极值控制与极大值原理(关肇直等编著)思维导图
合集下载
极大值原理
最优控制问题可表述为:寻求一个容许控制u(t),以使受控系统从某个给定的初始状态x(t0)=x0出发,在 末时刻tf达到目标集,并且使性能指标泛函J【u(·)】达到极小值或极大值。如果这个问题是有解的,那么就 称求得的容许控制为最优控制,记为u(t);而系统状态方程在u(t)作用下的解称为最优轨线,记为x(t);相 应的极小或极大性能指标值J【u(·)】,称为最优指标值。在数学上,最优控制问题的实质,是对受约束的泛 函J【u(·)】求极值的问题,其中的约束条件为系统的状态方程、目标集方程和容许控制域。
原理简介
极大值原理
maximum principle
最优控制理论中用以确定使受控系统或运动过程的给定性能指标取极大或极小值的最优控制的主要方法。在 工程领域中很大一类最优控制问题都可采用极大值原理所提供的方法和原则来定出最优控制的规律。在理论上, 极大值原理还是最优控制理论形成和发展的基础。极大值原理是对分析力学中古典变分法的推广,能用于处理由 于外力源的限制而使系统的输入(即控制)作用有约束的问题。极大值原理是20世纪50年代中期苏联学者Л.С. 庞特里亚金提出的,有关这一原理的主要结果及其严格的数学证明,都发表在后来出版的《最优过程的数学理论》 一书中。
式9式11式13LQ问题 线性二次型性能指标的最优控制问题。
次优控制
对于较为复杂的受控系统,即使系统为线性的情况,最优控制问题的求解也常有大量的计算。采用次优控制, 可在保证性能指标值足够接近最优性能值的同时,显著地减少问题求解的计算量。实现次优控制的主要的途径是 把复杂的受控系统通过适当的方法化为两个较为简单的子受控系统,并且针对子系统来计算最优控制,再综合地 作必要的修正。实现系统性能指标值 对最优性能值的接近程度来确定;要求接近的程度越高,修正计算量也就越大。特别是对于要求计算机实时控制 的受控系统,为了避免过大的计算量或避免增加控制系统在组成上的复杂性,常常更宜采用次优控制以代替最优 控制。
高等数学3.5函数的极值与作图
y
y x
O
x
根据极值的定义可知,极值点实际就是函数单调性发生改变 的临界点.因此,结合函数图像我们易得出如下判断函数极值 的充分条件.
定理1(第一充分条件)设函数 f x 在 x0 的某一邻域 U x0 ,
上连续,且在去心邻域 U x0 , 内可导,则下列结论成立: (1)若 x x0 , x0 时,f x x0, x x0 , x0 时,
导数,且 f x0 0,f x0 0, 则
当 f x0 0 时, 函数 f x 在 x0 处取得极大值; 当 f x0 0 时,函数 f x 在 x0 处取得极小值.
且
定理2(第二充分条件)设函数 f x 在 x0 点有二阶导数, 则 当 f x 0 时,函数 f x f x 0, f x 0,
当 x x , x0 时, f x 0, 当 x x0 , x0 时,f x 0,
注:定理2中,当 f x0 0 时,x0 点可能是极值点, 也可能不是极值点.
4 f x x ,x 0 是驻点, 如函数
0Байду номын сангаас
f x 0, 则 f x 在 x0 点取得极大值;
x x0 , x0 时, (2)若 x x0 , x0 时,f x 0,
f x 0,则 f x 在 x0 处取得极小值;
(3)若 x U x0 , 时, f x 为正(或为负),则
例2 求函数 f x x 1 1 的极值.
2 3
新教材高中数学第五章一函数的极值与最大小值第1课时函数的极值ppt课件新人教A版选择性必修第二册
数 f(x)单调递增,所以无极值点.
探索点一
求函数的极值(点)
【例 1】(1)多空题函数 f(x)= -2 的极小值等于 -3
+
等于 -1 .
( +)-
解析:函数 f(x)的定义域为 R,f'(x)=
( +)
=-
,极大值
(-)(+)
( +)
.
令 f'(x)=0,得 x=-1 或 x=1.
有极小值-6,无极大值;当 a=1 或 a≥3 时,函数 f(x)无极值.
探索点二 与参数相关的极值问题
【例 2】(1)若函数 y=ex+mx 有极值,则实数 m 的取值范围为
(
A.m>0
B.m<0
C.m>1
D.m<1
)
解析:y'=ex+m,则由题意知 ex+m=0 必有根,所以 m=-ex<0.
个根处取极值的情况.
【跟踪训练】
1.在等比数列{an}中,若 a3,a7 是函数 f(x)= x3+4x2+9x-1 的极值点,则
a5=
(
A.-4
解析:因为
B.-3
C.3
D.4
3
f(x)= x +4x2+9x-1,
所以 f'(x)=x2+8x+9,
由 f'(x)=x2+8x+9=0,
可知 a3·a7=9,a3+a7=-8,
5.拔高练已知函数 f(x)=
(1)当 a=-1 时,求函数 f(x)的极值;
探索点一
求函数的极值(点)
【例 1】(1)多空题函数 f(x)= -2 的极小值等于 -3
+
等于 -1 .
( +)-
解析:函数 f(x)的定义域为 R,f'(x)=
( +)
=-
,极大值
(-)(+)
( +)
.
令 f'(x)=0,得 x=-1 或 x=1.
有极小值-6,无极大值;当 a=1 或 a≥3 时,函数 f(x)无极值.
探索点二 与参数相关的极值问题
【例 2】(1)若函数 y=ex+mx 有极值,则实数 m 的取值范围为
(
A.m>0
B.m<0
C.m>1
D.m<1
)
解析:y'=ex+m,则由题意知 ex+m=0 必有根,所以 m=-ex<0.
个根处取极值的情况.
【跟踪训练】
1.在等比数列{an}中,若 a3,a7 是函数 f(x)= x3+4x2+9x-1 的极值点,则
a5=
(
A.-4
解析:因为
B.-3
C.3
D.4
3
f(x)= x +4x2+9x-1,
所以 f'(x)=x2+8x+9,
由 f'(x)=x2+8x+9=0,
可知 a3·a7=9,a3+a7=-8,
5.拔高练已知函数 f(x)=
(1)当 a=-1 时,求函数 f(x)的极值;
《函数的极值和导数》课件
Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率
极值和最值教材PPT课件
第二步 判别. 求二阶偏导数
B
C
f xx (x, y) 6x 6, f xy (x, y) 0, f yy (x, y) 6 y 6
A
在点(1,0) 处
AC B2 12 6 0, A 0,
为极小值;
第16页/共53页
在点(1,2) 处
AC B2 12 (6) 0,
不是极值;
二元函数的驻点条件:
f x(x0 , y0 ) 0 , f y (x0 , y0 ) 0
三元函数的驻点条件:
fx(x0, y0, z0 ) 0 , f y(x0, y0, z0 ) 0, fz(x0, y0, z0 ) 0
• 驻点不一定是极值点;
• 若点
是可微函数的驻点,且在其任何邻域
内既存在函数值大于
的点,又存在函数值
小于
的点,则称该点为鞍点.
第5页/共53页
定理推广 (极值的必要条件)
设 n 元函数 f ( x) 在点 x0 处对各个自变量的一阶
偏导数都存在,且在点 x0 处取极值,则有 f (x0) 0
定理
(极值的充分条件) 设 n 元函数 f ( x) 在点
x0 处具有二阶连续偏导数,且 f (x0) 0, (1) 如果 H(x0) 正定,则 x0 为 f (x)的极小值点;
当
时,
当 时,
第21页/共53页
为极小值; 为极大值.
2. 多元函数最值问
题
依据
函数 f 在闭域上连续
函数 f 在闭域上可达到最值
可能最值点
驻点 边界上的最值点
特别, 当区域内部最值存在, 且只有一个极值点 P 时,
f (P)为极小 (大) 值
最优控制-极大值原理
近似算法
针对极大值原理的求解过程,开 发了一系列近似算法,如梯度法、 牛顿法等,提高了求解效率。
鲁棒性分析
将极大值原理应用于鲁棒性分析, 研究系统在不确定性因素下的最 优控制策略,增强了系统的抗干 扰能力。
极大值原理在工程领域的应用
航空航天控制
在航空航天领域,利用极大值原理进行最优 控制设计,实现无人机、卫星等的高精度姿 态调整和轨道优化。
03
极大值原理还可以应用于经济 学、生物学等领域,为这些领 域的研究提供新的思路和方法 。
02
最优控制理论概述
最优控制问题定义
01
确定一个控制输入,使得某个给定的性能指标达到 最优。
02
性能指标通常由系统状态和控制输入的函数来描述。
03
目标是在满足系统约束的条件下,找到最优的控制 策略。
最优控制问题的分类
1 2
确定型
已知系统的动态模型和控制约束,求最优控制输 入。
随机型
考虑系统的不确定性,如随机干扰、参数不确定 性等。
3
鲁棒型
考虑系统模型的不确定性,设计鲁棒控制策略。
最优控制问题通过求解优化问题得到最优解的解析表达式。
数值法
02
通过迭代或搜索方法找到最优解。
极大值原理
03
基于动态规划的方法,通过求解一系列的子问题来找到最优解。
03
极大值原理
极大值原理的概述
极大值原理是现代控制理论中的基本原理之一,它为解决最 优控制问题提供了一种有效的方法。该原理基于动态系统的 状态和性能之间的关系,通过寻求系统状态的最大或最小变 化,来达到最优的控制效果。
在最优控制问题中,极大值原理关注的是在给定的初始和终 端状态约束下,如何选择控制输入使得某个性能指标达到最 优。它适用于连续和离散时间系统,以及线性或非线性系统 。
现代控制理论第一章 ppt课件
作为贝尔实验室工程师, 关于热噪声、反馈系统稳定性、 电报、传真、电视、通信。
1889-1976
1.1 控制理论的发展历程
伯德,Hendrik Wade Bode
美国1905-1982
Bode was an American engineer, researcher, inventor, author and scientist,
of Dutch ancestry.
As a pioneer of modern control theory and electronic
telecommunications he revolutionized both the content and methodology of his chosen fields of research.
1.1 控制理论的发展历程
维纳,Norbert Wienner
1948年,维纳发表《控制论》,宣告了这门新兴学 科的诞生。这是他长期艰苦努力并与生理学家罗森 勃吕特等人多方面合作的伟大科学成果。
1964年1月,他由于“在纯粹数学和应用数学方面并 且勇于深入到工程和生物科学中去的多种令人惊异的 贡献及在这些领域中具有深远意义的开创性工作”荣 获美国总统授予的国家科学勋章。
1.1 控制理论的发展历程
维纳,Norbert Wienner
第一章,牛顿时间和柏格森时间 第二章,群和统计力学 第三章,时间序列、信息与通讯 第四章,反馈与振荡 第五章,计算机与神经系统 第六章,完形与普遍观念 第七章,控制论和精神病理学 第八章,信息、语言和社会 第九章,关于学习和自生殖机 第十章,脑电波与自行组织系统
1.1 控制理论的发展历程
伯德,Hendrik Wade Bode
1889-1976
1.1 控制理论的发展历程
伯德,Hendrik Wade Bode
美国1905-1982
Bode was an American engineer, researcher, inventor, author and scientist,
of Dutch ancestry.
As a pioneer of modern control theory and electronic
telecommunications he revolutionized both the content and methodology of his chosen fields of research.
1.1 控制理论的发展历程
维纳,Norbert Wienner
1948年,维纳发表《控制论》,宣告了这门新兴学 科的诞生。这是他长期艰苦努力并与生理学家罗森 勃吕特等人多方面合作的伟大科学成果。
1964年1月,他由于“在纯粹数学和应用数学方面并 且勇于深入到工程和生物科学中去的多种令人惊异的 贡献及在这些领域中具有深远意义的开创性工作”荣 获美国总统授予的国家科学勋章。
1.1 控制理论的发展历程
维纳,Norbert Wienner
第一章,牛顿时间和柏格森时间 第二章,群和统计力学 第三章,时间序列、信息与通讯 第四章,反馈与振荡 第五章,计算机与神经系统 第六章,完形与普遍观念 第七章,控制论和精神病理学 第八章,信息、语言和社会 第九章,关于学习和自生殖机 第十章,脑电波与自行组织系统
1.1 控制理论的发展历程
伯德,Hendrik Wade Bode
数学分析第二章极限与连续知识网络思维导图及复习
极限,并会利用它们求极限。 5、 理解无穷大量、无穷小量的概念以及性质,掌握无穷小量的比较方法,会用等价无穷小
量求极限。 6、 理解函数连续的概念,会判断函数不连续点的类型。 7、 掌握用基本定理证明闭区间上连续函数的最大值、最小值、介值性定理的基本思路和方
法。 8、 理解一致连续的概念,并会应用其证明相关命题。 三、知识点梳理 1、数列极限的概念、性质与定理
不一致连续: 0
0,
xn
,xn
,
lim(
n
xn
x)
0 ,而 lim( n
f
(xn )
f
( xn)
c
0.
四、典型例题分析
基本题型 I 利用定义证明数列的极限
例
证明
lim
n
n 2n
0
证 明 : 0, 要 使 得
n 2n
0
成立,只要
n 2n
0
n 2n
2 n
(这是因为
2n (11)n 1 n n(n 1) ... n2
(ii) 同 阶 无 穷 小 : lim f (x) a 0 , 则 称 f (x) 是 g(x) 的 同 阶 无 穷 小 , 记 为 xx0 g(x)
f (x) Og(x) x x0 ,
0
特别地,如果 f (x) 在 O(x0 ) 有界,记作 f (x) O(1), (x x0 )
③ 函数的不连续点
(i)第一类不连续点: f (x0 0), f (x0 0) 存在,但不相等。
(ii)第二类不连续点: f (x0 0), f (x0 0) 中至少有一个不存在.
(iii)可移不连续点:
f (x0
0)
f
(x0
量求极限。 6、 理解函数连续的概念,会判断函数不连续点的类型。 7、 掌握用基本定理证明闭区间上连续函数的最大值、最小值、介值性定理的基本思路和方
法。 8、 理解一致连续的概念,并会应用其证明相关命题。 三、知识点梳理 1、数列极限的概念、性质与定理
不一致连续: 0
0,
xn
,xn
,
lim(
n
xn
x)
0 ,而 lim( n
f
(xn )
f
( xn)
c
0.
四、典型例题分析
基本题型 I 利用定义证明数列的极限
例
证明
lim
n
n 2n
0
证 明 : 0, 要 使 得
n 2n
0
成立,只要
n 2n
0
n 2n
2 n
(这是因为
2n (11)n 1 n n(n 1) ... n2
(ii) 同 阶 无 穷 小 : lim f (x) a 0 , 则 称 f (x) 是 g(x) 的 同 阶 无 穷 小 , 记 为 xx0 g(x)
f (x) Og(x) x x0 ,
0
特别地,如果 f (x) 在 O(x0 ) 有界,记作 f (x) O(1), (x x0 )
③ 函数的不连续点
(i)第一类不连续点: f (x0 0), f (x0 0) 存在,但不相等。
(ii)第二类不连续点: f (x0 0), f (x0 0) 中至少有一个不存在.
(iii)可移不连续点:
f (x0
0)
f
(x0
《函数的极值与导数》课件
极大值和极小值是极值的 两种分类,取决于导数的 变化情况。
应用示例
求函数的极值
通过求导和分析导数的变化,可以确定函数的极值 点和对应的极值。
求解实际问题
将实际问题转化为数学模型,并通过求导求解极值 来得到最优解。
端点的极值
函数定义域的端点如果存在极值,则称为端点描述函数在某一点处 的变化率,即函数曲线在 该点的切线斜率。
2 导数的意义
导数可以帮助我们分析函 数的变化趋势和特征,以 及确定函数的极值。
3 导数的符号表示
通常用f'(x)、dy/dx或y'来 表示函数f(x)的导数。
2
得到一些常见函数的导数表达式。
利用导数的性质,可以对复杂函数进行
四则运算的求导。
3
导数的链式法则
对复合函数求导时,可以使用链式法则 进行求导。
极值的判定
1 极值的必要条件
函数在极值点处的导数为 零或不存在。
2 极值的充分条件
当函数在极值点的导数发 生变号时,即可判断该点 为极值的充分条件。
3 极值的分类
导数与函数的关系
导数刻画函数的变化 趋势
导数的正负性可以描述函数的 单调性和变化趋势。
导数判断函数的单调 性
函数在导数大于零的区间上单 调递增,在导数小于零的区间 上单调递减。
极值与导数的关系
极值出现的地方,导数为零或 不存在。
导数的计算
1
基本导数公式
根据函数的基本性质和求导法则,可以
导数的四则运算
《函数的极值与导数》 PPT课件
欢迎来到《函数的极值与导数》PPT课件!本课程将带你深入了解函数的极值 和导数的概念,以及它们之间的关系。准备好迎接这趟知识之旅了吗?让我 们开始吧!
应用示例
求函数的极值
通过求导和分析导数的变化,可以确定函数的极值 点和对应的极值。
求解实际问题
将实际问题转化为数学模型,并通过求导求解极值 来得到最优解。
端点的极值
函数定义域的端点如果存在极值,则称为端点描述函数在某一点处 的变化率,即函数曲线在 该点的切线斜率。
2 导数的意义
导数可以帮助我们分析函 数的变化趋势和特征,以 及确定函数的极值。
3 导数的符号表示
通常用f'(x)、dy/dx或y'来 表示函数f(x)的导数。
2
得到一些常见函数的导数表达式。
利用导数的性质,可以对复杂函数进行
四则运算的求导。
3
导数的链式法则
对复合函数求导时,可以使用链式法则 进行求导。
极值的判定
1 极值的必要条件
函数在极值点处的导数为 零或不存在。
2 极值的充分条件
当函数在极值点的导数发 生变号时,即可判断该点 为极值的充分条件。
3 极值的分类
导数与函数的关系
导数刻画函数的变化 趋势
导数的正负性可以描述函数的 单调性和变化趋势。
导数判断函数的单调 性
函数在导数大于零的区间上单 调递增,在导数小于零的区间 上单调递减。
极值与导数的关系
极值出现的地方,导数为零或 不存在。
导数的计算
1
基本导数公式
根据函数的基本性质和求导法则,可以
导数的四则运算
《函数的极值与导数》 PPT课件
欢迎来到《函数的极值与导数》PPT课件!本课程将带你深入了解函数的极值 和导数的概念,以及它们之间的关系。准备好迎接这趟知识之旅了吗?让我 们开始吧!
《函数极值与最值》课件
在工程设计中的应用
结构设计
在工程结构设计中,结构的稳定 性、强度和刚度等性能指标需要 通过计算和分析来保证。函数极 值与最值的方法可以用于分析结 构的应力分布、变形等关键参数 ,优化结构设计。
控制系统设计
在控制系统的设计中,系统的稳 定性、响应速度和精度等性能指 标需要经过权衡和优化。函数极 值与最值的方法可以用于分析控 制系统的性能指标,找到最优的 控制策略。
光学设计
在光学设计中,透镜的形状和材料需要经过精密的计算和设计,以达到最佳的光学性能。函数极值与最值的方法可以 用于分析透镜的光路,优化光学系统的性能。
电磁场研究
在电磁场的研究中,电场和磁场的变化可以通过函数极值与最值来描述。例如,在研究电磁波的传播和 散射时,可以利用函数极值与最值的方法分析电磁场的分布和变化规律。
连续函数的性质
如果函数在某区间内连续,则该函数在该区间内 必取得最大值和最小值。
极值的性质
极值点一定是驻点或不可导点,但驻点或不可导 点不一定是极值点。
最值的求法
代数法
通过函数的导数或二阶导数,结合函数的单调性、凹 凸性等性质,求得函数的最大值或最小值。
几何法
通过函数图像,直观地观察函数的最大值或最小值。
航空航天设计
在航空航天领域,飞行器的设计 和性能分析需要经过严密的计算 和分析。函数极值与最值的方法 可以用于分析飞行器的气动性能 、推进系统效率等关键参数,提 高飞行器的性能和安全性。
04
函数极值与最值的求解方法
导数法
总结词
通过求导数判断函数单调性,值和最值的一种常用方法。首先求出函数的导数,然后根据导数的符号变化判断函 数的单调性,从而确定极值点。在极值点处,函数的导数由正变负或由负变正,即一阶导数为零的点 。
压轴题思维导图(干货版)
倾斜角与斜率
点到直线距离
与直线有关重要内容
夹角公式
弦长公式
{两条直线位置关系
标准式 圆锥曲线的方程形式 距离式
参数式 {极坐标式
1、焦半径公式
2、焦点三角形面积公式
圆锥曲线
3、过圆锥曲线上某点的切线方程 4、极线定理
5、弦与中线斜率积为定值
与圆锥曲线有关的二级结论 6、细看中点弦方程,恰似中点弦轨迹 ①端点投影在准线,
若圆C1 与圆C2 相切,表示两圆公切线方程
当 ∗ 式的������ = −1 时 {若圆C1与圆C2相交,表示两圆公共弦方程
{
若圆C1 与圆C2相离,表示两圆根轴方程
椭圆系
①与椭圆
x2 a2
+
y2 b2
=
1
共焦点的椭圆系方程为x2 λ
+
λ
{
②
与椭圆
x2 a2
y2 + b2
=
1
有相同离心率的椭圆系为
{
图景 1:两条直线与圆锥曲线的四个交点
图景 2:四条直线与圆锥曲线的四个交点 二次曲线系解题的三大图景
图景 3:三条直线与圆锥曲线的三个交点(第四条线即切线隐藏)
{
{
5
(2)、导数 一、导数不等式(与 n 有关型)
方法储备
乘积型{
①������������������������ … … ������������ < ������������
x2 a2
y2 − c2
y2 + b2
= =
1(λ λ(λ
> >
c2 0)
)
①与双曲线
x2 a2
7.4 极大值原理 (PPTminimizer)
& x (t ) = f ( x (t ), u(t )) (7 − 92)
的表达式(1/3) ∆x(t)的表达式 1/3) 的表达式
(2) ∆x(t)的表达式 的表达式 根据f(x,u)对x的可微性,由状态方程(7-92)可得如下由控制 量的变分∆u(t)引起的状态方程(7-92)的变分
& ∆x = f ( x * + ∆x , u* + ∆u) − f ( x * , u* ) ∂f ( x * , u* + ∆u) = f ( x , u + ∆u) − f ( x , u ) + ∆x + o( ∆x ) τ ∂x ∂f ( x * , u* ) = ∆x + f ( x * , u* + ∆u) − f ( x * , u* ) ∂xτ ∂f ( x * , u* + ∆u) ∂f ( x * , u* ) + − ∆x + o( ∆x ) τ τ ∂x ∂x
极大值原理(2/4) 极大值原理(2/4)
上述约束条件即相当于容许控制空间U是一个超方体。 甚至,有些实际控制问题的控制量为某一孤立点集。 例如,继电器控制系统的控制输入限制为 ui(t)=±a i=1,2…,r 一般情况下,总可以将控制量所受的约束用如下不等式来表示 Mi(u(t),t)≤0, i=1,2,… 当控制变量u(t)受不等式约束条件限制时,古典变分法就 无能为力了。 以后,还会看到,最优控制往往需要在闭集的边界上取值。 这就要求人们去探索新的理论和方法。
自由末端的极大值原理(2/8) 定理 自由末端的极大值原理 2/8)—定理7-9 2/8) 定理7
定理7-9(极大值原理 设u(t)∈U,t∈[t0,tf],是一容许控制。 极大值原理) 定理 极大值原理 指定的末值型性能指标泛函为 J[u(·)]=S(x(tf)) 式中,x(t)是定常的被控系统
《条件极值》课件
结构设计
在控制系统设计中,经常需要找到使得系统性能达到最优的控制策略。例如,飞行器控制系统设计时需要找到使得飞行性能最优的控制策略。条件极值理论可以用来解决这类问题,通过找到使得性能指标函数取得极值的控制输入,来制定最优的控制策略。
控制系统设计
用到条件极值理论来解决一些实际问题。例如,在医学图像处理中,需要找到使得图像处理效果最佳的参数设置;在生物力学中,需要找到使得生物组织性能最优的参数设置。
《条件极值》ppt课件
目录
条件极值的概念条件极值的求解方法条件极值的应用条件极值的扩展知识总结与展望
CONTENTS
条件极值的概念
条件极值是指在某些特定条件下,函数取得极值的点。
它是在一定约束条件下,函数表现出的最值状态。
这些特定条件可以是函数的变量范围、函数的性质以及其他相关限制。
在特定条件下,函数达到的极值点是唯一的。
总结词:雅可比矩阵和海色矩阵是用于描述函数在某点的切线信息的矩阵,对于求解条件极值问题具有一定的帮助。
总结词:函数的一阶导数和二阶导数是描述函数单调性和凹凸性的重要指标,对于求解条件极值问题具有指导意义。
函数的单调性和凹凸性是描述函数变化趋势的重要属性,对于求解条件极值问题具有指导意义。
总结词
VS
无约束条件的极值问题是指函数在没有限制条件的约束下达到极值的点。
详细描述
无约束条件的极值问题是在没有任何约束条件的情况下,寻找函数达到极值的点。这些问题通常使用导数来解决,通过求导数并找到导数为零的点来确定可能的极值点。然后,通过检查这些点的函数值和一阶导数值来确定是否达到极值。
总结词
约束条件的优化问题是指在满足某些约束条件下,寻找函数的最优解。
环境科学
在控制系统设计中,经常需要找到使得系统性能达到最优的控制策略。例如,飞行器控制系统设计时需要找到使得飞行性能最优的控制策略。条件极值理论可以用来解决这类问题,通过找到使得性能指标函数取得极值的控制输入,来制定最优的控制策略。
控制系统设计
用到条件极值理论来解决一些实际问题。例如,在医学图像处理中,需要找到使得图像处理效果最佳的参数设置;在生物力学中,需要找到使得生物组织性能最优的参数设置。
《条件极值》ppt课件
目录
条件极值的概念条件极值的求解方法条件极值的应用条件极值的扩展知识总结与展望
CONTENTS
条件极值的概念
条件极值是指在某些特定条件下,函数取得极值的点。
它是在一定约束条件下,函数表现出的最值状态。
这些特定条件可以是函数的变量范围、函数的性质以及其他相关限制。
在特定条件下,函数达到的极值点是唯一的。
总结词:雅可比矩阵和海色矩阵是用于描述函数在某点的切线信息的矩阵,对于求解条件极值问题具有一定的帮助。
总结词:函数的一阶导数和二阶导数是描述函数单调性和凹凸性的重要指标,对于求解条件极值问题具有指导意义。
函数的单调性和凹凸性是描述函数变化趋势的重要属性,对于求解条件极值问题具有指导意义。
总结词
VS
无约束条件的极值问题是指函数在没有限制条件的约束下达到极值的点。
详细描述
无约束条件的极值问题是在没有任何约束条件的情况下,寻找函数达到极值的点。这些问题通常使用导数来解决,通过求导数并找到导数为零的点来确定可能的极值点。然后,通过检查这些点的函数值和一阶导数值来确定是否达到极值。
总结词
约束条件的优化问题是指在满足某些约束条件下,寻找函数的最优解。
环境科学