高中数学集合历届高考题及答案解析

合集下载

高中数学高考总复习集合习题及详解

高中数学高考总复习集合习题及详解

高中数学高考总复习集合习题及详解一、选择题1.(09·全国Ⅱ)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则∁U (M ∪N )=( )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}[答案] C[解析] M ∪N ={1,3,5,6,7}, ∴∁U (M ∪N )={2,4,8},故选C.2.(2010·烟台二中)已知集合M ={y |y =x 2},N ={y |y 2=x ,x ≥0},则M ∩N =( ) A .{(0,0),(1,1)} B .{0,1} C .[0,+∞)D .[0,1][答案] C[解析] M ={y |y ≥0},N =R ,则M ∩N =[0,+∞),选C.[点评] 本题极易出现的错误是:误以为M ∩N 中的元素是两抛物线y 2=x 与y =x 2的交点,错选A .避免此类错误的关键是,先看集合M ,N 的代表元素是什么以确定集合M ∩N 中元素的属性.若代表元素为(x ,y ),则应选A.3.设集合P ={x |x =k 3+16,k ∈Z },Q ={x |x =k 6+13,k ∈Z },则( )A .P =QB .P QC .P QD .P ∩Q =∅[答案] B[解析] P :x =k 3+16=2k +16,k ∈Z ;Q :x =k 6+13=k +26,k ∈Z ,从而P 表示16的奇数倍数组成的集合,而Q 表示16的所有整数倍数组成的集合,故P Q .选B.[点评] 函数值域构成的集合关系的讨论,一般应先求出其值域.如果值域与整数有关,可将两集合中的元素找出它们共同的表达形式,利用整数的性质求解或用列举法讨论.4.(文)满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2C .3D .4[答案] B[解析] 集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或{a 1,a 2,a 4}.(理)(2010·湖北理,2)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .4B .3C .2D .1[答案] A[解析] 结合椭圆x 24+y 216=1的图形及指数函数y =3x 的图象可知,共有两个交点,故A ∩B 的子集的个数为4.5.(2010·辽宁理,1)已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}[答案] D[解析] 由题意知,A 中有3和9,若A 中有7(或5),则∁U B 中无7(或5),即B 中有7(或5),则与A ∩B ={3}矛盾,故选D.6.(文)(2010·合肥市)集合M ={x |x 2-1=0},集合N ={x |x 2-3x +2=0},全集为U ,则图中阴影部分表示的集合是( )A .{-1,1}B .{-1}C .{1}D .∅[答案] B[解析] ∵M ={1,-1},N ={1,2},∴M ∩N ={1}, 故阴影部分表示的集合为{-1}.(理)(2010·山东省实验中学)如图,I 是全集,A 、B 、C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩C B .(∁I B ∪A )∩C C .(A ∩B )∩∁I CD .(A ∩∁I B )∩C[答案] D[解析] 阴影部分在A 中,在C 中,不在B 中,故在∁I B 中,因此是A 、C 、∁I B 的交集,故选D.高考总复习含详解答案[点评] 解决这类题的要点是逐个集合考察,看阴影部分在哪些集合中,不在哪些集合中,注意不在集合M 中时,必在集合M 的补集中.7.已知钝角△ABC 的最长边长为2,其余两边长为a ,b ,则集合P ={(x ,y )|x =a ,y =b }所表示的平面图形的面积是( )A .2B .4C .π-2D .4π-2[答案] C[解析] 由题中三角形为钝角三角形可得①a 2+b 2<22;②a +b >2;③0<a <2,0<b <2,于是集合P 中的点组成由条件①②③构成的图形,如图所示,则其面积为S =π×224-12×2×2=π-2,故选C.8.(文)(2010·山东滨州)集合A ={-1,0,1},B ={y |y =cos x ,x ∈A },则A ∩B =( ) A .{0}B .{1}C .{0,1}D .{-1,0,1}[答案] B[解析] ∵cos0=1,cos(-1)=cos1,∴B ={1,cos1}, ∴A ∩B ={1}.(理)P ={α|α=(-1,1)+m (1,2),m ∈R },Q ={β|β=(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =( )A .{(1,-2)}B .{(-13,-23)}C .{(1,-2)}D .{(-23,-13)}[答案] B[解析] α=(m -1,2m +1),β=(2n +1,3n -2),令a =β,得⎩⎪⎨⎪⎧ m -1=2n +12m +1=3n -2 ∴⎩⎪⎨⎪⎧m =-12n =-7∴P ∩Q ={(-13,-23)}.9.若集合M ={0,1,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x 、y ∈M },则N 中元素的个数为( )A .9B .6C .4D .2[答案] C[解析] N ={(0,0),(1,0),(1,1),(2,1)},按x 、y ∈M ,逐个验证得出N .10.(文)已知集合{1,2,3,…,100}的两个子集A 、B 满足:A 与B 的元素个数相同,且A ∩B 为空集.若n ∈A 时,总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A .62B .66C .68D .74[答案] B[解析] 若24到49属于A ,则50至100的偶数属于B 满足要求,此时A ∪B 已有52个元素;集合A 取1到10的数时,集合B 取4到22的偶数,由于A ∩B =∅,∴4,6,8∉A ,此时A ∪B 中将增加14个元素,∴A ∪B 中元素个数最多有52+14=66个.(理)设⊕是R 上的一个运算,A 是R 的非空子集.若对任意a 、b ∈A ,有a ⊕b ∈A ,则称A 对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集[答案] C[解析] A :自然数集对减法,除法运算不封闭, 如1-2=-1∉N,1÷2=12∉N .B :整数集对除法运算不封闭,如1÷2=12∉Z .C :有理数集对四则运算是封闭的.D :无理数集对加法、减法、乘法、除法运算都不封闭. 如(2+1)+(1-2)=2,2-2=0,2×2=2,2÷2=1, 其运算结果都不属于无理数集. 二、填空题11.(文)已知集合A ={x |log 12x ≥3},B ={x |x ≥a },若A ⊆B ,则实数a 的取值范围是(-∞,c ],其中的c =______.[答案] 0[解析] A ={x |0<x ≤18},∵A ⊆B ,∴a ≤0,∴c =0.(理)(2010·江苏苏北四市、南京市调研)已知集合A ={0,2,a 2},B ={1,a },若A ∪B ={0,1,2,4},则实数a 的值为________.[答案] 2[解析] ∵A ∪B ={0,1,2,4},∴a =4或a 2=4,若a =4,则a 2=16,但16∉A ∪B ,∴a 2=4,∴a =±2,又-2∉A ∪B ,∴a =2.高考总复习含详解答案12.(2010·浙江萧山中学)在集合M ={0,12,1,2,3}的所有非空子集中任取一个集合,该集合恰满足条件“对∀x ∈A ,则1x∈A ”的概率是________.[答案]331[解析] 集合M 的非空子集有25-1=31个,而满足条件“对∀x ∈A ,则1x ∈A ”的集合A 中的元素为1,2或12,且12,2要同时出现,故这样的集合有3个:{1},{12,2},{1,12,2}.因此,所求的概率为331.13.(文)(2010·江苏,1)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.[答案] 1[解析] ∵A ∩B ={3},∴3∈B , ∵a 2+4≥4,∴a +2=3,∴a =1.(理)A ={(x ,y )|x 2=y 2} B ={(x ,y )|x =y 2},则A ∩B =________. [答案] {(0,0),(1,1),(1,-1)}.[解析] A ∩B =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x 2=y2x =y 2={(0,0),(1,1),(1,-1)}. 14.若A ={x |22x -1≤14},B ={x |log 116x ≥12},实数集R 为全集,则(∁R A )∩B =________.[答案] {x |0<x ≤14}[解析] 由22x -1≤14得,x ≤-12,由log 116x ≥12得,0<x ≤14,∴(∁R A )∩B ={x |x >-12}∩{x |0<x ≤14}={x |0<x ≤14}.三、解答题15.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围. [解析] (1)A ={1,2},∵A ∩B ={2},∴2∈B , ∴4+4(a +1)+(a 2-5)=0,∴a =-1或-3. (2)∵A ∪B =A ,∴B ⊆A ,由Δ=4(a +1)2-4(a 2-5)=8(a +3)=0得,a =-3. 当a =-3时,B ={2},符合题意;当a <-3时,Δ<0,B =∅,满足题意; 当a >-3时,∵B ⊆A ,∴B =A ,故⎩⎪⎨⎪⎧2(a +1)=-3a 2-5=2,无解. 综上知,a ≤-3.16.(2010·广东佛山顺德区质检)已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0},若∁U (A ∪B )⊆C ,求实数a 的取值范围.[解析] A ={x |-2<x <3},B ={x |x <-4,或x >2},A ∪B ={x |x <-4,或x >-2}, ∁U (A ∪B )={x |-4≤x ≤-2},而C ={x |(x -a )(x -3a )<0} (1)当a >0时,C ={x |a <x <3a },显然不成立. (2)当a =0时,C =∅,不成立.(3)当a <0时,C ={x |3a <x <a },要使∁U (A ∪B )⊆C ,只需⎩⎪⎨⎪⎧3a <-4a >-2,即-2<a <-43.综上知实数a 的取值范围是⎝⎛⎭⎫-2,-43. 17.(文)设集合A ={(x ,y )|y =2x -1,x ∈N *},B ={(x ,y )|y =ax 2-ax +a ,x ∈N *},问是否存在非零整数a ,使A ∩B ≠∅?若存在,请求出a 的值;若不存在,说明理由.[解析] 假设A ∩B ≠∅,则方程组⎩⎪⎨⎪⎧y =2x -1y =ax 2-ax +a 有正整数解,消去y 得, ax 2-(a +2)x +a +1=0(*)由Δ≥0,有(a +2)2-4a (a +1)≥0, 解得-233≤a ≤233.因a 为非零整数,∴a =±1,当a =-1时,代入(*),解得x =0或x =-1, 而x ∈N *.故a ≠-1.当a =1时,代入(*),解得x =1或x =2,符合题意. 故存在a =1,使得A ∩B ≠∅, 此时A ∩B ={(1,1),(2,3)}.(理)(2010·厦门三中)已知数列{a n }的前n 项和为S n ,且(a -1)S n =a (a n -1)(a >0,n ∈N *). (1)求证数列{a n }是等比数列,并求a n ;(2)已知集合A ={x |x 2+a ≤(a +1)x },问是否存在实数a ,使得对于任意的n ∈N *,都有S n ∈A ?若存在,求出a 的取值范围;若不存在,说明理由.[解析] (1)①当n =1时,∵(a -1)S 1=a (a 1-1),∴a 1=a (a >0)高考总复习含详解答案②当n ≥2时,由(a -1)S n =a (a n -1)(a >0)得, (a -1)S n -1=a (a n -1-1)∴(a -1)a n =a (a n -a n -1),变形得:a na n -1=a (n ≥2),故{a n }是以a 1=a 为首项,公比为a 的等比数列, ∴a n =a n .(2)①当a ≥1时,A ={x |1≤x ≤a },S 2=a +a 2>a ,∴S 2∉A , 即当a ≥1时,不存在满足条件的实数a . ②0<a <1时,A ={x |a ≤x ≤1} ∵S n =a +a 2+…+a n =a1-a (1-a n ),∴S n ∈[a ,a1-a),因此对任意的n ∈N *,要使S n ∈A ,只需⎩⎪⎨⎪⎧0<a <1a 1-a ≤1,解得0<a ≤12,综上得实数a 的取值范围是(0,12].。

高中集合试题及答案解析

高中集合试题及答案解析

高中集合试题及答案解析一、选择题1. 集合A={1, 2, 3},集合B={3, 4, 5},求A∩B的值。

A. {1, 2}B. {3}C. {4, 5}D. 空集答案:B解析:根据集合交集的定义,A∩B是指既属于集合A又属于集合B的所有元素组成的集合。

在本题中,只有3同时属于集合A和集合B,因此A∩B={3}。

2. 如果集合A={x|x<5},集合B={x|x>3},求A∪B的值。

A. {x|x<3}B. {x|x<5}C. {x|x>=3}D. {x|x>=5}答案:C解析:集合并集的定义是将两个集合中所有的元素合并在一起,不重复计算。

在本题中,集合A包含所有小于5的数,集合B包含所有大于3的数。

因此,A∪B包含所有大于等于3的数,即{x|x>=3}。

二、填空题3. 若集合M={x|x²-5x+6=0},请写出集合M的所有元素。

答案:{2, 3}解析:首先解方程x²-5x+6=0,通过因式分解得到(x-2)(x-3)=0,因此x=2或x=3。

所以集合M的元素为2和3。

4. 已知集合N={x|-2≤x≤2},求集合N的补集。

答案:{x|x<-2或x>2}解析:集合N的补集是指所有不属于N的元素组成的集合。

根据N的定义,它的补集是所有小于-2或大于2的实数。

三、解答题5. 集合P={x|0<x<10},集合Q={x|x是偶数},求P∩Q,并说明其性质。

答案:P∩Q={2, 4, 6, 8}解析:集合P包含所有0到10之间的实数,而集合Q包含所有偶数。

因此,P∩Q包含所有既是0到10之间又是偶数的实数,即{2, 4, 6, 8}。

这个集合是有限集,且每个元素都是正偶数。

6. 已知集合R={x|x²-4=0},求R的子集个数。

答案:4解析:集合R的元素可以通过解方程x²-4=0得到,即x=±2。

高中数学集合历届高考题及答案解析

高中数学集合历届高考题及答案解析

(A) {1,2} (B) {0,1,2} (C){x|0 ≤x<3} (D) {x|0 ≤x ≤3}(C) { x -1≤ x ≤1}(D) { x -1≤ x <1}3. ( 2010辽宁文)(1)已知集合 U 1,3,5,7,9 , A 1,5,7 ,则C U A7. ( 2010山东文)(1)已知全集 U R ,集合 M x x 24 0 ,则 C U M =A.x 2 x 2B.x 2 x 2C .x x 2或 x 2 D. x x 2或 x 228. ( 2010北京理)(1) 集合 P {x Z 0 x 3},M {x Z x 29},则 PI M =第一章 集合与常用逻辑用语 一、选择题 1. ( 2010浙江理)(1)设 P={x ︱x <4},Q={x ︱ x 2<4},则 A ) p QB )Q P (C )p CR Q (D ) Q CR P2. (2010 陕西文) 1. 集合 A ={x -1≤ x ≤2}, B ={ x x<1},则 A ∩B =( (A){ x x< 1}B ){x -1≤ x≤2} A ) 1,3 B ) 3,7,9C ) 3,5,9D ) 3,94. ( 2010辽宁理) 1.已知 A ,B 均为集合 U={1,3,5,7,9} 的子集,且 A ∩B={3}, eu(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}5. ( 2010 江 西 理 ) 2. 若 集 合 A= x| x 1, xR ,A. x| 1 x 1B. x|x 0C. x|0 x 1D.6. ( 2010浙江文)(1)设 P {x|x 1}, Q {x|x 24},则 P Q(A) {x| 1 x 2} (B) {x| 3 x 1} (C) { x|1 x 4}(D){x| 2 x 1}9. (2010 天津文)(7)设集合A x||x-a|<1,x R ,B x|1 x 5,x R .若A B ,则实数 a 的取值范围是(A)a|0 a 6 (B)a|a 2,或a 4(C)a|a 0,或a 6 (D)a|2 a 410. (2010天津理)(9)设集合A= x||x a| 1,x R ,B x||x b| 2,x R .若 A B,则实数a,b 必满足(A)|a b| 3 (B)|a b| 3(C)|a b| 3 (D)|a b| 311. (2010广东理) 1.若集合A={ x -2< x <1} ,B={ x 0< x <2}则集合 A ∩ B=()A. { x -1<x<1}B. { x -2< x<1}C. { x -2< x<2}D. { x 0< x <1}12. (2010广东文)10. 在集合a,b,c,d 上定义两种运算○+ 和○* 如下那么d ○* (a ○+ c)A. aB. bC. cD. d13. (2010广东文) 1.若集合A 0,1,2,3 ,B 1,2,4 则集合A BA. 0,1,2,3,4B. 1,2,3,4C. 1,2D. 01. 设集合M={1,2,4,8},N={x|x 是2 的倍数} ,则M∩ N=14. (2010 湖北文)A.{2, 4}B.{1,2,4}C.{2,4,8}D{1,2,8}15. (2010山东理) 1.已知全集 U=R ,集合 M={x||x-1| 2}, 则C U M= x 3} (C){x|x<-1 或 x>3} (D){x|x -1 或 x 3}2、若集合 A x log 1 x 1,则 e R A2R集的个数是二、填空题k=2k1 2k2 12k n1,则(1) a 1,,a 3 是 E 的第 __ 个子集; (2)E 的第 211个子集是 ____4. ( 2010 重庆理) (12) 设 U= 0,1,2,3 ,A= x U x 2mx 0 ,若 U A 1,2 ,则实数m= ________ .5. ( 2010江苏卷) 1、设集合 A={-1,1,3} ,B={a+2,a 2+4},A ∩B={3} ,则实数 a = .6. ( 2010重庆文)(11)设 A x|x 1 0 ,B x|x 0 ,则 A B = ______________ .A ) {x|-1<x<3} (B){x|-1 16. (2010 安徽理)17. A . C . 18. A 、( ,0]2010 湖南理) M N B.B 、221. 已知集合 M={1,2,3} , NMM N {2,3} D. M N{1,4}2010 湖北理)C 、 ( ,0] [22, ) D 、[ 22, )N={2,3,4} ,则 222.设集合A { x, y |x4 1y 61} , B {( x, y)| y 3x } ,则 A B 的子A . 4B .3C .2D .12. ( 2010 湖南文) 15. 若规定 E=a 1,a 2...a 10 的子集 a k 1a k 2..., a k n为 E 的第 k个子集,其中、选择题1. (2009 年广东卷文 )已知全集 U R ,则正确表示集合 M { 1,0,1} 和 N x|x2x 集合 u(A IB) 中的元素共有 (A. 3 个B. 4 个C. 5 个D. 6 个答案 A3. ( 2009浙江理) 设U R , A {x|x 0}, B {x|x 1} ,则 A e U B ( )A .{x|0 x1} B .{x|0 x 1} C .{x|x 0} D .{x|x 1}5. ( 2009 浙 江 文 ) 设 U R , A {x|x 0} , B {x|x 1} , 则 A e U B A .{x|0x 1} B .{x|0 x 1} C .{x|x 0} D .{x|x 1}6. ( 2009北京文) 设集合 A {x|1 x 2}, B {x x 21} ,则 A B (21A .{x 1 x 2}B .{x| x 1}2C .{x|x 2}D .{x|1 x 2}7. (2009 山东卷理 )集合 A 0,2,a , B 1,a 2,若 A B 0,1,2,4,16 ,则 a 的值 为 A.0 B.1 C.2 D.49. ( 2009全国卷Ⅱ文) 已知全集 U ={1,2,3,4,5,6,7,8} ,M ={1,3,5,7},N ={5 ,6,7} ,则 C u ( M N )=( )10. ( 2009 广东 卷 理 ) 已知全集 U R ,集合 M {x 2 x 1 2} 和2009 年高考题0 关系2. (2009 全国卷Ⅰ理) 设集合 A={ 4,5,7,x 2k 1,k 1,2, } 的关系的韦恩( Venn )图如图 1 所示,则阴影部分所示的集合的元A. mn14.(2009 湖北卷理 ) 已知P {a|a (1,0) m(0,1), m R},Q {b|b (1,1) n( 1,1),n R} 是两个向量集合,则P I Q ( )A .{〔1,1〕} B. {〔-1 ,1〕}C. {〔1,0〕}D. { 〔0,1〕}15. (2009 四川卷文) 设集合 S={x | x 5 }, T ={ x |(x 7)(x 3) 0}.则 S T =()A. { x |-7< x <-5 }B. {x | 3 < x < }C.{x | -5 < x <3}D.{x |-7< x <5 }x116. (2009 全国卷Ⅱ理) 设集合 A x|x 3 ,B x| 0 ,则 A B = x4A. B. 3,4 C. 2,1 D. 4.18. ( 2009 辽宁卷文) 已知集合 M =﹛ x| -3<x 5﹜ ,N =﹛ x|x <- 5 或 x >5﹜,则 M NN {x 素共有 A. 3个C. 1B.2 D.个 无穷多11. 2009 安徽卷理) 若集合 A x |2x 1| 3 ,B2x 10 ,则 A ∩B 是 3xA.1x 1 x1或2 x 3 B.x2 x 3 C. x1x 2 D. 212. 2009 安徽卷文) 若集合,则 是13. A .{1 ,2,3}C. {4 ,5}B. {1 ,2} D. {1 ,2,3,4,5}2009 江西卷理) 已知全集 U A B 中有 m 个元素, (痧UA ) ( UB )中有 n 个元素.若AI B 非空,则 AI B 的元素个数为 mn=A. ﹛x|x <-5 或x>-3﹜B. ﹛x| -5<x<5﹜C.﹛x| -3<x<5﹜D. ﹛x|x <-3 或x>5﹜220. (2009 陕西卷文)设不等式x2 x 0 的解集为M,函数f(x) ln(1 |x |)的定义域为N 则M N 为()A.[0 ,1)B. (0,1)C.[0 ,1]D.(-1,0]21. (2009 四川卷文)设集合S={ x|x 5 },T ={ x|(x 7)(x 3) 0 } 则S T()A. { x|-7< x <-5 }B. {x|3 < x<5 }C.{ x|-5 < x<3}D. {x|-7< x <5 }22.(2009 全国卷Ⅰ文)设集合A={4,5,6,7,9},B={3,4,7,8,9},全集=A B,则集合[u (A B)中的元素共有A.3 个B.4 个C. 5 个D. 6 个24. (2009 四川卷理)设集合S x| x 5 ,T x|x2 4x 21 0 ,则S TA.x| 7 x 5 B.x|3 x 5 C.x| 5 x 3 D.x| 7 x 525. (2009 福建卷文)若集合A x|x 0. B x|x 3 ,则A B 等于A.{x|x 0}B{x|0 x 3}C{x|x 4}D R二、填空题26.(2009年上海卷理)已知集合A x|x 1 ,B x|x a ,且A B R ,则实数a的取值范围是__________________ .27.(2009重庆卷文)若U {n n是小于9 的正整数} ,A {n U n 是奇数} ,B {n U n是3的倍数} ,则e U (A B).28..(2009 重庆卷理)若A x R x 3 ,B x R 2x 1 ,则A B .29..(2009 上海卷文)已知集体A={x| x≤1},B={x | ≥a},且A∪ B=R ,则实数 a 的取值范围是____________ .30.(2009 北京文)设 A 是整数集的一个非空子集,对于k A ,如果k 1 A且k 1 A,那么k 是 A 的一个“孤立元” ,给定S {1,2,3,4,5,6,7,8,} ,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有个.31..(2009 天津卷文)设全集U A B x N *|lgx 1 ,若B m|m 2n 1,n 0,1,2,3,4 ,则集合B= __________ .A CU【考点定位】本试题主要考查了集合的概念和基本的运算能力。

【高中数学】《集合》高考常考题型(后附解析)

【高中数学】《集合》高考常考题型(后附解析)

《集合》常考题型题型一.通过集合的关系求参数范围1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,A B A =,实数a 的取值范围是 . 2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,实数a 的取值范围是 . 3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是 . 题型二.子集个数问题4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4 题型三.集合与元素的关系5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.参考答案1.已知集合2{|320}A x x x =−+=,22{|2(1)(5)0}B x x a x a =−++−=,AB A =,求实数a 的取值范围.【解答】解:由2320x x −+=解得1x =,2.{1A ∴=,2}.A B A =,B A ∴⊆. 1B ︒=∅,△8240a =+<,解得3a <−.2︒若{1}B =或{2},则△0=,解得3a =−,此时{2}B =−,不符合题意.3︒若{1B =,2},∴2122(1)125a a +=+⎧⎨⨯=−⎩,此方程组无解. 综上:3a <−.∴实数a 的取值范围是(,3)−∞−.2.已知全集U R =,集合{|25}A x x =−,{|121}B x a x a =+−,且U A B ⊆,求实数a 的取值范围. 【解答】解:{|121}B x a x a =+−,且U A B ⊆,B ∴=∅,或211a a −>+,解得2a >, ①{|1U B x x a =<+,或21}x a >−,∴251a a ⎧⎨<+⎩或2212a a ⎧⎨−<−⎩, 解得4a >或a ∈∅.此时实数a 的取值范围为4a >.②当B =∅,U B R =,满足U A B ⊆,121a a ∴+>−,解得2a <.综上可得:实数a 的取值范围为4a >或2a <.3.已知集合2{|10}A x R x ax =∈++=和{1B =,2},且A B ⊆,则实数a 的取值范围是[2−,2). 【解答】解:因为A B ⊆,所以A =∅或{1}A =,{2}A =或{1A =,2}. 若A =∅,则△240a =−<,解得22a −<<.若{1}A =应有△240a =−=且110a ++=,解得2a =−.若{2}A =时,应有△240a =−=且4210a ++=,此时无解. 若{1A =,2},则1,2是方程210x ax ++=的两个根,所以由根与系数的关系得121⨯=,显然不成立.综上满足条件的实数a 的取值范围是22a −<.故答案为:[2−,2).4.用d (A )表示集合A 中的元素个数,若集合22{|()(1)0}A x x ax x ax =−−+=,{0B =,1},且|d (A )d−(B )|1=.设实数a 的所有可能取值构成集合M ,则()(d M = )A .3B .2C .1D .4【解答】解:由题意,d (B )2=,|d (A )d −(B )|1=,d ∴(A )1=或3, 方程22()(1)0x ax x ax −−+=可化为20x ax −=或210x ax −+=, 即0x =或x a =或210x ax −+=,①若d (A )1=,则方程22()(1)0x ax x ax −−+=有且只有一个解,故0a =,此时方程22(1)0x x +=有且只有一个解;②若d (A )3=,则方程22()(1)0x ax x ax −−+=有三个不同的解,则2040a a ≠⎧⎨−=⎩,解得,2a =±, 经检验,2a =±时,方程22()(1)0x ax x ax −−+=有三个不同的解,综上所述,{0M =,2−,2},故()3d M =, 故选:A .5.设A 是非空数集,0A ∉,1A ∉,且满足条件:若a A ∈,则11A a ∈−. 证明:(1)若2A ∈,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集;(3)集合A 中至少有三个不同的元素.【解答】解:(1)若2A ∈,则1112A =−∈−,于是()11112A =∈−−, 故集合A 中还含有1−,12两个元素. (2)若A 为单元素集,则11a a =−,即210a a −+=,此方程无实数解,∴11a a≠−, ∴a 与11a−都为集合A 的元素,则A 不可能是单元素集. (3)由A 是非空集合知存在1111111a a A A A a a a−∈⇒∈⇒=∈−−−−. 现只需证明a 、11a −、1a a−−三个数互不相等. ①若21101a a a a =⇒−+=−,方程无解,∴11a a≠−; ②若2110a a a a a −=⇒−+=−,方程无解;∴1a a a−≠−; ③若211101a a a a a −=⇒−+=−−,方程无解,∴111a a a −≠−−, 故集合A 中至少有三个不同的元素.。

集合典型例题(含解析)

集合典型例题(含解析)

第一章集合一、选择题1.(2012·湖南高考理科·T1)设集合M={-1,0,1},N={x|x2≤x},则M∩N=( )(A){0} (B){0,1} (C){-1,1} (D){-1,0,1}【解题指南】求出集合N中所含有的元素,再与集合M求交集.【解析】选B. 由…2x x,得…2x x0-,…x(x1)0-,剟0x1,所以N=剟{x0x1},所以M I N={0,1},故选B.2.(2012·浙江高考理科·T1)设集合A={x|1<x<4},集合B ={x|x2-2x-3≤0}, 则A∩(C R B)=()(A)(1,4) (B)(3,4) (C)(1,3) (D)(1,2)∪(3,4)【解题指南】考查集合的基本运算.【解析】选B.集合B ={x|x2-2x-3≤0}={}13x x-≤≤,{}1,3RB x x x=<->或ð,∴A∩(C R B)=(3,4)3.(2012·江西高考理科·T1)若集合{}{}1,1,0,2A B=-=,则集合{}|,,z z x y x A y B=+∈∈中的元素的个数为()(A)5 (B)4 (C)3 (D)2【解题指南】将x y+的可能取值一一列出,根据元素的互异性重复元素只计一次,可得元素个数.【解析】选C.由已知得,{}|,,z z x y x A y B=+∈∈{}1,1,3=-,所以集合{}|,,z z x y x A y B=+∈∈中的元素的个数为3.4.(2012·新课标全国高考理科·T1)已知集合{}1,2,3,4,5A=,(){},|,,,B x y x A y A x y A =∈∈-∈则B 中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10【解题指南】将x y -可能取的值列举出来,然后与集合A 合到一起,根据元素的互异性确定元素的个数.【解析】选D.由,x A y A ∈∈得0x y -=或1x y -=±或2x y -=±或3x y -=±或4x y -=±,故集合B 中所含元素的个数为10个.5. (2012·广东高考理科·T2)设集合U={1,2,3,4,5,6},M={1,2,4 },则=ðU M ( )(A)U (B){1,3,5} (C){3,5,6} (D){2,4,6}【解题指南】掌握补集的定义:{|,}U M x x U x M =∈∉且ð,本题易解.【解析】选C. {3,5,6}U M =ð.6.(2012·山东高考文科·T2)与(2012·山东高考理科·T2)相同 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U (A)B ð为( ) (A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解题指南】 先求集合A 关于全集U 的补集,再求它与集合B 的并集即可.【解析】选C.{}{}{}U (A)B 0,42,40,2,4==ð. 7.(2012·广东高考文科·T2)设集合U={1,2,3,4,5,6},M={1,3,5},则U M ð=( )(A){2,4,6} (B){1,3,5} (C){1,2,4} (D)U【解题指南】根据补集的定义:{|,}U M x x U x M =∈∉且ð求解即可.【解析】选A. {2,4,6}U M =ð.8.(2012·辽宁高考文科·T2)与(2012·辽宁高考理科·T1)相同 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U A B ⋂=痧(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【解题指南】据集合的补集概念,分别求出,痧U U A B ,然后求交集.【解析】选B. 由已知C U A={2,4,6,7,9},U B ð={0,1,3,7,9},则(U A ð)⋂(U B ð)={2,4,6,7,9}⋂{0,1,3,7,9}={7,9}.9.(2012·新课标全国高考文科·T1)已知集合A={x|x 2-x -2<0},B={x|-1<x<1},则( )(A )A B Ü (B )B A Ü (C )A=B (D )A ∩B=∅【解题指南】解不等式x 2-x -2<0得集合A ,借助数轴理清集合A 与集合B 的关系.【解析】选B. 本题考查了简单的一元二次不等式的解法和集合之间的关系,由题意可得{}|12A x x =-<<,而{}|11B x x =-<<,故B A Ü.10.(2012·安徽高考文科·T2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( )(A )(1,2) (B )[1,2] (C )[ 1,2) (D )(1,2 ]【解题指南】先求出集合,A B ,再求交集.【解析】选D .∵{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]=+∞=B A B ,∴.11.(2012·福建高考文科·T2)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( )(A)N M ⊆ (B)M N M = (C)M N N = (D){2}M N =【解题指南】通过观察找出公共元素,即得交集,结合子集,交、并、补各种概念进行判断和计算.【解析】选D .N 中元素-2不在M 中,因此,A 错,B 错; {2}M N N =≠,因此C错,故选D .12.(2012·浙江高考文科·T1)设全集U={1,2,3,4,5,6} ,集合P={1,2,3,4} ,Q={3,4,5},则P∩(ðU Q)=()(A){1,2,3,4,6} (B){1,2,3,4,5}(C){1,2,5} (D){1,2}【解题指南】考查集合的基本运算.【解析】选D. C U Q={}1,2,6,则P∩(CU Q)={}1,2.13.(2012·北京高考文科·T1)与(2012·北京高考理科·T1)相同已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()(A)(-∞,-1)(B)(-1,-23)(C)(-23,3)(D)(3,+∞)【解题指南】通过解不等式先求出A,B两个集合,再取交集.【解析】选D.集合A=2{|}3x x>-,{|13}B x x x=<->或,所以{|3}A B x x=>.14.(2012·湖南高考文科·T1)设集合M={-1,0,1},N={x|x2=x},则M∩N=()(A){-1,0,1} (B){0,1} (C){1} (D){0}【解题指南】先求出集合N中的元素,再求集合M,N的交集.【解析】选B. N={0,1},∴M∩N={0,1},故选B.15. (2012·江西高考文科·T2)若全集U={x∈R|x2≤4},则集合 A={x∈R||x+1|≤1}的补集C u A为( )(A){x∈R |0<x<2} (B){x∈R |0≤x<2}(C){x∈R |0<x≤2} (D){x∈R |0≤x≤2}【解题指南】解不等式得集合U和A,在U中对A取补集.【解析】选C.{|22}U x x =-≤≤,{|20}A x x =-≤≤,则ðU A={|02}U C A x x =<≤. 16.(2012·湖北高考文科·T1)已知集合A={x|2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为(A) 1 (B)2 (C) 3 (D)4【解题指南】根据集合的性质,先化简集合A,B.再结合集合之间的关系求解.【解析】选D. 由题意知:A= {1,2} ,B={1,2,3,4}.又A C B ⊆⊆,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 二、填空题17.(2012·上海高考理科·T2)若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【解题指南】本题考查集合的交集运算知识,此类题的易错点是临界点的大小比较. 【解析】集合1{2+10}{|}2A x x x x =>=>-,集合{}{12}{|212}13B x x x x x x =-<=-<-<=-<<,所以1{|3}2A B x x =-<<. 【答案】1{|3}2x x -<< 18.(2012·江苏高考·T1)已知集合{}{}1,2,4,2,4,6A B ==,则A B = .【解题指南】从集合的并集的概念角度处理.【解析】{1,2,4,6}=A B .【答案】{1,2,4,6}。

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( ) A .{}1,3,4 B .{}2,3,4 C .{}1,2,3,4 D .{}0,1,2,3,4,93.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1-- B .{}0,1,2 C .{}2- D .{}25.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( ) A .{1,2}- B .{1,2} C .{1,4} D .{1,4}- 6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T?( )A .∅B .SC .TD .Z10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,911.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( )A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( )A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( ) A .{}1,4,9 B .{}3,4,9 C .{}1,2,3 D .{}2,3,52.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( )A .()U M N ðB .U N M ðC .()U M N ðD .U M N ⋃ð4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( )A .{3}B .{1,6}C .{5,6}D .{1,3}7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a c C .{},b d D .{},,,a b c d考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥ ”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥ ”的充分条件D .“1x =-”是“//a b ”的充分条件2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-= ”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2yxx y +=-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}n S n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥参考答案考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-【答案】B【详细分析】根据包含关系分20a -=和220a -=两种情况讨论,运算求解即可.【答案详解】因为A B ⊆,则有:若20a -=,解得2a =,此时{}0,2A =-,{}1,0,2B =,不符合题意;若220a -=,解得1a =,此时{}0,1A =-,{}1,1,0B =-,符合题意;综上所述:1a =.故选:B.2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详细分析】根据充分条件和必要条件的定义即可求解.【答案详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( )A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,9【答案】C 【详细分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【答案详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C3.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 【答案】A【详细分析】先化简集合,M N ,然后根据交集的定义计算.【答案详解】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣, 根据交集的运算可知,{|21}M N x x =-≤< .故选:A4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C 【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出. 【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--, 所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .5.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}- 【答案】B【详细分析】方法一:求出集合B 后可求A B ⋂.【答案详解】[方法一]:直接法因为{}|02B x x =≤≤,故{}1,2A B = ,故选:B.[方法二]:【最优解】代入排除法=1x -代入集合{}11B x x =-≤,可得21≤,不满足,排除A 、D ;4x =代入集合{}11B x x =-≤,可得31≤,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【详细分析】求出集合,M N 后可求M N ⋂. 【答案详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ?( )A .∅B .SC .TD .Z【答案】C【详细分析】详细分析可得T S ⊆,由此可得出结论.【答案详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【详细分析】求出集合N 后可求M N ⋂. 【答案详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.11.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭ C .{}45x x ≤<D .{}05x x <≤【答案】B【详细分析】根据交集定义运算即可 【答案详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【名师点评】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【详细分析】利用交集的定义可求A B ⋂.【答案详解】由题设有{}2,3A B ⋂=,故选:B .考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <【答案】C【详细分析】直接根据并集含义即可得到答案.【答案详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【详细分析】利用并集的定义可得正确的选项.【答案详解】{}1,2,4,6A B = ,故选:D.3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤【答案】B【详细分析】结合题意利用并集的定义计算即可.【答案详解】由题意可得:{}|12A B x x =-<≤ .故选:B.4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【详细分析】根据集合并集概念求解.【答案详解】[1,3](2,4)[1,4)A B ==U U故选:C【名师点评】本题考查集合并集,考查基本详细分析求解能力,属基础题.考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【答案】D【详细分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【答案详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =, 则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D 2.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U【答案】A【详细分析】由题意可得U N ð的值,然后计算U M N ⋃ð即可.【答案详解】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选:A.3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( ) A .()U M N ð B .U N M ðC .()U M N ðD .U M N ⋃ð【答案】A【详细分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【答案详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确; {}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( ) A .2M ∈ B .3M ∈ C .4M ∉ D .5M ∉【答案】A【详细分析】先写出集合M ,然后逐项验证即可【答案详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--【答案】D【详细分析】利用补集的定义可得正确的选项.【答案详解】由补集定义可知:{|32U A x x =-<≤-ð或13}x <<,即(3,2](1,3)U A =-- ð,故选:D .6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【详细分析】根据交集、补集的定义可求()U A B ⋂ð.【答案详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð, 故选:B.7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a cC .{},b dD .{},,,a b c d【答案】C【详细分析】利用补集概念求解即可. 【答案详解】{},U M b d =ð. 故选:C考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =-”是“//a b ”的充分条件 【答案】C【详细分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【答案详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误. 故选:C.2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【答案详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件. 故选:C.3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-=”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【详细分析】根据向量数量积详细分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件详细分析判断.【答案详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = , 若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- , 例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2y xx y+=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】解法一:由2xyy x +=-化简得到0x y +=即可判断;解法二:证明充分性可由0x y +=得到x y =-,代入x y y x+化简即可,证明必要性可由2x yy x +=-去分母,再用完全平方公式即可;解法三:证明充分性可由x y y x +通分后用配凑法得到完全平方公式,再把0x y +=代入即可,证明必要性可由x yy x+通分后用配凑法得到完全平方公式,再把0x y +=代入,解方程即可. 【答案详解】解法一: 因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法二:充分性:因为0xy ≠,且0x y +=,所以x y =-, 所以112x y y yy x y y -+=+=--=--, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=. 所以必要性成立.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法三:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xyy x xy xy xy xy+-+++--+=====-, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-, 所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2xyy x +=-”的充要条件. 故选:C5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解. 【答案详解】当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=. 综上可知,甲是乙的必要不充分条件. 故选:B6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】B【详细分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【答案详解】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立; 由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+, 因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【详细分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【答案详解】因为22sin cos 1x x +=可得: 当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立; 所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件. 故选:A.9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >,所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题 D .p ⌝和q ⌝都是真命题【答案】B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解. 【答案详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题, 综上,p ⌝和q 都是真命题. 故选:B.2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x > D .x ∀∈R ,20x ≥【答案】D【详细分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果. 【答案详解】A 项:因为43>,所以10>且34>是假命题,A 错误; B 项:根据12<、45<易知B 错误; C 项:由余弦函数性质易知cos 1≤x ,C 错误; D 项:2x 恒大于等于0,D 正确, 故选:D.。

高考文科数学集合专题讲解及高考真题精选(含答案)

高考文科数学集合专题讲解及高考真题精选(含答案)

集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.集合的基本运算1. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 2. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高考数学专题复习-集合真题练习(附答案)

高考数学专题复习-集合真题练习(附答案)

专题一集合与常用逻辑用语1.1集合考点一集合及其关系1.(2013山东理,2,5分)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9答案C因为x∈A,y∈A,所以=0,=0或=0,=1或=0,=2或=1,=0或=1,=1或=1,=2或=2,=0或=2,=1或=2,=2,所以B={0,-1,-2,1,2},所以集合B中有5个元素,故选C.2.(2013江西文,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4B.2C.0D.0或4答案A若a=0,则A=Ø⌀,不符合要求;若a≠0,则Δ=a2-4a=0,得a=4,故选A.3.(2012课标理,1,5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10答案D解法一:由x-y∈A及A={1,2,3,4,5}得x>y,当y=1时,x可取2,3,4,5,有4个;当y=2时,x可取3,4,5,有3个;当y=3时,x可取4,5,有2个;当y=4时,x可取5,有1个.故共有1+2+3+4=10(个),选D.解法二:因为A中元素均为正整数,所以从A中任取两个元素作为x,y,满足x>y的(x,y)即为集合B中的元素,故共有C52=10个,选D.4.(2011福建理,1,5分)i是虚数单位,若集合S={-1,0,1},则()A.i∈SB.i2∈SC.i3∈SD.2i∈S答案B i2=-1,-1∈S,故选B.5.(2015重庆理,1,5分)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=Ø⌀C.A⫋BD.B⫋A答案D∵A={1,2,3},B={2,3},∴A≠B,A∩B={2,3}≠Ø;又1∈A且1∉B,∴A不是B的子集,故选D.6.(2013课标Ⅰ理,1,5分)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=ØB.A∪B=RC.B⊆AD.A⊆B答案B化简A={x|x>2或x<0},而B={x|-5<x<5},所以A∩B={x|-5<x<0或2<x<5},A项错误;A∪B=R,B项正确;A与B没有包含关系,C项与D项均错误.故选B.7.(2012课标文,1,5分)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A⫋BB.B⫋AC.A=BD.A∩B=Ø答案B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.8.(2012大纲全国文,1,5分)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x 是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D答案B由已知x是正方形,则x必是矩形,所以C⊆B,故选B.9.(2012湖北文,1,5分)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数为()A.1B.2C.3D.4答案D A={1,2},B={1,2,3,4},所以满足条件的集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.评析本题考查集合之间的关系.10.(2016四川,1,5分)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案C A中包含的整数元素有-2,-1,0,1,2,共5个,所以A∩Z中的元素个数为5.11.(2012天津文,9,5分)集合A={x∈R||x-2|≤5}中的最小整数为.答案-3解析由|x-2|≤5,得-5≤x-2≤5,即-3≤x≤7,所以集合A中的最小整数为-3.12.(2013江苏,4,5分)集合{-1,0,1}共有个子集.答案8解析集合{-1,0,1}的子集有Ø,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1},共8个.评析本题考查子集的概念,忽视Ø是学生出错的主要原因.考点二集合的基本运算1.(2021北京,1,4分)已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案B因为集合A={x|-1<x<1},B={x|0≤x≤2},所以用数轴表示两集合中元素如图,可知A∪B={x|-1<x≤2},故选B.2.(2021浙江,1,4分)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}答案D利用数轴可得A∩B={x|1≤x<2}.3.(2022浙江,1,4分)设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案D由题意得A∪B={1,2,4,6}.故选D.4.(2022全国乙文,1,5分)集合M={2,4,6,8,10},N={x|-1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案A由题意知M∩N={2,4},故选A.5.(2022全国甲文,1,5分)设集合A={-2,-1,0,1,2},B=U0≤<A∩B=()A.{0,1,2}B.{-2,-1,0}C.{0,1}D.{1,2}答案A集合A中的元素只有0,1,2属于集合B,所以A∩B={0,1,2}.故选A.6.(2022全国乙理,1,5分)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈MB.3∈MC.4∉MD.5∉M答案A由题意知M={2,4,5},故选A.7.(2022新高考Ⅱ,1,5分)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=()A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案B由|x-1|≤1得0≤x≤2,则B={x|0≤x≤2},∴A∩B={1,2},故选B.8.(2022北京,1,4分)已知全集U={x|-3<x<3},集合A={x|-2<x≤1},则∁U A=()A.(-2,1]B.(-3,-2)∪[1,3)C.[-2,1)D.(-3,-2]∪(1,3)答案D在数轴上作出全集U及集合A,如图所示,可知∁U A=(-3,-2]∪(1,3).故选D.易错警示:集合A中含有元素1,不含元素-2,故∁U A中含有元素-2,不含元素1,注意区间的开闭.9.(2022天津,1,5分)设全集U={-2,-1,0,1,2},集合A={0,1,2},B={-1,2},则A∩(∁U B)=()A.{0,1}B.{0,1,2}C.{-1,1,2}D.{0,-1,1,2}答案A∵U={-2,-1,0,1,2},B={-1,2},∴∁U B={-2,0,1},又A={0,1,2},∴A∩(∁U B)={0,1}.故选A.10.(2022新高考Ⅰ,1,5分)若集合M={x|<4},N={x|3x≥1},则M∩N=()A.{x|0≤x<2}B.U13≤<2C.{x|3≤x<16}D.U13≤<16答案D由题意知M={x|0≤x<16},N=U≥M∩N=U13≤<16,故选D.11.(2022全国甲理,3,5分)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x2-4x+3=0},则∁U(A∪B)=() A.{1,3} B.{0,3} C.{-2,1} D.{-2,0}答案D因为B={x|x2-4x+3=0}={1,3},所以A∪B={-1,1,2,3},所以∁U(A∪B)={-2,0},故选D. 12.(2021全国甲理,1,5分)设集合M={x|0<x<4},N=U13≤≤5,则M∩N=()A.U0<≤B.U13≤<4C.{x|4≤x<5}D.{x|0<x≤5}答案B<<4,≤5,得13≤x<4,故选B.13.(2021全国甲文,1,5分)设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=()A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}答案B解题指导:对可化简的集合,先化成最简形式;注意仔细审题,利用“∩”的含义,进行基本运算.解析N={x|2x>7}=U M∩N={5,7,9},故选B.易错警示:区分“∩”与“∪”.14.(2021新高考Ⅰ,1,5分)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案B在数轴上表示出集合A,如图,由图知A∩B={2,3}.15.(2021全国乙理,2,5分)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.ØB.SC.TD.Z答案C解题指导:首先结合集合S、T的元素特征得到T⫋S,然后依据集合的交集运算得出结果.解析依题知T⫋S,则S∩T=T,故选C.16.(2021全国乙文,1,5分)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}答案A解题指导:先求M∪N,再求∁U(M∪N),即可得出结果.解析由题意得M∪N={1,2,3,4},则∁U(M∪N)={5},故选A.易错警示学生易因混淆交集和并集的运算而出错.17.(2020新高考Ⅰ,1,5分)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}答案C已知A={x|1≤x≤3},B={x|2<x<4},在数轴上表示出两个集合,由图易知A∪B={x|1≤x<4}.故选C.18.(2020新高考Ⅰ,5,5分)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是() A.62% B.56% C.46% D.42%答案C用Venn图表示学生参加体育锻炼的情况,A+B表示喜欢游泳的学生数占该校学生总数的比例,B+C表示喜欢足球的学生数占该校学生总数的比例,A+B+C表示喜欢足球或游泳的学生数占该校学生总数的比例,即A+B=82%,B+C=60%,A+B+C=96%,B表示既喜欢足球又喜欢游泳的学生数占该校学生总数的比例,故B=82%+60%-96%=46%.故选C.19.(2020北京,1,4分)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}答案D集合A与集合B的公共元素为1,2,由交集的定义知A∩B={1,2},故选D.20.(2019课标Ⅱ理,1,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)答案A本题考查了集合的运算;以集合的交集为载体,考查运算求解能力,旨在考查数学运算的素养要求.由题意得A={x|x<2或x>3},B={x|x<1},∴A∩B={x|x<1}.21.(2019课标Ⅱ文,1,5分)已知集合A={x|x>-1},B={x|x<2},则A∩B=()A.(-1,+∞)B.(-∞,2)C.(-1,2)D.Ø答案C本题主要考查集合的交集运算;考查数学运算的核心素养.∵A={x|x>-1},B={x|x<2},∴A∩B={x|-1<x<2},即A∩B=(-1,2).故选C.22.(2019课标Ⅲ理,1,5分)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}答案A本题考查集合的运算,通过集合的不同表示方法考查学生对知识的掌握程度,考查了数学运算的核心素养.由题意可知B={x|-1≤x≤1},又∵A={-1,0,1,2},∴A∩B={-1,0,1},故选A.23.(2019北京文,1,5分)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=()A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)答案C本题主要考查集合的并集运算,考查学生运算求解的能力,考查的核心素养是数学运算.∵A={x|-1<x<2},B={x|x>1},∴A∪B={x|x>-1},故选C.A)∩B=()24.(2019浙江,1,4分)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁UA.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}答案A本题考查补集、交集的运算;旨在考查学生的运算求解的能力;以列举法表示集合为背景体现数学运算的核心素养.∵∁U A={-1,3},∴(∁U A)∩B={-1},故选A.25.(2018课标Ⅰ文,1,5分)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}答案A本题主要考查集合的基本运算.∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.26.(2018课标Ⅱ文,2,5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}答案C本题主要考查集合的运算.由题意得A∩B={3,5},故选C.27.(2018课标Ⅲ理,1,5分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}答案C本题考查集合的运算.∵A={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C.28.(2018北京理,1,5分)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}答案A本题主要考查集合的运算.化简A={x|-2<x<2},∴A∩B={0,1},故选A.29.(2018天津文,1,5分)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}答案C本题主要考查集合的运算.由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.A=()30.(2018浙江,1,4分)已知全集U={1,2,3,4,5},A={1,3},则∁UA.Ø⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}答案C本题考查集合的运算.∵U={1,2,3,4,5},A={1,3},∴∁U A={2,4,5}.31.(2017课标Ⅱ理,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案C本题主要考查集合的运算.∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.32.(2017课标Ⅰ文,1,5分)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=<B.A∩B=ØC.A∪B=<D.A∪B=R答案A本题考查集合的运算.由3-2x>0得x<32,则B=<所以A∩B=<故选A.33.(2017课标Ⅱ文,1,5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}答案A本题考查集合的并集.A∪B={1,2,3}∪{2,3,4}={1,2,3,4}.故选A.34.(2017课标Ⅲ文,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4答案B因为集合A和集合B有共同元素2,4,所以A∩B={2,4},所以A∩B中元素的个数为2.35.(2017天津理,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案B本题主要考查集合的表示和集合的运算.因为A={1,2,6},B={2,4},所以A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},所以(A∪B)∩C={1,2,4}.故选B.36.(2017北京理,1,5分)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案A本题考查集合的交集运算,考查运算求解能力.由集合的交集运算可得A∩B={x|-2<x<-1},故选A.37.(2017北京文,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁A=()UA.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)答案C本题考查集合的补集运算.根据补集的定义可知,∁U A={x|-2≤x≤2}=[-2,2].故选C.38.(2016课标Ⅰ理,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A.−3,−B.C.1,3答案D因为A={x|x2-4x+3<0}={x|1<x<3},B=>所以A∩B={x|1<x<3}∩>=< x<3.故选D.思路分析通过不等式的求解分别得出集合A和集合B,然后根据交集的定义求得A∩B的结果,从而得出正确选项.方法总结集合的运算问题通常是先化简后运算,可借助数轴或韦恩图解决.39.(2016课标Ⅱ理,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案C由(x+1)(x-2)<0⇒-1<x<2,又x∈Z,∴B={0,1},∴A∪B={0,1,2,3}.故选C.40.(2016课标Ⅲ理,1,5分)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)答案D S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},在数轴上表示出集合S,T,如图所示:由图可知S∩T=(0,2]∪[3,+∞),故选D.评析本题主要考查了集合的运算,数轴是解决集合运算问题的“利器”.41.(2016课标Ⅰ文,1,5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}答案B∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.42.(2016课标Ⅱ文,1,5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}答案D由已知得B={x|-3<x<3},∵A={1,2,3},∴A∩B={1,2},故选D.B=()43.(2016课标Ⅲ文,1,5分)设集合A={0,2,4,6,8,10},B={4,8},则∁AA.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}答案C由补集定义知∁A B={0,2,6,10},故选C.44.(2016天津理,1,5分)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案D由题易知B={1,4,7,10},所以A∩B={1,4},故选D.45.(2016山东理,2,5分)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案C∵A=(0,+∞),B=(-1,1),∴A∪B=(-1,+∞).故选C.Q)=()46.(2016浙江,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁RA.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案B∵Q=(-∞,-2]∪[2,+∞),∴∁R Q=(-2,2),∴P∪(∁R Q)=(-2,3],故选B.47.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}答案A因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A∩B={-1,0}.选A.48.(2015课标Ⅰ文,1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案D由已知得A={2,5,8,11,14,17,…},又B={6,8,10,12,14},所以A∩B={8,14}.故选D.49.(2015课标Ⅱ文,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)答案A因为A=(-1,2),B=(0,3),所以A∪B=(-1,3),故选A.50.(2015陕西文,1,5分)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案A由题意知M={0,1},N={x|0<x≤1},所以M∪N=[0,1].故选A.51.(2014课标Ⅰ理,1,5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)答案A由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.52.(2014课标Ⅱ理,1,5分)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}答案D由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D.53.(2014课标Ⅱ文,1,5分)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.⌀B.{2}C.{0}D.{-2}答案B∵集合A={-2,0,2},B={x|x2-x-2=0}={2,-1},∴A∩B={2},故选B.54.(2013课标Ⅱ理,1,5分)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}答案A化简得M={x|-1<x<3},所以M∩N={0,1,2},故选A.55.(2013课标Ⅰ文,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案A∵B={x|x=n2,n∈A}={1,4,9,16},∴A∩B={1,4},故选A.56.(2013课标Ⅱ文,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}答案C由题意得M∩N={-2,-1,0}.选C.57.(2013上海理,15,5分)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为()A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)答案B当a=1时,集合A=R,满足A∪B=R.当a>1时,A=(-∞,1]∪[a,+∞),由A∪B=R,得a-1≤1,所以1<a≤2;当a<1时,A=(-∞,a]∪[1,+∞),由A∪B=R,得a-1≤a,所以a<1.综上所述,a≤2.58.(2012大纲全国理,2,5分)已知集合A={1,3,},B={1,m},A∪B=A,则m=()A.0或3B.0或3C.1或3D.1或3答案B由A∪B=A得B⊆A,则m∈A,所以有m=或m=3,所以m=3或m=1或m=0,又由集合中元素的互异性知m≠1,故选B.59.(2011课标文,1,5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案B由题意得P=M∩N={1,3},∴P的子集为⌀,{1},{3},{1,3},共4个,故选B.M=⌀,则M∪N=() 60.(2011辽宁理,2,5分)已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁IA.MB.NC.ID.⌀答案A∵N∩∁I M=⌀,∴N⊆M.又M≠N,∴N⫋M,∴M∪N=M.故选A.61.(2020江苏,1,5分)已知集合A={-1,0,1,2},B={0,2,3},则A∩B=.答案{0,2}解析∵A={-1,0,1,2},B={0,2,3},∴A∩B={0,2}.62.(2018江苏,1,5分)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B=.答案{1,8}解析本题考查集合的运算.∵A={0,1,2,8},B={-1,1,6,8},∴A∩B={1,8}.。

高三数学集合的运算试题答案及解析

高三数学集合的运算试题答案及解析

高三数学集合的运算试题答案及解析1.已知集合,,则()A.B.C.D.【答案】A.【解析】解一元二次不等式,得或,∴或,∴.【考点】1.一元二次不等式;2.集合的交集.2. [2013·课标全国卷Ⅰ]已知集合A={x|x2-2x>0},B={x|-<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【答案】B【解析】∵x(x-2)>0,∴x<0或x>2.∴集合A与B可用数轴表示为:由图象可以看出A∪B=R,故选B.3.若集合且对中其它元素,总有则.【答案】【解析】本题实质求集合中所有点的横坐标的最小值.因为,所以当时当时因此.【考点】二次函数最值4.设全集为实数集R,,则图中阴影部分表示的集合是( )A.B.C.D.【答案】C【解析】∵,∴或,∴,∵,由图可知,阴影部分表示的是,∴,∴阴影部分为.【考点】一元二次不等式、集合的交集补集运算.A)∩B等于()5.设全集U=R,集合A={x|2x>1},B={x||x﹣2|≤3},则(∁UA.[﹣1,0) B.(0,5] C.[﹣1,0] D.[0,5]【答案】C【解析】由A中的不等式变形得:2x>1=20,得到x>0,即A=(0,+∞),∵全集U=R,∴∁A=(﹣∞,0],U由B中的不等式变形得:﹣3≤x﹣2≤3,即﹣1≤x≤5,∴B=[﹣1,5],A)∩B=[﹣1,0].则(∁U故选:C.6.设集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16B.8C.7D.4【答案】C【解析】∵集合A={x|0≤x<3且x∈N}={0,1,2},∴集合A的真子集是:φ,{0},{1},{2},{0,1},{0,2},{1,2},共有7个,故选C.7.集合,则()A.(1,2)B.C.D.【答案】C【解析】,,所以,选C.8.已知集合,集合,则_______.【答案】【解析】由题意,.【考点】集合的运算.9.设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T等于()A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}【答案】A【解析】集合运算问题需先对集合进行化简,明确集合中所含具体元素,因S={0,-2},T={0,2},所以S∩T={0}.故选A.10.集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}【答案】D【解析】因为M∩N={2},所以a+1=2,a=1,所以b=2,所以M={1,2},N={2,3},故M∪N={1,2,3}.(x-2x2)},则(M∩N)=()11.已知集合M={x|y=},N={x|y=log2A.(,)B.(-∞,)∪[,+∞)C.[0,]D.(-∞,0]∪[,+∞)【答案】B【解析】集合M,N都是函数的定义域,其中M=[,+∞),N=(0,),所以M∩N=[,),其在实数集中补集(M∩N)=(-∞,)∪[,+∞).12.设集合若,则的范围是( )A.B.C.D.【答案】B【解析】因为,根据题意,,而,在数轴上表示可得,必有,故选B.【考点】集合与集合之间关系.13.已知M={y|y=x2},N={y|x2+y2=2},则M∩N=________.【答案】[0,]【解析】M={y|y≥0},N={y|x2=2-y2}={y|-≤y≤}.∴M∩N=[0,]14.若集合M={y|y=2-x},P={y|y=},则M∩P=().A.{y|y>1}B.{ y|y≥1}C.{ y|y >0}D.{ y|y≥0}【答案】C【解析】∵M={ y|y >0},P={ y|y≥0},∴M∩P={ y|y >0}.15.已知集合,,则 .【答案】【解析】本题中集合的元素是曲线上的点,因此中的元素是两个曲线的交点,故我们解方程组,得或,所以.【考点】集合的运算.16.设全集,集合,,则等于A.B.C.D.【答案】B【解析】因为全集,集合,,所以,所以=,选B.【考点】集合的运算17.设集合=()A.{1,3}B.{2}C.{2,3}D.{3}【答案】A【解析】由已知得,∴.【考点】集合的运算.18.已知集合,,则.【答案】【解析】集合的元素都是函数的值域,这是我们在解与集合有关问题时,一定要弄清的东西,一个集合元素是什么?代表元是什么?而集合的交集就是由两个集合的公共元素所组成的集合.【考点】集合的交集.19.设集合,,,则等于()A.B.C.D.【答案】B【解析】,,,所以,所以,选B.【考点】集合的基本运算20.已知全集,集合,则等于()A.B.C.D.【答案】D【解析】.注意只取整数,所以.【考点】1、集合的运算;2、函数的定义域与值域;3、解不等式.21.已知全集,集合,则是( )A.B.C.D.【答案】C【解析】,.【考点】1.一元二次不等式的解法;2.集合的补集运算.22.设全集,,,则()A.B.C.D.【答案】C【解析】由题意可得,则.【考点】集合的基本运算.23.设集合,,则等于( )A.B.C.D.【答案】C【解析】,,.【考点】1.分式不等式的解法;2.函数的定义域;3.集合的交集运算.24.已知集合,,若,则实数的取值范围为.【答案】【解析】由,知,所以,若即,,满足,当时,由解得,且两等号不能同时取到,满足,综上.【考点】集合的包含关系.25.设全集,集合,,则为()A.B.C.D.【答案】C【解析】因为,,,所以.【考点】主要考查集合的运算,考查学生对基本概念的理解,及学生的基本运算能力.26.集合,集合,则()A.B.C.D.【答案】A.【解析】集合,集合,则.【考点】集合表示及运算.27.设集合,则等于()A.B.C.D.【答案】B【解析】,.【考点】交集运算.28.已知全集为R,集合A={x|log2x<1},B={x|x-1≥0},则A∩(∁RB)=( )A.{x|0<x<1} B.{x|0<x<2} C.{x|x<1} D.{x|1<x<2}【答案】A【解析】由可得,所以;由可得;所以,故选A.【考点】集合的基本运算.29.已知集合,集合,则 .【答案】或.【解析】,,.【考点】集合的交集运算30.已知集合, ,在集合中任意取一个元素,则的概率是___________.【答案】【解析】,,.【考点】几何概型.31.设全集,集合,,则图中的阴影部分表示的集合为()A.B.C.D.【答案】B【解析】由题意可知阴影部分表示的集合为,,,,,又,.故选A.【考点】1、文氏图,2、交集,补集以及集合的运算.32.集合若,则()A.B.C.D.【答案】D【解析】因为,所以,得,因此,即,所以.【考点】1.集合的运算;2.元素与集合的关系;3.对数运算.33.已知集合,则等于A.B.C.D.【答案】A【解析】因为,,所以,=,故选A。

高考数学专题《集合》习题含答案解析

高考数学专题《集合》习题含答案解析
【解析】
分析:由题意首先求得 CR B ,然后进行交集运算即可求得最终结果.
详解:由题意可得: CR B x | x 1 ,
结合交集的定义可得: A CR B 0 x 1 .
本题选择 B 选项.
8.(2017·全国高考真题(理))已知集合 A={x|x<1},B={x| 3x 1 },则(
故选:C
8.(2019·北京临川学校高二期末(文))已知集合 = { ―1,3}, = {2,2},若 ∪ = { ―1,3,2,9},则实数

的值为(
A. ± 1
B. ± 3
C. ― 1
D.3
【答案】B
【解析】
∵ 集合 = { ―1,3}, = {2,2},且 ∪ = { ―1,3,2,9}, ∴ 2 = 9,因此, =± 3,
对③: {0,1, 2} 是集合, {1, 2, 0} 也是集合,由于一个集合的本身也是该集合的子集,故③正确.
对④: 0 是元素, 是不含任何元素的空集,所以 0 ,故④错误.
对⑤: 0 是元素, 是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.
故选:C.
3.(2021·浙江高一期末)已知集合 M 0,1, 2,3, 4 , N 2, 4, 6 , P M N ,则满足条件的 P 的非
则集合 A B 的所有元素之和为(
A.16
B.18

C.14
D.8
【答案】A
【解析】
由题设,列举法写出集合 A B ,根据所得集合,加总所有元素即可.
【详解】
由题设知: A B {1, 2,3, 4, 6} ,
∴所有元素之和 1 2 3 4 6 16 .

高考集合试题及答案

高考集合试题及答案

高考集合试题及答案一、选择题1. 集合A={x|x<10},集合B={x|x>5},求A∩B。

A. {x|x<5}B. {x|x>10}C. {x|5<x<10}D. {x|x>=10}答案:C2. 已知集合C={y|y=x^2, x∈R},求C中所有元素的和。

A. 0B. 无法计算C. 正无穷D. 1答案:B二、填空题1. 集合D={1,2,3},集合E={2,3,4},求D∪E。

答案:{1,2,3,4}2. 若集合F={x|0≤x≤1},求F的补集。

答案:{x|x<0或x>1}三、解答题1. 已知集合G={x|x^2-5x+6=0},求G的所有元素。

解:首先解方程x^2-5x+6=0,分解因式得(x-2)(x-3)=0,所以x=2或x=3。

因此,集合G={2,3}。

2. 集合H={x|-3≤x≤3},求H的子集个数。

解:集合H有7个元素,根据子集个数公式2^n(其中n为集合元素个数),H的子集个数为2^7=128。

四、证明题1. 证明:若A⊆B,则A∪B=B。

证明:根据集合并集的定义,A∪B包含所有属于A或B的元素。

由于A⊆B,A中的所有元素也属于B,所以A∪B中的元素与B中的元素完全相同,即A∪B=B。

2. 证明:若A∩B=∅,则A∪B=A+B。

证明:由于A∩B=∅,说明A和B没有共同元素。

因此,A∪B中的元素要么是A的元素,要么是B的元素,这正是A+B的定义,所以A∪B=A+B。

高考集合试题及答案

高考集合试题及答案

高考集合试题及答案一、选择题(每题5分,共40分)1. 集合A={x|x<5},集合B={x|x>3},求A∪B。

A. {x|x≤3}B. {x|x<5}C. {x|x>3}D. R(实数集)2. 若集合M={y|y=x^2, x∈R},求M的元素范围。

A. {y|y≥0}B. {y|y<0}C. {y|y≤0}D. {y|y>0}3. 对于集合P={1, 2, 3},Q={2, 3, 4},求P∩Q。

A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}4. 已知集合S={x|x^2-5x+6=0},求S的元素。

A. {2, 3}B. {1, 6}C. {-1, 6}D. {-2, 3}5. 集合T={x|x是小于10的正整数},求T的元素个数。

A. 5B. 6C. 9D. 106. 若集合U={x|x^2-4x+3=0},求U的元素。

A. {1, 3}B. {-1, 3}C. {1, -3}D. {-1, 1}7. 对于集合V={x|x^2+x+1=0},求V是否为空集。

A. 是B. 否8. 已知集合W={y|y=2x, x∈N},求W的元素范围。

A. {y|y∈N}B. {y|y∈Z}C. {y|y∈Q}D. {y|y∈R}二、填空题(每题4分,共24分)9. 若集合X={x|x是偶数},集合Y={x|x是奇数},则X∩Y=________。

10. 若集合Z={x|x是自然数},求Z的补集∁_{R}Z。

11. 若集合K={x|x是小于20的质数},求K的元素个数。

12. 对于集合L={x|x是大于0且小于10的有理数},求L的元素范围。

13. 已知集合O={y|y=x^2+1, x∈R},求O的元素范围。

三、解答题(每题18分,共36分)14. 已知集合A={1, 2, 3},B={4, 5, 6},求A∩B,A∪B,以及A'(A的补集)。

历年高三数学高考考点之集合必会题型及答案

历年高三数学高考考点之集合必会题型及答案

历年高三数学高考考点之集合必会题型及答案体验高考1.(2015·重庆)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=∅C.A BD.B A答案 D解析由于2∈A,2∈B,3∈A,3∈B,1∈A,1∉B,故A,B,C均错,D是正确的,选D.2.(2015·福建)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于()A.{-1}B.{1}C.{1,-1}D.∅答案 C解析集合A={i,-1,1,-i},B={1,-1},A∩B={1,-1},故选C.3.(2016·山东)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B等于()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案 C解析A={y|y>0},B={x|-1<x<1},则A∪B=(-1,+∞),故选C.4.(2015·四川)设集合A={x|(x+1)(x-2)<0},集合B={x|1<x<3},则A∪B等于()A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}答案 A解析∵A={x|-1<x<2},B={x|1<x<3},∴A∪B={x|-1<x<3}.5.(2016·北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B等于()A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}答案 C解析由A={x|-2<x<2},得A∩B={-1,0,1}.高考必会题型题型一单独命题独立考查常用的运算性质及重要结论:(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩(∁U A)=∅,A∪(∁U A)=U;(4)A∩B=A⇔A⊆B⇔A∪B=B.例1(1)(2015·广东)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N等于()A.∅B.{-1,-4}C.{0}D.{1,4}(2)已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.答案(1)A(2)4解析(1)因为M={x|(x+4)(x+1)=0}={-4,-1},N={x|(x-4)(x-1)=0}={1,4},所以M∩N=∅,故选A.(2)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由A⊆B,如图所示,则a>4,即c=4.点评(1)弄清集合中所含元素的性质是集合运算的关键,这主要看代表元素,即“|”前面的表述.(2)当集合之间的关系不易确定时,可借助Venn图或列举实例.变式训练1(1)(2015·浙江)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q等于()A.[0,1)B.(0,2]C.(1,2)D.[1,2]答案 C解析∵P={x|x≥2或x≤0},∁R P ={x |0<x <2},∴(∁R P )∩Q ={x |1<x <2},故选C.(2)已知集合A ={x |x 2-3x +2=0},B ={x |0≤ax +1≤3},若A ∪B =B ,求实数a 的取值范围.解 ∵A ={x |x 2-3x +2=0}={1,2},又∵B ={x |0≤ax +1≤3}={x |-1≤ax ≤2},∵A ∪B =B ,∴A ⊆B .①当a =0时,B =R ,满足题意.②当a >0时,B ={x |-1a ≤x ≤2a}, ∵A ⊆B ,∴2a≥2,解得0<a ≤1. ③当a <0时,B ={x |2a ≤x ≤-1a}, ∵A ⊆B ,∴-1a ≥2,解得-12≤a <0. 综上,实数a 的取值范围为⎣⎡⎦⎤-12,1. 题型二 集合与其他知识的综合考查集合常与不等式、向量、数列、解析几何等知识综合考查.集合运算的常用方法:(1)若已知集合是不等式的解集,用数轴求解;(2)若已知集合是点集,用数形结合法求解;(3)若已知集合是抽象集合,用Venn 图求解.例2 在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a+b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A.1<r <R <3B.1<r <3≤RC.r ≤1<R <3D.1<r <3<R答案 A解析 ∵|a |=|b |=1,a ·b =0,又∵OQ →=2(a +b ),∴|OQ →|2=2(a +b )2=2(a 2+b 2+2a ·b )=4,∴点Q 在以原点为圆心,半径为2的圆上.又OP →=a cos θ+b sin θ,∴|OP →|2=a 2cos 2θ+b 2sin 2θ=cos 2θ+sin 2θ=1.∴曲线C 为单位圆.又∵Ω={P |0<r ≤|PQ →|≤R ,r <R },要使C ∩Ω为两段分离的曲线,如图,可知1<r <R <3,其中图中两段分离的曲线是指AB 与CD .故选A.点评 以集合为载体的问题,一定要弄清集合中的元素是什么,范围如何.对于点集,一般利用数形结合,画出图形,更便于直观形象地展示集合之间的关系,使复杂问题简单化. 变式训练2 函数f (x )=x 2+2x ,集合A ={(x ,y )|f (x )+f (y )≤2},B ={(x ,y )|f (x )≤f (y )},则由A ∩B 的元素构成的图形的面积是________.答案 2π解析 集合A ={(x ,y )|x 2+2x +y 2+2y ≤2},可得(x +1)2+(y +1)2≤4,集合B ={(x ,y )|x 2+2x ≤y 2+2y },可得(x -y )·(x +y +2)≤0.在平面直角坐标系上画出A ,B 表示的图形可知A ∩B 的元素构成的图形的面积为2π.题型三 与集合有关的创新题与集合有关的创新题目,主要以新定义的形式呈现,考查对集合含义的深层次理解,在新定义下求集合中的元素、确定元素个数、确定两集合的关系等.例3 设S 为复数集C 的非空子集,若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集;②若S 为封闭集,则一定有0∈S ;③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集.其中的真命题是________.(写出所有真命题的序号)答案①②解析①正确,当a,b为整数时,对任意x,y∈S,x+y,x-y,xy的实部与虚部均为整数;②正确,当x=y时,0∈S;③错误,当S={0}时,是封闭集,但不是无限集;④错,设S ={0}⊆T,T={0,1},显然T不是封闭集,因此,真命题为①②.点评解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义,首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质,解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.变式训练3在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z,k=0,1,2,3,4}.给出如下四个结论:①2 016∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一类”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1B.2C.3D.4答案 C解析对于①:2 016=5×403+1,∴2 016∈[1],故①正确;对于②:-3=5×(-1)+2,∴-3∈[2],故②不正确;对于③:∵整数集Z被5除,所得余数共分为五类.∴Z=[0]∪[1]∪[2]∪[3]∪[4],故③正确;对于④:若整数a,b属于同一类,则a=5n1+k,b=5n2+k,∴a-b=5n1+k-(5n2+k)=5(n1-n2)=5n,∴a-b∈[0],若a-b=[0],则a-b=5n,即a=b+5n,故a与b被5除的余数为同一个数,∴a与b属于同一类,∴“整数a,b属于同一类”的充要条件是“a-b∈[0]”,故④正确,∴正确结论的个数是3.高考题型精练1.(2015·天津)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)等于()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 A解析由题意知,∁U B={2,5,8},则A∩(∁U B)={2,5},选A.2.(2015·陕西)设集合M={x|x2=x},N={x|lg x≤0},则M∪N等于()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案 A解析由题意得M={0,1},N=(0,1],故M∪N=[0,1],故选A.3.(2016·四川)集合A={x|-2≤x≤2},Z为整数集,则A∩Z中元素的个数是()A.3B.4C.5D.6答案 C解析由题意,A∩Z={-2,-1,0,1,2},故其中的元素个数为5,选C.4.设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图中阴影部分表示的区间是()A.[0,1]B.[-1,2]C.(-∞,-1)∪(2,+∞)D.(-∞,-1]∪[2,+∞)答案 C解析因为A={x|0≤x≤2}=[0,2],B={y|-1≤y≤1}=[-1,1],所以A∪B=[-1,2],所以∁R (A ∪B )=(-∞,-1)∪(2,+∞).5.已知集合A ={x |-1≤x ≤1},B ={x |x 2-2x <0},则A ∪(∁R B )等于( )A.[-1,0]B.[1,2]C.[0,1]D.(-∞,1]∪[2,+∞)答案 D解析 ∵A ={x |-1≤x ≤1},B ={x |x 2-2x <0}={x |0<x <2},∴∁R B =(-∞,0]∪[2,+∞),∴A ∪(∁R B )=(-∞,1]∪[2,+∞).6.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M ={-1,0,12,2,3}的所有非空子集中具有伙伴关系的集合的个数是( )A.1B.3C.7D.31答案 B解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},{12,2},{-1,12,2}. 7.在R 上定义运算⊗:x ⊗y =x 2-y ,若关于x 的不等式(x -a )⊗(x +1-a )>0的解集是集合{x |-2≤x ≤2}的子集,则实数a 的取值范围是( )A.-2≤a ≤2B.-1≤a ≤1C.-2≤a ≤1D.1≤a ≤2 答案 C解析 因为(x -a )⊗(x +1-a )>0,所以x -a 1+a -x>0, 即a <x <a +1,则a ≥-2且a +1≤2,即-2≤a ≤1.8.已知集合A ={x |x 2-2 017x +2 016<0},B ={x |log 2x <m },若A ⊆B ,则整数m 的最小值是( )A.0B.1C.11D.12答案 C解析 由x 2-2 017x +2 016<0,解得1<x <2 016,故A ={x |1<x <2 016}.由log 2x <m ,解得0<x <2m ,故B ={x |0<x <2m }.由A ⊆B ,可得2m ≥2 016,因为210=1 024,211=2 048,所以整数m 的最小值为11.9.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a j a i两数中至少有一个属于A ,则称集合A 为“权集”,则( ) A.{1,3,4}为“权集”B.{1,2,3,6}为“权集”C.“权集”中元素可以有0D.“权集”中一定有元素1答案 B解析 由于3×4与43均不属于数集{1,3,4},故A 不正确;由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确;由“权集”的定义可知a j a i 需有意义,故不能有0,同时不一定有1,故C ,D 错误.10.已知a ,b 均为实数,设集合A ={x |a ≤x ≤a +45},B ={x |b -13≤x ≤b },且A ,B 都是集合{x |0≤x ≤1}的子集.如果把n -m 叫做集合{x |m ≤x ≤n }的“长度”,那么集合A ∩B 的“长度”的最小值是________.答案 215解析 ∵⎩⎪⎨⎪⎧ a ≥0,a +45≤1,∴0≤a ≤15, ∵⎩⎪⎨⎪⎧b -13≥0,b ≤1,∴13≤b ≤1,利用数轴分类讨论可得集合A ∩B 的“长度”的最小值为13-15=215. 11.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集,则S 4的所有奇子集的容量之和为________.答案 7解析 ∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,∴S 4的所有奇子集的容量之和为7.12.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.解 (1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知⎩⎪⎨⎪⎧ 1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧ m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).。

集合-三年( 2019-2021年)高考真题数学分类汇编

集合-三年( 2019-2021年)高考真题数学分类汇编

集合-三年( 2019-2021年)高考真题数学分类汇编一、单选题(共30题;共150分)1.(5分)(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}【答案】B【解析】【解答】解:由题设可得C U B={1,5,6},故A∩(C U B)={1,6}.故答案为:B【分析】根据交集、补集的定义求解即可.2.(5分)(2021·北京)已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A.(−1,2)B.(−1,2]C.[0,1)D.[0,1]【答案】B【解析】【解答】解:根据并集的定义易得A∪B={x|−1<x≤2},故答案为:B【分析】根据并集的定义直接求解即可.3.(5分)(2021·浙江)设集合A={x|x≥1},B={x|−1<x<2},则A∩B=()A.{x|x>−1}B.{x|x≥1}C.{x|−1<x<1}D.{x|1≤x<2}【答案】D【解析】【解答】因为A={x|x≥1},B={x|−1<x<2},所以A∩B={x|1≤x<2}.故答案为:D.【分析】利用数轴,求不等式表示的集合的交集。

4.(5分)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则C u(MUN)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}【答案】A【解析】【解答】因为U={1,2,3,4,5},集合M={1,2},N={3,4} 则MUN ={1,2,3,4},于是C u(MUN)= {5} 。

故答案为:A【分析】先求 MUN ,再求 C u (MUN ) 。

5.(5分)(2021·全国甲卷)设集合 M ={1,3,5,7,9},N ={x ∣2x >7} ,则 M ∩N =( ) A .{7,9} B .{5,7,9} C .{3,5,7,9}D .{1,3,5,7,9}【答案】B【解析】【解答】解:由2x>7,得x >72,故N ={x|x >72},则根据交集的定义易得M∩N={5,7,9}. 故答案为:B【分析】根据交集的定义求解即可.6.(5分)(2021·全国甲卷)设集合M={x|0<x <4},N={x| 13≤x≤5},则M∩N=( )A .{x|0<x≤ 13 }B .{x| 13 ≤x <4}C .{x|4≤x <5}D .{x|0<x≤5}【答案】B【解析】【解答】解:M∩N 即求集合M,N 的公共元素,所以M∩N={x|13≤x ﹤4},故答案为:B【分析】根据交集的定义求解即可.7.(5分)(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z },T={t|t=4n+1,n∈Z },则S∩T=( ) A .∅B .SC .TD .Z【答案】C【解析】【解答】当n=2k (k ∈Z) 时,S={s|s=4k+1, k ∈z },当n=2k+1 (k ∈Z) 时,S={s|s=4k+3, k ∈z } 所以T ⊂S,所以S ∩T =T , 故答案为:C.【分析】分n 的奇偶讨论集合S 。

高中集合试题及答案解析

高中集合试题及答案解析

高中集合试题及答案解析一、选择题1. 设集合A={x|x^2-1=0},B={x|x^2-x-6=0},则A∩B等于()。

A. {-2, 3}B. {2, 3}C. {-3, 2}D. {1, 2}答案:C解析:首先解方程x^2-1=0,得到x=1或x=-1,所以集合A={-1, 1}。

然后解方程x^2-x-6=0,得到x=3或x=-2,所以集合B={-2, 3}。

求两个集合的交集,即A∩B={-2, 3},故选C。

2. 若集合A={1, 2, 3},B={2, 3, 4},则A∪B等于()。

A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 2, 3, 4, 5}答案:A解析:根据集合的并集定义,A∪B包含集合A和集合B中所有的元素,不重复。

集合A={1, 2, 3},集合B={2, 3, 4},所以A∪B={1, 2, 3, 4},故选A。

二、填空题3. 若集合M={x|x是小于10的正整数},则M的补集是()。

答案:{x|x≥10或x≤0}解析:集合M包含所有小于10的正整数,即M={1, 2, 3, 4, 5, 6, 7, 8, 9}。

其补集包含所有不属于M的元素,即所有大于等于10的整数或小于等于0的整数。

4. 设集合P={x|x是3的倍数},Q={x|x是5的倍数},则P∩Q中的元素个数是()。

答案:无限解析:集合P包含所有3的倍数,集合Q包含所有5的倍数。

P∩Q包含所有既是3的倍数又是5的倍数的数,即所有15的倍数。

因为15的倍数有无限多个,所以P∩Q中的元素个数是无限的。

三、解答题5. 已知集合S={x|x^2-4x+3=0},求S的子集个数。

答案:4解析:首先解方程x^2-4x+3=0,得到x=1或x=3,所以集合S={1, 3}。

集合S的子集包括空集和所有可能的元素组合,即∅,{1},{3},{1, 3},共4个子集。

6. 集合A={x|x是小于20的正偶数},集合B={x|x是小于20的正奇数},求A∪B。

高考数学《集合》专项练习(选择题含答案)(汇编)

高考数学《集合》专项练习(选择题含答案)(汇编)

《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D ) 【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}AB =,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,, 则A ∩B =( ) (A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<.选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =( ) (A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( ) (A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)AB ={|||2}A x x =<{1,0,1,2,3}B =-A B ={0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C . 9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______. 【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}. 【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}. 10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B =(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3 【答案】B【解析】{1,2,3,4,5}A =Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3(B )4(C )5(D )6 【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故AZ 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==.选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5} 【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间). 18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B _______. 【答案】{}1,2- 【解析】{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}. 20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3) 【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A . 21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}. 22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B . 23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A . 24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1} 【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C . 25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B . 26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2) 【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-M N x x 30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=2,,4,|A x x x R B x x Z =≤∈=∈A B ={}|22,{0,1,2}A x x B =-≤≤={}0,1,2AB =U A B =()UA B {3,4,5,7,8,9}A B ={4,7,9}(){3,5,8}UA B A B =∴=A.∅B.1{|}2x x<C.5{|}3x x>D.15{|}23x x-<<【答案】D.。

高考数学集合专题卷(附答案)

高考数学集合专题卷(附答案)

高考数学集合专题卷(附答案) 高考数学集合专题卷(附答案)一、单选题(共10题;共20分)1.已知集合A={x|x=2k+1,k∈N},B={x|x=3k,k∈N},则集合的子集个数为()A。

3.B。

4.C。

7.D。

8改写:集合A由所有奇数组成,集合B由所有3的倍数组成,则集合的子集个数为()答案:D2.已知集合A={x|x=2k,k∈N},B={x|x=3k,k∈N},则B中元素个数为()A。

2.B。

3.C。

4.D。

7改写:集合A由所有偶数组成,集合B由所有3的倍数组成,则B中元素个数为()答案:B3.已知集合A={x|x=2k,k∈N},B={x|x=3k,k∈N},C={x|x=5k,k∈N},则A∩B∩C的元素的个数为()改写:集合A由所有偶数组成,集合B由所有3的倍数组成,集合C由所有5的倍数组成,则A、B、C的交集中元素的个数为()答案:04.已知集合A={x|x=2k,k∈N},B={x|x=3k,k∈N},C={x|x=5k,k∈N},求A∪B∪C的元素的个数。

A。

4.B。

5.C。

6.D。

7改写:集合A由所有偶数组成,集合B由所有3的倍数组成,集合C由所有5的倍数组成,则A、B、C的并集中元素的个数为()答案:75.已知集合A={x|x1},C={x|x=2},求A-B-C的元素的个数。

A。

0.B。

1.C。

2.D。

3改写:集合A由所有小于3的数组成,集合B由所有大于1的数组成,集合C只包含2,则A-B-C中元素的个数为()答案:16.已知集合A={x|x2},C={x|x=1或x=3},求A∩B∩C。

A。

∅。

B。

{1}。

C。

{3}。

D。

{1,3}改写:集合A由所有小于1的数组成,集合B由所有大于2的数组成,集合C只包含1和3,则A、B、C的交集为()答案:∅7.已知集合A={x|x4},C={x|x=2或x=4},求A∪B∪C。

A。

(-∞,2)∪(4,+∞)。

B。

(-∞,2)∪(2,4)∪(4,+∞)。

(完整版)集合有关近年高考题50道及答案解析

(完整版)集合有关近年高考题50道及答案解析

【经典例题】【例1】(2009年广东卷文)已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )【答案】B【解析】 由{}2|0N x x x =+=,得{1,0}N =-,则N M ⊂,选B.【例2】(2011广东)已知集合{(,)|,A x y x y =为实数,且}221,x y +={(,)|,B x y x y =为实数,且},AB y x =则的元素个数为 ( ) A 、0 B 、1 C 、2 D 、3 【答案】C【解析】A 为圆心在原点的单位圆,B 为过原点的直线,故有2个交点,故选C.【例3】(2010天津理)设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B ,则实数a,b 必满足( ) A 、||3a b +≤ B 、||3a b +≥ C 、||3a b -≤ D 、||3a b -≥【答案】D【解析】A={x|a-1<x<a+1},B={x|x<b-2或x>b+2},因为A ⊆B,所以a+1≤b-2或a-1≥b+2,即a-b ≤-3或a-b ≥3,即|a-b|≥3【例4】(2009广东卷理)已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有 ( )A. 3个B. 2个C. 1个D. 无穷多个 【答案】 B【解析】 由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个,选B. 【例5】(2010天津文)设集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是 ( ) A 、{}a |0a 6≤≤ B 、{}|2,a a ≤≥或a 4C 、{}|0,6a a ≤≥或aD 、{}|24a a ≤≤ 【答案】 C【解析】由|x-a|<1得-1<x-a<1,即a-1<x<a+1.如图由图可知a+1≦1或a-1≧5,所以a ≦0或a ≧6.【例6】(2012大纲全国)已知集合{}{}1,3,,1,,A m B m A B A ==⋃=,则m = ( )A 、0或3B 、0或3C 、1或3D 、1或3 【答案】B 【解析】A B A ⋃= B A ∴⊂,{}{}1,3,,1,A m B m ==m A ∴∈,故m m =或3m =,解得0m =或3m =或1m =,又根据集合元素的互异性1m ≠,所以0m =或3m =。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A) {1,2} (B) {0,1,2} (C){x|0 ≤x<3} (D) {x|0 ≤x ≤3}(C) { x -1≤ x ≤1}(D) { x -1≤ x <1}3. ( 2010辽宁文)(1)已知集合 U 1,3,5,7,9 , A 1,5,7 ,则C U A7. ( 2010山东文)(1)已知全集 U R ,集合 M x x 24 0 ,则 C U M =A.x 2 x 2B.x 2 x 2C .x x 2或 x 2 D. x x 2或 x 228. ( 2010北京理)(1) 集合 P {x Z 0 x 3},M {x Z x 29},则 PI M =第一章 集合与常用逻辑用语 一、选择题 1. ( 2010浙江理)(1)设 P={x ︱x <4},Q={x ︱ x 2<4},则 A ) p QB )Q P (C )p CR Q (D ) Q CR P2. (2010 陕西文) 1. 集合 A ={x -1≤ x ≤2}, B ={ x x<1},则 A ∩B =( (A){ x x< 1}B ){x -1≤ x≤2} A ) 1,3 B ) 3,7,9C ) 3,5,9D ) 3,94. ( 2010辽宁理) 1.已知 A ,B 均为集合 U={1,3,5,7,9} 的子集,且 A ∩B={3}, eu(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}5. ( 2010 江 西 理 ) 2. 若 集 合 A= x| x 1, xR ,A. x| 1 x 1B. x|x 0C. x|0 x 1D.6. ( 2010浙江文)(1)设 P {x|x 1}, Q {x|x 24},则 P Q(A) {x| 1 x 2} (B) {x| 3 x 1} (C) { x|1 x 4}(D){x| 2 x 1}9. (2010 天津文)(7)设集合A x||x-a|<1,x R ,B x|1 x 5,x R .若A B ,则实数 a 的取值范围是(A)a|0 a 6 (B)a|a 2,或a 4(C)a|a 0,或a 6 (D)a|2 a 410. (2010天津理)(9)设集合A= x||x a| 1,x R ,B x||x b| 2,x R .若 A B,则实数a,b 必满足(A)|a b| 3 (B)|a b| 3(C)|a b| 3 (D)|a b| 311. (2010广东理) 1.若集合A={ x -2< x <1} ,B={ x 0< x <2}则集合 A ∩ B=()A. { x -1<x<1}B. { x -2< x<1}C. { x -2< x<2}D. { x 0< x <1}12. (2010广东文)10. 在集合a,b,c,d 上定义两种运算○+ 和○* 如下那么d ○* (a ○+ c)A. aB. bC. cD. d13. (2010广东文) 1.若集合A 0,1,2,3 ,B 1,2,4 则集合A BA. 0,1,2,3,4B. 1,2,3,4C. 1,2D. 01. 设集合M={1,2,4,8},N={x|x 是2 的倍数} ,则M∩ N=14. (2010 湖北文)A.{2, 4}B.{1,2,4}C.{2,4,8}D{1,2,8}15. (2010山东理) 1.已知全集 U=R ,集合 M={x||x-1| 2}, 则C U M= x 3} (C){x|x<-1 或 x>3} (D){x|x -1 或 x 3}2、若集合 A x log 1 x 1,则 e R A2R集的个数是二、填空题k=2k1 2k2 12k n1,则(1) a 1,,a 3 是 E 的第 __ 个子集; (2)E 的第 211个子集是 ____4. ( 2010 重庆理) (12) 设 U= 0,1,2,3 ,A= x U x 2mx 0 ,若 U A 1,2 ,则实数m= ________ .5. ( 2010江苏卷) 1、设集合 A={-1,1,3} ,B={a+2,a 2+4},A ∩B={3} ,则实数 a = .6. ( 2010重庆文)(11)设 A x|x 1 0 ,B x|x 0 ,则 A B = ______________ .A ) {x|-1<x<3} (B){x|-1 16. (2010 安徽理)17. A . C . 18. A 、( ,0]2010 湖南理) M N B.B 、221. 已知集合 M={1,2,3} , NMM N {2,3} D. M N{1,4}2010 湖北理)C 、 ( ,0] [22, ) D 、[ 22, )N={2,3,4} ,则 222.设集合A { x, y |x4 1y 61} , B {( x, y)| y 3x } ,则 A B 的子A . 4B .3C .2D .12. ( 2010 湖南文) 15. 若规定 E=a 1,a 2...a 10 的子集 a k 1a k 2..., a k n为 E 的第 k个子集,其中、选择题1. (2009 年广东卷文 )已知全集 U R ,则正确表示集合 M { 1,0,1} 和 N x|x2x 集合 u(A IB) 中的元素共有 (A. 3 个B. 4 个C. 5 个D. 6 个答案 A3. ( 2009浙江理) 设U R , A {x|x 0}, B {x|x 1} ,则 A e U B ( )A .{x|0 x1} B .{x|0 x 1} C .{x|x 0} D .{x|x 1}5. ( 2009 浙 江 文 ) 设 U R , A {x|x 0} , B {x|x 1} , 则 A e U B A .{x|0x 1} B .{x|0 x 1} C .{x|x 0} D .{x|x 1}6. ( 2009北京文) 设集合 A {x|1 x 2}, B {x x 21} ,则 A B (21A .{x 1 x 2}B .{x| x 1}2C .{x|x 2}D .{x|1 x 2}7. (2009 山东卷理 )集合 A 0,2,a , B 1,a 2,若 A B 0,1,2,4,16 ,则 a 的值 为 A.0 B.1 C.2 D.49. ( 2009全国卷Ⅱ文) 已知全集 U ={1,2,3,4,5,6,7,8} ,M ={1,3,5,7},N ={5 ,6,7} ,则 C u ( M N )=( )10. ( 2009 广东 卷 理 ) 已知全集 U R ,集合 M {x 2 x 1 2} 和2009 年高考题0 关系2. (2009 全国卷Ⅰ理) 设集合 A={ 4,5,7,x 2k 1,k 1,2, } 的关系的韦恩( Venn )图如图 1 所示,则阴影部分所示的集合的元A. mn14.(2009 湖北卷理 ) 已知P {a|a (1,0) m(0,1), m R},Q {b|b (1,1) n( 1,1),n R} 是两个向量集合,则P I Q ( )A .{〔1,1〕} B. {〔-1 ,1〕}C. {〔1,0〕}D. { 〔0,1〕}15. (2009 四川卷文) 设集合 S={x | x 5 }, T ={ x |(x 7)(x 3) 0}.则 S T =()A. { x |-7< x <-5 }B. {x | 3 < x < }C.{x | -5 < x <3}D.{x |-7< x <5 }x116. (2009 全国卷Ⅱ理) 设集合 A x|x 3 ,B x| 0 ,则 A B = x4A. B. 3,4 C. 2,1 D. 4.18. ( 2009 辽宁卷文) 已知集合 M =﹛ x| -3<x 5﹜ ,N =﹛ x|x <- 5 或 x >5﹜,则 M NN {x 素共有 A. 3个C. 1B.2 D.个 无穷多11. 2009 安徽卷理) 若集合 A x |2x 1| 3 ,B2x 10 ,则 A ∩B 是 3xA.1x 1 x1或2 x 3 B.x2 x 3 C. x1x 2 D. 212. 2009 安徽卷文) 若集合,则 是13. A .{1 ,2,3}C. {4 ,5}B. {1 ,2} D. {1 ,2,3,4,5}2009 江西卷理) 已知全集 U A B 中有 m 个元素, (痧UA ) ( UB )中有 n 个元素.若AI B 非空,则 AI B 的元素个数为 mn=A. ﹛x|x <-5 或x>-3﹜B. ﹛x| -5<x<5﹜C.﹛x| -3<x<5﹜D. ﹛x|x <-3 或x>5﹜220. (2009 陕西卷文)设不等式x2 x 0 的解集为M,函数f(x) ln(1 |x |)的定义域为N 则M N 为()A.[0 ,1)B. (0,1)C.[0 ,1]D.(-1,0]21. (2009 四川卷文)设集合S={ x|x 5 },T ={ x|(x 7)(x 3) 0 } 则S T()A. { x|-7< x <-5 }B. {x|3 < x<5 }C.{ x|-5 < x<3}D. {x|-7< x <5 }22.(2009 全国卷Ⅰ文)设集合A={4,5,6,7,9},B={3,4,7,8,9},全集=A B,则集合[u (A B)中的元素共有A.3 个B.4 个C. 5 个D. 6 个24. (2009 四川卷理)设集合S x| x 5 ,T x|x2 4x 21 0 ,则S TA.x| 7 x 5 B.x|3 x 5 C.x| 5 x 3 D.x| 7 x 525. (2009 福建卷文)若集合A x|x 0. B x|x 3 ,则A B 等于A.{x|x 0}B{x|0 x 3}C{x|x 4}D R二、填空题26.(2009年上海卷理)已知集合A x|x 1 ,B x|x a ,且A B R ,则实数a的取值范围是__________________ .27.(2009重庆卷文)若U {n n是小于9 的正整数} ,A {n U n 是奇数} ,B {n U n是3的倍数} ,则e U (A B).28..(2009 重庆卷理)若A x R x 3 ,B x R 2x 1 ,则A B .29..(2009 上海卷文)已知集体A={x| x≤1},B={x | ≥a},且A∪ B=R ,则实数 a 的取值范围是____________ .30.(2009 北京文)设 A 是整数集的一个非空子集,对于k A ,如果k 1 A且k 1 A,那么k 是 A 的一个“孤立元” ,给定S {1,2,3,4,5,6,7,8,} ,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有个.31..(2009 天津卷文)设全集U A B x N *|lgx 1 ,若B m|m 2n 1,n 0,1,2,3,4 ,则集合B= __________ .A CU【考点定位】本试题主要考查了集合的概念和基本的运算能力。

相关文档
最新文档