江苏省宿迁市高中数学第二章圆锥曲线与方程第14课时曲线与方程1导学案无答案苏教版选修
江苏省宿迁市高中数学第2章圆锥曲线与方程第8课时双曲线的标准方程2导学案(无答案)苏教版选修1_1
第8课时 双曲线的标准方程(2)【学习目标】1.掌握双曲线的定义,标准方程; 2.根据已知条件求双曲线的标准方程. 【问题情境】焦点在x 轴上的双曲线标准方程为 ; 焦点在y 轴上的双曲线标准方程为.【合作探究】试比较双曲线与椭圆的异同:【展示点拨】例1.若双曲线k y x =-222的焦距为6,求实数k 的值.例2.若双曲线112422=-y x 上的一点P 到它的右焦点的距离为8,求点P 到它的左焦点的距离.例3.已知双曲线与双曲线141622=-y x 有相同焦点,且经过点)2,23(,求双曲线的方程.例4.已知方程422=+y kx ,其中k 为实数,对于不同的范围的k 值分别指出方程所表示的曲线类型.【学以致用】1.方程22115x y k k =-++表示双曲线的充要条件是k ∈____. 2.已知双曲线2288kx ky -= 的一个焦点为(0,3),则k = .3.以椭圆221169144x y +=的焦点为顶点,顶点为焦点的双曲线的标准方程是 . 4.已知双曲线1366422=-y x 的焦点为1F ,2F ,点P 在双曲线上,且02190=∠PF F ,求21PF F ∆的面积.5.在△MNG 中,已知NG =4,当动点M 满足条件M N G sin 21sin sin =-时,求动点M 的轨迹方程.第8课时 双曲线的标准方程(2)【基础训练】1.椭圆2x 2-3y 2=1焦点坐标为 .2.已知方程2211x y k k-=-表示双曲线,则k 的取值范围是 .3.焦距为(3,5)M -的双曲线的标准方程为 .4.设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是 .5.已知焦点为12(4,0),(4,0)F F -,且经过点M 的双曲线的标准方程是 .6.若椭圆14222=+my x 与双曲线1222=-y m x 有相同焦点,则实数m 的值为 . 【思考应用】7.若表示何种变化时,方程则当1,,222222=-+-∈>λλλλb y a x R b a 曲线?它们是否有相同的焦点?8.求焦点的坐标轴上,且经过)523,2(1-P 和)4,734(2P 两点的双曲线的标准方程.9.求以椭圆22185x y +=的焦点为顶点,而以椭圆的顶点为焦点的双曲线的方程;10.已知221,13x y k k -=---○1方程表示双曲线;○2表示焦点在x 轴上的双曲线;③表示焦点在y 轴上的双曲线【拓展提升】11.已在双曲线与椭圆1362722=+y x 有相同的焦点且与椭圆的一个交点的纵坐标为4,求双曲线的方程.12.在周长为48的390,tan =4oRt MPN MPN PMN ∆∠=∠中,,求以M,N 为焦点,且过点P 的双曲线方程.。
江苏省宿迁市高中数学 第二章 圆锥曲线与方程 第8课时 双曲线的标准方程2导学案(无答案)苏教版选修21
第8课时 双曲线的标准方程(2)【学习目标】1.掌握双曲线的定义,标准方程; 2.根据已知条件求双曲线的标准方程. 【问题情境】焦点在x 轴上的双曲线标准方程为 ; 焦点在y 轴上的双曲线标准方程为.【合作探究】试比较双曲线与椭圆的异同:【展示点拨】例1.若双曲线k y x =-222的焦距为6,求实数k 的值.例2.若双曲线112422=-y x 上的一点P 到它的右焦点的距离为8,求点P 到它的左焦点的距离.例3.已知双曲线与双曲线141622=-y x 有相同焦点,且经过点)2,23(,求双曲线的方程.例4.已知方程422=+y kx ,其中k 为实数,对于不同的范围的k 值分别指出方程所表示的曲线类型.【学以致用】1.方程22115x y k k =-++表示双曲线的充要条件是k ∈____.2.已知双曲线2288kx ky -= 的一个焦点为(0,3),则k = .3.以椭圆221169144x y +=的焦点为顶点,顶点为焦点的双曲线的标准方程是 . 4.已知双曲线1366422=-y x 的焦点为1F ,2F ,点P 在双曲线上,且02190=∠PF F ,求21PF F ∆的面积.5.在△MNG 中,已知NG =4,当动点M 满足条件M N G sin 21sin sin =-时,求动点M 的轨迹方程.第8课时 双曲线的标准方程(2)【基础训练】1.椭圆2x 2-3y 2=1焦点坐标为 .2.已知方程2211x y k k-=-表示双曲线,则k 的取值范围是 .3.焦距为(3,5)M -的双曲线的标准方程为 .4.设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是 .5.已知焦点为12(4,0),(4,0)F F -,且经过点2)M 的双曲线的标准方程是 .6.若椭圆14222=+my x 与双曲线1222=-y m x 有相同焦点,则实数m 的值为 . 【思考应用】7.若表示何种变化时,方程则当1,,222222=-+-∈>λλλλb y a x R b a 曲线?它们是否有相同的焦点?8.求焦点的坐标轴上,且经过)523,2(1-P 和)4,734(2P 两点的双曲线的标准方程.9.求以椭圆22185x y +=的焦点为顶点,而以椭圆的顶点为焦点的双曲线的方程;10.已知221,13x y k k -=---○1方程表示双曲线;○2表示焦点在x 轴上的双曲线;③表示焦点在y 轴上的双曲线【拓展提升】11.已在双曲线与椭圆1362722=+y x 有相同的焦点且与椭圆的一个交点的纵坐标为4,求双曲线的方程.12.在周长为48的390,tan =4o Rt MPN MPN PMN ∆∠=∠中,,求以M,N 为焦点,且过点P 的双曲线方程.。
江苏省宿迁市高中数学 第二章 圆锥曲线与方程 第18课
第18课时 圆锥曲线与方程复习(2)【学习目标】1.掌握圆锥曲线的统一定义;2.掌握椭圆.双曲线.抛物线的几何性质;3.会求一些简单的曲线的轨迹方程.【问题情境】1.圆锥曲线的统一定义是什么?2.椭圆.双曲线.抛物线的准线方程分别是什么?3.求曲线方程的步骤有哪些?方法有哪些?【合作探究】已知(,)P x y 为椭圆22221(0)x y a b a b+=>>的任意一点.点(,0)M m 为一定点,如何求PM 的最小值?【展示点拨】例1. 已知(,)P x y 为椭圆221259x y +=的任意一点. (1)若F 为椭圆的右焦点.,求线段PF 长度的取值范围;(2)设(0,)A a ,求线段PA 长度的最大值(用a 表示).例2.已知F 1,F 2是椭圆()222210x y a b a b+=>>的两个焦点,P 为椭圆上一点,∠F 1MF 2=60°.(1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.变式:若将椭圆改为双曲线呢?例2.已知圆C 1的方程为:()()2220213x y -+-=,椭圆C 2的方程为:()222210x y a b a b+=>>,C 2的离心率为2,若C 1与C 2相交于A ,B 两点,且线段AB 恰好为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.例4.(1)已知动圆A 过定圆B :22670x y x ++-= 的圆心,且与定圆C :226910x y x +--= 相内切,求△ABC 面积的最大值;(2)在(1)的条件下,给定点P (-2,2), 求53PA AB +的最小值; (3)在(2)的条件下求|PA |+|AB | 的最小值.【学以致用】1.方程 2213sin(2)4x y πα-=+ 表示椭圆,则α的取值范围是___________. 2.抛物线y 2=2x 上到直线x -y +3=0的距离最短的点的坐标为_________. 3.椭圆221123x y +=的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的 倍.4.设直线:l x =A ),动点P 到直线l 的距离为d,且2PAd =.求动点P 的轨迹方程.5.若抛物线22x y =的顶点是抛物线上到点(0,)A a 的距离最近的点,求a 的取值范围.第18课时 圆锥曲线与方程复习(2)【基础训练】1.已知椭圆2212516x y +=上一点P 到椭圆一个焦点的距离为3,则P 点到另一个焦点的距离为 .2.如果椭圆的两条准线间的距离是这个椭圆的焦距的两倍,那么这个椭圆的离心率为 .3.若椭圆()222210x y a b a b +=>>的离心率为,则双曲线22221x y a b-=的离心率是 .4.抛物线216y x =-的准线方程为 . 5.抛物线顶点在原点,焦点在y 轴上,其上一点P (m ,1)到焦点距离为5,则抛物线方程为 .6.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r的离心率等于______________________________________.【思考应用】7.点F 为双曲线221169x y -=的右焦点,M 是双曲线右支上一动点,定点A 的坐标是(5,1),求4MF+5MA 的最小值.8.若抛物线22x y =的顶点是抛物线上到点(0,)A a 的距离最近的点,求a 的取值范围.9.已知椭圆G :2214x y +=,过点(m ,0)作圆221x y +=的切线l 交椭圆G 于A ,B 两点. (1)求椭圆G 的焦点坐标和离心率;(2)将||AB 表示为m 的函数,并求||AB 的最大值.10.已知椭圆2222:1(0)x y G a b a b+=>>,0),斜率为1的直线l 与椭圆G 交与A .B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求PAB ∆的面积.【拓展提升】11.点A,B 是抛物线24y x =上的两个动点,O 是坐标原点,090AOB ∠=.求证:直线AB 必过定点.12.若椭圆221ax by +=与直线1x y +=交于点A,B ,点M 为AB 的中点,直线OM (O 为原,又, , OA OB a b ⊥求的值.。
高中数学第2章圆锥曲线与方程第15课时曲线的交点导学案(无答案)苏教版选修1-1(2021学年)
江苏省宿迁市高中数学第2章圆锥曲线与方程第15课时曲线的交点导学案(无答案)苏教版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省宿迁市高中数学第2章圆锥曲线与方程第15课时曲线的交点导学案(无答案)苏教版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省宿迁市高中数学第2章圆锥曲线与方程第15课时曲线的交点导学案(无答案)苏教版选修1-1的全部内容。
第16课时 曲线的交点【学习目标】1、会求两条曲线的交点;2、会判断直线与圆锥曲线的位置关系;3、能解决有关直线与圆锥曲线的综合问题.【问题情境】问题:探究点00(,)P x y 是曲线11:(,)0C f x y =和曲线2(,)0f x y =的交点的充要条件。
【合作探究】1。
判定下列各组曲线是否有公共点,若有,求出公共点的坐标: (1)102550,;x y y x-+==-(2)22,6;y x x y x =-+=-+(3)224,1;y x x y =+-=(4)2, 1.y x y == 2、曲线21y x =-与x 轴的交点是 ,与y 轴的交点是 。
3、曲线22452x y +=与曲线2237x y +=的交点个数是 。
4、若两条直线20x y k -+=与10x y --=的交点在曲线221x y +=上则k = 。
5、已知直线y x m =+与曲线22y x x =-+有两个公共点,求m的取值范围。
【展示点拨】例1、已知探照灯的轴截面是抛物线2y x =,平行于轴的光线照射到抛物线上的点(1,1)P -,反射光线过抛物线的焦点后又照射到抛物线上的Q 点,试确定点Q 的坐标。
高中数学 第2章 圆锥曲线与方程 2.6.1 曲线与方程学案 苏教版选修2-1(2021年整理)
2016-2017学年高中数学第2章圆锥曲线与方程2.6.1 曲线与方程学案苏教版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第2章圆锥曲线与方程2.6.1 曲线与方程学案苏教版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第2章圆锥曲线与方程2.6.1 曲线与方程学案苏教版选修2-1的全部内容。
2.6。
1 曲线与方程1.了解曲线与方程的对应关系,理解“曲线的方程”和“方程的曲线"的概念.(重点、难点)2.理解数形结合思想,会处理一些简单的曲线与方程问题.(难点)3.曲线与方程的对应关系.(易错点)[基础·初探]教材整理曲线的方程方程的曲线阅读教材P60例1以上的部分,完成下列问题.1.方程与曲线的定义在直角坐标系中,如果曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解满足以下关系:如果曲线C上点的坐标(x,y)都是方程f(x,y)=0的解,且以方程f(x,y)=0的解(x,y)为坐标的点都在曲线C上,那么,方程f(x,y)=0叫做曲线C的方程,曲线C叫做方程f(x,y)=0的曲线.2.方程与曲线的关系1.判断(正确的打“√”,错误的打“×”)(1)以方程f(x,y)=0的解为坐标的点都在曲线上,那么方程f(x,y)=0就是曲线的方程.()(2)如果f(x,y)=0是某曲线C的方程,则曲线上的点的坐标都适合方程.( )(3)若曲线C上的点满足方程f(x,y)=0,则坐标不满足方程f(x,y)=0的点不在曲线C上.()(4)方程x+y-2=0是以A(2,0),B(0,2)为端点的线段的方程.( )(5)到两坐标轴的距离的乘积等于1的点的轨迹方程为xy=1。
高中数学选修2-1《圆锥曲线》教案
4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。
高中数学 第2章 圆锥曲线与方程 2.6.1 曲线与方程曲线与方程 苏教版选修1-2
答案
(2)分析下列曲线上的点与相应方程的关系: ①与两坐标轴的距离的积等于5的点与方程xy=5之间的关系; ②第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.
解 ①与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5, 但以方程xy=5的解为坐标的点一定满足与两坐标轴的距离之积等于5. 因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy=5. ②第二、四象限两轴夹角平分线上的点的坐标都满足x+y=0;反之, 以方程x+y=0的解为坐标的点都在第二、四象限两轴夹角平分线上.因 此,第二、四象限两轴夹角平分线上的点的轨迹方程是x+y=0.
ห้องสมุดไป่ตู้解析答案
2.方程(x2-4)2+(y2-4)2=0表示的图形是_四__个__点___. 解析 由已知得xy22- -44= =00, , ∴xy= =±±22, 即xy= =22, 或xy= =2-,2 或xy= =- 2 2, 或yx==--22.,
12345
解析答案
12345
3. 下 列 四 个 图 形 中 , 图 形 下 面 的 方 程 是 图 形 中 曲 线 的 方 程 的 是 ___④_____.(填序号)
解析答案
题型二 由方程判断其表示的曲线 例 2 方程(2x+3y-5)( x-3-1)=0 表示的曲线是什么?
解 因为(2x+3y-5)( x-3-1)=0, 所以可得2x-x+33≥y-0,5=0, 或者 x-3-1=0, 即2x+3y-5=0(x≥3)或者x=4, 故方程表示的曲线为一条射线2x+3y-5=0(x≥3)和一条直线x=4.
反思与感悟
解析答案
跟踪训练1 判断下列命题是否正确. (1)以坐标原点为圆心,r为半径的圆的方程是 y= r2-x2;
2019-2020学年苏教版数学(选修1-1)本章练测:第2章-圆锥曲线与方程(含答案)
,椭圆的左焦点为 ,且直
线 与此圆相切,则椭圆的离心率
为.
9.若点 O 和点 F 分别为椭圆 最大值为 .
的中心和左焦点,点 P 为椭圆上的任意一点,则
的
10. 已知方程 ax2 + by2 = ab 和 ax+ by+ c = 0 ,其中 ab构0,a b,c > 0 , 它们所表示的曲线可能是下列图象中的.
,得直线 l 的方程为
由
消去 ,得 y 2 + 2 py - p2 = 0 .
由题意得 D = (2 p)2 + 4 p2 > 0 , y1 + y2 = - 2 p, y1 y2 = - p2 . 设直线 与抛物线交于 A( x1 , y1 ), B( x2 , y2 ), 则 | AB |= 3 .
y= ? b x. a
设直线 与 轴的交点为 ,因为△
为等边三角形,则有
× 所以 c-
a2 =
c
3 2
骣???桫acb +
acb÷÷÷÷,即
c2 - a2 c
=
3 ab ,
c
MF = 3 PQ , 2
解得 b = 3a ,
.所以 e = c = 2 . a
( 2)由( 1)得双曲线
的方程为
x2 -
a2
2019-2020 学年苏教版数学精品资料
第 2 章 圆锥曲线与方程(苏教版选修 1-1 )
建议用时 120 分钟
实际用时
满分 160 分
实际得分
一、填空题 ( 本题共 14 小题,每小题 5 分,共 70 分 )
x2 y2 1. 若椭圆 2 2 1(a b 0) 的离心率是
江苏省宿迁市泗洪中学高中数学第二章《圆锥曲线与方程
2.3.1双曲线及其标准方程(2)班级 姓名教学目标:1.掌握双曲线的标准方程;2.掌握双曲线的定义。
任务1:预习课本4739P P -页,根据课本内容填空复习1:写出满足下列条件的双曲线的标准方程:①3,4a b ==,焦点在x 轴上;②焦点在y 轴上,焦距为8,2a =.复习2:前面我们学习了椭圆的哪些几何性质?问题1:由椭圆的哪些几何性质出发,类比探究双曲线22221x y a b -=的几何性质?范围:x : y :对称性:双曲线关于 轴、 轴及 都对称.顶点:( ),( ).实轴,其长为 ;虚轴,其长为 . 离心率:渐近线:问题2:双曲线22221y x a b -=的几何性质?图形:范围:x : y :对称性:双曲线关于 轴、 轴及 都对称.顶点:( ),( )实轴,其长为 ;虚轴,其长为 .离心率:.渐近线: 注意:实轴与虚轴等长的双曲线叫 双曲线.任务2:认真理解双曲线的定义完成下列例题例1求双曲线2214925x y -=的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.变式:求双曲线22916144y x -=的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.例2求以椭圆22185x y +=的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.练习:对称轴都在坐标轴上的等到轴双曲线的一个焦点是1(6,0)F -,求它的标准方程和渐近线方程.《双曲线及其标准方程》练习反馈1.求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x 轴上;(2)离心率e (5,3)M -;(3)渐近线方程为23y x =±,经过点9(,1)2M -. (4)顶点间距离为6,渐近线方程为x y 23±= (5)焦距为20,渐近线方程为x y 21±=2. 双曲线221168x y -=实轴和虚轴长分别是( ).A .8、.8、C .4、.4、3.双曲线224x y -=-的顶点坐标是( ).A .(0,1)±B .(0,2)±C .(1,0)±D .(2,0±)4. 双曲线22148x y -=的离心率为( ).A .1B .25.双曲线2241x y -=的渐近线方程是 .6.经过点(3,1)A-,并且对称轴都在坐标轴上的等轴双曲线的方程是.7.求焦点在y轴上,焦距是16,43e=的双曲线的标准方程.8.求与椭圆2214924x y+=有公共焦点,且离心率54e=的双曲线的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14课时曲线与方程
【学习目标】
1•了解曲线方程的概念
2 •能根据曲线方程的概念解决一些简单问题
【问题情境】
前面我们用f(x,y)=O或y=f(x)来表示一条曲线,例如直线的方程,圆的方程以及圆锥曲线
的方程,那么什么是曲线的方程?
1、曲线的方程,方程的曲线
在直角坐标系中,如果某曲线 C (看作点的集合或适合某种条件的点轨迹)上的点与一
个二元方程f (x, y)=0的实数解建立了如下关系:
(1)曲线C上的点的坐标都是___________________ •
(2) ________________________________________________ 以方程f( x, y)=0的解(x,y)为坐标的点都在_______________________________________________ ,那么,方程f (x, y)=0叫做曲
线C的方程,曲线C叫做方程f(x, y)=0的曲线.
1.点与曲线
如果曲线C的方程是f(x,y)=0,那么点P(x o, y o)在曲线C上的充要条件是f (x o, y o)=0 •
【合作探究】
问题1:观察下表中的方程与曲线,说明它们有怎样的关系?
问题2…若曲线C的方程为k x2+2x+(1+k) y+3=0,(k € R),则曲线C过定点_____________ 问题3.方程x2+xy-x=0表示的曲线是 ________________ .
问题4•至俩个坐标轴距离相等的点所满足的方程是_____________________ .
例1•判断下列结论的对错,并说明理由:
(1)过点A ( 3,0 )且垂直于x轴的直线的方程为x=3;
(2)到x轴距离为2的点轨迹方程为y=2;
(3)到两坐标轴距离乘积等于k的点的轨迹方程为xy=k.
例2. (1)判断点(2,2迈),(3,1)是否在圆x2y216上;
(2)已知方程为x2y225的圆过点C ( *''7 , m ,求m的值.
例3.设圆C: (x 1)2y2 1,过原点0作圆的任意弦,求所作弦的中点的轨迹
方程.
变式:过P( 2,4 )作两条相互垂直的直线「J,若l i交x轴于A点,交y轴于B点, 求线段AB的中点M的轨迹方程.
例4•已知一座圆拱桥的跨度是36m圆拱高为6m,以圆拱所对的弦AB所在直线为x轴,AB的垂直
y
平分线为y轴,建立直角坐标系x O y (如图),求圆拱的方程.*
1•已知曲线C :xy 3x ky 2 0,当k _______ 时,曲线C经过点(2, 1).
2•已知命题“曲线C上的点的坐标都是方程f(x, y)=0的解”是正确的,判断下列命题是否正确;
(1 )满足方程f(x,y)=0的点都在曲线C上; (2)方程f(x,y)=0是曲线C的方程;
(3)方程f(x, y)=0所表示的曲线不一定是 C. 3•下列各组方程中,哪些表示相同的曲线?
(1 ) y2x与y x ;(2) y x与' 1 ;(3) y lg x2与y 2lg x ; ( 4 )
x
y x 0 与x2y20.
4•证明以坐标原点为圆心,半径等于5的圆的方程是x2+y2=25.
5.A ABC 中,|BC|=2, 1 AB 1 = m(m > 0),求定点 A 的轨迹方程.
|AC|
【基础训练】
第14课时
曲线与方程
1•若方程 2 ax + by = 4的曲线经过点 A(0,2)
1 ■ B 2, \l'3 ,贝V a = ,b = 2. x,y R,那么"x
2 y 2 1” 是“ xy x y ”的
条件. F(x, y) 0的解”是正确的,则下列命题中正 确的是
(1) 方程 F(x,y)
(2) 方程 F(x,y)
0的曲线是C ; 0的曲线不一定是C ; (3)方程 F(x,y)
0是曲线C 的方程; (4)以方程F(x, y)
0的解为坐标的点都在曲线 4.到直线4x + 3y — 5 = 0的距离为1的点的轨迹方程为
5.若曲线y 2 xy 2x k 0通过点(a, a)( a R ),则k 的取值范围是
6•求方程|x| + |y| = 1所表示的曲线C 围成的平面区域的面积为
【思考应用】
7. (1)过P(0,— 1)且平行于x 轴的直线I 的方程是 |y| = 1吗?为什么?
⑵设A(2,0) , B(0,2),能否说线段AB 的方程是
x + y — 2 = 0?为什么? &已知动点M 到A(2,0)的距离等于它到直线 x 1的距离的两倍,求点 M 的轨迹方程 “曲线 C 上的点的坐标都是方程
3 .若命题
9.已知ABC的两个顶点A,B的坐标分别是(3,0),(3,0),边AC, BC所在直线的斜率之
1
积为一,求顶点C的轨迹方程.
4
10. 求点A(1 , 1)到直线x+2y=3的距离相等的点轨迹方程,并判断轨迹是什么图形?
【拓展提升】
11. 已知两定点A( —2,0) , B(1,0),如果动点P满足PA= 2PB,求点P的轨迹所包围的图形的面积.
12. 证明与两条坐标轴的距离的积是常数k(k>0)的点的轨迹方程是xy = ± k.。