海明码原理

合集下载

海明校验码的原理详解

海明校验码的原理详解

海明校验码的原理详解2006年12月27日星期三 10:57海明码是一种多重(复式)奇偶检错系统。

它将信息用逻辑形式编码,以便能够检错和纠错。

用在海明码中的全部传输码字是由原来的信息和附加的奇偶校验位组成的。

每一个这种奇偶位被编在传输码字的特定位置上。

实现得合适时,这个系统对于错误的数位无论是原有信息位中的,还是附加校验位中的都能把它分离出来。

推导并使用长度为m位的码字的海明码,所需步骤如下:1、确定最小的校验位数k,将它们记成D1、D2、…、Dk,每个校验位符合不同的奇偶测试规定。

2、原有信息和k个校验位一起编成长为m+k位的新码字。

选择k校验位(0或1)以满足必要的奇偶条件。

3、对所接收的信息作所需的k个奇偶检查。

4、如果所有的奇偶检查结果均为正确的,则认为信息无错误。

如果发现有一个或多个错了,则错误的位由这些检查的结果来唯一地确定。

校验位数的位数推求海明码时的一项基本考虑是确定所需最少的校验位数k。

考虑长度为m位的信息,若附加了k个校验位,则所发送的总长度为m+k。

在接收器中要进行k个奇偶检查,每个检查结果或是真或是伪。

这个奇偶检查的结果可以表示成一个k位的二进字,它可以确定最多2k种不同状态。

这些状态中必有一个其所有奇偶测试试都是真的,它便是判定信息正确的条件。

于是剩下的(2k-1)种状态,可以用来判定误码的位置。

于是导出下一关系:2k-1≥m+k码字格式从理论上讲,校验位可放在任何位置,但习惯上校验位被安排在1、2、4、8、…的位置上。

图5列出了m=4,k=3时,信息位和校验位的分布情况。

图5 海明码中校验位和信息位的定位校验位的确定下面为我增加,意在提出编码方法以助理解(但编码是否主要标准不可知)每行的值等于数值为1的各位码相异或。

如m=4,k=3.数据位前三行,校验位为后三行。

即A=p1⊕D1⊕D3⊕D4=0 得P1=D1⊕D3⊕D4B=P2⊕D2⊕D3⊕D4=0 得P2=D2⊕D3⊕D4C=P3⊕D1⊕D2⊕D3⊕D4=0 得P3=D1⊕D2⊕D3⊕D4 以下计算访求同下k个校验位是通过对m+k位复合码字进行奇偶校验而确定的。

海明码原理

海明码原理

海明码原理
海明码原理是记录和传播信息的一种编码方式。

它是由早期的美国科学家珍妮海明创建的,用来满足信息处理领域中的一些需求。

它是一种线性反馈法,允许信息以高效的方式进行编码,以及由编码到译码。

海明码原理基于二进制编码,每一位由0和1两个数字组成。

这种代码可以被用来表示字母、数字和特殊字符,并可以用于传输数据和信息。

例如,单词“hello”可以用七个比特位编码:01101000 01100101 01101100 01101100 01101111。

通过海明码原理,可以将比特串转换成码字,也就是将比特串按照一定的顺序重新排列组合,使得字符或符号可以按照正确的顺序出现。

这种编码方式有很多优势,可以有效防止传输过程中信息的失真,使得接收端可以正确地接收信息。

在传输过程中,可以使用不同的信道,比如电子邮件、短信、函件等,将海明码传输到目的地。

为了保证信息的安全,海明码技术还可以结合加密技术,使信息在传输过程中不易被破解,从而保护信息的安全性。

海明码的发明对信息处理领域产生了重大影响,在计算机科学、信息技术、电子通讯和其他相关领域都有重要的作用。

现在,海明码被广泛应用在有线通讯、无线通讯、数据存储、数据处理等领域,它更加普及,使用范围也更广。

综上所述,海明码原理是一种线性反馈法,是一种基于二进制编
码的编码方式,可以有效地保护信息在传输过程中的安全性。

它已经逐步成为现代信息处理的标准,广泛应用于各个领域,从而极大地改进了人类的生活质量。

海明码例题

海明码例题

海明码例题
摘要:
1.海明码的定义与原理
2.海明码的编码过程
3.海明码的解码过程
4.海明码的应用实例
5.总结
正文:
一、海明码的定义与原理
海明码是一种纠错码,它可以检测并纠正数据传输过程中产生的错误。

海明码的原理是利用冗余信息来实现数据的纠错,从而保证数据的正确传输。

海明码可以检测到并纠正一定数量的错误,其纠错能力取决于码的构造方式和错误检测位数。

二、海明码的编码过程
海明码的编码过程主要分为以下几个步骤:
1.确定编码长度:根据需要纠正的错误位数,确定编码的长度。

2.计算校验位:根据编码长度和需要纠正的错误位数,计算校验位的位置和值。

3.添加校验位:将计算出的校验位添加到数据位后面,形成一个完整的编码。

三、海明码的解码过程
海明码的解码过程是通过检测错误位和校验位来实现的。

具体步骤如下:
1.检测错误位:根据编码的构造方式,检测编码中是否存在错误位。

2.校验位解码:利用校验位计算出错误的位置和值,然后进行纠正。

四、海明码的应用实例
海明码广泛应用于数据通信、存储和处理等领域,如硬盘驱动器、数据传输和卫星通信等。

五、总结
海明码是一种重要的纠错码,它可以有效地检测和纠正数据传输过程中的错误。

海明码纠错原理

海明码纠错原理

海明码纠错原理海明码(Hamming Code)是一种用于检错和纠错的编码方式,由理查德·海明在1950年提出。

它可以发现并纠正单一位错误,也可以检测并纠正双位错误。

海明码的纠错原理是通过增加校验位来实现的,下面我们来详细了解一下海明码的纠错原理。

首先,海明码是一种线性分组码,它的编码方式是将数据位和校验位按照一定规则排列组合而成。

在传输数据时,发送端会对数据进行编码,添加校验位后发送出去;接收端收到数据后,会对接收到的数据进行解码,并根据校验位进行错误的检测和纠正。

其次,海明码的纠错原理是基于奇偶校验的。

在海明码中,校验位的位置是通过2的幂次方来确定的,例如第1、2、4、8、16位是校验位,其余位是数据位。

对于校验位而言,每一个校验位都负责一定范围内的数据位的奇偶校验。

当接收端接收到数据后,会对每个校验位进行奇偶校验,如果发现某个校验位的奇偶校验与接收到的数据不一致,就会根据校验位的位置确定出错的位置,并进行纠正。

最后,海明码的纠错原理可以通过一个简单的例子来说明。

假设发送端要发送一个4位的数据1010,按照海明码的规则,需要添加3个校验位。

经过编码后,发送的数据变为1010101。

在传输过程中,如果某一位发生了错误,例如1010101中的第4位发生了错误,接收端在接收到数据后,会对每个校验位进行奇偶校验,发现第2位和第4位的奇偶校验不一致,根据校验位的位置,可以确定出错的位置是第4位,然后进行纠正,将错误的位从0变为1。

最终,接收端得到的数据是1010,错误被成功纠正。

综上所述,海明码的纠错原理是通过增加校验位来实现的,通过对校验位的奇偶校验来检测错误,并根据校验位的位置进行错误的定位和纠正。

海明码在通信领域有着广泛的应用,能够有效地提高数据传输的可靠性和稳定性,是一种非常实用的纠错编码方式。

海明码,汉明码,hamming

海明码,汉明码,hamming

海明码,汉明码,hamming code--计算法则最近最海明码很感兴趣,查了些资料,有⼀篇资料极好,所以贴出来,希望供有需求的⼈能有个参考。

1 海明码原理概述 海明码是R. Hamming提出的, ⼀种可以纠正⼀位错的差错控制编码。

了解海明码之前, 先回顾⼀下简单的奇偶校验码的情况。

若信息位为K=n- 1位, 表⽰为a1~an- 1, 加上⼀位偶校验位(冗余位)a0, 构成⼀个n位的码字a0~an- 1, 在接收端校验时, 可按关系式: s=a0+a1+a2+…an- 1来计算, 若S=0, 则⽆错, 若S=1, 则有错。

上式可称为监督关系式, S称为校正因⼦。

在奇偶校验情况下, 只有⼀个监督关系式和⼀个校正因⼦, 其取值只有两种(0或1),分别代表了⽆错和有错的情况, ⽽不能指出差错所在的位置。

不难想象, 若增加冗余位, 也相应地增加监督关系式和校正因⼦, 就能区分更多的情况。

如, 若有两个校正因⼦, 则其取值就有4种可能: 00、01、10或11, 就能区分4种不同情况。

若其中⼀种表⽰⽆错, 另外三种不但可以⽤来指出有错, 还可以⽤来区分错误的情况, 如指出是哪⼀位错等。

⼀般⽽⾔, 信息位为K位, 增加r位冗余位, 构成n=k+ r位码字。

若希望⽤r个监督关系式产⽣的r个校正因⼦来区分⽆错和在码字中的n个不同位置的⼀位错, 则表⽰:或。

2 构造海明码的冗余位和监督关系式的⽅法 按上述设计思路, 为了叙述清楚, 下⾯以信息位K=7来讨论海明码的冗余位和监督关系式的具体构造过程和⽅法。

因为且k=7, 所以≥4, 即⾄少需要4位冗余位(对应产⽣4个校正因⼦和4个监督关系式), 形成24=16种不同取值, ⽤其中11种分别表⽰⽆错和a0~a10中⼀位错的情况。

构造表如表1: 冗余码如下: a0=a8+a9+a10 (1) a1=a5+a6+a7 (2) a2=a4+a6+a7+a9 (3) a3=a4+a5+a7+a8+a10 (4) 监督关系式如下: s0=a0+a8+a9+a10 (5) s1=a1+a5+a6+a7 (6) s2=a2+a4+a6+a7+a9 (7) s3=a3+a4+a5+a7+a8 (8)3 构造校正因⼦和监督关系式时应遵循的原则 上表1中, 构造4个校正因⼦和4个监督关系式的过程中, 为了体现前⾯所述设计思想,应遵循如下原则: 图1中共有11列, 每⼀列应保证各不相同, 即s0 s1 s2 s3 的16种组合中, 取“0000”组合表⽰⽆错, 剩下15种中取其中11种⽤来表⽰a0~a10中某⼀位出错的情况, 所以,下表2有错, 因为a5 和a7 两列均为“0111”。

海明码原理

海明码原理

2.3.5 海明码原理•k=n-1位a n-1a n-2…a1a 0an-1a n-2…a1a0•a n-1+a n-2+…a1a0•上式可称为监督关系式,S称为校正因子。

•••两个(2位)校正因子•其中一种表示无错,另外三种不但可以用来指出有错,还可用来区分错误的情况,如指出是哪一位错等。

••• 2r≥n+1或者2r≥k+r+1 注:(n=k+r)•如果用k=4为例来说明,要满足上述不等式,则r>3。

•假设取r=3则n=k+r=7,即在4位信息位a6a5a4a3后a1a0,构成7位码字面加上3位冗余位a2a6a5a4a3a2a1a0。

•4位信息位中某几位半加得到••无错时,这三个关系式的值S2、S1和S0全为“0”。

•••••S2S1S0错码位置a0 a1 a2•由此得到监督关系式:•S2=a2+a4十a5十a6•同理还有:• S1=a1+a3十a5十a6• S0=a0+a3十a4十a6•冗余位aa1和a0的值应根据信息位的取值按监2督关系式来决定a2 a4 + a5+ a6a1 a3+ a5+ a6a0a3+ a4+ a6•a2a1a0•已知信息位后,按此三式即可算出各冗余位。

a 6a 5a 4a 3a 2a l a 0a 6a 5a 4a 3a 2a l a 00000000100011100010111001100001010110100100011110101100101001101100001010110111010100110011111010001110001111111•••0010101 0011101a2a1a0•••S2S1S0 011错码位置a3•101 101••••若用下述方法排列可以纠正传输中出现的突发性错误1 0 1 10 1 0 0 P0 1 0 0 每行一个字吗1 1 0 11 1 1 10 1 1 0•而逐位发送的顺序则是一列一列进行的,图中的顺序为。

海明编码报告--代应浪

海明编码报告--代应浪

海明编码实验报告学科专业:测控技术与仪器姓名:代应浪学号:U201113487指导教师:葛俊峰、胡若澜华中科技大学自动化学院二零一四年五月一.海明编码原理海明码是一种可以纠正一位差错发现两位差错的编码。

它是利用在信息位为k位,增加r位冗余位,构成一个n=k+r位的码字,然后用r个监督关系式产生的r个校正因子来区分无错和在码字中的n个不同位置的一位错。

它必需满足以下关系式:2r>=n+1 或 2r>=k+r+1海明码的编码效率为:R=k/(k+r)式中 k为信息位位数r为增加冗余位位数2.海明码的生成与接收a.每个校验位Ri被分配在海明码的第2的i次方的位置上;b.海明码的每一位(Hi)是由多个/1个校验值进行校验的,被校验码的位置码是所有校验这位的校验位位置码之和。

二.海明编码方法1)海明码的生成(顺序生成法)。

例.已知:信息码为:" 1 1 0 0 1 1 0 0 " (k=8)求:海明码码字。

解:1)把冗余码p1、p2、p3、…,顺序插入信息码中,得海明码码字:" p1 p2 1 p3 1 0 0 p4 1 1 0 0 "码位: 1 2 3 4 5 6 7 8 9 10 11 12其中p1,p2,p3,p4分别插于2k位(k=0,1,2,3)。

码位分别为1,2,4,8。

2)冗余码p1,p2,p3,p4的矩阵变换:(相当于监督关系式)3)把线性码位的值的偶校验作为冗余码的值(设冗余码初值为0):P1=∑(0,1,1,0,1,0)=1P2=∑(0,1,0,0,1,0)=0P3=∑(0,1,0,0,0)=1P4=∑(0,1,1,0,0)=04)海明码为:"1 0 1 1 1 0 0 0 1 1 0 0"2)海明码的接收。

例.已知:接收的码字为:"1 0 0 1 1 0 0 0 1 1 0 0"(k=8)求:发送端的信息码。

海明码

海明码

1.海明码的概念海明码是一种可以纠正一位差错的编码。

它是利用在信息位为k位,增加r位冗余位,构成一个n=k+r位的码字,然后用r个监督关系式产生的r个校正因子来区分无错和在码字中的n个不同位置的一位错。

它必需满足以下关系式:2^r>=n+1 或2^r>=k+r+1海明码的编码效率为:R=k/(k+r)式中k为信息位位数r为增加冗余位位数[font class="Apple-style-span" style="font-weight: bold;"id="bks_cu2htj1g"]2.[/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal; " id="bks_4dxtg15k"][font]海明码的原理[/font]在数据中间加入几个校验码,将玛距均匀拉大,将数据的每个二进制位分配在几个奇偶校验组里,当某一位出错,会引起几个校验位的值发生变化。

海明不等式:校验码个数为K,2的K次幂个信息,1个信息用来指出“没有错误”,其余2K-1个指出错误发生在那一位,但也可能是校验位错误,故有N<=2的K次-1-K能被校验。

海明码的编码规则:1.每个校验位Ri被分配在海明码的第2的i次的位置上,2.海明玛的每一位(Hi)是由多个/1个校验值进行校验的,被校验玛的位置玛是所有校验这位的校验位位置玛之和。

一个例题:4个数据位d0,d1,d2,d3, 3个校验位r0,r1,r2,对应的位置为:d3 d2 d1 r2 d0 r1 r0 ======b7 b6 b5 b4 b3 b2 b1校验位的取值,就是他所能校验的数据位的异或b1为b3,b5,b7的异或,b2为b3,b6,b7 b4为b5,b6,b7 [/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal; " id="bks_4dxtg15k"]海明玛传送到接受方后,将上三式的右边(b1,b2,b4)的逻辑表达式分别异或上左边的值就得到了校验方程,如果上题采用偶校验G1=b1 b3 b5 b7的异或G2=b2 b3 b6 b7的异或G3=b4 b5 b6 b7的异或若G1G2G3为001是第四位错若为011是第六位错[/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal;"] [/font]3.海明码的生成与接收特注:以下的+均代表异或方法一:1)海明码的生成。

4位数据海明校验码的生成与纠错

4位数据海明校验码的生成与纠错

数据在传输或存储过程中常常会出现错误,为了保证数据的完整性和准确性,通常会采用校验码来进行数据校验和纠错。

海明码是一种常用的校验码之一,它能够在一定程度上实现数据的纠错和校验。

本文将详细介绍4位数据海明校验码的生成与纠错原理及方法。

一、海明码的基本原理海明码是由美国数学家理查德·海明提出的一种能够检测和纠正数据中出现的错误的编码方式。

它通过向数据中添加校验位来实现对数据进行校验和纠错。

海明码的基本原理可以概括为以下几点:1. 通过向数据中添加冗余位来实现纠错功能。

2. 通过对数据进行位的异或运算来计算校验位。

3. 通过校验位的比较来检测错误位并进行纠错。

二、4位数据海明校验码的生成方法在生成4位数据海明校验码时,需要依据原始数据的位数来确定校验位的数量。

对于4位数据,通常采用2位校验位。

而具体的生成方法如下:1. 将4位原始数据表示成二维矩阵形式。

2. 根据原始数据矩阵的每一列,计算出校验位的值。

3. 将校验位添加到原始数据矩阵中。

4. 根据生成的数据矩阵,计算出校验位的值并添加到数据中。

三、4位数据海明校验码的纠错方法当使用4位数据海明校验码进行数据传输或存储时,若出现错误,需要通过校验位来检测错误位并进行纠错。

纠错方法如下:1. 对接收到的数据进行校验,计算出校验位的值。

2. 将计算得到的校验位的值与接收到的校验位的值进行比较。

3. 根据比较结果确定错误位的位置,并将其进行纠正。

四、4位数据海明校验码的应用场景4位数据海明校验码主要应用于对数据进行短距离传输和存储过程中。

其应用场景包括但不限于以下几种情况:1. 在计算机内存中对数据进行校验和纠错。

2. 在通信传输过程中对数据进行校验和纠错。

3. 在存储介质中对数据进行校验和纠错。

4. 在传感器数据采集过程中对数据进行校验和纠错。

五、4位数据海明校验码的优缺点4位数据海明校验码作为一种常见的纠错码,具有一定的优点和缺点。

主要表现在以下几个方面:优点:1. 能够有效检测和纠正数据中出现的错误。

海明码校验例题

海明码校验例题

海明码校验例题摘要:1.海明码的概念与原理2.海明码的校验方法3.海明码的例题解析正文:一、海明码的概念与原理海明码是一种用于数据传输时检测和纠正错误的编码方法,由美国数学家海明在1950 年提出。

海明码的主要原理是利用冗余信息来实现数据的校验和修复。

在数据传输过程中,通过增加一定的冗余信息,使得接收方能够检测到传输中出现的错误,并根据冗余信息对错误进行修复。

二、海明码的校验方法海明码的校验方法主要有两种:奇偶校验和CRC 校验。

1.奇偶校验:通过在数据位之间插入奇数或偶数个校验位,使得整个编码后的数据包中1 的个数为奇数或偶数。

接收方在接收到数据后,统计1 的个数,如果与发送方一致,则认为数据传输正确;如果不一致,则说明数据传输出现错误。

2.CRC 校验:CRC(Cyclic Redundancy Check)校验是一种基于循环冗余的校验方法。

在数据传输过程中,发送方计算待发送数据的CRC 值,并将其附加在数据后面。

接收方收到数据后,也对数据进行CRC 计算,然后将接收到的CRC 值与计算得到的CRC 值进行比较。

如果两者相同,则认为数据传输正确;如果不同,则说明数据传输出现错误。

三、海明码的例题解析假设我们有一个数据传输系统,需要传输一个4 位的数据包,为了保证数据的正确性,我们希望在传输过程中能够检测到并纠正单个比特的错误。

为了实现这一目标,我们可以使用海明码进行编码。

具体编码过程如下:1.在数据位之间插入3 个校验位,使得整个数据包中1 的个数为奇数。

这样,在传输过程中,如果出现单个比特的错误,总1 的个数将变为偶数。

2.接收方在接收到数据后,统计1 的个数。

如果1 的个数为奇数,则认为数据传输正确;如果为偶数,则说明数据传输出现错误。

3.如果检测到错误,接收方可以根据校验位信息对错误进行修复。

例如,通过奇偶校验,我们可以知道错误发生在哪个比特位置,并据此对错误进行纠正。

综上所述,海明码是一种有效的数据校验和修复方法。

海明码原理

海明码原理

海明码原理符号0表示数值0符号1表示数值1101表示5接收到的数据100,根本不知道对方接收到的数据是否正确用符号00表示数值0用符号11表示数值1传0就会由原先传0变成现在传00,传1就会由原先传1变成现在传11如果对方接收到的数据是01或者10,请表示接收到的数据有误再增加一位000表示0111表示传0就会由原先传0变成现在传000,传1就会由原先传1变成现在传111对方接收到的情况000,001,010,011,100,101,110,111如果接收到的是001,010,011,100,101,110六种情况,那么数据是错误的。

如果接收到的数据只有1位出错,显然001,010,100这三种情况是1出错了,正确的应该是全000011,101,110这三种情况是0出错了,正确的应该是全111。

海明编码实现的原理在数据编码中,加入几个校验位,并把数据的每一个二进制位分配在多个奇偶校验组中。

当某一个位出错后,就会引起有关的几个校验组的值发生变化,这样不但可以发现出错,还可以指出是哪一位出错,为自动纠错提供了依据。

码距:是指在一组编码中任何两个编码之间最小的距离。

距离:是指两个编码中相同位值不同的个数。

000,001其距离是1,把这个距离称为海明距离。

码距为d,检验的错误个数为e,纠错的个数为t,它们之间存在的关系:d>=e+1 可检验e个错d>=2t+1 可纠正t个错d>=e+t+1且 e>t 可以检验e个错,并纠正t个错。

只讨论海明校验纠一错的情况。

海明校验纠一错需要校验位:2^k-1>=n+k数据位为n,校验位为k,如:数据位为8,k>=4,海明编码的位数=n+k,k一般取满足条件的最小值。

海明校验位放在编码的位置:校验位放在整个编码的2^i位上(i=0,1,2,...,k-1)数据位:D7 D6 D5 D4 D3 D2 D1 D0整个编码怎么放:P1 P2 D7 P4 D6 D5 D4 P8 D3 D2 D1 D00001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100P1=D7异或D6异或D4异或D3异或D1(位置的二进制数从右往左第一位为1的位置上的数进行异或运算)P2=D7异或D5异或D4异或D2异或D1(位置的二进制数从右往左第二位为1的位置上的数进行异或运算)P4=D6异或D5异或D4异或D0(位置的二进制数从右往左第三位为1的位置上的数进行异或运算)P8=D3异或D2异或D1异或D0(位置的二进制数从右往左第四位为1的位置上的数进行异或运算)数据位:01101101 n=8根据2^k-1>=n+k 所以k>=4 取k=4P1 P2 0 P4 1 1 0 P8 1 1 0 10001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100P1=D7异或D6异或D4异或D3异或D1=0异或1异或0异或1异或0=0P2=D7异或D5异或D4异或D2异或D1=0异或1异或0异或1异或0=0P4=D6异或D5异或D4异或D0=1异或1异或0异或1=1P8=D3异或D2异或D1异或D0=1异或1异或0异或1=1海明校验码:000111011101增加一位校验位即可增加检错一个:P0=P1异或 P2 异或D7异或P4异或D6异或D5异或D4 异或 P8 异或D3异或D2异或 D1异或D0=1检二纠一错的编码是:100011101110110111010011P1 P2 D6 P4 D5 D4 D3 P8 D2 D1 D01 0 1 1 1 0 1 0 0 1 1 求指误字E k E k-1...E1E1=1异或1异或1异或1异或0异或1=1(位置的二进制数从右往左第一位为1的位置上的数进行异或运算)E2=0异或1异或0异或1异或1异或1=0(位置的二进制数从右往左第二位为1的位置上的数进行异或运算)E3=1异或1异或0异或1=1(位置的二进制数从右往左第三位为1的位置上的数进行异或运算)E4=0异或0异或1异或1=0(位置的二进制数从右往左第四位为1的位置上的数进行异或运算)因为E4E3E2E1=0101,说明接收到的海明校验位第5位出错,第5位是1,取反得0,正确的海明编码是:10110010011其有效数据位是:1001011 ASCII值=75是字符K。

海明码原理——精选推荐

海明码原理——精选推荐

海明码(汉明码)海明码是在信息字段中插若干位数据,用于监督码字里的哪一位数据发生了变化。

假设信息位有k位,需要多少位监督数据才能监督并改正一位错误?假设需要r位监督数据的话,整个码字的长度就是k+r;每一位的数据只两种状态,不是1就是0,有r位数据就应该能表示出2r种状态,如果每一种状态代表一个码元发生了错误,有k+r位码元,就要有k+r种状态来表示,另外还要有一种状态来表示数据正确的情况,所以2r要大于等于k+r+1才能监督一位错误,即2r >=k+r+1。

例如,信息数据有4位,由2r >=k+r+1得,r>=3,也就是至少需要3位监督数据才能发现并改正1位错误。

海明校验码:构造出海明码的方式有很多,因为监督关系是自定义的。

以(7,4)海明码为例(说明:4个数据位, 3个监督位,因为要满足式子2r>=k+r+1,所以r>=3),来推导下它的构造过程。

因为有三个监督位(具体位置不确定),必然有三个监督式,假设三个监督式分别是S1、S2、S3,用S3S2S1来指示一位数据出错了,例如,我可以指定,若S3S2S1=1就表示第1位数据出错了,S3S2S1=3,就表示第3位数据出错了,……假设最终生成的海明码是A7A6A5A4A3A2A1,我自己规定,若S3S2S1=0,表示数据传输没有出错,S3S2S1=1,表示A1出错;S3S2S1=2,表示A2出错;S3S2S1=3,表示A3出错;S3S2S1=4,表示A4出错;S3S2S1=5,表示A5出错;S3S2S1=6,表示A6出错;S3S2S1=7,表示A7出错。

那么就是这样一张纠错表:从上表可以看出,当S1=1时,表示A1、A3、A5、A7中有一个出错了,即S1是用来监督A1、A3、A5、A7这些位置的,所以就得到了监督关系式S1= A1⊕A3⊕A5⊕A7。

通过上表,同理得到S2= A2⊕A3⊕A6⊕A7;S3= A4⊕A5⊕A6⊕A7。

海明码数据位和校验位关系

海明码数据位和校验位关系

海明码数据位和校验位关系什么是海明码海明码(Hamming Code)是一种用于检测和纠正错误的线性二进制码。

它由理查德·W·海明(Richard W. Hamming)于1950年提出,被广泛应用于计算机存储和通信系统中。

在计算机存储和通信中,数据传输过程中可能会发生错误。

为了保证数据的准确性,需要使用一种纠错编码来检测并纠正这些错误。

海明码就是一种常用的纠错编码方式。

海明码的原理海明码通过在待传输的数据中添加冗余位来实现错误检测和纠正。

冗余位被称为校验位,它们的值由数据位决定。

假设待传输的数据有m个比特(bit),则需要添加r个校验位,使总共有n=m+r个比特。

其中,r满足以下不等式:2^r ≥ m + r + 1根据以上不等式可以求得最小满足条件的r值。

对于每一个校验位,它的位置是2^i-1(i从1开始),即第1、2、4、8…个位置上都是校验位。

对于每一个校验位来说,它所涵盖的数据比特取决于它的位置。

假设第i个校验位涵盖的数据比特为D1, D2, …, Dk,则该校验位的值为:Ci = D1 ⊕ D2 ⊕ … ⊕ Dk其中,⊕表示异或运算。

这样,每个校验位都可以检测到特定位置上的错误。

海明码的编码过程海明码的编码过程可以分为以下几个步骤:1.确定待传输数据的长度m和校验位的数量r,并计算总共需要传输的比特数n。

2.根据待传输数据,确定每个校验位所涵盖的数据比特。

3.计算每个校验位的值,并将其添加到待传输数据中对应位置。

4.将编码后的数据进行传输。

下面以一个具体例子来说明海明码的编码过程。

假设待传输数据为1010,通过计算可以确定需要添加两个校验位。

因此,总共需要传输4+2=6个比特。

数据比特P1 P2 D1 P3 D2 D31 0 1其中,P1覆盖了D1、D2、D3,P2覆盖了D1、D2,P3覆盖了D1、D3。

计算P1的值:P1 = D1 ⊕ D2 ⊕ D3 = 1 ⊕ 0 ⊕ 1 = 0计算P2的值:P2 = D1 ⊕ D2 = 1 ⊕ 0 = 1计算P3的值:P3 = D1 ⊕ D3 = 1 ⊕ 1 = 0将校验位的值添加到待传输数据中,得到编码后的数据:101010。

海明码做题技巧

海明码做题技巧

海明码做题技巧海明码是一种重要的线性误差纠正码,广泛应用于计算机内存和数据通信中。

在解决海明码相关题目时,掌握一些技巧和方法可以帮助我们更加高效和准确地解答。

以下将为您详细介绍海明码做题的技巧。

一、了解海明码的基本原理1.海明码是一种线性误差纠正码,通过在数据位之间插入多个校验位,以检测和纠正错误。

2.海明码的纠错能力取决于校验位的数量,通常表示为(n, k)码,其中n为总位数(包括数据位和校验位),k为数据位数。

3.海明码的校验位遵循一定的数学规律,通常使用二进制表示。

二、做题技巧1.确定校验位的数量和位置在解决海明码题目时,首先要确定校验位的数量和位置。

通常,校验位位于2的幂次方位置(如1, 2, 4, 8等),数据位位于其他位置。

2.计算校验位根据校验位的数学规律,可以计算出每个校验位的值。

具体方法如下:- 对每个校验位,找出其对应的数据位(包括自身),将它们的位置作为二进制数,计算这些数据位的和(包括校验位自身),若和为偶数,则校验位为0;若为奇数,则校验位为1。

3.检测和纠正错误当接收到的海明码中包含错误时,可以通过以下步骤进行检测和纠正:- 计算每个校验位的值,得到一个校验位序列。

- 将校验位序列转换为二进制数,得到错误位置。

- 根据错误位置,判断错误类型(单比特错误、双比特错误等)。

- 若为单比特错误,纠正该错误;若为双比特错误,无法纠正,但可以检测出来。

4.举例说明假设有一个(7, 4)海明码,数据位为D1, D2, D3, D4,校验位为P1, P2, P4。

以下为计算校验位和检测错误的示例:- 计算校验位:P1 = D1 + D2 + D4P2 = D1 + D3 + D4P4 = D2 + D3 + D4- 假设接收到的海明码为:D1 D2 P1 D3 P2 D4 P4,若D3发生错误,变为1,则:P1" = D1 + D2 + D4 = 0 + 0 + 0 = 0P2" = D1 + D3 + D4 = 0 + 1 + 0 = 1P4" = D2 + D3 + D4 = 0 + 1 + 0 = 1校验位序列为:011,转换为二进制数为3,表示D3位置发生错误。

海明校验码原理

海明校验码原理

海明校验码原理
海明校验码是用来检测和纠正二进制数据传输中的错误的编码方式,其实现原理如下:
1. 数据转换:首先需要将要传输的数据转换成二进制码形式。

2. 生成海明码:根据生成规则生成海明校验码。

生成海明码的步骤如下:
- 确定校验位数:根据要传输的数据确定校验位的个数。

- 确定校验位的位置:将二进制数据码按一定规则排列,将二进制数据码的每一位(包括校验位)都与校验位位置有关联。

- 生成校验位:根据规则算出校验位的值,将其填入海明校验码的相应位置。

- 得到海明码:将数据码和校验位合并成海明码。

3. 传输:以海明码的形式进行传输。

4. 检测和纠正错误:接收方收到海明码时,先对码中的每个二进制数进行校验,以检测是否存在错误。

如果存在错误,可以根据海明码的规则进行修正。

如果存在多个错误,则无法进行修正。

海明校验码是一种比较简单有效的纠错码,但是其校验能力有限,无法纠正大量的错误。

自动纠错——海明码的原理

自动纠错——海明码的原理

自动纠错——海明码的原理上回说到,存在着这样的7位代码:1111111 1101000 1010100 10000110100101 0011001 0110010 0001110如果只输错一位,那么就可以自动纠错,识别出正确的代码来。

(详见:为什么重要的话需要说三遍?)那么,这些代码是怎样编制出来的呢?其实,这些代码是有着深刻的几何含义的。

除了“1111111”外,每一个代码刚好对应着法诺平面里的一条直线。

(参见:空间——看待事物(彩票)的全新视角)例如,“1101000”对应直线124;“1010100”对应直线135;等等。

这就意味着,识别一个代码,实质上等同于识别出法诺平面里的一条直线。

那么,如果你输错了一位代码呢?会有两种不同的情况:也许你将一个“1”错输为“0”,于是只有2个“1”;也许你将一个“0”错输为“1”,于是出现四个“1”。

如果是第一种情况,例如将“1010100”错输为“1000100”。

我们知道,“1010100”代表直线135,而“1000100”意味着直线经过1、5两点。

由于法诺平面中,“过两点有且只有一条直线”,所以,我们一定能够判断出这条直线必然是135,而不是其它。

这就意味着,正确的代码应当是“1010100”。

如果是第二种情况,例如将“1010100”错输为“1110100”。

这样一来,“1110100”意味直线经过1、2、3、5四个点。

但这实际上是不可能的,因为一条直线上只有三个点。

我想,聪明的你一定会提出疑问:究竟是直线135,还是直线125、235等等呢?如果这四个点真的代表了两条不同的直线,那么,这两条直线将会有2个公共点。

而你知道的,“两条直线最多只有一个公共点”,这种情况绝不会发生。

因此,“1110100”就只可能代表直线135,于是正确的代码仍然是“1010100”。

所以,不论如何,海明码都能够自动纠正输入时的错误(如果只输错一位)。

看到这里,你可能会带有有一种紧张的敬佩之情。

海明码的原理

海明码的原理
3.海明码的计算
海明码(Hamming Code )编码的关键是使用多余的奇偶校验位来识别一位错误。 码字(Code Word)按如下方法构建: 1、把所有2的幂次方的数据位标记为奇偶校验位(编号为1, 2, 4, 8, 16, 32, 64等的位置) 2、其他数据位用于待编码数据. (编号为3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17等的位置) 3、每个奇偶校验位的值代表了代码字中部分数据位的奇偶性,其所在位置决定了要校验和跳过的比特位顺序。 位置1:校验1位,跳过1位,校验1位,跳过1位(1,3,5,7,9,11,13,15,…) 位置2:校验2位,跳过2位,校验2位,跳过2位 (2,3,6,7,10,11,14,15,…) 位置4:校验4位,跳过4位,校验4位,跳过4位 (4,5,6,7,12,13,14,15,20,21,22,23,…) 位置8:校验8位,跳过8位,校验8位,跳过8位(8-15,24-31,40-47,…) … 如果全部校验的位置中有奇数个1,把该奇偶校验位置为1;如果全部校验的位置中有偶数个1,把该奇偶校验位置为0. 举例说明: 一个字节的数据:10011010 构造数据字(Data Word),对应的校验位留空_ _ 1 _ 0 0 1 _ 1 0 1 0 计算每个校验位的奇偶性 ( ?代表要设置的比特位): 位置1检查1,3,5,7,9,11: ? _ 1 _ 0 0 1 _ 1 0 1 0. 偶数个1,因此位置1设为0,即: 0 _ 1 _ 0 0 1 _ 1 0 1 0 位置2检查2,3,6,7,10,11: 0 ? 1 _ 0 0 1 _ 1 0 1 0. 奇数个1,因此位置2设为1,即: 0 1 1 _ 0 0 1 _ 1 0 1 0 位置4检查4,5,6,7,12: 0 1 1 ? 0 0 1 _ 1 0 1 0. 奇数个1,因此位置4设为1,即: 0 1 1 1 0 0 1 _ 1 0 1 0 位置8检查8,9,10,11,12: 0 1 1 1 0 0 1 ? 1 0 1 0. 偶数个1,因此位置8设为0,即: 0 1 1 1 0 0 1 0 1 0 1 0 因此码字为: 011100101010. 查找并纠错一位错误 上例中构建了一个码字 011100101010,假定实际接收到的数据是011100101110. 则接收方可以计算出哪一位出错并对其进行更正。方法就是验证每一个校验位。记下所有出错的校验位,可以发现校验位2和8的数据不正确. 错误校验位 2 + 8 = 10, 则位置10的数据出错。一般说来,对所有校验位进行检查, 将所有出错的校验位置相加, 得到的就是错误信息所在的位置.

海明码——精选推荐

海明码——精选推荐

海明码-希赛视频文件例题2010-04-12 12:051.海明码的概念海明码是一种可以纠正一位失闪的编码。

它是利用在信息位为k位,增长r位冗余位,构成一个n=k+r位的码字,然后用r个监督瓜葛式产生的r个勘正因子来区分无错和在码字中的n个差别位置的一位错。

它必须满足以下瓜葛式:2^r=n+1或2^r=k+r+1海明码的编码效率为:R=k/(k+r)(式中k为信息位位数,r为增长冗余位位数) 表名称的词诠释码字:表示一个帧包孕的k个数据位,r个校验位,n=k+r,则此n比特单元称为n位码字。

码距:两个码字之间差别的比特位数量。

例如,000与010的码距为1;000与110的码距为2;000与111的码距为3。

2.海明码的原理在数据中间加入几个校验码,将玛距匀称拉大,将数据的每一个二进制位分配在几个奇偶校验组里,当某一位堕落,会引起几个校验位的值变了样子。

海明不等式:校验码个数为K,2的K次幂个信息,一个信息用来指出"没有纰缪",其余2K-一个指堕落误发生在那一位,但也有多是校验位纰缪,故有N=2的K次-1-K 能被校验。

3海明码的编码规则1.每一个校验位Ri被分配在海明码的第2的i次的位置上,2.海明玛的每中央电视台位(Hi)是由多个/一个校验值进行校验的,被校验码的位置码是所有校验这位的校验位位置码之和。

4海明码的特点1.如果两个码字之间的码距为d,则需要d个比特就可以把一个码字转换成另外一个码字2.为了检查出d个纰缪(单比特错),需要使用的码距为d+一个编码3.为了纠正d个纰缪,需要使用码间隔为2d+1的编码5编码步调(1)按照信息位数,确定校验位数,2的k次方≥k+r+1,其中,k为信息位数,r为校验位数。

求出满足不等式的最小r,即为校验位数。

(2)计较机校验位公式。

表1-3校验位公式表121110位数I8I7I6I5I4I3I2I1信息位r3r2r1r0校验位表1-3其实可以当成一个公式来套用,如有已经编码的数据1100 1001 0111。

海明码的基本原理

海明码的基本原理

一、海明码的概念海明码是一种可以纠正一位差错的编码。

它是利用在信息位为k位,增加r位冗余位,构成一个n=k+r位的码字,然后用r个监督关系式产生的r个校正因子来区分无错和在码字中的n个不同位置的一位错。

它必需满足以下关系式:2^r>=n+1 或2^r>=k+r+1海明码的编码效率为:R=k/(k+r)式中k为信息位位数r为增加冗余位位数二、海明码的原理海明码是一种多重奇偶检错系统。

它将信息用逻辑形式编码,以便能够检错和纠错。

用在海明码中的全部传输码字是由原来的信息和附加的奇偶校验位组成的。

每一个这种奇偶位被编在传输码字的特定位置上。

这个系统对于错误的数位无论是原有信息位中的,还是附加校验位中的都能指示出来在数据中间加入几个校验码,将玛距均匀拉大,将数据的每个二进制位分配在几个奇偶校验组里,当某一位出错,会引起几个校验位的值发生变化。

海明不等式:校验码个数为K,2的K次幂个信息,1个信息用来指出“没有错误”,其余2K-1个指出错误发生在那一位,但也可能是校验位错误,故有N<=2的K次-1-K能被校验。

海明码的编码规则:1.每个校验位Ri被分配在海明码的第2的i次的位置上,2.海明玛的每一位(Hi)是由多个/1个校验值进行校验的,被校验玛的位置玛是所有校验这位的校验位位置玛之和。

一个例题:4个数据位d0,d1,d2,d3, 3个校验位r0,r1,r2,对应的位置为:d3 d2 d1 r2 d0 r1 r0 ======b7 b6 b5 b4 b3 b2 b1校验位的取值,就是他所能校验的数据位的异或b1为b3,b5,b7的异或,b2为b3,b6,b7 b4为b5,b6,b7海明玛传送到接受方后,将上三式的右边(b1,b2,b4)的逻辑表达式分别异或上左边的值就得到了校验方程,如果上题采用偶校验G1=b1 b3 b5 b7的异或G2=b2 b3 b6 b7的异或G3=b4 b5 b6 b7的异或若G1G2G3为001是第四位错若为011是第六位错三、编码步骤(1)根据信息位数,确定校验位数,2^r >= k+r+1,其中,k为信息位数,r为校验位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.5 海明码原理
•k=n-1位a n-1a n-2…a1
a 0a
n-1
a n-2…a1a0

a n-1+a n-2+…a1a0
•上式可称为监督关系式,S称为校正因子。



•两个(2位)校正因子
•其中一种表示无错,另外三种不但可以用来指出有错,还可用来区分错误的情况,如指出是哪一位错等。



• 2r≥n+1或者2r≥k+r+1 注:(n=k+r)
•如果用k=4为例来说明,要满足上述不等式,则r>3。

•假设取r=3则n=k+r=7,即在4位信息位a6a5a4a3后
a1a0,构成7位码字
面加上3位冗余位a
2
a6a5a4a3a2a1a0。

•4位信息位中某几位半加得到•
•无错时,这三个关系式的值S2、S1和S0全为“0”。





•S2S1S0
错码位置a0 a1 a2
•由此得到监督关系式:
•S2=a2+a4十a5十a6
•同理还有:
• S1=a1+a3十a5十a6
• S0=a0+a3十a4十a6

冗余位a
a1和a0的值应根据信息位的取值按监
2
督关系式来决定
a2 a4 + a5+ a6
a1 a3+ a5+ a6
a0a3+ a4+ a6

a2
a1
a0
•已知信息位后,按此三式即可算出各冗余位。

a 6a 5a 4a 3
a 2a l a 0
a 6a 5a 4a 3
a 2a l a 0
000000010001110001011100110000101011010010001111010110010100110110000101011011101010011001111101000111
000
1111
111


•0010101 0011101
a2
a1
a0


•S2S1S0 011
错码位置a3
•101 101



•若用下述方法排列可以纠正传输中出现的突发性错误
1 0 1 1
0 1 0 0 P
0 1 0 0 每行一个字吗
1 1 0 1
1 1 1 1
0 1 1 0
•而逐位发送的顺序则是一列一列进行的,图中的顺序为。

相关文档
最新文档