人教版数学九年级下册第27章相似 图形的相似和比例线段拓展提升与复习过关
人教版九年级数学下第27章《相似》复习课讲解
(1)求证:△PAC∽ △PDF ; A (2)若AB =5,A⌒P=B⌒P,
求PD的长。
P
O
G
l
FC
ED
B练习3、如图,已源自在□ABCD中,AE:EB=1:2。
(1)求△AEF与△CDF的周长之比。 (2)如果S△AEF =6cm2,求S△CDF 。
D
C
F
A E
B
专题3:相似三角形的应用
应用相似三角形解实际问题的一般步骤:
(1)求AD的长;
A
M
D
(2)求矩形DMNC与矩形
ABCD的相似比。
B
N
C
专题2: 相似三角形的判定与性质
三角形相似的判定方法 (1) 平行 于三角形一边的直线和其它两边(或两边
的延长线)相交,所构成的三角形与原三角形相似。 (2)三边 成比例 的两个三角形相似。 (3)两边成比例且 夹角相等 的两个三角形相似。 (4) 两角 相等的两三角形相似。 直角三角形除用以上方法外,还可以用以下方法: (1) 有一锐角 对应相等的两直角三角形相似; (2) 两直角边 成比例的两直角三角形相似; (3) 斜边、直角边 成比例的两直角三角形相似。
请问图(a)和图(b)中的树高分别为多少?
B
D
E
A
C 图a
图b
专题4:位似
如果两个多边形不仅 相似 ,而且对应顶 点的连线 相交于一点 ,对应边 相互平行 , 那么这样的两个图形叫做位似图形,这个点叫 做 位似中心 .
[注意] 位似图形一定是相似图形,但相似 图形不一定是位似图形.
在平面直角坐标系中,如果位似变换是以原 点O为位似中心,相似比为k,原图形上的点的 坐标为(x,y),那么位似图形对应点的坐标 为 (kx,ky) 或(-kx,-ky) 。
九年级数学下册 第二十七章 相似本章总结提升 新人教版 (2)
90°.∵∠DEF=∠CAD,∴∠AEF=∠C.∵∠EAF=∠CAB,∴△AFE∽△ABC,
AE AF ∴AC=AB,即
AE·AB=AF·AC.
精选ppt
本章总结提升
例 3 如图 27-T-9,△ABC 是⊙O 的内接三角形,D 是A︵C 的中点,BD 交 AC 于点 E,若 DE·DB=16,求 DC 的长.
精选ppt
图27-T-4
本章总结提升
证明:(1)∵AB 是⊙O 的直径,∴∠ADB=90°, 即 AD 是△ABC 的底边 BC 上的高. 又∵AB=AC,∴△ABC 是等腰三角形,∴D 是 BC 边的中点. (2)∵∠CBE 与∠CAD 都是D︵E所对的圆周角,∴∠CBE=∠CAD. 又∵∠BCE=∠ACD,∴△BEC∽△ADC. (3)由△ADC∽△BEC,知CCDE=ABCC,即 CD·BC=AC·CE. ∵D 是 BC 边的中点,∴CD=12BC. 又∵AB=AC,∴12BC·BC=精A选Bp·pCt E,即 BC2=2AB·CE.
精选ppt
本章总结提升
问题4 圆中的相似
在几何图形的计算与证明的问题中,相似三角形有哪些应用?如
何在圆中寻找相似三角形?
例4 如图27-T-4所示,在△ABC中,AB=AC,以AB为直 径的⊙O交AC于点E,交BC于点D.
求证:(1)D是BC边的中点;
(2)△BEC∽△ADC;
(3)BC2=2AB·CE.
精选ppt
图27-T-3
本章总结提升
解:(1)证明:∵四边形 EFGH 是正方形,∴EH∥BC, ∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC. (2)设 AD 与 EH 交于点 M.∵∠EFD=∠FEM=∠FDM=90°, ∴四边形 EFDM 是矩形,∴EF=DM. 设正方形 EFGH 的边长为 x cm,∵△AEH∽△ABC,∴EBHC=AAMD , 即4x0=303-0 x,∴x=1270,即正方形 EFGH 的边长为1270 cm, ∴正方形 EFGH 的面积为(1270)2=1444900(cm2).
人教版数学九年级下《第27章相似》复习学案
27复习学案【学习目标】1.加深了解比例的基本性质、线段的比、成比例线段,认识图形的相似、位似等概念和性质.2.理解相似图形的性质与判定、位似的性质与把一个图形放大或缩小,在同一坐标系下感受位似变换后点的坐标的变化规律.【重点难点】重点:利用相似三角形的知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形.难点:如何把实际问题抽象为相似三角形、位似形这一数学模型.【知识回顾】1、相似三角形定义:_________________________.2、判定方法:__________________________3、相似三角形性质:(1)对应角相等,对应边成比例;(2)对应线段之比等于;(对应线段包括哪几种主要线段?)(3)周长之比等于;(4)面积之比等于.4、相似三角形中的基本图形.(1)平行型(X型,A型); (2)交错型;(3)旋转型;(4)母子三角形.5、位似形的性质: .6、将一个图形按一定的比例放大或缩小的步骤为: . 【综合运用】1.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的长.2如图,在等腰三角形△ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形,S,R分别在AB,AC上,SR与AD相交于点E.(1)△ASR与△ABC相似吗?为什么?(2)求正方形PQRS的边长.【矫正补偿】如图1,已知矩形ABED,点C是边DE的中点,且AB = 2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明.【完善整合】31.通过本节课的学习你有那些收获?2.你还有哪些疑惑?27复习学案答案综合运用:1.分析:(1)根据平行四边形的性质可得AD∥BC,AB∥CD,即得∠ADF=∠CED,∠B+∠C=180°,再由∠AFE+∠AFD=180°,∠AFE=∠B,可得∠AFD=∠C,问题得证;(2)根据平行四边形的性质可得AD∥BC,CD=AB=4,再根据勾股定理可求得DE的长,再由△ADF∽△DEC根据相似三角形的性质求解即可.证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,AB∥CD∴∠ADF=∠CED,∠B+∠C=180°∵∠AFE+∠AFD=180,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC;解:(2)∵四边形ABCD是平行四边形∴AD∥BC,CD=AB=4又∵AE⊥BC∴AE⊥AD在Rt△ADE中,DE=∵△ADF∽△DEC∴∴,解得AF=.2.解:(1)∵四边形PQRS是正方形∴SR∥PQ∴∠ASR=∠ABC,∠ARS=∠ACB∴△ASR∽△ABC;(2)设正方形的边长为xcm,则SR=xcm,SR=DE=xcm,AE=40-xcm∵△ASR∽△ABC∴AE:AD=SR:BC∵BC=60cm,AD=40cm∴(40-x):40=x:60∴x=24cm;即正方形的边长为24cm.矫正补偿:分析:(1)根据矩形的性质及勾股定理,即可判断△ABC的形状;(2)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE 长度之间的关系.解:(1)△ABC是等腰直角三角形.理由如下:在△ADC与△BEC中,AD=BE,∠D=∠E=90°,DC=EC,∴△ADC≌△BEC(SAS),∴AC=BC,∠DCA=∠ECB.∵AB=2AD=DE,DC=CE,∴AD=DC,∴∠DCA=45°,∴∠ECB=45°,∴∠ACB=180°-∠DCA-∠ECB=90°.∴△ABC是等腰直角三角形.(2)DE=AD+BE.理由如下:在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC+CE=BE+AD,即DE=AD+BE.。
新人教版九年级数学下册《第二十七章 相似 》全章教案
新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。
第一节课重点讲解了相似图形的概念和运用方法。
通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。
同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。
在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。
同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。
第二节课重点讲解了相似多边形的主要特征和识别方法。
老师让学生们了解到相似多边形的对应角相等,对应边的比相等。
通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。
总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。
通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。
在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。
这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。
如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。
在解决这个问题时,依靠直觉观察是不可靠的。
课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。
2.相似多边形的特征是对应角相等,对应边的比相等。
如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比是相似多边形对应边的比。
4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。
例1(补充)(选择题):下列说法正确的是D。
因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。
例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。
人教版九年级数学下册《第二十七章 相似》教案
人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。
本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。
这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。
但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。
此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。
2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。
3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。
四. 教学重难点1.相似图形的定义和性质的理解。
2.相似三角形的性质和判定方法的掌握。
3.图形变换的熟练运用。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。
2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。
3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。
2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。
3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。
可以提供一些提示和指导,帮助学生解决问题。
4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。
教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。
2022-2023学年人教版九年级数学下册《第27章 相似 》解答题专题提升训练(附答案)
2022-2023学年人教版九年级数学下册《第27章相似》解答题专题提升训练(附答案)1.已知=,求的值.2.我们知道:若,且b+d≠0,那么.(1)若b+d=0,那么a、c满足什么关系?(2)若,求t2﹣t﹣2的值.3.已知点C是线段AB上的点,点D是AB延长线上的点,且AD:BD=AC:CB,已知AB=6cm,AC=3.6cm,求AD,BD的长.4.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E,F.求证:四边形AFGE与四边形ABCD相似.5.如图,现有一个边长是1的正方形ABCD,在它的左侧补一个矩形ABEF,使所得矩形CEFD∽矩形ABEF,求BE的长.6.如图,一个矩形广场的长为60m,宽为40m,广场内两条纵向小路的宽均为1.5m,如果设两条横向小路的宽都为xm,那么当x为多少时,小路内外边缘所围成的两个矩形相似?7.为了测量校园内水平地面上的一棵树的高度,小明在距树5米处立了一根高为3米的标杆,然后小明前后调整自己的位置,当小明与标杆相距1米时,小明眼睛A、标杆顶端F、树的顶端E在同一直线上,已知小明的眼睛距地面1.5米,求树的高度.8.一块三角形的余料,底边BC长1.8米,高AD=1米,如图.要利用它裁剪一个长宽比是3:2的长方形,使长方形的长在BC上,另两个顶点在AB、AC上,求长方形的长EH 和宽EF的长.9.图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,点D为边AC的中点.分别在图①、图②中△ABC的边AB上确定点P,并作出直线DP,使△ADP与△ABC相似.要求:(1)图①、图②中的点P位置不同.(2)只用无刻度的直尺,保留适当的作图痕迹.10.一个钢筋三角架边长分别是20cm,50cm,60cm,现在要做一个与其相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,问有几种不同的截法?11.小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4m,BC=10m,CD与地面成30°角,且在此时测得1m杆的影长为2m,求电线杆的高度.12..如图Rt△ABC与Rt△DEF中,∠A=∠D=90°,∠B=40°,∠E=20°,用一条过顶点的线段将Rt△ABC分割成两个三角形,再用另一条过顶点的线段将Rt△DEF也分割成两个三角形;所分割成的四个三角形恰好是两对相似三角形.(要求:1.用三种不同的方法;2.在图中标出相应的锐角度数.13.如图,△ABC中,AD、BE是高.(1)求证:;(2)连接DE,那么△CDE与△CAB是位似图形吗?14.如图,矩形ABCD中,AB=4,BC=m(m>1),点E是AD边上一定点,且AE=1.(1)当m=3时,AB上存在点F,使△AEF与△BCF相似,求AF的长度.(2)如图②,当m=3.5时.用直尺和圆规在AB上作出所有使△AEF与△BCF相似的点F.(不写作法,保留作图痕迹)(3)对于每一个确定的m的值,AB上存在几个点F,使得△AEF与△BCF相似?15.在平面直角坐标系中,抛物线L:y=﹣x2+x+2与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧).(1)求A、B、C三点的坐标;(2)连接AC、BC,以点C为位似中心,将△ABC扩大到原来的2倍得到△A1B1C,其中点A1、B1分别是点A、B的对应点,如何平移抛物线L才能使其同时经过点A1、B1,求出所有的平移方式.16.分别在直角坐标系中描出点(1)(0,0),(5,4),(3,0),(5,1)(5,﹣1),(3,0),(4,﹣2),(0,0);按描点的顺序连线.(2)(0,0),(10,8),(6,0),(10,2),(10,﹣2),(6,0),(8,﹣4),(0,0)按描点的顺序连线.(3)你得到两个怎样的图形?答:.(4)两个图形有什么特点?(从形状和大小来回答)答:.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕O点顺时针旋转90°后得到的△A2B2C2.18.学完了《图形的相似》这一章后,某中学数学实践小组决定利用所学知识去测量一古建筑AB的高度(如图1).如图2,在地面BC上取E,G两点,分别竖立两根高为2m的标杆EF和GH,两标杆间隔EG为23m,并且古建筑AB,标杆EF和GH在同一竖直平面内,从标杆EF后退2m到D处,从D处观察A点,A,F,D三点成一线;从标杆GH 后退4m到C处,从C处观察A点,A,H,C三点也成一线.请根据以上测量数据,帮助实践小组求出该古建筑的高度.19.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线;(2)如果AB=10,CD=6,①求AE的长;②求△AEF的面积.20.如图,AB是⊙O的直径,AB=13,C,D在圆上,且AC=CD=12,过点C的切线和DB的延长线交于点E.(1)求证:OC∥DE;(2)求DE的长.21.在Rt△ABC中,∠ACB=90°,CB=CA,点E在边BC上(不与B、C点重合)CD⊥AE于点F,交AB于点G,BD∥AC,AC=k•CE.(1)如图1,求证:AG=k•BG.(2)如图2,若k=2,连接BF,求证:BF=FC.(3)如图3,在(2)的条件下,过点B作BH⊥BA,交CD的延长线于点H,将HB沿HG翻折并延长交AB于点I,若EF=,求HI的长.参考答案1.解:∵=,∴设a=5m,则b=3m,∴==﹣13.1.解:(1)∵,b+d=0,∴a+c=0;(2)①当a+b+c≠0时,==2,∴t2﹣t﹣2=22﹣2﹣2=0,②当a+b+c=0时,b+c=﹣a,a+c=﹣b,a+b=﹣c,∴=﹣1,∴t2﹣t﹣2=0.2.解:∵AB=6cm,AC=3.6cm,∴BC=AB﹣AC=6﹣3.6=2.4,∵AD:DB=AC:CB,∴AD:(AD﹣6)=3.6:2.4,解得:AD=18,∴BD=AD﹣AB=12.4.证明;∵∠GEA=∠EAF=∠GF A=90°,∴四边形EAFG为矩形.∵四边形ABCD为正方形,∴AC平分∠DAB.又∵GE⊥AD,GF⊥AB,∴GE=GF.∴四边形EAFG为正方形.∴四边形AFGE与四边形ABCD相似.5.解:∵矩形CEFD∽矩形ABEF,∴=,即=,整理得,BE2+BE﹣1=0,解得,BE1=,BE2=(舍去),则BE的长为.6.解:∵小路内外边缘所围成的两个矩形相似,∴=,解得,x=1m,答:当x为1m时,小路内外边缘所围成的两个矩形相似.7.解:如图,过A作AH垂直ED,垂足为H,交线段FC于点G,由题知,∵FG∥EH,∴△AFG∽△AEH,∴,又因为AG=BC=1,HG=CD=5,GD=HC=AB=1.5,所以,解得:HE=9,则ED=DH+HE=1.5+9=10.5(m).答:树ED的高为10.5米.8.解:∵长方形的长宽比是3:2,∴设EH、EF分别为3k、2k,∴EH∥BC,∴△AEH∽△ABC,∴=,即=,解得k=,∴EH=米,EF=米.9.解:如图①所示,点P即为所求,△ABC∽△APD;如图②所示,点P即为所求,△ABC∽△ADP.10.解:取30cm为一边,另两边设为xcm、ycm;(1)30cm与20cm对应,即==,解得:x=75,y=90;75+90>50,不可以.(2)30cm与50cm对应,即==,解得x=12,y=36;12+36=48<50,可以.(3)30cm与60cm对应,即==,解得:x=10,y=25;10+25<50,可以.当取50cm作为一边时,无法得到符合题意的三角形,综上所述:有两种不同的截法.11.解:如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,∵CD=4米,CD与地面成30°角,∴DE=CD=×4=2米,根据勾股定理得,CE===2米,∵1米杆的影长为2米,∴=,∴EF=2DE=2×2=4米,∴BF=BC+CE+EF=10+2+4=(14+2)米,∵=,∴AB=(14+2)=(7+)米.答:电线杆的高度为(7+)m.12.解:方法一:方法二:方法三:方法四:方法五:13.解:(1)证明:∵AD、BE是高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ADC∽△BEC,∴;(2)解:如图,△CDE与△CAB不是位似图形.因为DE、AB的交点不为点A.14.解:(1)当∠AEF=∠BFC时,要使△AEF∽△BFC,需=,即=,解得AF=1或3;当∠AEF=∠BCF时,要使△AEF∽△BCF,需=,即=,解得AF=1;综上所述AF=1或3.(2)延长DA,作点E关于AB的对称点E′,连接CE′,交AB于点F1;连接CE,以CE为直径作圆交AB于点F2、F3.(3)当1<m<4且m≠3时,有3个;当m=3时,有2个;当m=4时,有2个;当m>4时,有1个.15.解:(1)在y=﹣x2+x+2中,令y=0,即0=﹣x2+x+2,解得:x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),令x=0,即y=2,∴C(0,2);(2)如图,当抛物线经过A1(2,6),B1(﹣4,6)时,设抛物线的解析式,y=﹣x2+bx+c,则有,解得,,∴抛物线的解析式为y=﹣x2﹣2x+14=﹣(x+1)2+15,当抛物线经过A2(﹣2,﹣2),B2(4,﹣2)时,同法可得抛物线的解析式为:y=﹣x2+2x+6=﹣(x﹣1)2+7.∵原来的抛物线的解析式为y=﹣(x﹣)2+,∴+1=,15﹣=,∴原来抛物线向左平移,再向上平移单位得到y=﹣x2﹣2x+14.1﹣=,7﹣=,原来抛物线向右平移单位,再向上平移单位得到y=﹣x2+2x+6.16.解:(1)如图所示:(2)如图所示:(3)如图所示:得到两个小鱼的图形;(4)两个图形是以原点为位似中心的位似图形.故答案为:以原点为位似中心的位似图形.17.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.18.解:设BE=ym,由题意可知,△ABD∽△FED,△ABC∽△HGC,∴=,=,∵EF=HG=2,∴=,∴=,解得:y=23(m),则=,即=,解得:AB=25(m),答:该古建筑的高度为25米.19.(1)证明:连接OC,如图,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠DAB.∵∠COB=2∠CAB,∴∠COB=2∠BAD.∵∠ECD=2∠BAD,∴∠ECD=∠COB.∵AB⊥CD,∴∠COB+∠OCH=90°,∴∠OCH+∠ECD=90°,∴∠OCE=90°.∴OC⊥CF.∵OC是⊙O的半径,∴CF是⊙O的切线;(2)解:①∵AB=10,∴OA=OB=OC=5,∵AB是⊙O的直径,AB⊥CD,∴CH=DH=CD=3.∴OH==4,∵OC⊥CF,CH⊥OE,∴△OCH∽△OEC,∴,∴,∴OE=.∴AE=OA+OE=5+=;②过点F作FG⊥AB,交AB的延长线于点G,如图,∵∠OCF=∠FGE=90°,∠CEO=∠GEF,∴△OCE∽△FGE.∴,设FG=4k,则FE=5k,∴EG==3k,∵DH⊥AB,FG⊥AB,∴DH∥FG.∴,解得:k=.∴FG=4k=5.∴△AEF的面积=×AE•FG=.20.(1)证明:∵∠EBC为圆内接四边形ACBD的外角,∴∠EBC=∠CAD.∵AC=DC,∴∠CAD=∠CDA.∵∠CDA=∠CBA,∴∠EBC=∠CBA,∵OC=OB,∴∠OCB=∠CBA,∴∠OCB=∠EBC,∴OC∥DE;(2)解:∵EC为⊙O的切线,∴∠ECO=90°.∵OC∥DE,∴∠ECO+∠E=180°,∴∠E=90°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠E=90°.∵∠EDC=∠CAB,∴△EDC∽△CAB,∴=,∵AB=13,AC=DC=12,∴DE=.21.(1)证明:如图1中,∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠ACF+∠CAF=90°,∠BCD+∠ACF=90°,∴∠CAE=∠BCD,∵BD∥AC,∴∠DBC+∠ACB=180°,∴∠CBD=∠ACE=90°,∵AC=CB,∴△ACE≌△CBD(ASA),∴EC=BD,∵DB∥AC,∴===k,∴AG=kBG.(2)证明:如图2中,连接DE交AB于O,连接OF,作BM⊥AE交AE的延长线于M.∵k=2,∴AC=2EC,∵AC=BC,∴BE=EC=BD,∴△BDE是等腰直角三角形,∵∠OBE=∠OBD=45°,∴OD=OE,∴OB=OD=OE=OF,∴B,D,F,E四点共圆,∴∠BFE=∠BDE=45°,∵BM⊥FM,∴∠M=90°,∴∠MBF=∠BFM=45°,∴BF=BM,∵∠CFE=∠M=90°,∠CEF=∠BEM,CE=BE,∴△CFE≌△BME(AAS),∴CF=BM,∴BF=CF.(3)解:如图3中,作GN⊥HI于N,作BM⊥AE交AE的延长线于M,连接DE交AB 于O.∵△CFE≌△BME,∴EF=EM=,∴FM=BM=CF=3,∴EC=BE=BD=,∴AC=BC=3,DE=BE=∵AB⊥BH,DE⊥AB,∴DE∥BH,∵BE=CE,∴DH=DC,∴BH=2DE=3,∵AB=AC=3,∴BG=AB=,∵∠GHN=∠GHB,HG=HG,∠HBG=∠HNG=90°,∴△HGB≌△HGN(AAS),∴HN=HB=3,GN=GB=,设IN=x,IG=y,则有,解得x=,∴HI=HN+NI=3+=.。
人教版初三数学第27章《相似》总结与习题
初中数学九年级知识点总结:27相似一、知识框架二、知识点、概念总结 1. 相似:每组图形中的两个图形形状相同,大小不同,具有相同形状的图形叫相似图形。
相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
相似图形不仅仅指平面图形,也包括立体图形相似的情况。
我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.2.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
互为相似形的三角形叫做相似三角形相似形的识别:对应边成比例,对应角相等。
成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a (或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:用一点P 将一条线段AB 分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。
这种分割称为黄金分割,分割点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
3.相似三角形的判定方法:根据相似图形的特征来判断。
(对应边成比例,对应角相等)○1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;○2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;○4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;○4.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。
○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
5. 一定相似的三角形(1)两个全等的三角形一定相似。
人教版数学九年级下册第27章相似 全章拓展提升与复习过关
人教版数学九年级下册第27章相似全章拓展提升与复习过关知识全面设计合理含答案教师必备《相似》全章复习与巩固--知识讲解(基础)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures). 要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形全等;2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项)(2)若a :b=b :c ,则 =ac (b 称为a 、c 的比例中项). 要点二、相似三角形1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.2. 相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。
人教版九年级数学下册第27章相似(专题复习相似三角形基本模型)
课题
第27章相似(专题复习相似三角形基本模型)
课型
复习
主备
时间
教
学
目
标
知识与技能
相似三角形常见模型
过程与方法
利用相似三角形的判定及其性质进行有关判断及计算,培养培养学生的抽象思维能力和解决实际问题的能力
情感态度与价值观
使学生认识数学与生活的密切联系,体验在数学学习活动中探索与创造的乐趣,通过合作交流学习,培养他们的团队合作精神,增强学习数学的兴趣和信心
教学重点
相似三角形常见模型
教学难点
培养培养学生的抽象思维能力和解决实际问
过
程
主要教学过程
个人修改
板书设计
课题
概念练习
例题练习
教学反思
速度不够,部分同学一部分题没做完
初三下册数学第27章知识点归纳:相似图形
初三下册数学第27章知识点归纳:相似图形
初三下册数学第27章知识点归纳:相似图形知识点对朋友们的学习非常重要,大家一定要认真掌握,查字典数学网为大家整理了初三下册数学第27章知识点归纳:相似图形,让我们一起学习,一起进步吧!
知识点1.概念
把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比
的平方.
(4)射影定理
只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。
由查字典数学网为您提供的初三下册数学第27章知识点归纳:相似图形,祝您学习愉快!。
人教版九年级下册数学 第27章 相似 精选提升练习
人教版九年级下册数学第27章相似精选提升练习1.如图,已知在△ABC中,AB=AC=10,BC=16,D是边BC的中点,E是射线BA上一动点,直线DE交射线CA于F点.(1)当DF=DC时,求AF的值;(2)当点E位于线段AB上时(与B、A不重合),设BE=x,AF=y,求y关于x的函数解析式,并写出它的定义域;(3)当△AEF为以FA腰的等腰三角形时,求x的值.2.如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.3.如图,在△ABC中,点D,E分别在边AB,BC上,AE与CD相交于点F,过点E作EG∥CD交AC的延长线于点G.若AE平分∠BAC,CE=CF.(1)①求证:∠ABC=∠ACD;②求证:△EGC∽△CBD(2)如图2,若∠BAC=90°,AD=2,BD=6,求CG的长.4.如图,已知△ABC和△ADE,点D在BC边上,DA=DC,∠ADE=∠B,边DE与AC相交于点F.(1)求证:AB•AD=DF•BC;(2)如果AE∥BC,求证:=.5.在矩形ABCD中,AB=2,BC=5,点P在BC上,且BP:PC=2:3,动点E在边AD上,过点P作PF ⊥PE分别交射线AD、射线CD于点F、G.(1)如图,当点G在线段CD上时,设AE=x,△EPF与矩形ABCD重叠部分的面积为y,求y关于x的函数解析式,并写出x的取值范围;(2)当点E在移动过程中,△DGF是否可能为等腰三角形?如可能,请求出AE的长;如不可能,请说明理由.6.如图,△ABC中AB=AC,BC=6,点D位BC中点,连接AD,AD=4,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.(1)试判断四边形ADCE的形状并说明理由.(2)将四边形ADCE沿CB以每秒1个单位长度的速度向左平移,设移动时间为t(0≤t≤6)秒,平移后的四边形A′D′C′E′与△ABC重叠部分的面积为S,求S关于t的函数表达式,并写出相应的t的取值范围.7.如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D为BC边上的动点(D不与B、C重合),∠ADE =45°,DE交AC于点E.(1)∠BAD与∠CDE的大小关系为.请证明你的结论;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长;(4)是否存在x,使△DCE的面积是△ABD面积的2倍?若存在,求出x的值,若不存在,请说明理由.8.如图已知△ABC中AB=AC=10,BC=16,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在AB、AC上,设DE的长为x,矩形DEFG的面积为y,求y关于x的函数关系式,并写出这个函数的定义域.9.如图,正方形ABCD的对角线AC、BD交于点O,∠CBD的平分线BG交AC于E,交CD于F,且DG⊥BG.(1)求证:BF=2DG;(2)若BE=,求BF的长.10.如图,已知AB是⊙O的直径,点C是圆上异于A、B的一点,连结BC并延长至点D,使CD=BC,连结AD交⊙O于点E,连结BE.(1)求证:△ABD是等腰三角形;(2)连结OC并延长,与以B为切点的切线交于点F,若AB=4,CF=1,求DE的长.答案1.解:(1)∵AB=AC,∴∠B=∠C,∵DF=DC,∴∠B=∠C,∴∠B=∠F,∴△ABC∽△DFC,∴,∴,∴CF=12.8,∴AF=2.8;(2)取AB的中点M,联结DM.∵D是边BC的中点,∴DM∥AC,DM=,∴△AFE∽△MDE,∴,∴,∴,函数定义域为5<x<10;(3)当点E位于线段AB上时,①若AF=AE,即=10﹣x,解得x=10 舍去,②若AF=EFcos∠FAE=,5×=•(x﹣5)x=,当点E位于线段BA延长线上时,此时y=,①若AF=AE,即=x﹣10,解得x=10舍去,②若AF=EFcos∠FAE=,y=(x﹣10),解得x=舍去.综上所述,当△AEF为以FA腰的等腰三角形时,x=.2.(1)证明:∵AD平分∠BAC,∴∠BAD=∠EDA,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=4﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(4﹣x):4,解得:x=,∴DE的长是.3.解:(1)①证明:∵CE=CF,∴∠CEF=∠CFE.∵AE平分∠BAC,∴∠BAE=∠CAE,又∵∠CEF=∠ABC+∠BAE,∠CFE=∠ACD+∠CAE,∴∠ABC=∠ACD;②证明:∵EG∥CD,∴∠CEG=∠DCB,∠ACD=∠G,∵∠ABC=∠ACD,∴∠ABC=∠G,∴△EGC∽△CBD;(2)在△AEB和△AEG中,∴△AEB≌△AEG(AAS),∴AG=AB.∠ABC=∠G,∵AD=2,BD=6,∴AB=AD+BD=2+6=8,∴AG=8.∵∠ABC=∠ACD,∠BAC=∠CAD,∴△ABC∽△ACD,∴AB:AC=AC:AD,∴AC2=AB•AD=8×2=16,∴AC=4(舍负),∴CG=AG﹣AC=8﹣4=4.4.(1)证明:∵DA=DC,∴∠DAC=∠C,又∵∠ADE=∠B,∴△ABC∽△FDA,∴=,∴AB•AD=DF•BC;(2)证明:∵∠ADE+∠CDF=∠B+∠BAD,∠ADE=∠B,∴∠CDF=∠BAD,∵AE∥BC,∴∠E=∠CDF,∠C=∠EAF,∴∠BAD=∠E,又∵∠ADE=∠B,∴△ABD∽△EDA,∴=,∵DA=DC,∴∠DAC=∠C,∴∠EAF=∠DAC,即AC平分∠DAE,作FM⊥AD于M,FN⊥AE于N,则FM=FN,∵===,∴=.5.解:(1)过点E作EH⊥BC,∵EP⊥PF,∴△PEH∽△GPC,∴=,∵BP:PC=2:3,BC=5,∴PB=2,PC=3,∴GC=•3.∴y=2×5﹣2x﹣×(2﹣x)×2﹣×3×=x+(≤x<2);(2)解:当点E在移动过程中,△DGF不能为等腰三角形,理由是:∵要使△DFG是等腰三角形,∠GDF=90°,∴DF=DG,∴∠G=∠GFD=45°,∵∠C=90°,∴∠GPC=45°=∠G,∴CP=CG=3,由(1)知:=,∴=,PH=2,即H和B重合,∵EH⊥BC,∴E和A重合,即当AE=0时,△DFG是等腰三角形,故当点E在移动过程中,△DGF不能为等腰三角形.6.解:(1)∵AB=AC,D为BC中点,∴AD⊥BC,∠BAD=∠CAD,又∵AE平分∠CAM,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=×180°=90°,∴∠AEC=∠DAE=∠ADC=90°,∴四边形ADCE为矩形.(2)平移过程中有两种不同情况:①当0≤t<3时,重叠部分为五边形,设C′E′与AC交于点P,A′D′与AB交于点Q,∴E′P=AE′=(3﹣t)A′Q=A′A=t,∴S=S矩形A′D′CE′﹣S△AA′Q﹣S△AE′P=3×4﹣AA′•A′Q﹣AE′•E′P=12﹣t•t﹣(3﹣t)•=﹣+4t+6;②当3≤t≤6时,重叠部分为三角形,设AB与C′E′交于点R,∵C′E′∥AD,∴△BC′R∽△BDA,∴==∵BC′=6﹣t,∴C′R=(6﹣t),∴S=S△BC′R=BC′•C′R=(6﹣t)•(6﹣t)=(6﹣t)2,∴S=.7.解:(1)相等;证明如下:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°.如图1,∵∠1+∠B+∠ADB=180°,∴∠1+∠ADB=180°﹣∠B=135°.又∵∠2+∠ADE+∠ADB=180°,∴∠2+∠ADB=180°﹣∠ADE=180°﹣45°=135°,即∠1+∠ADB=∠2+∠ADB,∴∠1=∠2.(2)由(1)知∠1=∠2,又∵∠B=∠C=45°,∴△DCE∽△ABD.若BD=x,则CD=BC﹣BD=2﹣x,由△DCE∽△ABD得,即,CE=(2﹣x)x,=﹣x2+x,y=AE=AC﹣CE=2﹣(﹣x2+x)∴y=x2﹣x+2,其中0<x<2.(3)解:∵点D不能与B点重合,∴AD=AE不能成立(或:∵∠ADE=45°,若AD=AE,则∠AED=ADE=45°,从而∠DAE=90°,即B与D重合,这与已知条件矛盾).①当AE、DE为腰,即AE=DE时(如图2),∠EAD=∠EDA=45°,此时,AD平分∠BAC,∴D为BC边的中点(“三线合一”性质),且E也为AC边的中点,∴AE=1;②当AD、DE为腰,即AD=DE时(如图3),由(1)△ABD∽△DCE知,此时AD与DE为对应边,∴△ABD≌△DCE,DC=AB=2,BD=BC﹣CD=2﹣2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2;综上所述,当△ADE是等腰三角形时,AE的长为1或4﹣2;(4)不存在.原因如下:∵△DCE∽△ABD,若△DCE的面积是△ABD面积的2倍,则=2,从而=,CE=BD,﹣x2+x=x,解得x=0,即BD=0,就是说D点与B点重合,这与已知条件矛盾,∴不存在x,使△DCE的面积是△ABD面积的2倍.8.解:过点作AM⊥BC于点M,∵AB=AC=10,BC=16,∴BM=BC=8,在Rt△ABM中,AM==6,∵四边形DEFG是矩形,∴DG∥EF,DE⊥BC,∴AN⊥DG,四边形EDMN是矩形,∴MN=DE=x,∵DG∥EF,∴△ADG∽△ABC,∴DG:BC=AN:AM,∴,解得:DG=﹣x+16,∴y=S矩形DEFG=DE•DG=x•(﹣x+16)=﹣x2+16x(0<x<6).9.(1)证明:延长DG、BC交于点H,∵BG平分∠CBD,∴∠1=∠2,∵DG⊥BG,∴∠BGD=∠BGH=90°,又∵BG=BG,∴△BGD≌△BGH(ASA),∴BD=BH,∴DH=2DG,∵四边形ABCD是正方形,∴BC=DC,∠BCF=∠DCH=90°,又∵∠BGD=90°,∠3=∠4,∴∠2=∠5,∴△BCF≌△DCH(ASA),∴BF=DH,∴BF=2DG;(2)∵四边形ABCD是正方形,∴∠ACB=∠BDC=45°,∴∠BCE=∠BDF,又∵∠1=∠2,∴△BEC∽△BFD,∴,∵BE=,∴BF=.10.证明:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴AC⊥BD,又∵CD=BC,∴AB=AD,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∴∠BAC=∠BAD,AB=AD,BC=BD,又∵∠BAC=∠BOC,∴∠BOC=∠BAD,∵BF是⊙O的切线,∴∠FBO=90°,∵AB是⊙O的直径,∴∠AEB=90°=∠OBF,∴△OBF∽△AEB,∴,∵AB=4,CF=1,∴OB=2,OF=OC+CF=3,∴,∴AE=,∴DE=AD﹣AE=.。
人教版数学九年级下册示范教案:第27章相似
第二十七章相似27.1 图形的相似1.从生活中形状相同的图形的实例中认识图形的相似;(重点)2.理解成比例线段的概念,会确定线段的比.(难点)一、情境导入如图是两张大小不同的世界地图,左边的图形可以看作是右边的图形缩小得来的.由于不同的需要,对某一地区,经常会制成各种大小的地图,但其形状(包括地图中所描绘的各个部分)肯定是相同的.日常生活中我们会碰到很多这种形状相同、大小不一定相同的图形,在数学上,我们把具有相同形状的图形称为相似图形.像这样的图形有哪些性质?下面我们就一起探讨一下吧!二、合作探究探究点一:相似图形观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a)、(b)、(c)形状相同的?解析:通过观察寻找与(a),(b),(c)形状相同的图形,在所给的9个图形中仔细观察,然后作出判断.解:通过观察可以发现:图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同.方法总结:判断两个图形的形状是否相同,应仔细观察,当两个图形的形状除了大小没有其他任何差异时,我们才可以说这两个图形形状相同.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:比例线段【类型一】 判断四条线段是否成比例下列各组中的四条线段成比例的是( )A .4cm ,2cm ,1cm ,3cmB .1cm ,2cm ,3cm ,5cmC .3cm ,4cm ,5cm ,6cmD .1cm ,2cm ,2cm ,4cm解析:选项A.从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;选项B.从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;选项C.从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;选项D.从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.方法总结:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】 利用成比例线段的定义,求线段的长已知线段a 、b 、c 、d 是成比例线段,其中a =2m ,b =4m ,c =5m ,则d =( )A .1mB .10m C.52m D.85m 解析:∵线段a 、b 、c 、d 是成比例线段,∴a ∶b =c ∶d ,而a =2m ,b =4m ,c =5m ,∴d =b ·c a =4×52=10(m).故选B. 方法总结:求线段之比时,要先统一线段的长度单位,然后根据比例关系求值.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】 利用比例尺求距离若一张地图的比例尺是1∶150000,在地图上量得甲、乙两地的距离是5cm ,则甲、乙两地的实际距离是( )A .3000mB .3500mC .5000mD .7500m解析:设甲、乙两地的实际距离是x cm ,根据题意得1∶150000=5∶x ,x =750000(cm),750000cm =7500m.故选D.方法总结:比例尺=图上距离∶实际距离.根据比例尺进行计算时,要注意单位的转换. 变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点三:相似多边形【类型一】 利用相似多边形的性质求线段和角如图所示,给出的两个四边形是相似形,具体数据如图所示,求出未知边a 、b的长度及角α的值.解析:根据相似多边形对应角相等和对应边成比例解答.解:因为四边形ABCD 与四边形A ′B ′C ′D ′相似,所以∠B ′=∠B =63°,∠D ′=∠D ,AD A ′D ′=AB A ′B ′=BC B ′C ′,所以416=a 20=4.5b ,所以a =5,b =18.在四边形A ′B ′C ′D ′中,∠D ′=360°-(84°+75°+63°)=138°.∠α=∠D =∠D ′=138°.方法总结:若两个多边形相似,那么它们的对应角相等,对应边成比例.在书写两个多边形相似时,要注意把表示对应角顶点的字母写在对应的位置上.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】 相似多边形的判定如图,一块长3m 、宽1.5m 的矩形黑板ABCD 如图所示,镶在其外围的木质边框宽75cm.边框的内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 相似吗?为什么?解析:两个矩形的四个角虽然相等,但四条边不一定对应成比例,判定两个矩形是否相似,关键是看对应边是否成比例.解:不相似.∵矩形ABCD 中,AB =1.5m ,AD =3m ,镶在其外围的木质边框宽75cm=0.75m ,∴EF =1.5+2×0.75=3m ,EH =3+2×0.75=4.5m ,∴AB EF =1.53=12,AD EH =34.5=23.∵12≠23,∴内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 不相似. 方法总结:判定两个多边形相似,需要对应角相等,对应边成比例,这两个条件缺一不可.变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计1.相似图形的概念;2.比例线段;3.相似多边形的判定和性质.本节课中对相似多边形的特征的教学要注意难度的把握,不要过高要求学生掌握更多的内容.学生能了解性质,并能简单运用即可,重要的还是后续的相似三角形的学习,当相似三角形的特征掌握之后,再进一步研究相似多边形的性质,学生就比较容易掌握.27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.了解相似比的定义;(重点)2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)一、情境导入如图,在△ABC 中,D 为边AB 上任一点,作DE ∥BC ,交边AC 于E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似.二、合作探究探究点一:相似三角形的有关概念如图所示,已知△OAC ∽△OBD ,且OA =4,AC =2,OB =2,∠C =∠D ,求:(1)△OAC 和△OBD 的相似比;(2)BD 的长.解析:(1)由△OAC ∽△OBD 及∠C =∠D ,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD 的长.解:(1)∵△OAC ∽△OBD ,∠C =∠D ,∴线段OA 与线段OB 是对应边,则△OAC 与△OBD 的相似比为OA OB =42=21; (2)∵△OAC ∽△OBD ,∴AC BD =OA OB ,∴BD =AC ·OB OA =2×24=1. 方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法. 变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:平行线分线段成比例定理【类型一】 平行线分线段成比例的基本事实如图,直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,直线l 4、l 5交于点O ,且l 1∥l 2∥l 3,已知EF ∶DF =5∶8,AC =24.(1)求CB AB的值; (2)求AB 的长.解析:(1)根据l 1∥l 2∥l 3推出CB AB =EF DE ;(2)根据l 1∥l 2∥l 3,推出EF DF =BC AC =58,代入AC =24求出BC 即可求出AB .解:(1)∵l 1∥l 2∥l 3,∴CB AB =EF DE .又∵DF ∶DF =5∶8,∴EF ∶DE =5∶3,∴CB AB =53; (2)∵l 1∥l 2∥l 3,EF ∶DF =5∶8,AC =24,∴EF DF =BC AC =58,∴BC =15,∴AB =AC -BC =24-15=9.方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置. 变式训练:见《学练优》本课时练习“课堂达标训练” 第3题【类型二】 平行线分线段成比例的基本事实的推论如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.解析:根据DE ∥BC 得到AD AB =AE AC,然后根据比例的性质可计算出AE 的长. 解:∵DE ∥BC ,∴AD AB =AE AC ,即22+5=AE 5,∴AE =107. 方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点三:相似三角形的引理【类型一】 利用相似三角形的引理判定三角形相似如图,在▱ABCD 中,E 为AB 延长线上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中所有的相似三角形,并求出相应的相似比.解析:由平行四边形的性质可得:BC ∥AD ,AB ∥CD ,进而可得△EFB ∽△EDA ,△EFB ∽△DFC ,再进一步求解即可.解:∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB ∥CD ,∴△EFB ∽△EDA ,△EFB ∽△DFC ,∴△DFC ∽△EDA ,∵AB =3BE ,∴相似比分别为1∶4,1∶3,3∶4.方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 利用相似三角形的引理求线段的长如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O .(1)如果CE =3,EB =9,DF =2,求AD 的长;(2)如果BO ∶OE ∶EC =2∶4∶3,AB =3,求CD 的长.解析:(1)根据平行线分线段成比例可求得AF =6,则AD =AF +FD =8;(2)根据平行线AB ∥CD 分线段成比例知BO ∶OE =AB ∶EF ,结合已知条件求得EF =6;同理由EF ∥CD推知EF 与CD 之间的数量关系,从而求得CD =10.5.解:(1)∵CE =3,EB =9,∴BC =CE +EB =12.∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB.又∵EF ∥CD ,∴FO FD =EO EC ,则FO EO =FD EC ,∴AF EB =FD EC ,即AF 9=23,∴AF =6,∴AD =AF +FD =6+2=8,即AD 的长是8;(2)∵AB ∥CD ,∴BO ∶OE =AB ∶EF .又∵BO ∶OE =2∶4,AB =3,∴EF =6.∵EF ∥CD ,∴OE OC =EF CD .又∵OE ∶EC =4∶3,∴OE OC =47,∴EF CD =47,∴CD =74EF =10.5,即CD 的长是10.5.方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.变式训练:见《学练优》本课时练习“课堂达标训练”第6题三、板书设计1.相似三角形的定义及有关概念;2.平行线分线段成比例定理及推论;3.相似三角形的引理.本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围.27.2.1 相似三角形的判定第2课时 三边成比例的两个三角形相似1.理解“三边成比例的两个三角形相似”的判定方法;(重点)2.会运用“三边成比例的两个三角形相似”的判定方法解决简单问题.一、情境导入我们现在判定两个三角形是否相似,必须要知道它们的对应角是否相等,对应边是否成比例.那么是否存在判定两个三角形相似的简便方法呢?在如图所示的方格上任画一个三角形,再画第二个三角形,使它的三边长都是原来三角形的三边长的相同倍数.画完之后,用量角器比较两个三角形的对应角,你发现了什么结论?大家的结论都一样吗?二、合作探究探究点:三边对应成比例的两个三角形相似【类型一】 直接利用定理判定两个三角形相似在Rt △ABC 中,∠C =90°,AB =10,BC =6,在Rt △EDF 中,∠F =90°,DF=3,EF =4,则△ABC 和△EDF 相似吗?为什么?解析:已知△ABC 和△EDF 都是直角三角形,且已知两条边长,所以可利用勾股定理分别求出第三边的长,看对应边是否对应成比例.解:△ABC ∽△EDF .在Rt △ABC 中,AB =10,BC =6,∠C =90°,由勾股定理得AC =AB 2-BC 2=102-62=8.在Rt △DEF 中,DF =3,EF =4,∠F =90°,由勾股定理得ED =DF 2+EF 2=32+42=5.在△ABC 和△EDF 中,BC DF =63=2,AC EF =84=2,AB ED =105=2,所以BC DF =AC EF =AB ED,所以△ABC ∽△EDF . 方法总结:利用三边对应成比例判定两个三角形相似时,应说明三角形的三边对应成比例,而不是两边对应成比例. 变式训练:见《学练优》本课时练习“课堂达标训练” 第2题【类型二】 网格中的相似三角形如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,判断△ABC 和△DEF 是否相似,并说明理由.解析:首先由勾股定理,求得△ABC 和△DEF 的各边的长,即可得AB DE =AC DF =BC EF,然后由三组对应边的比相等的两个三角形相似,即可判定△ABC 和△DEF 相似.解:△ABC 和△DEF 相似.由勾股定理,得AB =25,AC =5,BC =5,DE =4,DF=2,EF =25,∵AB DE =AC DF =BC EF =254=52,∴△ABC ∽△DEF . 方法总结:在网格中计算线段的长,运用勾股定理是常用的方法.变式训练:见《学练优》本课时练习“课堂达标训练” 第8题【类型三】 利用相似三角形证明角相等如图,已知AB AD =BC DE =AC AE,找出图中相等的角,并说明你的理由.解析:由AB AD =BC DE =AC AE,证明△ABC ∽△ADE ,再利用相似三角形对应角相等求解. 解:在△ABC 和△ADE 中,∵AB AD =BC DE =AC AE,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠B =∠D ,∠C =∠E .方法总结:在证明角相等时,可通过证明三角形相似得到.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型四】 利用相似三角形的判定证明线段的平行关系如图,某地四个乡镇A ,B ,C ,D 之间建有公路,已知AB =14千米,AD =28千米,BD =21千米,BC =42千米,DC =31.5千米,公路AB 与CD 平行吗?说出你的理由.解析:由图中已知线段的长度,可求两个三角形的对应线段的比,证明三角形相似,得出角相等,通过角相等证明线段的平行关系.解:公路AB 与CD 平行.∵AB BD =1421=23,AD BC =2842=23,BD DC =2131.5=23,∴△ABD ∽△BDC ,∴∠ABD =∠BDC ,∴AB ∥DC .方法总结:如果在已知条件中边的数量关系较多时,可考虑使用“三边对应成比例,两三角形相似”的判定方法.【类型五】 利用相似三角形的判定解决探究性问题要制作两个形状相同的三角形教具,其中一个三角形教具的三边长分别为50cm ,60cm ,80cm ,另一个三角形教具的一边长为20cm ,请问怎样选料可使这两个三角形教具相似?想想看,有几种解决方案.解析:要使两个三角形相似,已知一个三角形的三边和另一个三角形的一边,则我们可以采用三边分别对应成比例的两个三角形相似来判定.解:①当长为20cm 的边长的对应边为50cm 时,∵50∶20=5∶2,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:20cm ,24cm ,32cm ;②当长为20cm 的边长的对应边为60cm 时,∵60∶20=3∶1,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:503cm ,20cm ,803cm ;③当长为20cm 的边长的对应边为80cm 时,∵80∶20=4∶1,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:12.5cm ,15cm ,20cm.∴有三种解决方案.方法总结:解答此题的关键在于分类讨论,当对应比不确定时,采用分类讨论的方法可避免漏解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.三角形相似的判定定理:三边对应成比例的两个三角形相似;2.利用相似三角形的判定解决问题.因为本课时教学过程中主要是让学生采用类比的方法先猜想出命题,然后证明猜想的命题是否正确.课堂上教师主要还是以提问的形式,逐步引导学生去证明命题.从课后作业情况看出学生对这节课的知识总体掌握得较好.27.2.1 相似三角形的判定第3课时 两边成比例且夹角相等的两个三角形相似1.理解“两边成比例且夹角相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情境导入利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等.量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等.另两个角是否对应相等?你能得出什么结论?二、合作探究探究点:两边成比例且夹角相等的两个三角形相似【类型一】 直接利用判定定理判定两个三角形相似已知:如图,在△ABC 中,∠C =90°,点D 、E 分别是AB 、CB 延长线上的点,CE =9,AD =15,连接DE .若BC =6,AC =8,求证:△ABC ∽△DBE .解析:首先利用勾股定理可求出AB 的长,再由已知条件可求出DB ,进而可得到DB ∶AB 的值,再计算出EB ∶BC 的值,继而可判定△ABC ∽△DBE .证明:∵在Rt △ABC 中,∠C =90°,BC =6,AC =8,∴AB =BC 2+AC 2=10,∴DB =AD -AB =15-10=5,∴DB ∶AB =1∶2.又∵EB =CE -BC =9-6=3,∴EB ∶BC =1∶2,∴EB ∶BC =DB ∶AB ,又∵∠DBE =∠ABC =90°,∴△ABC ∽△DBE .方法总结:解本题时一定要注意必须是两边对应的夹角才行,还要注意一些隐含条件,如公共角、对顶角等.变式训练:见《学练优》本课时练习“课堂达标训练” 第2题【类型二】 添加条件使三角形相似如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB =12,AC =8,AD =6,当AP 的长度为________时,△ADP 和△ABC 相似.解析:当△ADP ∽△ACB 时,AP AB =AD AC ,∴AP 12=68,解得AP =9.当△ADP ∽△ABC 时,AD AB =AP AC ,∴612=AP 8,解得AP =4,∴当AP 的长度为4或9时,△ADP 和△ABC 相似.故答案为4或9.方法总结:添加条件时,先明确已知的条件,再根据判定定理寻找需要的条件,对应本题可先假设两个三角形相似,再利用倒推法以及分类讨论解答.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型三】 利用三角形相似证明等积式如图,CD 是Rt △ABC 斜边AB 上的高,E 为BC 的中点,ED 的延长线交CA 的延长线于F .求证:AC ·CF =BC ·DF .解析:先证明△ADC ∽△CDB 可得AD CD =AC BC ,再结合条件证明△FDC ∽△F AD ,可得AD CD=DF CF,则可证得结论. 证明:∵∠ACB =90°,CD ⊥AB ,∴∠DAC +∠B =∠B +∠DCB =90°,∴∠DAC =∠DCB ,且∠ADC =∠CDB ,∴△ADC ∽△CDB ,∴AD CD =AC BC.∵E 为BC 的中点,CD ⊥AB ,∴DE =CE ,∴∠EDC =∠DCE ,∵∠EDC +∠FDA =∠ECD +∠ACD ,∴∠FCD =∠FDA ,又∠F =∠F ,∴△FDC ∽△F AD ,∴DF CF =AD DC ,∴AC BC =DF CF,∴AC ·CF =BC ·DF . 方法总结:证明等积式或比例式的方法:把等积式或比例式中的四条线段分别看成两个三角形的对应边,然后证明两个三角形相似,得到要证明的等积式或比例式.【类型四】 利用相似三角形的判定进行计算如图所示,BC ⊥CD 于点C ,BE ⊥DE 于点E ,BE 与CD 相交于点A ,若AC =3,BC =4,AE =2,求CD 的长.解析:因为AC =3,所以只需求出AD 即可求出CD .可证明△ABC 与△ADE 相似,再利用相似三角形对应边成比例即可求出AD .解:在Rt △ABC 中,由勾股定理可得AB =BC 2+AC 2=42+32=5.∵BC ⊥CD ,BE⊥DE ,∴∠C =∠E ,又∵∠CAB =∠EAD ,∴△ABC ∽△ADE ,∴AB AD =AC AE ,即5AD =32,解得AD =103,∴CD =AD +AC =103+3=193. 方法总结:利用相似三角形的判定进行边角计算时,应先利用条件证明三角形相似或通过作辅助线构造相似三角形,然后利用相似三角形对应角相等和对应边成比例进行求解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】 利用相似三角形的判定解决动点问题如图,在△ABC 中,∠C =90°,BC =8cm ,5AC -3AB =0,点P 从B 出发,沿BC 方向以2cm/s 的速度移动,与此同时点Q 从C 出发,沿CA 方向以1cm/s 的速度移动,经过多长时间△ABC和△PQC相似?解析:由AC与AB的关系,设出AC=3x cm,AB=5x cm,在直角三角形ABC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,进而得到AB与AC的长.然后设出动点运动的时间为t s,根据相应的速度分别表示出PC与CQ的长,由△ABC和△PQC相似,根据对应顶点不同分两种情况列出比例式,把各边的长代入即可得到关于t的方程,求出方程的解即可得到t的值,从而得到所有满足题意的时间t的值.解:由5AC-3AB=0,得到5AC=3AB,设AB为5x cm,则AC=3x cm,在Rt△ABC 中,由BC=8cm,根据勾股定理得25x2=9x2+64,解得x=2或x=-2(舍去),∴AB=5x =10cm,AC=3x=6cm.设经过t秒△ABC和△PQC相似,则有BP=2t cm,PC=(8-2t)cm,CQ=t cm,分两种情况:①当△ABC∽△PQC时,有BCQC=ACPC,即8t=68-2t,解得t=3211;②当△ABC∽△QPC时,有ACQC=BCPC,即6t=88-2t,解得t=125.综上可知,经过125或3211秒△ABC和△PQC相似.方法总结:本题的关键是根据三角形相似的对应顶点不同,分两种情况△ABC∽△PQC 与△ABC∽△QPC分别列出比例式来解决问题.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计1.三角形相似的判定定理:两边成比例且夹角相等的两个三角形相似;2.应用判定定理解决简单的问题.本节课采用探究发现式教学法和参与式教学法为主,利用多煤体引导学生始终参与到学习活动的全过程中,处于主动学习的状态.采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程.在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想.27.2.1 相似三角形的判定第4课时两角分别相等的两个三角形相似1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情境导入与同伴合作,一人画△ABC ,另一人画△A ′B ′C ′,使得∠A 和∠A ′都等于给定的∠α,∠B 和∠B ′都等于给定的∠β,比较你们画的两个三角形,∠C 与∠C ′相等吗?对应边的比AB A ′B ′,AC A ′C ′,BC B ′C ′相等吗?这样的两个三角形相似吗?和同学们交流. 二、合作探究探究点:两角分别相等的两个三角形相似【类型一】 利用判定定理证明两个三角形相似如图,在等边△ABC 中,D 为BC 边上一点,E 为AB 边上一点,且∠ADE =60°.(1)求证:△ABD ∽△DCE ;(2)若BD =3,CE =2,求△ABC 的边长.解析:(1)由题有∠B =∠C =60°,利用三角形外角的知识得出∠BAD =∠CDE ,即可证明△ABD ∽△DCE ;(2)根据△ABD ∽△DCE ,列出比例式,即可求出△ABC 的边长.(1)证明:在△ABD 中,∠ADC =∠B +∠BAD ,又∠ADC =∠ADE +∠EDC ,而∠B =∠ADE =60°,∴∠BAD =∠CDE .在△ABD 和△DCE 中,∠BAD =∠CDE ,∠B =∠C =60°,∴△ABD ∽△DCE ;(2)解:设AB =x ,则DC =x -3,由△ABD ∽△DCE ,∴AB DC =BD DE ,∴x x -3=32,∴x =9.即等边△ABC 的边长为9.方法总结:本题主要是利用“两角分别相等的两个三角形相似”,解答此题的关键是利用三角形的外角的知识得出角相等.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型二】 添加条件证明三角形相似如图,在△ABC 中,D 为AB 边上的一点,要使△ABC ∽△AED 成立,还需要添加一个条件为____________.解析:∵∠ABC =∠AED ,∠A =∠A ,∴△ABC ∽△AED ,故添加条件∠ABC =∠AED 即可求得△ABC ∽△AED .同理可得∠ADE =∠C 或∠AED =∠B 或AD AC =AE AB可以得出△ABC ∽△AED .故答案为∠ADE =∠C 或∠AED =∠B 或AD AC =AE AB. 方法总结:熟练掌握相似三角形的各种判定方法是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练” 第3题【类型三】 相似三角形与圆的综合应用如图,AB 为⊙O 的直径,C 为⊙O 上一点,CD ⊥AB 于点D ,交AE 于点G ,弦CE 交AB 于点F ,求证:AC 2=AG ·AE .解析:延长CG ,交⊙O 于点M ,连接AM ,根据圆周角定理,可证明∠ACG =∠E ,根据相似三角形的判定定理,可证明△CAG ∽△EAC ,根据相似三角形对应边成比例,可得出结论.证明:延长CG ,交⊙O 于点M ,连接AM ,∵AB ⊥CM ,∴AC ︵=AM ︵,∴∠ACG =∠E ,又∵∠CAG =∠EAC ,∴△CAG ∽△EAC ,∴AC AE =AG AC,∴AC 2=AG ·AE . 方法总结:相似三角形与圆的知识综合时,往往要用到圆的一些性质寻找角的等量关系证明三角形相似.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型四】 相似三角形与四边形知识的综合如图,在▱ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连接AE ,F 为AE 上一点,且∠BFE =∠C .若AB =8,BE =6,AD =7,求BF 的长.解析:可通过证明∠BAF =∠AED ,∠AFB =∠D ,证得△ABF ∽△EAD ,可得出关于AB ,AE ,AD ,BF 的比例关系.已知AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE 中用勾股定理求出AE 的长,进而求出BF 的长.解:在平行四边形ABCD 中,∵AB ∥CD ,∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C ,∴∠AFB =∠D ,∴△ABF ∽△EAD .∵BE ⊥CD ,AB ∥CD ,∴BE ⊥AB ,∴∠ABE =90°,∴AE =AB 2+BE 2=82+62=10.∵△ABF ∽△EAD ,∴BF AD=AB AE ,∴BF 7=810,∴BF =5.6. 方法总结:相似三角形与四边形知识综合时,往往要用到平行四边形的一些性质寻找角的等量关系证明三角形相似.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】 相似三角形与二次函数的综合如图,在△ABC 中,∠C =90°,BC =5m ,AB =10m.M 点在线段CA 上,从C 向A 运动,速度为1m/s ;同时N 点在线段AB 上,从A 向B 运动,速度为2m/s.运动时间为t s.(1)当t 为何值时,△AMN 的面积为6m 2?(2)当t 为何值时,△AMN 的面积最大?并求出这个最大值.解析:(1)作NH ⊥AC 于H ,证得△ANH ∽△ABC ,从而得到比例式,然后用t 表示出NH ,根据△AMN 的面积为6m 2,得到关于t 的方程求得t 值即可;(2)根据三角形的面积计算得到有关t 的二次函数求最值即可.解:(1)在Rt △ABC 中,∵AB 2=BC 2+AC 2,∴AC =53m.如图,作NH ⊥AC 于H ,∴∠NHA =∠C =90°,∵∠A 是公共角,∴△NHA ∽△BCA ,∴AN AB =NH BC ,即2t 10=NH 5,∴NH =t ,∴S △AMN = 12t (53-t )=6,解得t 1=3,t 2=43(舍去),故当t 为3秒时,△AMN 的面积为6m 2.(2)S △AMN =12t (53-t )=-12(t 2-53t +754)+752=-12(t -532)2+752,∴当t =532时,S 最大值=752m 2. 方法总结:解题的关键是根据证得的相似三角形得到比例式,从而解决问题.三、板书设计1.三角形相似的判定定理:两角分别相等的两个三角形相似;2.应用判定定理解决简单的问题.在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,教学过程中鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.备课时应多考虑学生学法的突破,教学时只在关键处点拨,在不足时补充.与学生平等地交流,创设民主、和谐的学习氛围.27.2.2 相似三角形的性质1.理解相似三角形的性质;(重点)2.会利用相似三角形的性质解决简单的问题.(难点)一、情境导入两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.例如,在图中,△ABC 和△A ′B ′C ′是两个相似三角形,相似比为k ,其中AD 、A ′D ′分别为BC 、B ′C ′边上的高,那么AD 、A ′D ′之间有什么关系?二、合作探究探究点一: 相似三角形的性质【类型一】 利用相似比求三角形的周长和面积如图所示,平行四边形ABCD 中,E 是BC 边上一点,且BE =EC ,BD 、AE 相交于F 点.(1)求△BEF 与△AFD 的周长之比;(2)若S △BEF =6cm 2,求S △AFD .解析:利用相似三角形的对应边的比可以得到周长和面积之比,然后再进一步求解. 解:(1)∵在平行四边形ABCD 中,AD ∥BC ,且AD =BC ,∴△BEF ∽△AFD .又∵BE=12BC ,∴BE AD =BF DF =EF AF =12,∴△BEF 与△AFD 的周长之比为BE +BF +EF AD +DF +AF =12; (2)由(1)可知△BEF ∽△DAF ,且相似比为12,∴S △BEF S △AFD =(12)2,∴S △AFD =4S △BEF =4×6=24cm 2.方法总结:理解相似三角形的周长比等于相似比,面积比等于相似比的平方是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练” 第4、6题【类型二】 利用相似三角形的周长或面积比求相似比若△ABC ∽△A ′B ′C ′,其面积比为1∶2,则△ABC 与△A ′B ′C ′的相似比为( )A .1∶2 B.2∶2C .1∶4 D.2∶1解析:∵△ABC ∽△A ′B ′C ′,其面积比为1∶2,∴△ABC 与△A ′B ′C ′的相似比为1∶2=2∶2.故选B.方法总结:解决问题的关键是掌握相似三角形的面积比等于相似比的平方.【类型三】 利用相似三角形的性质和判定进行计算如图所示,在锐角三角形ABC 中,AD ,CE 分别为BC ,AB 边上的高,△ABC 和△BDE 的面积分别为18和8,DE =3,求AC 边上的高.解析:求AC 边上的高,先将高线作出,由△ABC 的面积为18,求出AC 的长,即可求出AC 边上的高. 解:过点B 作BF ⊥AC ,垂足为点F .∵AD ⊥BC, CE ⊥AB ,∴Rt △ADB。
人教版九年级下册数学 第27章 相似 精选提升练习D1
人教版九年级下册数学第27章相似精选提升练习1.现代电视屏幕尺寸的设计,主要追求以下目标:一是更符合人体工程学要求(宽与长的比接近与0.618);二是设计适当的长宽比使屏幕的面积尽可能大现行的电视机屏幕有“宽屏”和“普屏”两种制式,宽屏的长宽比为16:9;普屏的长宽比为4:3.(1)哪种屏幕更适合人体工程学要求?请说明理由.(2)一般地,电视屏幕的“几寸”指的是这个屏幕的长方形的对角线长有多少英寸,1英寸=2.54cm,琪琪家想买80寸的宽屏电视机(边框宽都为1cm),并嵌入到墙中.则需要预留的长方形位置的长、宽各多少cm?(最后结果保留到整数,≈18.4,≈5.8)(3)在相同尺寸的电视机屏幕中,宽屏的屏幕面积大还是普屏的屏幕面积大?请说明理由.2.已知,如图在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发沿AB方向向终点点B匀速移动,速度为1cm/s,点Q由点B出发沿BC方向向终点点C匀速移动,速度为2cm/s.如果动点P,Q同时从A,B出发,当P或Q到达终点时运动停止.几秒后,以Q,B,P为顶点的三角形与△ABC相似?3.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.4.从三角形(不是等腰三角形)一个顶点引起一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=48°,CD是△ABC的完美分割线,且AD=CD,求∠ACB的度数.(2)如图2,在△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角5.如图所示,在等腰△ABC中,AB=AC=5cm,BC=8cm,点P由点A出发沿AB方向向点B匀速运动,同时点Q由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,△BPQ的面积为cm2;(2)在点P,Q的运动中,是否存在时间t,使△BPQ为等腰三角形.若存在,请求出对应的时间t;若不存在,请说明理由.6.如图,在四边形ABCD中,∠ACB=∠ADC=90°,AC平分∠BAD,过点C作CE∥AD交AB于点E,连接DE 交AC于点F.(1)求证:AC2=AB•AD;(2)若AB=4,AD=3,求EF的长.7.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=3EF时,判断FG与EF有何数量关系?并证明你的结论.8.如图,点E、F分别是矩形ABCD边BC、CD的中点,AE平分∠BAF、FE平分∠CFA,AE交BD于点G,CH⊥EF交EF于点H.(1)证明:AG+HC=AE;(2)证明:AE•GA=DG•EF.形,找出CD与BD的关系.9.如图所示,直角三角板ABC放置于直角坐标系中,已知点B(0,2),点A(4,5),点C在第四象限,∠A=60°,∠C=30°,BC边与x轴交于点D.(1)求AB的长度;(2)求点C的坐标.10.“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走3米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上),若测得FM=1.5米,DN=1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.答案1.解:(1)=0.5625,=0.75,∵0.5625与0.618接近,∴宽屏更适合人体工程学要求.(2)设宽屏电视机的长为16xcm,宽为9xcm.则对角线的长==18.4x(cm),由题意18.4x=80×2.54,∴x≈11.04,∴宽屏电视机的长为176.64cm,宽为99.36cm,根据进一法,可得宽屏电视机的长为177cm,宽为100cm,∵边框宽都为1cm,∴预留的长方形位置的长、宽分别为:178cm,101cm.(3)设对角线的长为5a.则普屏的电视机的面积为12a2,设宽屏电视机的长为16y,宽为9y,则对角线=18.4y=5a,∴y=0.27a,∴宽屏电视机的面积=144y2≈10.5a2<12a2,∴在相同尺寸的电视机屏幕中,普屏的屏幕面积大.2.解:设t秒后,以Q,B,P为顶点的三角形与△ABC相似;则PB=(6﹣t)cm,BQ=2tcm,∵∠B=90°,∴分两种情况:①当时,即,解得:t=2.4;②当时,即,解得:t=;综上所述:2.4秒或秒时,以Q,B,P为顶点的三角形与△ABC相似.3.证明:(1)连接OD,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB.4.解:(1)当AD=CD时,如图3,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(2)结论:CD=BD.∵△BCD∽△BAC,∵△BCD∽△BAC,∴=,∴==,∴CD=BD.5.解:(1)如图,过点A作AE⊥BC于E,过点P作PF⊥BC于F,∵AB=AC=5cm,BC=8cm,AE⊥BC,∴BE=EC=4cm,∴AE===3cm,∵∠PFB=∠AEB=90°,∠B=∠B,∴△AEB∽△PFB,∴=,∴=,∴PF=cm,BF=cm,∵△BPQ的面积为cm2,∴×BQ×PF=,∴×t×=,∴t1=1,t2=4,∴当t为1或4时,△BPQ的面积为cm2;(2)当BP=BQ时,则5﹣t=t,∴t=,当BQ=PQ时,∵PQ2=PF2+QF2,∴t2=[]2+[﹣t]2,∴t1=5(不合题意),t2=,当BP=PQ时,则点P在BF的垂直平分线上,∴=,∴t=,综上所述:t的值为或或时,△BPQ为等腰三角形.6.(1)证明:∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠ACB=∠ADC=90°,∴△ACB∽△ADC,∴,∴AC2=AB•AD;(2)解:∵AB=4,AD=3,∴AC=6,∴==2,∴,∴∠BAC=30°,∴∠BAC=∠CAD=30°,∵∠ACB=∠ADC=90°,∴∠B=∠ACD=60°,∵CE∥AD,∴∠ECA=∠CAD=30°,∠BCE=∠ACB﹣∠ECA=60°,∴△BCE是等边三角形,∴,在Rt△ADC中,∠CAD=30°,∴,∵CE∥AD,∴∠DCE=180°﹣∠ADC=90°,∴==.∵CE∥AD,∴△CEF∽△ADF,∴,∴,∵,∴.7.(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠BCD=90°,∵∠BAE=∠BCE,∴∠BAD﹣∠BAE=∠BCD﹣∠BCE,即∠DAE=∠DCE,在△AED和△CED中,,∴△AED≌△CED(AAS),∴AD=CD,∵四边形ABCD是矩形,∴四边形ABCD是正方形;(2)当AE=3EF时,FG=8EF.证明:设EF=k,则AE=3k∵△AED≌△CED,∴CE=AE=3k,∵四边形ABCD是正方形,∴AD∥BC,∴∠G=∠DAE,又∵∠DAE=∠DCE,∴∠DCE=∠G,又∵∠CEF=∠GEC,∴△CEF∽△GEC,∴,∴,∴EG=9k,∴FG=EG﹣EF=8k,∴FG=8EF.8.证明:(1)∵E、F分别是矩形ABCD边BC、CD的中点,∴EF∥BD,∴∠HEC=∠BGE,∵AE平分∠BAF、FE平分∠CFA,∴,,∵AB∥CD,∴∠BAF+∠AFC=180°,∴∠EAF+∠AFE=90°,∴∠AEF=90°,∴∠BGE=90°,∵BE=EC,∴△BGE≌△EHC(AAS),∴GE=HC,∴AG+GE=AG+HC=AE;(2)∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠GBE,∵∠GBE=∠BAE=∠EAF,∴∠EAF=∠ADG,∵∠AEF=∠AGD=90°,∴△DAG∽△AEF,∴,即AE•GA=DG•EF.9.解:(1)过点A作AE⊥y轴于点E,∵点A(4,5),B(0,2),∴AE=4,BE=5﹣2=3,由勾股定理得:=5;(2)在Rt△ABC中,∵∠A=60°,AB=5,∴BC=AB tan 60°=5,过C作CF⊥y轴于点F,则∠BFC=∠AEB=90°∵∠CBF+∠ABE=90°,∠CBF+∠BCF=90°∴∠BCF=∠ABE,∴△BFC∽△AEB,∴,即,∴,∵OF=BF﹣OB=∴点C的坐标为(,).10.解:设NB的长为x米,则MB=x+1+3﹣1.5=(x+2.5)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴=.同理,△EMF∽△AMB,∴=.∵EF=CD,∴=,即=.解得x=5,∵=,∴=.解得AB=8.答:大树AB的高度为8米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学九年级下册第27章相似图形的相似和比例线段拓展提升与复习过关知识全面设计合理含答案教师必备图形的相似和比例线段--知识讲解(基础)【学习目标】1、能通过生活中的实例认识图形的相似,能通过观察直观地判断两个图形是否相似;2、了解比例线段的概念及有关性质,探索相似图形的性质,知道两相似多边形的主要特征:对应角相等,对应边的比相等.明确相似比的含义;3、知道两个相似的平面图形之间的关系,会根据相似多边形的特征识别两个多边形是否相似,并会运用性质进行相关的计算,提高推理能力.【要点梳理】要点一、比例线段【高清课堂:图形的相似预备知识】1.线段的比:如果选用同一长度单位量得两条线段a、b长度分别是m、n,那么就说这两条线段的比是a:b=m:n,或写成a mb n .2.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.3.比例的基本性质:(1)若a:b=c:d,则ad=bc;(2)若a:b=b:c,则2b =ac(b称为a、c的比例中项).要点二、相似图形在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等;要点三、相似多边形【高清课堂:图形的相似二、图形的相似 2】相似多边形的概念:如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.【典型例题】类型一、比例线段1.(2014•甘肃模拟)若==(abc≠0),求的值.【答案与解析】解:设===k,则a=2k,b=3k,c=5k,所以===.【总结升华】本题考查了比例的性质.解题的关键是先假设===k,得出a=2k,b=3k,c=5k,降低计算难度.举一反三:【变式】(2015•兰州一模)若3a=2b,则的值为()A.B.C.D.【答案】A【解析】解:∵3a=2b,∴=,设a=2k,则b=3k,则==﹣.故选A.类型二、相似图形2.(2014•江北区模拟)下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个B.2个C.3个D.4个【答案】C.【解析】解:(1)所有菱形的对应角不一定相等,故菱形不一定都相似;(2)等腰直角三角形都相似,正确;(3)正方形都相似,正确;(4)矩形对应边比值不一定相等,不矩形不一定都相似;(5)正六边形都相似,正确,故符合题意的有3个.故选:C.【总结升华】此题主要考查了相似图形,应注意:①相似图形的形状必须完全相同;②相似图形的大小不一定相同;③两个物体形状相同、大小相同时它们是全等的,全等是相似的一种特殊情况.举一反三:【变式】如图,左边是一个横放的长方形,右边的图形是把左边的长方形各边放大两倍,并竖立起来以后得到的,这两个图形是相似的吗?【答案】这两个图形是相似的,这两个图形形状是一样,对应线段的比都是1:2,虽然它们的摆放方法、位置不一样,但这并不会影响到它们相似性.类型三、相似多边形3. 如图,已知四边形相似于四边形,求四边形的周长.【思路点拨】先根据相似多边形的对应边的比相等,求出四边形的未知边的长,然后即可求出该四边形的周长【答案与解析】∵四边形相似于四边形∴,即∴∴四边形的周长.【总结升华】观察一下可以发现,周长比等于边的比.举一反三:【变式】如图所示的相似四边形中,求未知边x、y的长度和角的大小.【答案】根据题意,两个四边形是相似形,得,解得.4. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF 为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?【答案与解析】解:∵矩形MFGN与矩形ABCD相似当时,S有最大值,最大值为.【总结升华】借助相似,把最值问题转移到函数问题上,是解决这类题型最好方法之一.图形的相似和比例线段--知识讲解(提高)【学习目标】1、能通过生活中的实例认识图形的相似,能通过观察直观地判断两个图形是否相似;2、了解比例线段的概念及有关性质,探索相似图形的性质,知道两相似多边形的主要特征:对应角相等,对应边的比相等.明确相似比的含义;3、知道两个相似的平面图形之间的关系,会根据相似多边形的特征识别两个多边形是否相似,并会运用性质进行相关的计算,提高推理能力.【要点梳理】要点一、比例线段【高清课堂:图形的相似预备知识】1.线段的比:如果选用同一长度单位量得两条线段a、b长度分别是m、n,那么就说这两条线段的比是a:b=m:n,或写成a mb n .2.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.3.比例的基本性质:(1)若a:b=c:d,则ad=bc;(2)若a:b=b:c,则2b =ac(b称为a、c的比例中项).要点二、相似图形在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等;要点三、相似多边形【高清课堂:图形的相似二、图形的相似 2】相似多边形的概念:如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.【典型例题】类型一、比例线段1. 求证:如果,那么.【思路点拨】这是比例的合比性质,利用等式的性质得到证明.【答案与解析】∵,在等式两边同加上1,∴,∴.【总结升华】比例有合比性质如果,;分比性质如果,a b c db d--=;更比性质如果,a bc d =.举一反三:【高清课堂:图形的相似预备知识练习2】【变式】(2014秋•贵港期末)如果,那么的值是()A.34B.73C.32D.23【答案】B;提示:∵,∴==.故选B.类型二、相似图形2. 如果两个四边形的对应边成比例,能不能得出这两个四边形相似?为什么?【答案与解析】从我们日常生活的直观经验中可以得出结论.两个四边形对应边成比例,这两个四边形不一定相似,如下图,边长是6的正方形和边长是2的菱形,它们对应边之比都是3,但它们形状并不一样,因而也不相似.【总结升华】多边形的相似要满足两个条件:(1)对应角相等,(2)对应边的比相等.举一反三:【变式】下面的四个图案是空心的矩形,正方形,等边三角形,不等边三角形,其中每个图案的边的宽度都相等,那么每个图案中边的内外边缘所围成的几何图形不相似的是()【答案】A类型三、相似多边形3.(2014秋•慈溪市期末)一个矩形ABCD的较短边长为2.(1)如图①,若沿长边对折后得到的矩形与原矩形相似,求它的另一边长;(2)如图②,已知矩形ABCD的另一边长为4,剪去一个矩形ABEF后,余下的矩形EFDC与原矩形相似,求余下矩形EFDC的面积.【答案与解析】解:(1)由已知得MN=AB=2,MD=AD=BC,∵沿长边对折后得到的矩形与原矩形相似,∵矩形DMNC与矩形ABCD相似,=,∵DM•BC=AB•MN,即BC2=4,∵BC=2,即它的另一边长为2;(2)∵矩形EFDC与原矩形ABCD相似,∵=,∵AB=CD=2,BC=4,∵DF==1,∵矩形EFDC的面积=CD•DF=2×1=2.【总结升华】本题考查相似多边形的性质:相似多边形对应边的比相等.举一反三:【变式】等腰梯形与等腰梯形相似,,求出的长及梯形各角的度数.【答案】∵等腰梯形与等腰梯形相似4. 某小区有一块矩形草坪长20米,宽10米,沿着草坪四周要修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,求出这一宽度;若不能,说明理由.【思路点拨】四边形相似要满足角对应相等,边对应成比例.【答案与解析】设小路宽为x米,则小路的外边缘围成的矩形的长为(20+2x)米,宽为(10+2x)米,将两个矩形的长与宽分别相比,得长的比为,而宽的比为,很明显,所以做不到.【总结升华】通过本题的探索可以发现:把一个矩形的长和宽同时增加或减小相同的长度,所得矩形与原来矩形一定不相似.因为.图形的相似和比例线段--巩固练习(基础)【巩固练习】一.选择题1.(2014秋•慈溪市期末)如图,用放大镜将图形放大,这种图形的改变是()A.相似B.平移 C.轴对称D.旋转2. 下列四条线段中,不能成比例的是()A.a=2,b=4,c=3,d=6B.a=,b=,c=1,d=C.a=6,b=4,c=10,d=5D.a=,b=2,c=,d=23. 下列命题正确的是( )A.所有的等腰三角形都相似B.所有的菱形都相似C.所有的矩形都相似D.所有的等腰直角三角形都相似4. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是相似图形,如图所示,则小鱼上的点(a,b)对应大鱼上的点( )A.(-2a,-2b) B.(-a,-2b) C.(-2b,-2a) D.(-2a,-b)5. 一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则此三角形其它两边的和是()A.19 B.17 C.24 D.216. .△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 ( )A.B.C.或D.二. 填空题7. 两地实际距离为1 500 m,图上距离为5 cm,这张图的比例尺为_______.8. 若,则________9.判定两个多边形相似的方法是:当两个多边形的对应边_______,对应角_______时,两个多边形相似.10.已知2=,3xy则_____,_____,______.x y x x yy x y x y+-===++11.两个三角形相似,其中一个三角形两个内角分别是40°,60°,则另一个三角形的最大角为______,最小角为____________.12.(2015春·庆阳校级月考)要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一条最短边长为2,则另外一个三角形的周长为 .三综合题13. (2014春•徐州校级月考)(1)已知a、b、c、d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长;(2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段a和b的比例中项,求线段c的长.14. 如图,依次连接一个正方形各边的中点所形成的四边形与正方形相似吗?若相似,求出相似比;若不相似,说明理由.15. 市场上供应的某种纸有如下特征:每次对折后,所得的长方形均和原长方形相似,则纸张(矩形)的长与宽应满足什么条件?【答案与解析】一、选择题1.【答案】A【解析】根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选A.2.【答案】C.【解析】求出最大与最小的两数的积,以及余下两数的积,看所得积是否相等来鉴别它们是否成比例.3.【答案】 D4.【答案】 A【解析】 由图可知,小鱼和大鱼的相似比为1:2,若将小鱼放大1倍,则小鱼和大鱼关于原点对称.5.【答案】C【解析】相似三角形对应边的比相等 6.【答案】A【解析】 相似比AB ︰A 1B 1=,A 1B 1︰A 2B 2=,计算出AB ︰A 2B 2.二、填空题7.【答案】.1:30 000【解析】比例尺=图上距离︰实际距离. 8.【答案】【解析】由可得,故填.9.【答案】成比例;相等. 10.【答案】521,,.355-【解析】提示:设2.3,.x k y k ==即可得11.【答案】80°,40°. 12.【答案】 7.5.【解析】设另一个三角形周长是x.∵一个三角形的三边长是4,5,6, ∴这个三角形的周长为:4+5+6=15.∵与它相似的另一个三角形最短的一边长是2, ∴2154x =, 解得:x=7.5.∴另一个三角形的周长是7.5. 三、解答题 13.【解析】解:(1)∵a 、b 、c 、d 是成比例线段,∴a :b=c :d ,∵a=3cm ,b=2cm ,c=6cm , ∴d=4cm ;(2)∵线段c 是线段a 和b 的比例中项,a=4cm,b=9cm. ∴c 2=ab=36, 解得:c=±6, 又∵线段是正数, ∴c=6cm.14.【解析】要探究正方形是否与四边形相似,需知道四边形是否是正方形,若是正方形,则两正方形一定相似,若不是正方形,则不相似,因为所有的正方形都是相似的.设正方形的边长为,由题意可知,同理由,可得同理45°,,四边形是正方形∴正方形与正方形相似,即两正方形的相似比是.15.【解析】如图,为了方便分析可先画出草图,根据题意知两个矩形的长边之比应等于短边之比.设矩形的长为,宽为,由相似多边形的特征得:=2:a b2:.图形的相似和比例线段--巩固练习(提高)【巩固练习】一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3cm的两地,它们的实际距离为( )A.3 km B.30 km C.300 km D.3 000 km2.(2015•兰州一模)若3a=2b,则a ba-的值为()A.12- B.12C.13- D.133. 已知△ABC 的三边长分别为6cm 、7.5cm 、9cm ,△DEF 的一边长为4cm ,当△DEF 的另两边的长是下列哪一组时,这两个三角形相似( )A .2cm ,3cmB .4cm ,5cmC .5cm ,6cmD .6cm ,7cm 4.△ABC 与△A 1B 1C 1相似且相似比为,△A 1B 1C 1与△A 2B 2C 2相似且相似比为,则△ABC与△A 2B 2C 2的相似比为 ( ) A .B .C .或D .5.下列两个图形:① 两个等腰三角形;② 两个直角三角形;③ 两个正方形;④ 两个矩形;⑤ 两个菱形;⑥ 两个正五边形.其中一定相似的有( ) A. 2组 B. 3组 C. 4组 D. 5组6.一个钢筋三角架三边长分别是20cm ,50cm ,60cm ,现要做一个与其相似的三角架,只有长30cm ,50cm 的两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)做为其他两边,则不同的截法有( )A.一种B.两种C.三种D.四种 二. 填空题7. (2014•宜昌模拟)在一张比例尺为1:5 000 000的地图上,甲、乙两地相距70毫米,此两地的实际距离为_________. 8. △ABC 的三条边长分别为、2、,△A′B′C′的两边长分别为1和,且△ABC 与△A′B′C′相似,那么△A′B′C′的第三边长为____________ 9. 如图:梯形ADFE 相似于梯形EFCB,若AD=3,BC=4,则______.AEBE10.已知若-3=,=____;4x y x y y则若5-4=0,x y 则x :y =___. 11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,AC:CD=__________,CD:DE=________.12. 用一个放大镜看一个四边形ABCD ,若四边形的边长被放大为原来的10倍,下列结论①放大后的∠B 是原来∠B 的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等,则正确的有 .三.综合题13.如果a b c dkb c d a c d a b d a b c====++++++++,一次函数y kx m=+经过点(-1,2),求此一次函数解析式.14. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?15.(2014秋·滨江区期末)从一个矩形中剪去一个正方形,如图所示,若剩下的矩形与原矩形相似,求原矩形的长边与宽边比.【答案与解析】一、选择题1.【答案】B【解析】图上距离︰实际距离=1:1 000 000.2.【答案】A【解析】∵3a=2b,∴23ab=,设a=2k,则b=3k,则231.22 a b k ka k--==-故选A.3.【答案】C【解析】 设△DEF 的另两边的长分别为xcm ,ycm ,因为△ABC 与△DEF 相似,所以有下列几种情况: 当时,解得; 当时,解得; 当时,解得;所以选C.4.【答案】A【解析】 相似比AB ︰A 1B 1=,A 1B 1︰A 2B 2=,计算出AB ︰A 2B 2.5.【答案】A【解析】只有两个正方形和正五边形相似. 6.【答案】B 二、填空题7.【答案】350千米.【解析】设甲、乙两地的实际距离为xmm ,1:5000000=70:x , 解得x=350000000.350000000mm=350千米. 即甲乙两地的实际距离为350千米.8.【答案】 【解析】提示:△A′B′C′已知两边之比为1:,在△ABC 中找出两边、,它们长度之比也为1︰,根据相似三角形对应边的对应关系,求出相似比.9.【答案】3. 【解析】因为梯形ADFE 相似于梯形EFCB ,所以AD EFEF BC=,即EF=23所以323AE AD BE EF === 10.【答案】74;.4511.【答案】1:3;1:2;1:2;2:1;1:3.12.【答案】 ③ 三、解答题 13.【解析】∵a b c dk b c d a c d a b d a b c ====++++++++∴+1=+1=+1=+1=+1++++++++c a b c dk b c d a c d a b d a b ∴++++++++++++====+1++++++++ca b c d a b c d a b c d a b c dk b c d a c d a b d a b则分两种情况:(1)+++=0a b c d ,即+1=0k ,=-1k(2)++=++=++=++b c d a c d a b d a b c ,即===,a b c d 1=3k 则所以当=-1k ,过点(-1,2)时,=-+1y x当1=3k ,过点(-1,2)时,17=+33y x .14.【解析】∵矩形MFGN 与矩形ABCD 相似当时,S 有最大值,为.15.【解析】根据矩形相似的性质找出相应的解析式求解.设原矩形的长为x ,宽为y ,则剩下矩形的长为y ,宽为x-y 由题意,得1x y y x y x y x y==--即, 令x a y =则21110a a a a=---=∴,,.(又a >0),∴原矩形的长与宽之比为15.x y += .x-yy yx。