9点整时,时针和分针的夹角是 _____度.3、如果∠α是直角的14,则∠α的补角是______度. 4、如图,把原来弯曲的河道改直,这样做能缩短航道,这是因为____________.5、15.7°=______度______分.三、解答题(5小题,每小题10分,共计50分)1、如图①.点O 为直线AB 上一点,过点O 作射线OC ,使120BOC ∠=︒,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角板绕点O逆时针方向旋转至图②,使一边OM在∠BOC的内部,恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由:(2)将图中的三角板绕点O逆时针方向旋转x°,旋转一周为止,在旋转的过程中,直线ON恰好平分∠AOC,则x的值为______.(3)将图①中的三角板绕点O按顺时针方向旋转至图③的位置,使ON在∠AOC的内部,则∠AOM与∠NOC之间的数量关系为______.2、如图,小海龟(头朝上)位于图中点A处,按下述口令移动:前进3格;向右转90︒,前进5格;向左转90︒,前进3格;向左转90︒,前进6格;向右转90︒,后退6格;最后向右转90︒,前进1格;用粗线将小海龟经过的路线描出来,看一看是什么图形.3、如图1,将一副三角尺的直角顶点O叠放在一起.若三角尺AOB不动,将三角尺COD绕点O按顺时针方向转动α(0°<α<180°).(1)如图2,若∠BOC=55°,则∠AOD=_______,∠AOC_____∠BOD(填“>”、“<”或“=”);(2)如图3,∠BOC =55°,则∠AOD =_______,∠AOC _____∠BOD (填“>”、“<”或“=”).(3)三角尺COD 在转动的过程中,若∠BOC =β,则∠AOD =________________(用含β的代数式表示),∠AOC _____∠BOD (填“>”、“<”或“=”).(4)借助(3)中的结论,在备用图中利用画直角的工具画出一个与∠AOC 相等的角.4、如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分AOC ∠和BOC ∠.(1)求DOE ∠的度数.(2)如果63COE ∠=︒,求BOD ∠的度数.5、如图,在数轴上,点A ,D 表示的数分别是12-和15,线段2AB =,1CD =.(1)点B ,C 在数轴上表示的数分别是__________,线段BC 的长是________;(2)若线段AB 以每秒1个单位长度的速度向右运动,同时线段CD 以每秒2个单位长度的速度向左运动.当点B 与C 重合时,求这个重合点表示的数;(3)若线段AB ,CD 分别以每秒1个单位长度利每秒2个单位长度的速度同时向左运动,设运动时间为t 秒,当024t <<时,M 为AC 中点,N 为BD 中点,则线段MN 的长为多少?-参考答案-一、单选题1、B【分析】根据角的表示方法依次判断.【详解】解:A 、1∠与AOB ∠是同一个角,故该项不符合题意;B 、AOC ∠也不可用O ∠来表示,故该项符合题意;C 、图中共有三个角:AOB ∠,AOC ∠,BOC ∠,故该项不符合题意;D 、α∠与BOC ∠是同一个角,故该项不符合题意;故选:B .【点睛】此题考查了角的表示方法:一个角可以用三个大写字母,一个大写字母,一个希腊字母或一个数字表示,正确掌握角的几种表示方法的特点是解题的关键.2、B【分析】根据角的比较大小的方法进行比较即可.【详解】解:∵三角板是等腰直角三角形,每个锐角为45°,根据三角板和角的比较大小的方法可得:∠B <45°<∠A ,则∠A <∠A ;故选:B .【点睛】本题考查了角的比较大小,熟练掌握方法是解题的关键.3、D【分析】∠ABC 等于30度角与直角的和,据此即可计算得到.【详解】解:∠ABC =30°+90°=120°.故选:D .【点睛】本题考查了角度的计算,理解三角板的角的度数是关键.4、C【分析】由题意根据线段中点的性质,可得AD 、DC 的长,进而根据线段的和差,可得DE 的长.【详解】解:∵点D 为AC 的中点,且2AD =,∴2AD DC ==,∵10AB =,∴6BC AB AD DC =--=,∵1BE =,当E 在B 左侧,2617DE DC BC BE =+-=+-=,当E 在B 右侧,2619DE DC BC BE =++=++=.∴DE 的长为7或9.故选:C.【点睛】本题考查两点间的距离,解题的关键是利用线段的和差以及线段中点的性质.5、B【分析】由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=122∠-∠,∠3即为所求. 【详解】解:∵∠1与∠2互为补角,∴∠1+∠2=180°,∵∠1>∠2,∴∠2<90°,设∠2的余角是∠3,∴∠3=90°﹣∠2,∴∠3=∠1﹣90°,∴∠1﹣∠2=2∠3, ∴∠3=122∠-∠, ∴∠2的余角为122∠-∠, 故选B .【点睛】本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义.6、D【分析】根据射线、线段、角度的运算、角平分线逐个判断即可得.【详解】解:因为射线AB 的端点是点A ,射线BA 的端点是点B ,所以射线AB 和射线BA 不是同一条射线,说法①错误;两点之间,线段最短,则说法②错误;381538(1560)'︒=︒+÷︒,380.25=︒+︒,38.25=︒,所以3815'︒和38.15︒不相等,说法③错误;如图,当射线OC 在AOB ∠的外部,且12AOC AOB ∠=∠时,但射线OC 不是AOB ∠的平分线,则说法④错误;综上,错误说法的个数为4个,故选:D .【点睛】本题考查了射线、线段、角度的运算、角平分线,熟练掌握各概念和运算法则是解题关键.7、B【分析】根据方向角的意义,求出∠BAE ,再根据角的和差关系进行计算即可.由方向角的意义可知,∠NAB=60°,∠SAC=30°,∴∠BAE=90°-60°=30°,∴∠BAC=∠BAE+∠EAS+∠SAC=30°+90°+30°=150°,故选:B.【点睛】本题考查方向角,理解方向角的意义以及角的和差关系是正确解答的关键.8、D【分析】由题意根据线段的性质,余、补角的概念,两点间的距离以及直线的性质逐一进行分析即可.【详解】解:连接两点间的线段的长度,叫做这两点的距离,故①不符合题意;经过两点有一条直线,并且只有一条直线,故②符合题意;同一个锐角的补角一定大于它的余角,故③符合题意.【点睛】本题考查线段的性质,余、补角的概念和两点间的距离以及直线的性质,主要考查学生的理解能力和判断能力.9、D【分析】根据补角性质求出图中角的补角即可.【详解】解:∵图中的角为40°,它的补角为180°-40°=140°.故选择D.【点睛】本题考查补缴的性质,掌握补角的性质是解题关键.10、B【分析】根据两点确定一条直线,两点之间线段最短,射线的表示方法,端点字母必须在前面,经过一点的直线有无数条进行分析即可.【详解】解:A、过任意两点一定能画一条直线,故原说法错误;B、两点之间线段最短,说法正确;C、射线AB和射线BA不是同一条射线,故原说法错误;D、经过一点的直线有无数条,故原说法错误;故选:B.【点睛】此题主要考查了线段、射线、直线,关键是掌握直线和线段的性质,掌握射线的表示方法.二、填空题1、38.5【分析】根据1度等于60分,1分等于60秒,由大单位转换成小单位乘以60,小单位转换成大单位除以60,按此转化即可.【详解】解:∵30'3060()°=0.5°,∴38°30'=38°+0.5°=38.5°.故答案为:38.5.【点睛】本题考查了角度制的换算,相对比较简单,注意以60为进制即可.2、90【分析】钟表上的刻度是把一个圆平均分成了12等份,每一份是30°.9点整时,时针指到9上,分针指到12上,时针和分针夹角是3份,可求度数.【详解】解:钟表上的刻度是把一个圆平均分成了12等份,每一份是30°.9点整时,时针指到9上,分针指到12上,时针和分针夹角是3份,3×30°=90°.∴时钟上9点整时,时针和分针的夹角是90度.故答案是:90.【点睛】本题考查了钟面角问题,正确认识钟表图形的特点,是解决本题的关键.3、157.5【分析】先根据直角的14求出∠α,然后根据补角的定义求解即可.【详解】解:由题意知:∠α=90°×14=22.5°,则∠α的补角=180°-22.5°=157.5°故答案为:157.5【点睛】本题考查了角的和倍差的计算和补角的定义,熟练掌握计算方法是解题的关键.4、两点之间,线段最短【分析】根据两点之间,线段最短进行求解即可.【详解】解:∵两点之间,线段最短,∴把原来弯曲的河道改直,这样做能缩短航道,故答案为:两点之间,线段最短.【点睛】本题主要考查了两点之间,线段最短,解题的关键在于能够熟知两点之间,线段最短.5、15 42【分析】①度、分、秒是60进制.②在进行度、分、秒运算时,由低级单位向高级单位转化或由高级单位向低级单位转化要逐级进行.【详解】15.7°=15°+0.7°0.7°=42'故为15°42'故答案为①15②42【点睛】本题考查角度制的换算,掌握进制和换算方法是本题关键.三、解答题1、(1)直线ON平分∠AOC.理由见解析;(2)60或240;(3)∠AOM﹣∠NOC=30°【分析】(1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠BON=30°,即旋转60°或240°时ON平分∠AOC,据此求解;(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.【详解】解:(1)直线ON平分∠AOC.理由:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵OM⊥ON,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON(对顶角相等),∴∠COD=∠AOD,∴OD平分∠AOC,即直线ON平分∠AOC.(2)∵∠BOC=120°∴∠AOC=60°,∴∠BON=∠DOA=30°,即旋转60°或240°时直线ON平分∠AOC,由题意得,即x=60或240,故答案为60或240;(3)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.故答案为:∠AOM﹣∠NOC=30°【点睛】此题考查了角平分线的定义和角的和差等知识,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.2、见解析,小海龟经过的路线类似一面旗帜【分析】根据指令一个一个移动或转弯即可.【详解】解:如图所示:小海龟经过的路线类似一面旗帜.(画出图画即可,答不出图的形状亦可)【点睛】本题考查转弯,直行等概念的理解,理解这些概念是本题解题关键.3、(1)125°,=(2)125°,=(3)180°-β,=(4)见解析【分析】(1)求出AOC ∠,再加上COD ∠即可得出∠AOD,再判断出AOC BOD ∠=∠即可;(2)根据角的和差求出AOD ∠,AOC ∠以及BOD ∠,从而可判断出AOC BOD ∠=∠;(3)方法同(2);(4)借助(3)的结论画出图形即可.(1)∵90,55AOB BOC ∠=︒∠=︒∴905535AOC AOB BOC ∠=∠-∠=︒-︒=︒∴3590125AOD AOC COD ∠=∠+∠=︒+︒=︒又905535BOD COD BOC ∠=∠-∠=︒-︒=︒∴AOC BOD ∠=∠故答案为:125°,=(2)(2)∵90,55AOB COD BOC ∠=∠=︒∠=︒∴360360909055125AOD AOB COD BOC ∠=︒-∠-∠-∠=︒-︒-︒-=︒又90,5590145AOC AOB BOC BOD BOC COD ∠=∠+∠=︒∠=∠+∠=︒+︒=︒∴∠AOC=∠BOD故答案为:125°,=(3)如图,∵∠BOC =β,90,AOB COD ∠=∠=︒∴∠AOD =3603609090180AOB COD BOC ββ︒-∠-∠-∠=︒-︒-︒-=︒-∴90,90AOC AOB BOC BOD BOC COD ββ∠=∠+∠=︒+∠=∠+∠=+︒∴AOC BOD∠=∠故答案为:180°-β,=(4)如图所示,BOD∠即为所作的角.【点睛】本题主要考查了互补、互余的定义,垂直的定义以及三角形内角和定理等知识的综合运用,解决本题的关键是掌握:如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.4、(1)90︒;(2)153︒【分析】(1)根据角平分线的定义,平角的定义求解即可;(2)根据角平分线的定义,互补和互余的意义计算即可得出答案.【详解】解:(1)如图,∵OD是AOC∠的平分线,∴12COD AOC∠=∠.∵OE是BOC∠的平分线,∴12COE BOC∠=∠.∴11()9022DOE COD COE AOC BOC AOB ∠=∠+∠=∠+∠=∠=︒.(2)由(1)可知9027AOD COD COE ∠=∠=︒-∠=︒.∴180153BOD AOD ∠=︒-∠=︒.【点睛】本题考查角平分线的定义、平角的定义,互余、互补的意义以及角的和差关系,通过图形直观得出各个角之间的关系式正确解答的关键.5、(1)10-,14;24;(2)2-;(3)32 【分析】(1)2AB B A ==-,1CD D C ==-可求得B C 、在数轴上表示的数;BC C B =-即可求出BC 的长.(2)设运动时间为a 秒时,B C 、重合即B C =,列一次方程求解即可.(3)用t 表示出A B C D 、、、,表示出AC BD 、中点M 、N ,进行求解即可.【详解】解(1)2=(12)AB B A B ==---10B ∴=-115CD D C C ==-=-14C ∴=又14(10)BC C B =-=--24BC ∴=故答案为:-10,14;24.(2)解:当运动时间为a 秒时,点B 在数轴上表示的数为10a -,点C 在数轴上表示的数为142a -B C 、重合B C ∴=10142a a∴-=-解得8a=108102a∴-=-=-∴这个重合点在数轴上表示的数为2-.(3)解:当运动时间为t秒时,点A在数轴上表示的数为12t--,点B在数轴上表示的数为10t--,点C在数轴上表示的数为142t-,点D在数轴上表示的数为152t-,024t<<∴点C一直在点B的右侧M为AC的中点,N为BD的中点∴点M,N在数轴上表示的数分别为232t-和532t-∴53233222t t MN--=-=∴MN的长为32.【点睛】本题考察了数轴上的点的距离、中点的表示以及一次方程.解题的关键与难点在于正确的表示出数轴上的点.。
第七章 线段与角的画法(本章复习课件)
3、互补的两个角能否都是锐角?能否都是 直角?能否都是钝角?为什么?
1、如图,∠BAC=90°,∠DAE=90° 问:图中有哪几对互余的角? 问:∠1和∠2有什么关系?
B D
1 A2
同角的余角相等在同一直线上,点M、 A、D在同一直线上
什么叫两点之间的距离?
联结两点的线段的长度叫两点之 间的距离。
线段的基本性质:
两点之间,线段最短。(在所有 联结两点的线中,线段最短)
如图,三角形ABC,比较大小:
AB+AC__>__BC,
理由是两__点__之_间__,__线_段__最_短__.
已知A,B,C三点在一条直线上, AB=5CM,BC=3CM,那么AC=多少厘米?
第七章 线段与角的画法(本章复习课 件)
填空
①30o角的余角是_6_0_o_、补角是_1_5_0_o _; ②45o角的余角是_4_5_o_、补角是_1_3_5_o_;
③如果∠α=xo,∠α的余角是_(_9_0_-_x_)o、 补角是(_1_8_0_-_x_)o.
1、一个角与它的余角相等,这个角是怎样 的角?
问:图中有哪几对互补的角?
问:∠1和∠2有什么关系?
D
2 N
A 1
同角的补角相等
C
M
如图,已知点O是直线AB上的点,
∠BOC=∠AOD=35°,则图中互补的角 有____4__对.
方向角的表示方法:
北
东
偏
x0
南
西
规定:顺序不能倒! 注意:东北方向就是指北偏东 450,没有北东方向;还有西北方 向、西南方向、东南方向。
5海里用1厘米表示
沪教版小学六年级下册第七章线段与角教案及习题2
第七章 线段与角的画法2 一、知识点1.线段大小的比较方法①叠合法:比较两条线段AB 、CD 的长短,可把它们移到同一条直线上,使一个端点A 和C 重合,另一端点B 和D 落在直线上A 和C 的同侧。
若B 与D 重合,则AB =CD ;若D 在AB 上,则AB>CD ;若D 在AB 延长线上,则AB<CD 。
②度量法:分别量出每条线段的长度,再比较。
2.线段的性质两点之间的所有连线中,线段最短。
3.两点之间的距离联结两点的线段的长度叫做两点之间的距离。
4.两条线段的和、差两条线段可以相加(或相减),它们的和(或差)也是一条线段,其长度等于这两条线段的和(或差)。
5.线段的倍、分线段的倍:na (1n >为正整数,a 是一条线段)就是求n 条线段a 相加所得和的意义。
na 也可理解为:线段a 的n 倍。
线段的中点:将一条线段分成两条相等线段的点叫这条线段的中点。
6.角的概念角的定义:①有公共端点的两条射线组成的图形叫做角;(顶点,边)②一条射线绕着其端点旋转到另一个位置所成的图形。
(始边,终边)角的表示:,,,1AOB O α∠∠∠∠7.方位角①方位角的正方向与地图中一样,上北下南,左西右东;②处在四个直角平分线上的方向,分别称为:东南、东北、西南、西北方向;③其他方向要用到“偏”字:北偏东α︒,北偏西β︒,南偏东γ︒,南偏西δ︒。
8.角的大小比较方法①度量法:用量角器量出角的度数来比较。
②叠合法:把一角放在另一个角上,使它们的顶点重合,并将其中一边也重合,并使两个角的另一边都放在这条边的同侧,就可以比较两个角的大小。
9.画相等的角①度量法:①对中:将量角器的中心点与角的顶点重合;②对线:将量角器的零度刻线与角的一边重合;③读数。
②尺规法:用直尺与圆规做图。
10.角的和、差、倍的画法①度量法:②尺规作图法:11.角平分线的概念及画法概念:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
沪教版数学六年级下册第七章《线段与角的画法》教学设计
沪教版数学六年级下册第七章《线段与角的画法》教学设计一. 教材分析《线段与角的画法》是沪教版数学六年级下册第七章的内容,本章主要让学生掌握线段的画法、角的画法和测量方法。
教材通过丰富的图片和实例,引导学生了解线段和角的基本概念,学会使用直尺、圆规等工具画线段和角,并能够进行简单的测量。
教材还注重培养学生的空间想象能力和几何思维,为初中阶段的学习打下基础。
二. 学情分析六年级的学生已经掌握了基本的画图技能,对线段和角的概念有一定的了解。
但是,部分学生可能对线段和角的画法以及测量方法还不够熟练,需要老师在教学中进行针对性的指导。
此外,学生的空间想象能力和几何思维能力还有待提高,教学中应注重培养学生的这些能力。
三. 教学目标1.知识与技能:学生会画线段和角,并能进行简单的测量。
2.过程与方法:学生通过观察、实践、探究,提高空间想象能力和几何思维能力。
3.情感态度与价值观:学生培养对数学的兴趣,增强团队协作和自主学习能力。
四. 教学重难点1.重点:线段和角的画法,测量方法。
2.难点:线段和角的概念理解,空间想象能力的培养。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生了解线段和角的应用。
2.实践教学法:让学生动手操作,提高画图技能。
3.问题驱动法:教师提出问题,引导学生思考和探究。
4.小组合作法:学生分组讨论,培养团队协作能力。
六. 教学准备1.教具:直尺、圆规、三角板、多媒体设备等。
2.学具:学生用书、练习本、铅笔、橡皮等。
3.教学课件:线段与角的画法动画演示、实例图片等。
七. 教学过程1.导入(5分钟)教师通过生活中的实例,如测量房间长度、计算三角形内角和等,引出线段和角的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师展示线段和角的画法动画演示,让学生直观地了解线段和角的画法。
同时,引导学生思考:如何用直尺和圆规画线段和角?3.操练(10分钟)学生分组讨论,尝试用直尺和圆规画线段和角。
2022年沪教版(上海)六年级数学第二学期第七章线段与角的画法重点解析练习题(含详解)
沪教版(上海)六年级数学第二学期第七章线段与角的画法重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,三角尺COD 的顶点O 在直线AB 上,90COD ∠=︒.现将三角尺COD 绕点O 旋转,若旋转过程中顶点C 始终在直线AB 的上方,设AOC α∠=,BOD β∠=,则下列说法中,正确的是( )A .若10α=︒,则70β=︒B .α与β一定互余C .α与β有可能互补D .若α增大,则β一定减小2、下列语句中,错误的个数是( )①直线AB 和直线BA 是两条直线; ②如果AC BC =,那么点C 是线段AB 的中点;③两点之间,线段最短;④一个角的余角比这个角的补角小.A .1个B .2个C .3个D .4个3、下列条件中能判断点C 为线段AB 中点的是( )A .AC =BCB .12AC AB = C .AB =2BCD .12AC BC AB == 4、如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( )A .128°B .142°C .38°D .152°5、已知A 、B 、C 、D 为直线l 上四个点,且6AB =,2BC =,点D 为线段AB 的中点,则线段CD 的长为( )A .1B .4C .5D .1或56、下列说法不正确的是( )A .两点确定一条直线B .经过一点只能画一条直线C .射线AB 和射线BA 不是同一条射线D .若∠1+∠2=90°,则∠1与∠2互余7、如图,剪去四边形的“一角”,得到一个五边形,这个五边形的周长一定小于这个四边形的周长,依据是( )A .两点确定一条直线B .手线段最短C .同角的余角相等D .两点之间线段最短8、已知线段6AB =,下面四个选项中能确定点C 是线段AB 中点的是( )A .3BC =B .3AC BC == C .AC BC =D .2AB AC =9、若1∠的余角为4835︒',则1∠的补角为( )A .4125︒'B .13125'︒C .13835'︒D .14125'︒10、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒ C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠1与∠2互余,若∠1=33°27′,则∠2的补角的度数是___________.2、如图,从学校A 到书店B 有①②共2条路线,最短的是①号路线,得出这个结论的根据是:______.3、已知不重合的C ,D ,E 三点在线段AB 上(均不与点A ,B 重合),且E 是线段BC 的中点.(1)如图,D 是线段AC 的中点.若AB =10cm ,AC =6cm ,则DE 的长度为 _____cm ;(2)若D 是线段AB 的中点,则线段DE 与线段AC 之间的数量关系为 _____.4、已知∠AOB =60°,自∠AOB 的顶点O 引射线OC ,若∠AOC :∠AOB =1:4,那么∠BOC 的度数是 _____.5、如图,把原来弯曲的河道改直,这样做能缩短航道,这是因为____________.三、解答题(5小题,每小题10分,共计50分)1、如图所示,平面内A 、B 、C 三点不在同一条直线上,按下列要求画图:(1)画线段AB ;(2)画射线BC ;(3)画直线CA ;(4)经过点A 画直线l 与线段BC 交于点D .2、已知:点A ,B ,C 在同一条直线上,线段12,3AB BC ==,M 是线段AC 的中点.求,线段AM 的长度.3、如图,点O 在直线AC 上,OD 平分AOB ∠,2,70∠=∠=︒∠COE EOB DOE ,求EOC ∠.4、如图,O 点是学校所在的位置,A 小区位于学校南偏东71°,B 小区位于学校西北方向,在A 小区和B 小区之间有一条公路OC (射线OC )平分∠AO B .(1)求∠BOC 的度数;(2)公路OC 上的车站D 相对于学校O 的方位是什么?5、如图1,BOC ∠和AOB ∠都是锐角,射线OB 在AOC ∠内部,AOB α∠=,BOC β∠=.(本题所涉及的角都是小于180︒的角)(1)如图2,OM 平分BOC ∠,ON 平分AOC ∠,当40α=︒,70β=︒时,求∠MON 的大小; 解:因为OM 平分BOC ∠,∠BOC =70β︒= 所以°°1170=3522COM BOC ∠=∠=⨯,因为°40AOB α∠==,∠BOC =70β︒=所以∠AOC=+AOB ∠∠BOC =°°40+70=110︒因为ON 平分AOC ∠,∠AOC =110︒ 所以°1_______=________2CON ∠=,所以°____35=_____MON CON COM ︒︒∠=∠-∠=-.(2)如图3,P 为AOB ∠内任意一点,直线PQ 过点O ,点Q 在AOB ∠外部,类比(1)的做法,完成下列两题:①当OM 平分POB ∠,ON 平分POA ∠,MON ∠的度数为_______;(用含有α或β的代数式表示); ②当OM 平分QOB ∠,ON 平分QOA ∠,MON ∠的度数为_________.(用含有α或β的代数式表示)-参考答案-一、单选题1、C【分析】根据题意,作出相应图形,然后结合角度计算对各个选项依次判断即可.【详解】解:A 、当10α=︒时,18080COD βα=︒--∠=︒,选项错误;B 、当点D 在直线AB 上方时,α与β互余,如图所示,当点D 到如图所示位置时,α与β互补,选项错误;C、根据B选项证明可得:α与β可能互补,选项正确;D、如图所示,当点D到直线AB下方时,α增大,β也增大,选项错误;故选:C.【点睛】题目主要考查角度的计算及互余、互补的关系,根据题意,作出相应图形是解题关键.2、B【分析】根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.【详解】解:①直线AB和直线BA是同一条直线,故该项符合题意;②如果AC BC=,那么点C不一定是线段AB的中点,故该项符合题意;③两点之间,线段最短,故该项不符合题意;④一个角的余角比这个角的补角小,故该项不符合题意,故选:B.【点睛】此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.3、D【分析】根据线段中点的定义,结合选项一一分析,排除答案.【详解】解:A、如图1,AC=BC,但C不是线段AB的中点,故不符合题意;B、图2,12AC AB=,但C不是线段AB的中点,故不符合题意;C、图3,AB=2BC,但C不是线段AB的中点,故不正确;D、AC=BC=12AB符合中点定义,故正确;故选D.本题考查了线段中点的定义,如果点C 把线段AB 分成相等的两条线段AC 与BC ,那么点C 叫做线段AB 的中点,这时,AC =BC =12AB 或AB =2AC =2BC .4、B【分析】首先根据题意求出52AOD ∠=︒,然后根据AOB AOD BOD ∠=∠+∠求解即可.【详解】解:∵∠AOC 和∠BOD 都是直角,∠DOC =38°,∴903852AOD AOC DOC ∠=∠-∠=︒-︒=︒,∴5290142AOB AOD BOD ∠=∠+∠=︒+︒=︒.故选:B .【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出AOD ∠的度数.5、D【分析】根据题意分两种情况考虑,讨论点C 的位置关系,即点C 在线段AB 上,或者在线段AB 的延长线上.【详解】解:因为点D 是线段AB 的中点,所以BD =12AB =3,分两种情况:①当点C 在线段AB 上时,CD =BD -BC =3-2=1,②当点C 在线段AB 的延长线上时,CD =BD +BC =3+2=5.【点睛】本题考查两点间的距离,解决本题的关键是掌握线段的中点定义以及运用分类讨论的数学思想.6、B【分析】根据两点确定一条直线,即可判断A;根据过一点可以画无数条直线可以判断B;根据射线的表示方法即可判断C;根据余角的定义,可以判断D.【详解】解:A、两点确定一条直线,说法正确,不符合题意;B、过一点可以画无数条直线,说法错误,符合题意;C、射线AB和射线BA不是同一条射线,说法正确,不符合题意;D、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;故选B.【点睛】本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.7、D【分析】利用两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些线中,线段最短,据此解题.【详解】解:剪去四边形的“一角”,得到一个五边形,这个五边形的周长一定小于这个四边形的周长,依据是:两点之间线段最短,故选:D.【点睛】本题考查线段的性质,正确掌握相关知识是解题关键.8、B【分析】根据线段中点的定义确定出点A 、B 、C 三点共线的选项即为正确答案.【详解】解:A 、BC =3,点C 不一定是线段AB 中点,故该选项不符合题意;B 、AC =BC =3,点C 是线段AB 中点,故该选项符合题意;C 、AC =BC ,C 不一定在线段AB 中点的位置,故该选项不符合题意;D 、AB =2AC ,点C 不一定是线段AB 中点,故该选项不符合题意.故选:B .【点睛】本题考查了两点间的距离,线段中点的定义,要注意根据条件判断出A 、B 、C 三点是否共线.9、C【分析】根据余角和补角的定义,先求出1∠,再求出它的补角即可.【详解】解:∵1∠的余角为4835︒',∴19048354125''∠=-=︒︒︒,1∠的补角为180412513835-︒=︒''︒,故选:C .【点睛】本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.10、C【分析】根据直角的性质及各角之间的数量关系结合图形求解即可.【详解】解:∵直角三角板,∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒,即180BAE DAC ∠+∠=︒.故选:C .【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键.二、填空题1、123°27′【分析】本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.【详解】解:∠1与∠2互余,且∠1=∠1=33°27′,则∠2=90°-33°27′=56°33′,∠2的补角的度数为180°-56°33′=123°27′.故答案为:123°27′.【点睛】本题考查的是余角和补角的概念,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.2、两点之间,线段最短【分析】根据两点之间,线段最短作答即可.【详解】解:如图,从学校A到书店B有①②共2条路线,最短的是①号路线,得出这个结论的根据是:两点之间,线段最短;故答案为:两点之间,线段最短.【点睛】本题考查了线段的性质,解题关键是明确两点之间,线段最短.3、5 AC=2DE【分析】(1)求出BC的长,根据E是线段BC的中点,D是线段AC的中点,求出DC和CE的长,从而求出DE 的长;(2)根据点D是线段AB的中点,点E是线段BC的中点,计算出DB =12AC+12BC,CE=12BC,再由DE=DB-CE计算即可得解.【详解】解:(1)∵AB=10cm,AC=6cm,∴BC=AB-AC=4(cm),∵点D是线段AC的中点,点E是线段BC的中点,∴DC=12AC=3(cm),CE=12CB=2(cm),∴DE=DC+CE=5(cm);故答案为:5;(2)∵AB=AC+BC,D是线段AB的中点,E是线段BC的中点,∴DB=12AB=12AC+12BC,BE=12BC,∴DE=DB-BE=12AC+12BC-12BC=12AC,故答案为:AC=2DE.【点睛】本题考查两点间的距离及线段的和差,解题的关键是根据线段中点的性质计算,注意数形结合思想方法的运用.4、45°或75°【分析】分为两种情况:①OC在∠AOB的内部时,②OC在∠AOB的外部时,求出∠AOC的度数,即可求解.【详解】解:如图1,当OC在∠AOB内部时,∵∠AOC:∠AOB=1:4,∠AOB=60°,∴∠AOC=15°,∴∠BOC=45°;如图2,当OC在∠AOB外部时,∵∠AOC:∠AOB=1:4,∠AOB=60°,∴∠AOC=15°,∴∠BOC=75°;∴∠BOC=45°或75°,故答案为:45°或75°.【点睛】此题主要考查了角的计算,分两种情况求解是解答本题的关键.5、两点之间,线段最短【分析】根据两点之间,线段最短进行求解即可.【详解】解:∵两点之间,线段最短,∴把原来弯曲的河道改直,这样做能缩短航道,故答案为:两点之间,线段最短.【点睛】本题主要考查了两点之间,线段最短,解题的关键在于能够熟知两点之间,线段最短.三、解答题1、(1)见解析;(2)见解析;(3)见解析;(4)见解析【分析】(1)用线段连接AB即可;(2)以点B为端点经过点C画射线;(3)经过点A和点C画直线;(4)经过点A画直线与线段BC相交即可;【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;(4)如图所示;【点睛】本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,要求同学们一定要认真作图,特别是直线向两方无限延伸,不需要延长,射线向一方无限延伸,不需延长,但可以反向延长;而线段不延伸,既可以延长,也可以反向延长.本题是基础题,比较简单.2、4.5或7.5【分析】根据题意分①当C在线段AB上时,②当C点在线段AB的延长线上时,先求得AC,进而根据线段中点的性质求得AM【详解】解:12,3AB BC ==,①当C 在线段AB 上时,∴1239AC AB BC =-=-=M 是线段AC 的中点1 4.52AM AC ∴==②当C 点在线段AB 的延长线上时,12315AC AB BC ∴=+=+=M 是线段AC 的中点17.52AM AC ∴==综上所述,AM 的长度为4.5或7.5【点睛】本题考查了线段的和差计算,中点相关的计算,数形结合、分类讨论是解题的关键.3、80°【分析】设∠AOB =x ,根据角平分线的定义、补角的概念,结合题意列出方程,解方程即可.【详解】解:设∠AOB=x,则∠BOC=180°-x,∵OD平分∠AOB,∴∠BOD=12∠AOB=12x,∵∠BOE=12∠EOC,∴∠BOE=13∠BOC=60°-13x,由题意得,12x+60°-13x=70°,解得,x=60°,∴∠EOC=23(180°-x)=80°.【点睛】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.4、(1)77°;(2)位于学校北偏东32°【分析】根据方位角,可得∠AOM=71°,∠BON=45°,从而得到∠AOE=19°,进而得到∠AOB=154°,再由OC平分∠AOB,即可求解;(2)由(1)可得∠NOC=32°,即可求解.【详解】解:(1)根据题意得:∠AOM=71°,∠BON=45°,∵∠AOM+∠AOE=90°,∴∠AOE=90°﹣∠AOM=90°﹣71°=19°,∴∠AOB=∠BON+∠NOE+∠AOE=45°+90°+19°=154°,∵OC平分∠AOB,∴∠BOC =111547722AOB ︒︒∠=⨯=, (2)∠NOC =∠BOC ﹣∠BON =77°﹣45°=32°,答:车站D 位于学校北偏东32°.【点睛】本题主要考查了方位角,角的运算,熟练掌握方位角的确定方法,角的运算法则是解题的关键. 5、(1)AOC ∠,55°,55︒,20︒(2)①2α;②1802α︒- 【分析】(1)由题意直接根据角的度数和角平分线定义进行分析即可得出答案;(2)①由题意直接根据角的度数和角平分线定义得出∠MON =∠POM +∠PON =12∠AOB ,进而进行计算即可;②根据题意利用角平分线定义得出∠MON =1212QOB QOA ∠+∠,进而进行计算即可. (1)解:因为OM 平分BOC ∠,∠BOC =70β︒= 所以°°1170=3522COM BOC ∠=∠=⨯,因为°40AOB α∠==,∠BOC =70β︒=所以∠AOC=+AOB ∠∠BOC =°°40+70=110︒因为ON 平分AOC ∠,∠AOC =110︒ 所以°1=552CON AOC ∠=∠,所以°5535=20MON CON COM ︒︒∠=∠-∠=-. 故答案为:AOC ∠,55°,55︒,20︒.(2)解:①如图,∵OM 平分∠POB ,ON 平分∠POA , ∴∠POM =12∠POB ,∠PON =12∠POA , ∴∠MON =∠POM +∠PON =12∠AOB =2α, 故答案为:2α; ②如图,∵OM 平分∠QOB ,ON 平分∠QOA ,∴∠MON=1212QOB QOA∠+∠=1(360)2AOB︒-∠=1802α︒-.【点睛】本题考查角的计算以及角平分线的定义,熟练掌握并明确角平分线的定义是解答此题的关键.。
难点详解沪教版(上海)六年级数学第二学期第七章线段与角的画法难点解析练习题(精选含解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,从点O出发的5条射线,可以组成的锐角的个数是()A.8 B.9 C.10 D.112、若一个角比它的余角大30°,则这个角等于()A.30°B.60°C.105°D.120°3、时钟在9:00时候,时针和分针的夹角是()A.30°B.120°C.60°D.90°4、已知100AOB ∠=︒,过点O 作射线OC 、OM ,使20AOC ∠=︒、OM 是BOC ∠的平分线,则BOM ∠的度数为( )A .60︒B .60︒或40︒C .120︒或80︒D .40︒5、下列说法正确的是( )A .若10x +=,则1x =B .若1a >,则1a >C .若点A ,B ,C 不在同一条直线上,则AC BC AB +>D .若AM BM =,则点M 为线段AB 的中点6、如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE =90°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和360°;④若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B 、C 、D 、E 的距离之和最大值为15,最小值为11,其中说法正确的个数有( )A .1个B .2个C .3个D .4个7、有两根木条,一根AB 长为80cm ,另一根CD 长为130cm ,在它们的中点处各有一个小圆孔M 、N (圆孔直径忽略不计,M 、N 抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN 是( )A .25cmB .25cm 或105cmC .105cmD .50cm 或210cm8、如图,点O 在直线AB 上,OC OD ⊥,若150AOC ∠=︒,则BOD ∠的大小为( )A .30°B .40°C .50°D .60°9、若∠α=73°30',则∠α的补角的度数是( )A .16°30'B .17°30'C .106°30'D .107°30'10、若∠A 与∠B 互为补角,且∠A =28°,则∠B 的度数是( )A .152°B .28°C .52°D .90°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若α=25°57′,则2α的余角等于_____.2、如图,点A ,O ,E 在同一直线上,∠AOB=40°,∠EOD=30°,OD 平分∠COE ,则∠COB =__________度.3、比较大小:3625︒'__________36.25︒(填“>”,“<”或“=”).4、计算:450"=①________________︒;10②点15分时,时针和分针的夹角是_____度.5416'12︒"=③______︒.5、双减政策实施后,我校调查到学生睡眠时间一般在晚上9点20分,时针与分针的夹角是______度.三、解答题(5小题,每小题10分,共计50分)1、如图,已知线段AB ,延长线段BA 至C ,使CB =43AB .(1)请根据题意将图形补充完整.直接写出AC AB= _______; (2)设AB = 9cm ,点D 从点B 出发,点E 从点A 出发,分别以3cm/s ,1cm/s 的速度沿直线AB 向左运动.①当点D 在线段AB 上运动,求AD CE的值; ②在点D ,E 沿直线AB 向左运动的过程中,M ,N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD 的三等分点时,求MN 的长.2、已知:如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒3︒的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒6︒的速度旋转,如图2,设旋转时间为(0t 秒30t ≤≤秒).(1)则MOA ∠=______度,NOB ∠=______度(用含t 的代数式表示);(2)在运动过程中,当AOB ∠达到81︒时,求t 的值;(3)在旋转过程中是否存在这样的t ,使得2NOB AOB ∠=∠,如果存在,直接写出t 的值;如果不存在,请说明理由.3、已知:如图,AOB ∠被分成::2:3:4AOC COD DOB ∠∠∠=,OM 平分AOC ∠,ON 平分DOB ∠,且90MON ∠=︒,求AOB ∠的度数.4、如图,已知三点A 、B 、C .(1)连接AC .(2)画直线BC .(3)画射线AB .5、 如图,已知线段AC =12cm ,点B 在线段AC 上 ,满足BC =12AB .(1)求AB 的长;(2)若D 是AB 的中点,E 是AC 的中点,求DE 的长.-参考答案-一、单选题1、C【分析】每一条射线都分别与其它的射线组成一个角,如图所示,若从点O出发的n条射线,可以组成角的个数是()12 n n-【详解】解:组成角的个数是()()155110 22n n-⨯-==故选C.【点睛】此题主要考查了角的概念以及应用,要熟练掌握.利用公式:从点O出发的n条射线,组成角的个数为()12n n-,是解决问题的关键.2、B【分析】设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.【详解】解:设这个角为α,则它的余角为:90°-α,由题意得,α-(90°-α)=30°,解得:α=60°,故选:B【点睛】本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.3、D【分析】利用钟表表盘的特征:每相邻两个大格之间的夹角为30°,当时钟在9:00时候,时针指向9,分针指向12,中间恰好有3格,据此解答即可.【详解】解:时钟在9:00时候,时针指向9,分针指向12,钟表12个大格,每相邻两个大格之间的夹角为30°,因此时钟在9:00时候时针与分针的夹角正好为90°,故选:D.【点睛】本题考查钟表时针与分针的夹角,理解钟表盘上角的特点是解题关键.4、B【分析】考虑线段OC在角的内部和外部两种情况,每一种情况都用角的定义和角平分的定义求解,经计算结果为20°或40°.【详解】解:当OC在∠AOB的内部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°﹣20°=80°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC∠=40°;当OC在∠AOB的外部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°+20°=120°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC∠=60°;综合所述∠BOM的度数有两个,为60°或40°;故选:B.【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是分类计算角的大小.5、C【分析】根据解方程、绝对值、线段的中点等知识,逐项判断即可.【详解】解:A. 若10x +=,则1x =-,原选项错误,不符合题意;B. 若1a >,则1a >或1a <-,原选项错误,不符合题意;C. 若点A ,B ,C 不在同一条直线上,则AC BC AB +>,符合题意;D. 若AM BM =,则点M 为线段AB 的中点,当A 、B 、M 不在同一直线上时,点M 不是线段AB 的中点,原选项错误,不符合题意;故选:C .【点睛】本题考查了解方程、绝对值、线段的中点等知识,解题关键是熟记相关知识,准确进行判断.6、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F 在线段CD 上时点F 到点B 、C 、D 、E 的距离之和最小,当点F 和E 重合时,点F 到点B 、C 、D 、E 的距离之和最大计算即可判断④.【详解】解:①以B 、C 、D 、E 为端点的线段BC 、BD 、BE 、CE 、CD 、DE 共6条,故此说法正确;②图中互补的角就是分别以C 、D 为顶点的两对邻补角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故此说法正确;③由∠BAE =90°,∠CAD =40°,根据图形可以求出∠BAC +∠DAE +∠DAC +∠BAE +∠BAD +∠CAE =3∠BAE +∠CAD =310°,故此说法错误;④如图1,当F 不在CD 上时,FB +FC +FD +FE =BE +CD +2FC ,如图2当F 在CD 上时,FB +FC +FD +FE =BE +CD ,如图3当F 与E 重合时,FB +FC +FE +FD =BE +CD +2ED ,同理当F 与B 重合时,FB +FC +FE +FD =BE +CD +2BC ,∵BC =2,CD =DE =3,∴当F 在的线段CD 上最小,则点F 到点B 、C 、D 、E 的距离之和最小为FB +FE +FD +FC =2+3+3+3=11,当F 和E 重合最大则点F 到点B 、C 、D 、E 的距离之和FB +FE +FD +FC =17,故此说法错误. 故选B .【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.7、B【分析】根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时;作出相应图形,结合图形求解即可.【详解】解:根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时,由图可得:()111113080252222MN CN AM CD AB cm =-=-=⨯-⨯=;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时,由图可得:()1111130801052222MN CN BM CD AB cm =+=+=⨯+⨯=;∴两根木条的小圆孔之间的距离MN 是25cm 或105cm .故选:B .【点睛】题目主要考查线段两点间的距离,理解题意,分类讨论,作出相应图形是解题关键.8、D【分析】根据补角的定义求得∠BO C 的度数,再根据余角的定义求得∠BOD 的度数.【详解】解:∵150AOC ∠=︒,∴∠BO C =180°-150°=30°,∵OC OD ⊥,即∠COD =90°,∴∠BOD =90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.9、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C .【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.10、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.二、填空题1、38°6′【分析】根据余角的和等于90°列式计算即可求解.【详解】解:∵α=25°57′,∴2α=51°54′,∴2α的余角=90°﹣51°54′=38°6′.故答案为:38°6′.【点睛】此题主要考查角度的计算,解题的关键是熟知余角的性质.2、80【分析】利用角平分线的含义先求解,COE 再利用平角的含义与角的和差关系求解BOC ∠即可.【详解】 解: ∠EOD=30°,OD 平分∠COE ,260,COE DOE∠AOB=40°,180406080,BOC AOE AOB COE故答案为:80【点睛】本题考查的是角平分线的含义,平角的含义,角的和差运算,掌握“利用角的和差关系求解BOC ∠”是解本题的关键.3、>【分析】根据角度的大小来判断角的大小.【详解】∵36.25360.253615'︒=︒+︒=︒∴3625361536.25'︒>︒='︒故答案为:>.【点睛】本题考查角度大小比较,解题的关键是根据度分秒把两个角度统一成一样的形式.4、0.125 142.5 54.27①根据1603600'''︒==换算求解即可;②根据题意计算出15分时时针转动的角度和分针转动的角度,然后求解即可;③根据1603600'''︒==换算求解即可.【详解】①∵1603600'''︒== ∴4504500.1253600⎛⎫''=︒=︒ ⎪⎝⎭; ②当10点时,分针和时针的夹角为60°,∵时针1小时转30°,分针1小时转360°,∴时针1分钟转动的角度=30600.5÷︒=︒,分针1分钟转动的角度=360606︒÷=︒,∴当10点15分时,时针转动了150.57.5⨯︒=︒,分针转动了15690⨯︒=︒,∴时针和分针的夹角为60907.5142.5︒+︒-︒=︒;③∵1603600'''︒==, ∴16125416'125454.27603600⎛⎫⎛⎫︒"=︒+︒+︒=︒ ⎪ ⎪⎝⎭⎝⎭. 故答案为:0.125;142.5;54.27.【点睛】此题考查了角度之间的转化,钟表中时针和分针夹角的计算,解题的关键是熟练掌握角度的单位之间的进制以及钟表中时针和分针夹角的和差关系.5、160【分析】钟表的一周360°,分成12个大格,求出每个大格的度数是30°,根据时针与分诊的格数解答即可.解:∵两个大格之间的角的度数是30°,∴9点20分,钟表上时针与分针所成的夹角是5×30°+13×30°=160°,故答案为:160.【点睛】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°是解决问题的关键.三、解答题1、(1)13,(2)3,(3)12cm 或24cm .【分析】(1)根据线段的和差倍分关系即可得到结论;(2)①设运动的时间为t 秒,表示出线段长即可得到结论;②分3BD CD =和3BD CB =两种情况,根据三等分点求出BD 的长,进而求出运动时间,求出MD 、NB 的长即可.【详解】解:(1)图形补充完整如图,∵CB =43AB ,∴CA =13BC AB AB -=, 13AC AB =, 故答案为:13;(2)①AB = 9cm ,由(1)得,133CA AB ==(cm ),设运动的时间为t 秒, (93)DA t =-cm ,(3)CE t =-cm , 93=33AD t CE t-=-,②当3BD CD =时,∵AB = 9cm , 3CA =cm ,∴212CB CD ==cm ,∴6CD =cm ,318BD CD ==cm ,运动时间为:18÷3=6(秒),则6AE =cm ,15BE BA AE =+=cm ,3ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴ 1.5DM =cm , 4.5BN =cm ,12MN BD DM BN =--=cm ,当3BD CB =时,∵AB = 9cm , 3CA =cm ,∴12CB =cm ,∴336BD CB ==cm ,运动时间为:36÷3=12(秒),则12AE =cm ,21BE BA AE =+=cm ,15ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴7.5DM =cm , 4.5BN =cm ,24MN BD DM BN =--=cm ,综上,MN 的长是12cm 或24cm .【点睛】本题考查了线段的计算,解题关键是准确识图,熟练表示出线段长.2、(1)3t ,6t ;(2)11秒或29秒;(3)存在,15秒或30秒【分析】(1)根据题意进行求解即可;(2)分两种情况进行讨论:①当OA 与OB 重合前;②当OA 与OB 重合后,列出相应的方程求解即可;(3)分两种情况进行讨论:①当OA 与OB 重合前;②当OA 与OB 重合后,列出相应的方程求解即可.【详解】解:(1)由题意得:3MOA t ∠=︒,6NOB t ∠=︒,故答案为:3t ,6t ;(2)①OA 与OB 重合前,有:3681180t t ++=,解得:11t =,②当OA 与OB 重合后,有:3681180t t +-=,解得:29t =,故t 的值为11秒或29秒;(3)①当OA 与OB 重合前,有:()6218036t t t =--,解得:15t =,②当OA 与OB 重合后,有:()6231806t t t ⎡⎤=--⎣⎦,解得:30t =,故t 的值为15秒或30秒.【点睛】本题主要考查一元一次方程的应用,解答的关键是理解清楚题意,找到等量关系列出方程. 3、135°【分析】根据三角成比例设2,3,4,AOC x COD x DOB x 则9AOB x ∠=,将90MON ∠=︒作为等量关系列出方程,解方程求解x ,从而可得答案.【详解】解: ::2:3:4AOC COD DOB ∠∠∠=设2,3,4,AOC x COD x DOB x 则9AOB x ∠=,则∵OM 平分AOC ∠,ON 平分DOB ∠, ∴11,222MOC AOC x NOD BOD x , ∴326MON x x x x ∠=++=,又∵90MON ∠=︒,∴690x =︒,∴15x =︒,∴135AOB ∠=︒.【点睛】本题考查角平分线的定义,角的和差运算关系,掌握“设合适的未知数,利用角的和差关系列方程”是解本题的关键.4、(1)见解析;(2)见解析;(3)见解析【分析】(1)直接连接AC 即可;(2)由直线的定义,画出直线BC 即可;(3)由射线的定义,画射线AB 即可;【详解】:(1)如图;(2)如图;(3)如图【点睛】本题考查了作图——复杂作图、直线、射线、线段,解决本题的关键是准确画图. 5、(1)8cm(2)2cm【分析】(1)根据BC =12AB 可得23AB AC =,代入计算即可; (2)根据中点分别求出AD 和AE 的长,即可得到DE 的长.(1) 1 2BC AB = 2212833AB AC cm ∴==⨯= (2)∵D 是AB 的中点142AD AB cm ∴== ∵E 是AC 的中点162AE AC cm ∴== 2DE AE AD cm ∴=-=【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.。
难点详解沪教版(上海)六年级数学第二学期第七章线段与角的画法重点解析试题(含解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,从A 到B 有4条路径,最短的路径是③,理由是( )A .因为③是直的B .两点确定一条直线C .两点间距离的定义D .两点之间线段最短2、有两根木条,一根AB 长为80cm ,另一根CD 长为130cm ,在它们的中点处各有一个小圆孔M 、N (圆孔直径忽略不计,M 、N 抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN 是( )A .25cmB .25cm 或105cmC .105cmD .50cm 或210cm3、已知100AOB ∠=︒,过点O 作射线OC 、OM ,使20AOC ∠=︒、OM 是BOC ∠的平分线,则BOM ∠的度数为()A.60︒B.60︒或40︒C.120︒或80︒D.40︒4、以下3个说法中:①连接两点间的线段叫做这两点的距离;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.正确的是()A.①B.③C.①②D.②③5、如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=30°,∠2的大小是()A.30°B.40°C.50°D.60°6、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有()对.A.5 B.4 C.3 D.27、如图,∠ACB可以表示为()A.∠1B.∠2C.∠3D.∠48、如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠相等的是( ).A .B .C .D .9、下列说法中,正确的是( )A .射线AB 和射线BA 是同一条射线B .若AB BC =,则点B 为线段AC 的中点C .点,,A B C 在一条直线上,则AB BC AC +=D .点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =10、在同一平面内,已知60AOB ∠=︒,20COB ∠=︒,则AOC ∠等于( ).A .80°B .40°C .80°或40°D .20°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若∠A=20°18',则∠A 的补角的大小为__________.2、如图,已知OD 平分∠AOC ,OE 平分∠COB ,∠AOD =20°,∠EOB =40°.则∠AOB =______.3、如图,工人师傅用两根钉子就可以把一根木条固定在墙上,能正确解释这一现象的数学基本事实是 _____.4、如图,12BC AB=,D为AC的中点,DC=6,则AB的长为_________.5、比较大小:1625'︒________16.25︒(填“>”“<”或“=”).三、解答题(5小题,每小题10分,共计50分)1、如图,O是直线AB上一点,∠DOB=90°,∠EOC=90°.(1)如果∠DOE=50°,求∠BOC的度数;(2)若OE平分∠AOD,求∠BOE.2、如图,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)若∠AOD = 34°,求∠BOC;(2)猜想∠AOC与∠BOD的关系,并给与证明.3、如图,已知平面上四个点A,B,C,D,请按要求完成下列问题:(1)画直线AB,射线BD,连接AC;=-;(保留作图痕迹)(2)在线段AC上求作点P,使得CP AC AB(3)请在直线AB上确定一点Q,使点Q到点P与点D的距离之和最短,并写出画图的依据.4、如图,长度为18的线段AB的中点为M,点C将线段MB分成MC︰CB=1︰2,求线段AC的长度.∠的角平分线.5、如图,5036AOC'∠=︒,OB是AOC∠的度数.(1)当4852∠=︒时,求BODCOD'(2)AOB∠的余角是多少度?-参考答案-一、单选题1、D【分析】根据两点之间,线段最短即可得到答案.【详解】解:∵两点之间,线段最短,∴从A 到B 有4条路径,最短的路径是③,故选D .【点睛】本题主要考查了两点之间,线段最短,熟知两点之间,线段最短是解题的关键.2、B【分析】根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时;作出相应图形,结合图形求解即可.【详解】解:根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时,由图可得:()111113080252222MN CN AM CD AB cm =-=-=⨯-⨯=;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时,由图可得:()1111130801052222MN CN BM CD AB cm =+=+=⨯+⨯=;∴两根木条的小圆孔之间的距离MN 是25cm 或105cm . 故选:B .【点睛】题目主要考查线段两点间的距离,理解题意,分类讨论,作出相应图形是解题关键.3、B【分析】考虑线段OC 在角的内部和外部两种情况,每一种情况都用角的定义和角平分的定义求解,经计算结果为20°或40°.【详解】解:当OC 在∠AOB 的内部时,如图所示:∵∠AOC =20°,∠AOB =100°,∴∠BOC =100°﹣20°=80°,又∵OM 是∠BOC 的平分线,∴∠BOM =12BOC ∠=40°;当OC 在∠AOB 的外部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°+20°=120°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC=60°;综合所述∠BOM的度数有两个,为60°或40°;故选:B.【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是分类计算角的大小.4、D【分析】由题意根据线段的性质,余、补角的概念,两点间的距离以及直线的性质逐一进行分析即可.【详解】解:连接两点间的线段的长度,叫做这两点的距离,故①不符合题意;经过两点有一条直线,并且只有一条直线,故②符合题意;同一个锐角的补角一定大于它的余角,故③符合题意.故选:D.【点睛】本题考查线段的性质,余、补角的概念和两点间的距离以及直线的性质,主要考查学生的理解能力和判断能力.5、D【分析】先由60,130,BAC 求解,EAC 再结合902,EAD EAC 从而可得答案. 【详解】解: 902,601,130,EAD EAC BAC EAC 603030,EAC290903060,EAC 故选D【点睛】本题考查的是角的和差运算,掌握几何图形中角的和差关系是解本题的关键.6、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE 平分∠AOB ,∴∠AOE =∠BOE =90°,∴互余的角有∠AOC 和∠COE ,∠AOC 和∠BOD ,∠COE 和∠DOE ,∠DOE 和∠BOD 共4对,故选:B .【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.7、B【分析】由CA 和CB 所夹的角为角2,即可得出结果.【详解】根据图可知ACB ∠也可用2∠表示.故选B .【点睛】本题考查角的表示方法.理解角的表示方法是解答本题的关键.8、C【分析】根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.【详解】解:A 、α∠+β∠=180°−90°=90°,互余;B 、α∠+β∠=60°+30°+45°=135°;C 、根据同角的余角相等,可得α∠=β∠;D 、α∠+β∠=180°,互补;故选:C .【点睛】本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.9、D【分析】根据射线的定义,线段中点定义,线段的数量关系分别判断即可.【详解】解:A 、射线AB 和射线BA 不是同一条射线,故该项不符合题意;B 、若AB BC =,则点B 不一定为线段AC 的中点,故该项不符合题意;C 、点,,A B C 在一条直线上,则AB BC AC +=不一定成立,故该项不符合题意;D 、点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =,故该项符合题意; 故选:D .【点睛】此题考查了射线的定义,线段中点定义,线段的数量关系,正确理解题意并分析进行判断是解题的关键.10、C【分析】C 点可能在OB 上方也可能在OB 下方,故应分类讨论计算.【详解】如图所示,当C 点在OB 上方,则AOC AOB COB ∠=∠-∠=60°-20°=40°当C 点在OB 下方则'AOC AOB C OB ∠=∠+∠=60°+20°=80°故答案为:C .【点睛】本题考查了角的运算,考虑到C 点的有两种位置情况是解题的关键.二、填空题1、159°42'(或159.7°)【分析】根据补角的定义可直接进行求解.【详解】解:由∠A=20°18',则∠A 的补角为180201815942''︒-︒=︒;故答案为159°42'.【点睛】本题主要考查补角,熟练掌握求一个角的补角是解题的关键.2、120°度【分析】根据角平分线的定义求出∠AOC 与∠BOC ,先根据角的和求出∠AOB 即可.【详解】解:∵OD 平分∠AOC ,OE 平分∠COB ,∴∠AOC =2∠AOD ,∠COB =2∠EOB ,∵∠AOD =20°,∠EOB =40°.∴∠AOC =2×20°=40°,∠BOC =2×40°=80°,∴∠AOB =∠AOC +∠BOC=40°+80°=120°,故答案为:120°.【点睛】本题考查了角平分线的定义和角的和差计算,属于常考题型,熟练掌握上述知识是解题的关键.3、两点确定一条直线【分析】直接利用直线的性质,两点确定一条直线,由此即可得出结论.【详解】解:木工师得要将一根木条固定在墙上,通常需要钉两根钉子,请你写出这一现象反映的一个数学基本事实:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题考查的是直线的性质,熟知两点确定一条直线是解答此题的关键.4、8【分析】先根据D为AC的中点,DC=6求出AC的长,再根据BC=12AB得出AB=23AC,由此可得出结论.【详解】解:∵D为AC的中点,DC=6,∴AC=2CD=12.∵12 BC AB=∴2212833AB AC==⨯=.故答案为:8.【点睛】本题考查线段中点的有关计算,能根据图形得出各线段之间的和、差及倍数关系是解答此题的关键.5、>【分析】先把单位化统一,再比较即可.【详解】解:因为16.251615'︒=︒,所以162516.25'︒>︒,故答案为:>.【点睛】本题考查了角的大小比较,注意单位要化统一,依据1°=60′,1′=60′′是解题的关键.三、解答题1、(1)∠BOC =50°(2)∠BOE =135°【分析】(1)90=BOC COD COD DOE ∠+∠=︒∠+∠,BOC DOE ∠=∠,可求BOC ∠的值.(2)1452DOE AOD ∠=∠=︒,BOE BOD DOE ∠=∠+∠,可求∠BOE 的值.【详解】解:(1)90BOC COD ∠+∠=︒,90COD DOE ∠+∠=︒50BOC DOE ∴∠=∠=︒ (2)OE 平分AOD ∠1452DOE AOD ∴∠=∠=︒ 又BOE BOD DOE ∠=∠+∠135BOE ∴∠=︒【点睛】本题主要考察了角平分线.解题的关键在于明确角之间的等量关系.2、(1)∠BOC =34°;(2)∠AOC +∠BOD =180°,证明见解析.【分析】(1)首先根据三角尺的特点得到90AOB COD ∠=∠=︒,然后根据同角的余角相等即可求出∠BOC 的度数;(2)首先根据题意表示出90AOC AOD ∠=∠+︒,90BOD AOD ∠=︒-∠,相加即可求出∠AOC 与∠BOD 的关系.【详解】解:(1)∵90AOB COD ∠=∠=︒,∴90AOD BOD ∠+∠=︒,90COB BOD ∠+∠=︒∴34BOC AOD ∠=∠=︒;(2)∠AOC +∠BOD =180°,证明如下:∵90AOC AOD COD AOD ∠=∠+∠=∠+︒,90BOD AOB AOD AOD ∠=∠-∠=︒-∠∴9090180AOC BOD AOD AOD ∠+∠=∠+︒+︒-∠=︒.【点睛】此题考查了三角尺中角和和差计算,同角的余角相等,解题的关键是熟练掌握三角尺中角的度数,同角的余角相等.3、(1)见解析;(2)见解析;(3)画图见解析,两点之间线段最短【分析】(1)根据题意画直线AB ,射线BD ,连接AC ;(2)在线段AC 上截取AP AB =,则点P 即为所求,(3)连接CD交AB于点Q,根据两点之间线段最短即可求解【详解】(1)如图,画直线AB,射线BD,连接AC;=-(2)如图,在线段AC上截取AP AB=,则CP AC AB点P即为所求,(3)如图,连接CD交AB于点Q,≥,根据两点之间线段最短,QP QD+PQ∴,,P Q D 三点共线时,QP QD +最短则作图的依据为:两点之间线段最短【点睛】本题考查了画射线,直线,线段,两点之间线段最短,掌握基本作图是解题的关键.4、12【分析】由线段的中点的含义先求解9AM BM ==,再利用MC ︰CB =1︰2,求解,MC 再利用线段的和差关系可得答案.【详解】 解: 长度为18的线段AB 的中点为M , 19,2AM BM AB MC ︰CB =1︰2, 193,3MC9312.AC AM MC【点睛】本题考查的是线段的和差,线段的中点的含义,掌握“利用线段的和差关系求解线段的长度”是解本题的关键.5、(1)BOD ∠的度数7410'︒.(2)AOB ∠的余角是6442'︒.【分析】(1)利用角平分线的性质,求得COB ∠的度数,然后利用∠=∠+∠BOD COB COD ,即可求解BOD ∠的度数.(2)利用题(1)中AOB ∠的度数以及余角的概念,直接求解即可.【详解】(1)解: OB是AOC∠的角平分线.∴12AOB COB AOC ∠=∠=∠,∴5036AOC∠=︒',∴125182AOB COB AOC∠=∠=∠=︒',4852COD∠=︒',∴251848527410BOD COB COD∠=∠+∠=︒'+︒'=︒'.(2)解:由(1)得2518AOB∠=︒',故AOB∠的余角9025186442=︒-︒'=︒'.【点睛】本题主要是考查了角平分线以及余角的相关概念及性质和角的计算,熟练利用角平分线的性质求解角度,找到所要求的角与已知角的关系,是解决该题的关键.。
沪教版数学六年级(下)第七章线段与角的画法参考答案
数学六年级(下) 第七章 线段与角的画法7.2 画线段的和、差、倍(1)一、填空题1. 叫做这条线段的中点。
2. 已知线段a ,2a 的含义是 ,3a 的含义是 ,na 的含义是 。
3. 两条线段可以 ,它们的和(或差)也是 ,其长度等于这两条线段的 。
4. 如图,AB+AC______BC (选填“>”或“<”),理由是 。
ABCA B DC第4题 第6题 第8题5. 已知线段AB ,延长AB 到C ,使BC=AB ,在线段AB 的反向延长线上截取AD=AC ,则有DB:AB=_________,CD:BD=___________。
6. 如图,已知AB:AC=1:3,AC:AD=1:4,且AB+AC+AD=48,则AB=_____,BC=______,CD=_______。
7. 两条相等的线段AB 、CD 有三分之一部分重合,M 、N 分别为AB 、CD 的中点,若MN=12cm ,则AB 的长为_________。
8. 如图所示,A 、B 、C 三点在一条直线上,图中有 条线段,分别是 ;这些线段之间的等量关系是:AB+BC= ,AC-BC= , AC-AB= 。
9. 根据右图填空:AB+BC= ;AD= +CD ;CD=AD- ;BD=CD+ =AD- ; AC-AB+CD= =BC+ .第9题 第10题10. 如图,点M 是线段AB 的中点,用符号表示有 种表示法,分别是 , , , , 。
11.如图,点M 是线段PQ 的中点。
若PM=6cm ,则MQ= cm ,这是因为 = ;若PM=6cm.则PQ= cm,这是因为 = ;若PQ=12cm.则MQ= cm,这是因为 = 。
第11题 第12题 12. 已知,如图点C 是线段AD 的中点,AC=211cm, BC=512cm,那么AD= cm ,BD= cm 13.根据所示图形填空。
已知线段a 、b ,且a>2b,画一条线条段,使它等于a-2b 。
新版沪教版六年级数学下册第七章线段与角教案及习题(2020新教材)
第七章线段与角知识归纳一、线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
1、线段的表示:可以用表示短点的两个字母A、B表示,记作线段AB或可以用一个小写的英文字母,如a,表示,记作线段a2、线段的特点:1)有线长度,可以测量2)有两个端点3、线段的性质:1) 两点之间线段最短。
2)连接两点间线段的长度叫做这两点间的距离,可以记作d 。
3)★直线没有距离。
射线也没有距离。
因为,直线没有端点,射线只有一个端点,可以无限延长。
而线段不可以延长。
4、线段大小的比较:1)度量法2)叠合法3)观察法★“两点之间线段最短”5、画线段的和、差、倍将一条线段分成两条相等线段的点叫做这条线段的中点线段中点的表示:1)观察法2)折叠法3)度量法线段的中点是一个重要的概念,要使学生会用语言描述并掌握以下两点:(1)如图1∵C为AB中点(2)如图1∴C为AB中点.二、角:角是具有公共端点的两条射线组成的图形,公共端点叫做角的顶点,两条射线叫做角的边或可以这样说:角是有一条射线绕着它的端点旋转到另一个位置所成的图形处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边。
角的始边转动到角的终边所经过的平面部分叫做角的内部,简称角内部OBADC OBA1、 角的表示:1)角一般用三个大写英文字母表示,如下图记作∠AOB ,也可以记作∠O如果以点O 为顶点的角有多个,那么其中任何一个角必须用三个大写英文字母表示,而不能简单记作∠O2)也可以在角的内部标上一个小写的希腊字母,如α(读alpha )、β(读beta )、γ(读gamma )……,或者标上一个数字,如1、2、3……2、角的大小的比较 1)度量法 2)叠合法3、余角、补角(1) 如果两个角的和是一个平角,那么这两个角叫做互为补角.简称“互补”. (2) 如果两个角的和是一个直角,那么这两个角叫做互为余角,简称“互余”. (3) 补角、余角的性质★ 同角或等角的补角相等’;同角或等角的余角相等. 4、方位角方位角一般以正北、正南为基准,描述物体运动方向. 方位角α的取值范围为0900≤≤α 即“北偏东⨯⨯度”、“北偏西⨯⨯度”、“南偏东⨯⨯度”、“南偏西⨯⨯度”,★ “北偏东45度”为东北方向、“北偏西045度”西北方向、“南偏东045度”为东南方向、“南偏西045度”为西南方向. 5.画角的和、差、倍讲角平分线时既要会用文字表述又要掌握以下两点: (1)如图2∵ OC 平分∠AOB .(2)如图2∴OC 平分∠AOB典型例题【例1】 如右图所示,是线段的中点,则,.【例2】 如图,已知是线段上的两点,是的中点,是的中点,若,求线段的长. .【例3】 如图,已知线段AB 上依次有三个点把线段AB 分成2:3:4:5四个部分,,求BD 的长度.【例4】 线段上有两点、,,,,求的长.M A B 1______2A M =2_____2_____A B ==,B C A D M A B NC D ,M N a B C b==A D M D,,C D E 56AB =A B P Q 26A B =14AP =11PQ =B Q【例5】 已知:A ,B ,C ,D 四点共线,若3cm AB =,2cm BC =,4cm CD =,画出图形,求AD长.【例6】 如图所示,90AOB COD ∠=∠=︒,160AOD ∠=︒,求BOC ∠度数.【例7】 BOC ∠为AOC ∠外的一个锐角,射线OM 、ON 分别平分AOC ∠、BOC ∠.()190AOB ∠=°,30BOC ∠=°,求MON ∠的度数; ()2AOB α∠=,30BOC ∠=°,求MON ∠的度数;()390AOB ∠=°,BOC β∠=,还能否求出MON ∠的度数吗?若能,求出其值,若不能,说明理由.()4从前三问的结果你发现了什么规律?(5)若BOC ∠为AOC ∠内的一个锐角呢?【例8】 如图,OM 平分AOB ∠,ON 平分COD ∠,若50MON ∠=︒,10BOC ∠=︒, 求AOD ∠的小.C【例9】 如图10,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠的度数.课堂练习1 1、如图,,,点B 、O 、D 在同一直线上,则的度数为( ) (A ) (B ) (C ) (D )2、如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则(1)∠AOC 的补角是 ; (2) 是∠AOC 的余角; (3)∠DOC 的余角是 ; (4)∠COF 的补角是 .ND OABC D 图图13、如图,点A 、O、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE ,求∠COB 的度数4、如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠ 的度数.5、如图8,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.7、把一张正方形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG =______.8、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD .EA O图 8A CBEFB '9、如图14,将一副三角尺的直角顶点重合在一起. (1)若∠DOB 与∠DOA 的比是2∶11,求∠BOC 的度数.(2)若叠合所成的∠BOC =n°(0<n<90),则∠AOD 的补角的度数与∠BOC 的度数之比是多少?★10 .角的个数的数法按逆时针、按顺时针一点引出n 条射线共形成)1(21-n n 个角. 如图,在图(a),在角内引一条射线时,图中共有(1+2)个角; 在图(b)中,在角内引两条射线时,图中共有(1+2+3)个角;在图(c)中,在角内引三条射线时,图中共有多少个角?如果在角内引n 条射线(n 为自然数)时,则共有几个角?(a) (b) (c)★11. 钟表上的时针、分针和秒针我们把钟表看成一个圆周,其上共有12个大格,故每个大格度数为003012360=,每个大格中又有5个小格,故每个小格度数为06530=(1)10:00时,时钟的时针与分针所成的角度是_____.(2)时间为三点半时,钟表时针和分针所成的角为______,由2点到7点半,时针转过的角度为______.(3)12时时,钟表上的时针与分针重合,问每多长时间两针再重合?(4)分针和秒针每隔多长时间重合一次?课堂练习21、如图,点C 在线段AB 上,AC = 8厘米,CB = 6厘米,点M 、N 分别是AC 、BC 的中点。
2022年沪教版(上海)六年级数学第二学期第七章线段与角的画法难点解析试题(含解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副直角三角板如图所示摆放,则图中ADC ∠的大小为( )A .75°B .120°C .135°D .150°2、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠3、若∠α=73°30',则∠α的补角的度数是( )A .16°30'B .17°30'C .106°30'D .107°30'4、如图,货轮O 航行过程中,同时发现灯塔A 和轮船B ,灯塔A 在货轮O 北偏东40°的方向,∠AOE =∠BOW ,则轮船B 在货轮( )A .西北方向B .北偏西60°C .北偏西50°D .北偏西40°5、如图,从A 到B 有4条路径,最短的路径是③,理由是( )A .因为③是直的B .两点确定一条直线C .两点间距离的定义D .两点之间线段最短6、如图,一副三角板(直角顶点重合)摆放在桌面上,若150BOC ︒∠=,则AOD ∠等于()A .30︒B .45︒C .50︒D .60︒7、如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( )A .128°B .142°C .38°D .152°8、建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是( )A .两点之间,线段最短B .过一点有且只有一条直线和已知直线平行C .垂线段最短D .两点确定一条直线9、已知线段AB =8cm ,BC =6cm ,点M 是AB 中点,点N 是BC 中点,将线段BC 绕点B 旋转一周,则点M 与N 的距离不可能是( )A .1B .6C .7D .810、如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠相等的是( ).A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知M 是线段AB 的中点,N 是线段MB 的中点,若NB =2cm ,则AB =______.2、点CD 都在线段AB 上,且AB =30,CD =12,E ,F 分别为AC 和BD 的中点,则线段EF 的长为 _____ .3、如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东25°的方向上,那么AOB ∠的大小为________°.4、如图,C 为线段AB 上一点,18AB =,10AC =,D ,E 分别是AB ,AC 的中点,则DE 的长为______.5、如图,AO BO ⊥,CO DO ⊥.则图中与BOC ∠互补的角是______.三、解答题(5小题,每小题10分,共计50分)1、已知,(0180)AOB αα︒︒∠=<<,(0180)COD ββ︒︒∠=<<.(1)如图1,当αβ=时,作OE 平分BOC ∠,与AOE ∠相等的角是________;(2)如图2,当180αβ︒+=时,作OE 平分AOC ∠,OF 平分BOD ∠.求EOF ∠的度数;(3)如图3,作OE 平分AOC ∠,OF 平分BOD ∠.若45EOF ︒∠=,直接写出α与β满足的数量关系.2、如图,已知不在同一条直线上的三点A ,B ,C .(1)延长线段BA 到点D ,使得AD AC AB =+(用尺规作图,保留作图痕迹);(2)若∠CAD 比∠CAB 大100︒,求∠CAB 的度数.3、(1)如图1,将一副直角三角尺的直角顶点C 叠放在一起,经探究发现∠ACB 与∠DCE 的和不变.证明过程如下:由题可知∠BCE =∠ACD =90°∴∠ACB = +∠BCD .∴∠ACB =90°+∠BCD .∴∠ACB +∠DCE=90°+∠BCD +∠DCE=90°+∠BCE∵∠BCE =90°,∴∠ACB +∠DCE = .(2)如图2,若将两个含有60°的三角尺叠放在一起,使60°锐角的顶点A 重合,则∠DAB 与∠CAE 有怎样的数量关系,并说明理由;(3)如图3,已知∠AOB =α,∠COD =β(α,β都是锐角),若把它们的顶点O 重合在一起,请直接写出∠AOD 与∠BOC 的数量关系.4、已知:OC ,OD 是∠AOB 内部的射线,OE 平分∠AOC ,OF 平分∠BOD .(1)若∠AOB =120°,∠COD =30°,如图①,求∠EOF 的度数;(2)若∠AOB =α,∠COD =β,如图②、图③,请直接用含α、β的式子表示∠EOF 的大小.5、已知A ,M ,N ,B 为同一条直线上顺次4个点,若:5:2AM MN =,12NB AM -=,24AB =,求BM 的长.-参考答案-一、单选题1、C【分析】根据题意得:∠ADB =45°,∠BDC =90°,从而得到∠ADC =∠ADB +∠BDC =135°,即可求解.【详解】解:根据题意得:∠ADB =45°,∠BDC =90°,∴∠ADC =∠ADB +∠BDC =45°+90°=135°.故选:C【点睛】本题主要考查了直角三角板中角的计算,熟练掌握一副直角三角板中每个角的度数是解题的关键.2、C【分析】根据直角的性质及各角之间的数量关系结合图形求解即可.【详解】解:∵直角三角板,∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒,即180BAE DAC ∠+∠=︒.故选:C .【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键.3、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.4、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.5、D【分析】根据两点之间,线段最短即可得到答案.【详解】解:∵两点之间,线段最短,∴从A 到B 有4条路径,最短的路径是③,故选D .【点睛】本题主要考查了两点之间,线段最短,熟知两点之间,线段最短是解题的关键.6、A【分析】由三角板中直角三角尺的特征计算即可.【详解】∵COD △和AOB 为直角三角尺∴90COD ︒∠=,90AOB ︒∠=∴BOC COD BOC AOB ∠-∠=∠-∠∴1509060AOC BOD ∠=∠=︒-︒=︒∴906030AOD BOA BOD ∠=∠-∠=︒-︒=︒故选:A .【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.7、B【分析】首先根据题意求出52AOD ∠=︒,然后根据AOB AOD BOD ∠=∠+∠求解即可.【详解】解:∵∠AOC 和∠BOD 都是直角,∠DOC =38°,∴903852AOD AOC DOC ∠=∠-∠=︒-︒=︒,∴5290142AOB AOD BOD ∠=∠+∠=︒+︒=︒.故选:B .【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出AOD ∠的度数.8、D【分析】根据两点确定一条直线解答即可;【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是两点确定一条直线;故选:D【点睛】本题考查了两点确定一条直线的应用,正确理解题意、掌握解释的方法是关键.9、D【分析】正确画出的图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系的多种可能,求出线段MN 的长度的最大和最小值即可.【详解】解:∵AB =8cm ,BC =6cm ,点M 是AB 中点,点N 是BC 中点,第一种情况:B 在AC 上,线段MN 的长度最大,最大值为:MN =12AB +12BC =7;第二种情况:B 在AC 延长线上,线段MN 的长度最小,最小值为:则MN =12AB ﹣12BC =1.故选:D【点睛】本题考查了两点间的距离,解题关键是求出线段MN 的长度的最大和最小值.10、C【分析】根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.【详解】解:A 、α∠+β∠=180°−90°=90°,互余; B 、α∠+β∠=60°+30°+45°=135°;C 、根据同角的余角相等,可得α∠=β∠;D 、α∠+β∠=180°,互补;故选:C .【点睛】本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.二、填空题1、8cm【分析】根据线段中点的性质求解即可.【详解】解:∵N是线段MB的中点,∴24cm==MB NB∵M是线段AB的中点,∴28cm==AB MB故答案为:8cm.【点睛】本题主要考查了线段中点的有关计算,准确分析利用数形结合的思想计算是解题的关键.2、21【分析】根据线段的和差,可得(AC+DB),根据线段中点的性质,可得(AE+BF),再根据线段的和差,可得答案.【详解】解:如图,AC+DB=AB﹣CD=30﹣12=18.由点E是AC的中点,点F是BD的中点,得(AC+DB)=9.∴AE+BF=12EF=AB﹣(AE+BF)=30﹣9=21.如图,AC+DB=AB+CD=30+12=42.由点E 是AC 的中点,点F 是BD 的中点,得∴AE +BF =12 (AC +DB )=21. EF =AB ﹣(AE +BF )=30﹣21=9.故答案为:21或9.【点睛】本题考查了求线段长,利用线段的和差得出(AE +BF )是解题关键.3、145【分析】如图(见解析),先根据方位角的定义可得160∠=︒,325∠=︒,再根据角的和差即可得.【详解】如图,由题意得:160∠=︒,325∠=︒,a b ⊥,290130∴∠=︒-∠=︒,490∠=︒243309025145AOB ∴∠=∠+∠+∠=︒+︒+︒=︒,故答案为:145..【点睛】本题考查了方位角的定义、角的和差,熟练掌握方位角的定义是解题关键.4、故答案为:28,【点睛】本题考查的是方向角的概念,根据方向角的表示方法画出图形,利用数形结合进行求解是解答此题的关键.12.4【分析】由D ,E 分别是AB ,AC 的中点,先求解,,AD AE 再利用,DEAD AE 从而可得答案.【详解】 解: 18AB =,10AC =,D ,E 分别是AB ,AC 的中点,119,5,22AD BD AB AE CE AC 95 4.DE AD AE故答案为:4【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的中点与和差关系求解未知线段的长度”是解本题的关键.5、AOD ∠【分析】利用互补的定义得出与BOC ∠互补的角.【详解】解:∵AO BO ⊥,CO DO ⊥,∴90AOC BOC ∠+∠=,90BOD BOC ∠+∠=,∴()180AOC BOC BOD BOC ∠+∠+∠+∠=,即180AOD BOC ∠+∠=∴与BOC ∠互补的角是: AOD ∠故答案为: AOD ∠【点睛】本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.三、解答题1、(1)DOE ∠;(2)90°;(3)90αβ︒+=.【分析】(1)当αβ=时,可得=AOC BOD ∠∠,再由OE 平分BOC ∠得到角度相等,最后表示出AOE ∠,即可找到相等角;(2)根据=EOF AOD EOA DOF ∠∠-∠-∠计算即可;(3)根据=45EO O OF C F E C ︒∠+∠=∠计算即可;【详解】解:(1)∵当αβ=时,∴AOB COD ∠=∠∴AOB BOC COD BOC ∠-∠=∠-∠即=AOC BOD ∠∠∵OE 平分BOC ∠∴EOB COE ∠=∠∵AOE AOC COE ∠=∠+∠∴AOE AOC COE BOD BOE DOE ∠=∠+∠=∠+∠=∠故答案为:DOE ∠.(2)OE 平分AOC ∠,OF 平分BOD ∠,2AOC EOC ∴∠=∠,2BOD BOF ∠=∠.180αβ︒+=,180AOB COD ︒∴∠+∠=.AOB AOC BOC ∠=∠+∠,COD BOC BOD ∠=∠+∠,180AOC BOC BOC BOD ︒∴∠+∠+∠+∠=.2180AOC BOC BOD ︒∴∠+∠+∠=.222180EOC BOC BOF ︒∴∠+∠+∠=.90EOC BOC BOF ︒∴∠+∠+∠=.90EOF ︒∴∠=.(3)OE 平分AOC ∠,OF 平分BOD ∠,12EOC AOC ∴∠=∠,12DOF BOD ∠=∠.. ∵45EOF ︒∠=∴45EOC COF ︒∠+∠= ∵12COF BOF BOC DOB BOC ∠=∠-∠=∠-∠ ∴114522AOC DOB BOC ︒∠+∠-∠= AOC AOB BOC ∠=∠-∠,BOD COD BOC ∠=∠-∠, ∴()()114522AOB BOC COD BOC BOC ︒∠+∠+∠+∠-∠= ∴11()45()22AOB COD αβ︒∠+∠==+ ∴90αβ︒+=.【点睛】本题考查角度计算,解题的关键是根据图形表示出要求得角度再根据已知条件进行推导.2、(1)见解析,(2)40°【分析】(1)先画射线BA ,在BA 延长线上截取AE =AC ,然后在线段AE 的延长线上截取ED =AB ;(2)利用邻补角的定义得到∠CAD +∠CAB =180°,再加上已知条件∠CAD ﹣∠CAB =100°,然后通过解方程组得到∠CAB 的度数.【详解】解:(1)如图,线段AD为所作;(2)∵∠CAD﹣∠CAB=100°,∠CAD+∠CAB=180°,∴100°+∠CAB+∠CAB=180°,2∠CAB=80°,∴∠CAB=40°.【点睛】本题题考查了画线段和求角度,解题关键是熟练掌握几何作图,明确角之间的数量关系.3、(1)∠ACD,180°;(2)∠DAB+∠CAE=120°,见解析;(3)∠AOD+∠BOC=β+α【分析】(1)结合图形把∠ACB与∠DCE的和转化为∠ACD与∠BCE的和;(2)结合图形把∠DAB与∠CAE的和转化为∠DAC与∠EAB的和;(3)结合图形把∠AOD与∠BOC的和转化为∠AOB与∠COD的和.【详解】解:(1)由题可知∠BCE=∠ACD=90°,∴∠ACB=∠ACD+∠BCD,∴∠ACB=90°+∠BCD,∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE,∵∠BCE =90°,∴∠ACB +∠DCE =180°,故答案为:∠ACD ,180°;(2)∠DAB +∠CAE =120°,理由:由题可知∠DAC =∠EAB =60°,∴∠DAB =∠DAC +∠CAB ,∴∠DAB =60°+∠CAB ,∴∠DAB +∠CAE=60°+∠CAB +∠CAE=60°+∠EAB ,∵∠EAB =60°,∴∠DAB +∠CAE =120°;(3)∵∠AOB =α,∠COD =β,∴∠AOD =∠COD +∠AOC =β+∠AOC ,∴∠AOD +∠BOC=β+∠AOC +∠BOC=β+∠AOB=β+α.【点睛】本题考查了余角和补角,根据题目的已知条件并结合图形找角与角之间的关系是解题的关键.4、(1)75︒(2)22αβαβ+-,【分析】(1)根据角平分线的定义可得,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,根据120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒建立方程求得45x y +=︒,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠(2)方法同(1)根据题意可得图②:22x y βα++=,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠,图③:22x y βα++=进而根据EOF EOC COD DOF ∠=∠-∠+∠即可求得EOF ∠,【详解】解:(1) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒,∠COD =30°,即2230120x y ++︒=︒45x y ∴+=︒∴EOF EOC COD DOF ∠=∠+∠+∠30453075x y =++︒=︒+︒=︒(2) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,AOB COD αβ∠∠=,=,如图②即AOB DOF FOB COD AOE COE α∠=∠+∠+∠+∠+∠=22x y βα∴++=2x y αβ-∴+=∴EOF EOC COD DOF ∠=∠+∠+∠22x y αβαβββ-+=++=+=∴EOF ∠=2αβ+如图③AOB DOF FOB COD AOE COE α∠=∠+∠-∠+∠+∠=22x y βα∴+-=2x y αβ+∴+=∴EOF EOC COD DOF ∠=∠-∠+∠22x y αβαβββ+-=+-=-=∴EOF ∠=2αβ-【点睛】本题考查了几何图形中角度计算,角平分线的意义,掌握角度的计算是解题的关键.5、19【分析】设AM =5x ,MN =2x ,则NB =12+5x ,根据AB =24,可得关于x 的方程,解方程求出x 的值,再根据BM =AB −AM 即可求解.【详解】解:设5AM x =,则2MN x =.∵12NB AM -=,∴125NB x =+.∵24AB =,∴24AM MN NB ++=,即5212524x x x +++=,解得1x =.∴212519BM MN BN x x =+=++=.【点睛】本题考查了两点间的距离,一元一次方程的应用,解答本题关键是熟练掌握方程思想,属于基础题.。
沪教版数学六年级下册第七章《线段与角的画法》教学设计
沪教版数学六年级下册第七章《线段与角的画法》教学设计一. 教材分析沪教版数学六年级下册第七章《线段与角的画法》的内容包括线段的画法、角的画法以及线段和角的基本性质。
这部分内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析六年级的学生已经掌握了初步的画图技巧,对于线段和角的概念有一定的了解。
但是,对于如何准确地画出线段和角,以及线段和角的基本性质,还需要进一步的指导和练习。
三. 教学目标1.掌握线段的画法,能够准确地画出给定长度的线段。
2.掌握角的画法,能够准确地画出给定度数的角。
3.理解线段和角的基本性质,能够运用这些性质进行简单的证明和计算。
四. 教学重难点1.线段的画法,特别是对于不同长度线段的画法。
2.角的画法,特别是对于不同度数角的画法。
3.线段和角的基本性质的理解和运用。
五. 教学方法采用讲解法、演示法、练习法、讨论法等相结合的方法,通过教师的引导和学生的积极参与,使学生掌握线段和角的画法以及基本性质。
六. 教学准备1.准备相关的教学PPT,包括线段的画法、角的画法以及线段和角的基本性质的讲解和示例。
2.准备一些实际的线段和角,以便进行演示和练习。
3.准备一些练习题,以便进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个实际问题引入线段和角的概念,例如:“小明家和学校之间的距离是200米,请你画出这条线段。
”让学生思考和讨论如何画出这条线段,从而激发学生的学习兴趣。
2.呈现(15分钟)讲解线段的画法,包括如何使用尺子和圆规准确地画出给定长度的线段。
同时,展示一些实际的线段,让学生进行观察和理解。
3.操练(10分钟)让学生分组进行练习,每组给定一个长度,要求学生互相合作,使用尺子和圆规画出这个长度的线段。
教师巡回指导,解答学生的问题,并给予评价和反馈。
4.巩固(5分钟)讲解角的画法,包括如何使用尺子和圆规准确地画出给定度数的角。
同时,展示一些实际的角,让学生进行观察和理解。
上海市(沪教版)六年级数学(下)学期 第7章 线段与角的画法 单元测试卷 (含解析)
六年级数学(下)学期第7章线段与角的画法单元测试卷一.选择题(共6小题)+=,那么()1.已知线段AB和点P,如果PA PB ABA.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上2.如图所示,下列表示角的方法错误的是()A.1∠与PON∠表示同一个角B.α∠表示的是MOP∠C.MON∠也可用O∠表示D.图中共有三个角MON∠∠,POM∠,PON3.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能画出的角度是()A.18︒B.55︒C.63︒D.117︒4.如图,20∠=︒,OE是AOC∠的度数为(∠的角平分线,则COEBOC∠=︒,80AOB)A.50︒B.40︒C.30︒D.20︒5.如图,点A、O、B在一条直线上,1∠的余角是()∠是锐角,则1A .1212∠-∠B .132122∠-∠C .1(21)2∠-∠D .1(12)3∠+∠ 6.如图,下列关于图中线段之间的关系一定正确的是( )A .22x x b c =+-B .22c b a b -=-C .2x b a c b +=+-D .232x a c b +=+二.填空题(共12小题)7.4836︒'的余角是 ,补角是 .8.把一根木条钉牢在墙壁上需要 个钉子,其理论依据是: .9.已知角a 的余角比它的补角的13还少10︒,则a = . 10.已知线段6AB cm =,点C 在直线AB 上,13AC AB =,则BC = . 11.如图,O 是直线AB 上的一点,5317AOC ∠=︒',则BOC ∠的度数是 .12.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠= .13.在直线上取A 、B 两点,使10AB =厘米,再在直线上取一点C ,使7AC =厘米,M 、N 分别是AB 、AC 的中点,则MN = 厘米.14.如图,10AB cm =,O 为线段AB 上的任意一点,C 为AO 的中点,D 为OB 的中点,则线段CD 长 .15.如图,点A 、O 、B 在一条直线上,且50AOC ∠=︒,OD 平分AOC ∠,则BOD ∠= 度.16.已知线段AB ,在AB 的延长线上取一点C ,使2AC BC =,在AB 的反向延长线上取一点D ,使3DA AB =,那么线段DB 是线段AC 的 倍. 17.如图,三条直线1L ,2L ,3L 相交于一点O ,若312422∠=∠=︒,则3∠的度数为 度.18.往返于甲、乙两地的客车,中途停靠4个车站(来回票价一样),且任意两站间的票价都不同,共有 种不同的票价,需准备 种车票.三.解答题(共7小题)19.计算:7235218334︒'÷+︒'⨯.20.一个角的补角比它的余角的32还多60︒,求这个角的度数. 21.一个角的余角比这个角的12少30︒,请你计算出这个角的大小. 22.如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若9AC cm =,6CB cm =,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能猜想MN 的长度吗?请直接写出你的答案.(3)若C 在线段AB 的延长线上,且满足AC BC b -= cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.23.下面是小马虎解的一道题题目:在同一平面上,若80BOA ∠=︒,15BOC ∠=︒,求AOC ∠的度数.解:根据题意可画出图.801565AOC BOA BOC ∠=∠-∠=︒-︒=︒Q65AOC ∴∠=︒若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.24.如图,AOB∠=︒,OD平分AOCCOE∠.AOC∠=︒,50∠是平角,80(1)求DOE∠的度数.(2)OE是BOC∠的角平分线吗?为什么?25.如图,数轴上点A,B表示的有理数分别为6-,3,点P是射线AB上一个动点(不与点A,B重合).M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN 的长为.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.参考答案一.选择题(共6小题)1.已知线段AB 和点P ,如果PA PB AB +=,那么( )A .点P 为AB 中点B .点P 在线段AB 上C .点P 在线段AB 外D .点P 在线段AB 的延长线上 【解答】解:如图:PA PB AB +=Q ,∴点P 在线段AB 上.故选:B .2.如图所示,下列表示角的方法错误的是( )A .1∠与PON ∠表示同一个角B .α∠表示的是MOP ∠C .MON ∠也可用O ∠表示D .图中共有三个角MON ∠,POM ∠,PON ∠【分析】根据角的表示方法表示各个角,再判断即可.【解答】解:A 、1∠与PON ∠表示同一个角是正确的,不符合题意;B 、α∠表示的是MOP ∠是正确的,不符合题意;C 、MON ∠不能用O ∠表示,原来的说法错误,符合题意;D 、图中共有三个角MON ∠,POM ∠,PON ∠是正确的,不符合题意.故选:C .3.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能画出的角度是( )。
第七章线段与角的画法
角度的大小与线段 的长度无关,但与 线段的位置有关。
角度可以用来描述两 条射线之间的夹角, 而线段可以用来描述 两点之间的距离。
在几何学中,角度 和线段是两个基本 概念,它们在许多 问题中都有应用。
垂直线性质:垂直线将角分 为两个相等的部分
平行线性质:平行线之间的 线段长度相等
角平分线性质:角平分线上 的点到角的两边距离相等
验证角的正确性:最后检查所画的角是否符合题目要求,是否符合几何定理
定角的顶点
确定角的第一条边
确定角的度数
确定角的第二条边
确定中心点 放置量角器 确定角度 绘制角度
平行线与同位角 平行线与内错角 平行线与同旁内角 角平分线与角的两边
角度的度量单位是 度,线段的长度单 位是厘米或毫米。
标记线段名称:在线段上或旁 边标注线段的名称,以便识别 和区分不同的线段。
标记起点和终点:使用箭头或 文字标记线段的起点和终点, 以明确线段的名称。
标记线段长度:在线段上或旁 边标注线段的长度,以便了解
线段的长度信息。
标记线段颜色:使用不同颜色 标记不同的线段,以便区分和
识别不同的线段。
使用测量工具确定长度 根据已知比例计算长度 利用已知线段作为参照确定长度 使用数学公式计算长度
掌握基础作图工具:熟悉各种作图工具,如直尺、圆规、三角板等,是提高作图技能 的前提。
不断练习:通过大量的练习,熟悉各种线段与角的作图技巧,提高作图的准确性和速 度。
注重细节:在作图过程中,注意细节的把握,如线条的平滑度、角度的准确性等,这 些细节将直接影响作图的质量。
总结反思:及时总结作图的经验与教训,反思作图过程中的不足之处,针对性地加强 练习,不断提高作图技能。
随着科技的发展,线段与角的应用也在不断拓展和创新,如智能制造、机器人等 领域中也广泛应用了线段与角的理论和技术。
沪教版小学数学六年级下册沪教版线段与角的画法练习知识点总结教案
O
东东东东
A
三、测试 1、用量角器分别量出下图中∠B、∠A、∠ACD 的大小,指出最大的角.
A
A
B
C
D
B
C
D
2、根据图形,写出 OC 与∠AOB 的位置关系,并用数学符号写出∠AOB 与∠COB 的大小关系.
TB:小初高题库
A C
C
A
沪教版小学数学
A(C)
O
B
O
B
O
B
3、用量角器画∠AOB=35°,以 OB 为一边,在∠AOB 的外部画∠BOC=55°,比较一下∠AOC 与三角板的直角的大 小.
M
E
F
① _________________________________________________________________; ② _________________________________________________________________. 数学符号语言(用“>”、“<”或“=”填空):MF_____EF, ME_____MF. 3、用直尺、圆规按要求画图,理解比较线段大小的方法:
7、用量角器量图中的角,30°的角有( 的角有( )个.
)个,60°的角有(
)个,90°的角有(
)个,120°
『知识拓展』 8、学校的绿化带有一个花坛,花坛的各种变长都相等,相邻的两条边的夹角都是120°,其中的一条边AB 长5.5米,按比例画出图形,花坛的周长是多少米?
2、如图:已知点C是线段AB的中点,AC=_____,AB=2_____=2_____,
1
AB=_____=_____.
2
A
A
A
第七章线段与角的画法(单元小结)-六年级数学下册同步精品课堂(沪教版)
∠ AOB 就是所求作的角.
例题讲解
例题5 画线段的和、差、倍.
已知线段a、b,画出一条线段, 使它等于2a-b.来自.ab
O
AC
B
P
解 (1)画射线OP; (2)在射线OP上顺次截取OA=a,AB=a; (3)在线段OB上截取BC=b.
线段 OC 就是所要画的线段.
例题讲解
课堂练习
练习1如图,已知点B是线段AC上的一点,如果点M是线段AB的中点,点N是线段AC的
中点,那么BC= MN.
.y . . y
A xM xB N
C
分析 设AM=x, AN=y,
点M是线段AB的中点 点N是线段AC的中点
AB=2AM=2MB=2x AC=2AN=2NC=2y
又BC=AC-AB
又MN=AN-AM
分别以点D、E为圆心,以大于 DE的同一长度为半径作
弧,两弧交于∠AOB内一点C.
知识梳理
余角
概念
如果两个角的度数的和是90°,那么这两 个角叫做互为余角,简称互余.其中一个角称 为另一个角的余角.
表示 命题
∠α+∠β= 90°
∠α是∠β的余角 ∠β是∠α的余角 ∠α与∠β互余
同角(或等角)的余角相等.
C
上图中,∠BOC=_∠___A_O_C___+__∠__A__O_B__;
∠AOC=_∠__B_O__C___-__∠__A_O__B__.
1
答:图中共有3个角,分别是 ∠AOB , ∠AOC,∠BOC.
例题讲解
例题3 画一条线段等于已知线段.
1. 度量画法(刻度尺); 2. 尺规作图.
a
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育教学服务质量家校互动卡第一部分学科教师对本次课的教学反馈学员姓名:年级:辅导科目:学科教师:授课日期及时段:孩子上次课后作业评价:优秀○良好○未完成○本次课孩子学习情况:学科教师签名:本次课布置的作业:第二部分家长反馈和校区主管审核经过与孩子的沟通,您对学科教师本次课教学设计、辅导讲义(见编号_____________的讲义)与教学效果的评价:非常满意○满意○需改进○不满意○您对本学科任课老师教学、跟踪服务等工作的建议:家长签名:校区主管签名:1,第一部分由龙文学科教师在每次课授课结束前填写,附在讲义前交给学员带回给家长审阅;2,第二部分先由家长填写并签名,学员下次上课前带回交给龙文学科教师,由学科教师提交给龙文校区主管放入学员档案存档。
龙文教育学科教师辅导讲义讲义编号六年级下线段与角教学目标:研究有关线段和角的概念、性质、画法和计算.教学内容:(本章是接触平面几何的起始章)一、内容提要1、关于直线的公理:过两点有且只有一条直线(两条直线相交的意义).2、射线、线段都是直线的一部分,它们的区别(端点个数、延伸性).3、线段的大小比较,线段的和、差、几倍、几分之一(线段的中点的意义).关于线段的公理:两点之间,线段最短(两点的距离的意义).线段的画法(用圆规,用度量方法).4、角的形成.角的大小比较,角的和、差、倍、几分之一(角平分线的意义).角的度量:周角、平角、直角、度、分、秒.小于平角的角的分类:锐角、直角、钝角.互为补角、互为余角的意义,性质:同角或等角的补角相等,同角或等角的余角相等.5、角的画法.二、学习要求1、了解几何图形、几何体、面、线、点等概念,了解几何的研究对象.2、掌握有关直线、线段的公理,了解直线、射线、线段的区别,理解线段的中点、两点间的距离的概念.会比较线段的大小,会画线段的和、差、几倍、几分之一,会画线段的中点.3、理解角、周角、平角、直角、钝角、锐角的概念,掌握角平分线的概念,会将小于平角的角进行分类.会比较角的大小,会画角的和、差、几倍、几分之一,会画角平分线.4、理解互为补角、互为余角的角的概念,理解它们的性质.掌握度、分、秒的换算.5、掌握几何图形的表示法,会用符号表示学过的几何图形;能看懂学过的几何语句,根据学过的几何语句准确地画出图形;会用学过的语句描述简单的几何图形.三、需要注意的几个问题1、学习中要注意观察实物、模型和几何图形,结合图形理解和掌握几何知识,同时,要注意学习如何画出整洁、美观的图形.2、要认真阅读课文,注意课文中有关词语的用法,如“有且只有”等,逐步培养自己认真阅读课文的习惯.3、学习几何的方法——会认图、画图、说图、写图(即表示图),在这过程中,逐步掌握几何语言——文字语言以描述为主,附带一点符号语言,如AB=CD、AB>CD、AD=AB+BC+CD 等等.4、研究几何离不开图形,能把图形画对等于理解了一半题意.对于画图的训练要贯串整个几何教学过程,从本章开始就培养画图能力.5、直线是一个不定义的基本概念,是研究其他图形的基础,所以必须对它的概念和性质以及表示法能熟练的掌握.6、射线、线段的定义与直线密切相关,要分清直线、射线、线段区别及联系.7、线段的中点是一个重要的概念,要使学生会用语言描述并掌握以下两点:(1)如图1∵C为AB中点(2)如图1∴C为AB中点.这是初步掌握几何表达式和渗透一点推理格式.8、学习线段的度量时,要会用圆规截线段,因为这是作几何题的最基本技能.要练会一些基本术语,如连结…,顺次截取…,延长线段到…等等.9、在后面学习相交、平行、三角形、四边形等知识时,一刻也离不开角,所以学习角的各种知识均为重点.讲角的表示法时,一定要反复强调什么时候可用一个字母表示,什么时候需用三个字母表示.10、讲角平分线时既要会用文字表述又要掌握以下两点:(1)如图2∵ OC平分∠AOB.(2)如图2∴OC平分∠AOB11、讲直角、平角、钝角、锐角时,要求会说定义,还需会画图.如画一个40°的角,应能估计出是比直角的一半小一些,别画太大.增强一些画图的直观性.学直角时,应掌握以下两点:(1)如图3∵∠AOB是直角,∴∠AOB=90°(2)如图3∵∠AOB=90°∴∠AOB是直角.12、掌握好度、分、秒的换算,防止出现百进位.13、两角互余及两角互补的定义是数量定义与位置无关.因此对它们的定义既会用文字表述又应掌握以下两点:(1)如图4∵∠1和∠2互为余角∴∠1+∠2=90°(2)如图4∵∠1+∠2=90°∴∠1和∠2互为余角.互补两角的定义也同上面类似.14、利用互余,互补作计算题时,要掌握以下两点:(1)一个角为x°,则它的余角为90°-x°(2)一个角为x°,则它的补角为180°-x°以便学会用代数方程的方法解几何题.15、互余(或互补)两角的性质虽然很重要,但因受所学知识的限制,一时还不能熟练掌握其应用方法,可以放到以后再说.但对两个性质的文字、图形及几何表达式一定要清楚.巩固练习1、如图,,,点B、O、D在同一直线上,则的度数为()(A)(B)(C)(D)2、如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,OF⊥AB.则(1)∠AOC的补角是;(2)是∠AOC的余角;(3)∠DOC的余角是;(4)∠COF的补角是.3、如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46’,OD平分∠COE,求∠COB的度数(7分)EDCBAO4、如图10,已知直线AB和CD相交于O点,COE∠是直角,OF平分AOE∠,34COF∠,求BOD∠的度数.5、如图9,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14,求∠DOE、∠BOE的度数.6、如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.7、把一张正方形纸条按图中那样折叠后,若得到∠AOB/=700,则∠B/OG=______.8、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.9、如图14,将一副三角尺的直角顶点重合在一起.(1)若∠DOB与∠DOA的比是2∶11,求∠BOC的度数.(2)若叠合所成的∠BOC=n°(0<n<90),则∠AOD的补角的度数与∠BOC的度数之比是多少?图10ACB EFB'第15题图10、如图,点C在线段AB上,AC = 8厘米,CB = 6厘米,点M、N分别是AC、BC的中点。
A BCM N(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC + CB = a厘米,其它条件不变,你能猜想MN的长度吗?并说明理由。
(3)若C在线段AB的延长线上,且满足AC BC = b厘米,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由。
11、如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度。
12、如图9,AD=12BD,E是BC的中点,BE=2cm,AC=10cm,求线段DE的长.13、有一张地图(如图),有A、B、C三地,但地图被墨迹污损,C地具体位置看不清楚了,但知道C地在A地的北偏东30°,在B地的南偏东45°,你能确定C•地的位置吗?14、如图8,东西方向的海岸线上有A、B两个观测站,在A地发现它的北偏东30°方向上有图9ADCB EDAC B45︒80︒北A CB一条渔船,同一时刻,在B地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.15、如图,OA的方向是北偏东15°,OB的方向是西偏北50°。
(1)若∠AOC=∠AOB,则OC的方向是___________;(2)OD是OB的反向延长线,OD的方向是_________;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,并用方位角表示OE的方向是_____________。
(4)在(1)、(2)、(3)的条件下,求∠COE。
16、如图,三角形ABC中,AB=AC,延长CA,用量角器量∠B、∠C、∠BAD。
(1)你能得出什么结论,猜想∠BAD、∠B、∠C的关系(可多画几个类似图形尝试)(2)用你得出的结论和猜想的关系解决下列问题:一暗礁边缘有一标志C在灯塔B北偏西80°的方向上,与灯塔B的距离为30海里, 轮船从灯塔正南方30海里的A处出发,若航行方向是北偏西45°, 轮船能避开暗礁吗?说明理由.17、如图,分别从正面、左面、上面观察这个图形,请画出你看到的平面图形。
18、(1)棱长为a的正方体,摆成如图所示的上下三层.请求出该物体的表面积.(2)若依图中摆放方法类推,如果该物体摆放了上下10层,你能求出该物体的表面积吗?19、如下图,在已知角内画射线,画1条射线,图中共有个角;画2条射线,图中共有个角;画3条射线,图中共有个角,求画n条射线所得的角的个数。
20、任意画一个三角形ABC,取三边中点依次为D、E、F(如图16),连结DE、EF、FD得到三角形DEF.(1)分别量出三角形ABC的周长与三角形DE F的周长,你会发现什么?(2)用量角器量一下三角形ABC中∠A、∠B、∠C的度数之和;再量一下三角形DEF中的∠1、∠2、∠3的度数之和,你会发现什么?(3)多画几个试一试,你会得到哪些猜想?21、已知:如图(6)∠ABC=30°,∠CBD=70°BE是∠ABD的平分线,求∠DBE的度数。
图(6)22、已知:如图(7),B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD的中点,CD图1 图2 =6㎝,求线段MC 的长。
图(7)课后练习一、耐心填一填(每小题3分,共24分)1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.2. 三条直线两两相交,则交点有_______________个.3.如图1,AC=DB ,写出图中另外两条相等的线段__________.4.如图2所示,线段AB 的长为8cm ,点C 为线段AB 上任意一点,若M 为线段AC 的中点,N 为线段CB 的中点,则线段MN 的长是_______________.5.已知线段AB 及一点P ,若AP+PB>AB,则点P 在 . 6.已知线段AB=10,直线AB 上有一点C,且BC=4,M 是线段AC 的中点,则AM 的长为 . 7.下列说法中不正确的有①一条直线上只有两个点;②射线没有端点;③如图,点A ④射线OA 与射线AO 是同一条射线;;⑥延长直线CD 到E ,使DE CD =.答案:①②③④⑥.8. 如图给出的分别有射线,直线,线段,其中能相交的图形有 个.二、精心选一选(每小题3分,计24分) 1.下列说法中错误的是( ).A .A 、B 两点之间的距离为3cm B .A 、B 两点之间的距离为线段AB 的长度C .线段AB 的中点C 到A 、B 两点的距离相等D .A 、B 两点之间的距离是线段AB 2.下列说法中,正确的个数有( ).(1)射线AB 和射线BA 是同一条射线 (2)延长射线MN 到C(3)延长线段MN 到A 使NA==2MN (4)连结两点的线段叫做两点间的距离 A .1 B .2 C .3 D .43.同一平面内有四点,过每两点画一条直线,则直线的条数是 ( ) (A)1条 (B)4条 (C)6条 (D)1条或4条或6条4.如图4,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ).AaA BDDA BC Bba ①②③④A.CD=AC-BD B.CD=21BCC.CD=21AB-BD D.CD=AD-BC5.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外6.如图5,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线().A.A→C→D→B B.A→C→F→BC.A→C→E→F→B D.A→C→M→B7. 某公司员工分别住在A,B,C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A,B两区之间答案:A.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是(). A.8cm B.2cm C.8cm或2cm D.4cm三、用心想一想(本大题共52分)1.(本题8分)如图6,四点A、B、C、D,按照下列语句画出图形:(1)联结A,D,并以cm为单位,度量其长度;(2)线段AC和线段DB相交于点O;(3)反向延长线段BC至E,使BE=BC.2.(本题10分)动手操作题:点和线段在生活中有着广泛的应用.如图7,用7根火柴棒可以摆成图中的“8”.你能去掉其中的若干根火柴棒,摆出其他的9个数字吗?请画出其中的4个来.3.(10分)如图8,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中所有线段的长度的和.4.(本题12分)在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五图5图7图6图4图8A B C100米200米个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司在支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?图96. 如图,在正方形两个相距最远的顶点处逗留着一只苍蝇和一只蜘蛛.①蜘蛛可以从哪条最短的路径爬到苍蝇处?请你画图并说明你的理由?②如果蜘蛛要沿着棱爬到苍蝇处,最短的路线有几条?苍蝇蜘蛛7.(附加题)图10为中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走,例如:图中“马”所在的位置可以直接走到点A.B等处.若“马”的位置在C处,为了到达D点,请按“马”走的规则,在图10的棋盘上用虚线画出一种你认为合理的行走路线.课后练习2一.选择题:1.下列说法中,错误的是().A.经过一点的直线可以有无数条 B.经过两点的直线只有一条C.一条直线只能用一个字母表示 D.线段CD和线段DC是同一条线段2. 已知线段2AC=,3BC=,则线段AB的长度是()A.5 B.1 C.5或1 D.非以上答案3.下列图形中,能够相交的是( ).图104. 下列叙述正确的是 ( )①线段AB 可表示为线段BA ;②射线AB 可表示为射线BA ;③直线AB 可表示为直线BA .A.①② B.①③ C.②③ D.①②③5. 平面上有三点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ) A.点C 在线段AB 上 B.点C 在线段AB 的延长线上 C.点C 在直线AB 外 D.点C 可能在直线AB 上,也可能在直线AB 外6. 如图,13AC AB =,14BD AB =,AE CD =,则CE 与AB 之比为 ( )A.16 B.18 C.112 D.1167.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有A.①② B.①③ C.②④ D.③④二.填空题:8. 直线有 个端点,射线有 个端点,线段有 个端点.9. 经过两点可以作 条线段, 条射线, 条直线.10根据图,填空:⑴ 线段AD 交射线BC 于E ; 线段BA 至F ;反向延长射线 .⑵延长线段DC 交 的 于点F ,线段CF 是线段DC 的 线.11 三点A ,B ,C 在同一条直线上,若2BC AB =且AB m =,则____AC =.12. 在一直线上有A ,B ,C 三点,为AB 的中点,N 为BC 的中点,若AB m =,BC n =,则用含m ,n 的代数式 可表示线段MN .答案:1()m n +或1()m n -. 13. 在连结两点的所有线中,最短的是 .三.解答题:14. 读句子,画图形:⑴直线l 与两条射线OA ,OB 分别交于点C ,点D .⑵作射线OA ,在OA 上截取点D ,E ,使OD DE =.A C E DB A B CD EF15. 如图:4AB =cm ,3BC =cm ,如果O 是线段AC 的中点. 求线段OB 的长度.(括号内注理由)解:∵ AC= + =7 (cm ),又∵ O 为AC 的中点,( ) ∴OC= AC= (㎝),( )∴0.5OB OC BC =-=(cm ).16. 图中A ,B ,C ,D 是四个居民小区,现在为了使居民生活方便,想在四个小区之间建一个超市,最好能使超市距四个小区的距离之和最小.请你来设计,能找到这样的位置P 点吗?如果能,请画出点P .17. 往返于甲、乙两地的客车,中途停靠三个站,问:(1)有多少种不同的票价?(2)要准备多少种车票?18.如图,234AB BC CD =::::,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC 多长?19. 已知线段10AB =cm ,试探讨下列问题.⑴是否存在一点C ,使它到A ,B 两点的距离之和等于8cm ?并试述理由.⑵是否存在一点C ,使它到A ,B 两点的距离之和等于10cm ?若存在,它的位置惟一吗?⑶当点C 到A ,B 两点的距离之和等于20cm 时,点C 一定在直线AB 外吗?举例说明.20. 如图8,一圆柱体的底面周长为24cm ,高AB 为4cm ,BC 是直径,一只蚂蚁从点A 出发AAD M B C D沿着圆柱体的表面爬行到点C的最短路程大约是多少?课后练习3一、选择题1、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF.②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个(第1题图) (第3题图) (第4题图) (第5题图) 2、已知MN是线段AB的垂直平分线,C、D是MN上任意两点,则∠CAD与∠CBD的大小关系是()A.∠CAD>∠CBDB.∠CAD=∠CBDC.∠CAD<∠CBDD.与C、D无关3、如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是()A.mnB.21mn C.2mn D.31mn4、如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C5、如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE。