《电动力学》(郭硕鸿第三版)答案
郭硕鸿电动力学课后答案
(3)计算球外和球内的电势;
(4)求该带电介质球产生的静电场总能量。
解:(1)
(2)
(3)
(4)
2.在均匀外电场中置入半径为 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差 ;
(2)导体球上带总电荷
解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。
所以
在两介质交界面上,极化电荷面密度为
由于 ,所以
5.空心导体球壳的内外半径为 和 ,球中心置一偶极子 球壳上带电 ,求空间各点的电势和电荷分布。
解:以球心为原点,以 的方向为极轴方向建立球坐标系。在 及 两均匀区域,电势满足拉普拉斯方程。通解形式均为
当 时,电势趋于零,所以 时,电势可写为
(1)
当 时,电势应趋于偶极子 激发的电势:
(1)
由(1)式可推出稳恒电流条件下的边界条件为:
(2)
设小球内的电势为 ,电解液中的电势为 ,则在交界面上有:
(3)
(4)
将 及 代入(1),得:
可见 满足拉普拉斯方程
考虑到对称性及 时 ,球外电势的解可写成:
(5)
其中利用了 。
考虑到 时电势为有限值,球内电势的解可写成:
(6)
因为选 处为电势零点,所以 ,将(5) (6)代入(3) (4)得:
在球外,R>R0,由高斯定理得: ,(整个导体球的束缚电荷 ),所以 ,积分后得:
在球内,R<R0,由介质中的高斯定理得: ,所以
,积分后得:
结果相同。
4.均匀介质球(电容率为 )的中心置一自由电偶极子 ,球外充满了另一种介质(电容率为 ),求空间各点的电势和极化电荷分布。
郭硕鸿电动力学习题解答完全版(1_6章)
郭硕鸿电动力学习题解答完全版(1_6章)1. 根据算符?的微分性与矢量性推导下列公式(Ar ? Br) = Br × (?× Ar) + (Br ??)Ar + Ar ×(?× Br) + (Ar ??)Br Ar × (?× Ar) = 1 ?Ar 2(Ar ??)Ar2 解1 ?(Av ? Bv) = Bv × (?× Av) + (Bv ??)Av+ Av × (?× Bv) + (Av ??)Bv首先算符?是一个微分算符其具有对其后所有表达式起微分的作用对于本题 ?将作用于 Av 和Bv又?是一个矢量算符具有矢量的所有性质因此利用公式cv × (av ×bv) = av ?(cv ?bv) ? (cv ?av)bv 可得上式其中右边前两项是 ?作用于 v v A 后两项是?作用于 Bv v2 根据第一个公式令 A B 可得证2. 设 u 是空间坐标 x y z 的函数证明f (u) = dfu duAr(u) = ?u ? dArdur ?× Ar(u) = ?u × .dA du证明 1f (u) = ?f (u) er x + ?f (u) er y + ?f (u) er z = df du ? e x + r ?u er y + df ?ur ?e z = df ?u ?u ?x ?y ?zdu ?y du ?z du 2Ar y (u) ?y dAr y (u) du ?Ar x (u) + ?x + ?Ar z z(u) = dAr x (u) ? ?u + ? ?u + dAr z (u) ? ?u rz = ?u ? du ?? Ar(u) = dAz du ?x ?y dz 3r r r e z ? e e ?Ar y )er x + (?Ar ? ?zAr ?Ar x )er z = ?y r rx y ?× Ar(u) = = (? x ? ? )e y + ( y ? ?xA A r z z ?x ?y A y (u) A z (u) ?z ?y ?z ?x r r r A x(u)= (dAr z ? dAr y ?u r dAr x ?u ? dA r r u ? dA u r dAr)e y + (dA u ? du ?z )e x + ( ?u r ? ? r x y z du ?x du ?y )e z = ?u × dudu ?y du ?z du ?x3. 设r = (x ? x ' ) 2+ (y ? y ' ) 2+ (z ? z' ) 2为源点 x'到场点 x 的距离 r 的方向规定为从源点指向场点r ? ' + er ? '+ er ? 1 证明下列结果并体会对源变数求微商 (?'= e ?z ' )与对场变数求zx ?x y ?y 微商(? = er x ? r ? r+ e z ?z)的关系x + e y ?y r r r r r r 1 r ' 1 r r r r rr = ??'r = ,? = ?? = ? ,?×r 3 = 0,?? r = ??' 3 = 0.(r ≠ 0)r r 3 3 r (最后一式在人 r 0点不成立见第二章第五节) 2 求rr,?×rr,(ar ??)rr,?(ar ?rr),??[Er 0 sin(kr ?rr)]及?×[Er 0 sin(krrr)],其中ar,kr 及Er 0均为常矢量证明 ??rr=(x ? x ?x ') + ?(y ? yy ') + ?(z ? z ') =3 ?zr r r e e e x y z ?×rr == 0 ?x x ? x ?y y ? y ?z z ? z' ' 'v(av ??)rr = [(a x ev x + a y ev y + a z ev z ) ? ( e x + ??y ev y + ??z ev z )][(x ? x')ev x + (y ? y')er y + (z ? z')ev z ]x = (a x ? + a y ? + a z )[(x ? x')ev x + (y ? y')er y +(z ? z')ev z ] ? ?x ?y ?z= a x ev x + a y ev y + a z ev z =av(av ?rv) = av × (?×rv) + (av ??)rv + rr × (?×av) + (rv ??)?av= (av ??)rv + rv ×(?×av)+ (rv ?ar)?av= av + rv × (?×av) + (rv ??)?av[Er 0 sin(kr ?rr)] = [?(sin(kr ?rr)]? Er 0 + sin(kr ?rr)(?? Er 0)= [??x sin(kr ?rr)er x + ??y sin(kr ?rr)er y + ??z sin(kr ?rr)er z ]E 0= cos(kr ?rr)(k x er x + k y er y + k z er z )Er 0 = cos(krrr)(krEr) ?×[Er 0 sin(kr ?rr)] = [?sin(kr ?rr)]×Er 0+sin(kr ?rr)?× Er 0 4. 应用高斯定理证明dV ?× fr = ∫S dSr × fr∫应用斯托克斯 Stokes 定理证明∫S dSr ×?φ =∫Ldlr φ证明 1)由高斯定理dV ?? gr = ∫SdSr ? gr∫ V ?g 即(? g ?x ?g ∫ V x + y + z z )dV = ∫ g x dS x + g y dS y + g z dS zy S而?× frdV = [( f z ? ??z f y )ir + ( f x ? ??x f z )rj + ( f y ? ??y f x )kr]dV ? ? ? ∫ V∫ ?y ?z ?x= ∫ [??x ( f y kr ? f z rj) + ??y ( f z ir ? f x kr)+ ??z ( f x rj ? f y ir)]dVr r [( f z dS y ? f y dS z )ir + ( f x dS z ? f z dS x )rj + ( fy dS x ? f x dS y )kr] ( fy kr ? f z rj)dS x + ( f z ir ? f x kr)dS y + ( f x rj ? f y ir)dS z∫ S dS × f= ∫ 又S = ∫ 若令H x = f y kr ? f z rj,H y = f z ir ? f x kr,HZ= f x rj ? f y ir则上式就是HrdV = ∫S dSr ? Hr ,高斯定理则证毕∫V 2)由斯托克斯公式有fr ?dlr = ∫S ?× fr ?dSr ∫fr ?dlr =l ( f x dl x + f y dl y + fzdl z) ∫ ∫l ∫S× fr ?dSr = ∫Sf zf y)dS x+ ( f xf z)dS y+ ( f yf x)dS zz ?z ?x ?x ?y ? ? ? (?y而∫dlr φ=∫l∫SdSr ×?φ= ∫S(dS z)ir + ( dS x)rj + ( ?y dS y )kr ?φ dS ? ?φ ?φ dS ? ?φ ?φ dSφ ?x yzx ?z ?y x ?z r ?φ rj)dS +(?φ r i ? ??φx kr)dS y +(??φx rj ? ?φ?y ir)dSzφ = ∫ ( k ?x ?y ?zz 若令f x = φi , f y = φ j , f z = φk 则证毕5. 已知一个电荷系统的偶极矩定义为Pr(t) = ρ(x ,t)x dV, r ' r ' '∫ V 利用电荷守恒定律?? Jr +ρr ?t = 0证明 P 的变化率为dPr =dt rr 'J(x ,t)dV '∫ V ?Pr = ?ρ r ' r 't x dV r ∫ V ' =? ∫ V ? ' j 'x dV r '' 证明 ?t rt ) x = ?Pr ' ?'rj 'x 'dV ' = ?∫[?' ?(x ' j ) ? (?'x ')?rj ']dV ' = r '( ∫ V ∫ V ( j x' ??' ?(x ' j )dV ' = ∫ j x dV ' ? ∫S xrj ?dSr 若S → ∞,则( )? xj dSr r ∫ = 0,(rj S= 0)r ?t ) y =r ?ρ ,(?ρ?t ) z = j dV ( ∫ j dV y' ∫' 同理即z dPr = r r '∫ j x ,t)dV '( dt V mr × Rr 的旋度等于标量? = mr ? Rr 的梯 6. 若m 是常矢量证明除 R 0 点以外矢量 Ar =rR3R3度的负值即× Ar =其中 R 为坐标原点到场点的距离方向由原点指向场点证明mv × Rv)1 r 1 r 1 v r1 r ?× Av = ?× (= ??×[mv × (? R1 )] = (??mv)? + (mv ??)?[??(? )]m ?[(? )??]mv R 31 = (mv ??)? ,(r ≠ 0)r= ?(mvRv 1 r 1 r 1 r 1 r ) = ??[mv ?(? )] = ?mv ×[?× (? )]? (? )× (?×mv) ? (mv ??)? R 3[(? )??]mv = ?(mv ??)? 1 r 1 r ∴?× Av =7 有一内外半径分别为 r 1和 r 2的空心介质球介质的电容率为ε使介质内均匀带静止自由电荷ρ f 求1 空间各点的电场2 极化体电荷和极化面电荷分布∫ 解 1∫S DrdSr =ρ f dV , (r 2>r>r 1)即D ? 4πr 2 = 43π (r 3 ? r 13)ρ f(r 3 ? r 13)ρ f 3εr 3∴Er= rr,(r 2 > r > r 1) r r Q = 4π (r 23 ? r 13)ρ f ,(r > r 2) 3ε 0f 由 E ?dS =∫ 0 ∴Er = (r 23 ? r 13) 3ε 0r 3 rρ f rr,(r > r 2) r < r 1时 E 0r 2) P ε 0χe Er = ε 0 r E = (ε ?ε 0)Er ε ?εε 0∴ρP = Pr = ?(ε ?ε 0)?? Er = ?(ε ?ε 0)??[ (r 3 ? r 13) 3εr 3 ρ f rr] =ε ?ε 0 ρ f ??(rr ? r r 3 r)1 3ε r 3 = ? ε ?ε 0 ρ f (3? 0) = ?(εε 0 )ρ f 3ε εσ P = P 1n ? P 2n考虑外球壳时 r r 2n 从介质 1指向介质 2 介质指向真空 P 2n = 0r 3 ? r 133εr 3) r 23 ? r 13 σ P = P 1n = (ε ?ε 0) ρ f rr r=r 2= (1? ε 0ε ρ f 3 3r 2 考虑到内球壳时 r r 2σ P = ?(ε ?ε 0) r 3 ? r 1 ρ f r r=r 1 = 0 3 r 3εr 38 内外半径分别为 r 1和 r 2的无穷长中空导体圆柱沿轴向流有恒定均匀自由电流 J f 导体的磁导率为μ 求磁感应强度和磁化电流解Hr ?dlr = I f + ddt∫S Dr ?dSr =I f∫ 当r < r 1时,I f = 0,故Hr = Br = 0l H ?dlr = 2πrH = j f ?dSr = j f π(r 2 ? r 12) r r∫ l∫ S当 r 2>r>r 1时μj f (r 2 ? r 12)2rBv = = μ( r 2 ? r 12r 2)rj f ×rr 2 当 r>r 2时2πrH = πj f (r 22 ?r 12)Br = μ0(r 22 2)rj f ×rrr 1 2r 2 J M = ?× Mr = ?× (χM Hr ) = ?× (μ ? μ0) r μ ?1)?× (rjf ×r2r r ? r 12 )μ0 )H = (μ02r 2 = (μμ ?1)?× Hr = ( μ ?1)rj f ,(r 1 < r < r 2) 0 μ0α r M = nr × (Mr 2 ? Mr 1),(n 从介质1指向介质2在内表面上 M1 = 0,M2 = (μμ ?1) r 2 ?r 12 ) r=r = 02r 21故αM = nr × Mr 2 = 0,(r= r 1) r 在上表面 r r 2时r M = nr × (?Mr 1) = ?nr × Mr 1 r=r 2= ? × r r 2 ? r 12 r j f ×rr r=r 2 = ? r 2 ? r 12 r j ( μ ?1) μr α f r 2 r 2 r 2 2r 0 r 22 ? r 12 r 2= ?(μμ1) jf。
(完整版)电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
郭硕鸿《电动力学》课后答案
( A A) 2 A ( A) 2( A ) A , 所以 A ( A) 1 2 ( A A) ( A ) A
2 A ( A ) 1 2 A ( A ) A 2. 设 u 是空间坐标 x, y, z 的函数,证明: df dA dA f (u ) u , A(u ) u , A(u ) u du du du
电动力学习题解答
电பைடு நூலகம்力学答案
第一章 电磁现象的普遍规律
1. 根据算符 的微分性与向量性,推导下列公式:
( A B) B ( A) ( B ) A A ( B ) ( A ) B A ( A) 1 A 2 ( A ) A 2
3.
设r
( x x' ) 2 ( y y ' ) 2 ( z z ' ) 2 为源点 x ' 到场点 x 的距离, r 的方向规定为
第 1 页
电动力学习题解答
从源点指向场点。 (1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:
r ' r r / r ; (1 / r ) ' (1 / r ) r / r 3 ; (r / r 3 ) 0 ; (r / r 3 ) '(r / r 3 ) 0 , (r 0) 。 (2)求 r , r , (a )r , (a r ) , [ E 0 sin( k r )] 及 [ E 0 sin( k r )] ,其中 a 、 k 及 E 0 均为常向量。
所以
c dV f dV [c ( f )] dV ( f c ) ( f c ) dS
郭硕鸿《电动力学》课后答案
取高斯柱面,使其一端在极板A内,另一端在介质1内,由高斯定理得:
同理,在极板B内和介质2内作高斯柱面,由高斯定理得:
因此
即 只有切向分量,从而 只有切向分量,电场线与导体表面平行。
14.内外半径分别为a和b的无限长圆柱形电容器,单位长度荷电为 ,板间填充电导率为 的非磁性物质。
(1)证明在介质中任何一点传导电流与位移电流严格抵消,因此内部无磁场。
(2)求 随时间的衰减规律。
(3)求与轴相距为 的地方的能量耗散功率密度。
在介质1和介质2内作高斯柱面,由高斯定理得:
所以有 ,
由于E
所以 E
当介质漏电时,重复上述步骤,可得:
, ,
介质1中电流密度
介质2中电流密度
由于电流恒定, ,
再由E 得
E
E E
E
E
12.证明:
(1)当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足
其中 和 分别为两种介质的介电常数, 和 分别为界面两侧电场线与法线的夹角。
其中 和 为球面的极化面电荷激发的电势,满足拉普拉斯方程。由于对称性, 和 均与 无关。考虑到 时 为有限值; 时 ,故拉普拉斯方程的解为:
由此 (1)
(2)
边界条件为: (3)
(4)
将(1)(2)代入(3)和(4),然后比较 的系数,可得:
于是得到所求的解为:
在均匀介质内部,只在自由电荷不为零的地方,极化电荷才不为零,所以在球体内部,只有球心处存在极化电荷。
电动力学答案(郭硕鸿+第三版) chapter3
(ρ > a)
a ∴ r = xr − xr' = (ρ cosϕ − a cosϕ')2 + (ρ sinϕ − a sinϕ')2 + z'2
d = ρ 2 + a2 + z'2 −2aρ cos(ϕ −ϕ') h rr = xr − xr'= ( ρ cosϕ − a cosϕ')erx (ρ sinϕ − a sinϕ')ery − z'erz k dlr = −adϕ'⋅sinϕ'erx + adϕ'⋅cosϕ'ery . ∴ dlr × rr = −az'cosϕ'dϕ'erx − az'sinϕ'dϕ'ery + [a2 − aρ cos(ϕ'−ϕ)]dϕ'erz
第三章 静磁场
场是均匀强磁场 故只须求出其中轴线上的磁感应强度 即可知道管内磁场 由其无限长的特性 不妨取场点为零点 以柱坐标计算
rr = −a cosϕ 'erx − a sin ϕ 'ery − z'erx
dlr = −adϕ '⋅sinϕ'erx + adϕ'⋅cosϕ 'ery ∴ dlr × rr = (−adϕ '⋅sin ϕ 'erx + adϕ '⋅cosϕ'ery ) × (−a cosϕ'erx − a sin ϕ'ery − z'erx )
erθ
ww ∴ Hr 2 − Hr1 = 0,满足边界条件 nr × (Hr 2 − Hr1) = 0
郭硕鸿《电动力学》课后习题答案
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇AA A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 AA A A A A )()()(21∇⋅-⋅∇=⨯∇⨯ 即 AA A A )()(221∇⋅-∇=⨯∇⨯A 2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d u u z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
《电动力学》郭硕鸿_第三版_答案
又
∫ dS × f = ∫ [( f
S S
r
r
r r r dS y − f y dS z )i + ( f x dS z − f z dS x ) j + ( f y dS x − f x d S y )k ]
r r r r r r = ∫ ( f y k − f z j )dS x + ( f z i − f x k )dS y + ( f x j − f y i )dS z
若令 f x = φ i , f y = φ j , f z = φ k 则证毕 5. 已知一个电荷系统的偶极矩定义为
r r r P (t ) = ∫ ρ ( x ' , t ) x ' dV ' ,
V
利用电荷守恒定律 ∇ ⋅ J +
r
r ∂ρ = 0 证明 P 的变化率为 ∂t
r r r dP = ∫ J ( x ' , t )dV ' V dt
l S
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
电动力学习题解答 1. 根据算符 ∇ 的微分性与矢量性 推导下列公式
第一章
电磁现象的普遍规律
r r r r r r r r r r ∇( A ⋅ B) = B × (∇ × A) + ( B ⋅ ∇) A + A × (∇ × B) + ( A ⋅ ∇) B r r r r 1 r A × (∇ × A) = ∇A 2 − ( A ⋅ ∇) A 2 v v v v v v v v v v 解 1 ∇( A ⋅ B ) = B × (∇ × A) + ( B ⋅ ∇) A + A × (∇ × B ) + ( A ⋅ ∇) B
《电动力学》郭硕鸿_第三版_答案.
1. 根据算符∇的微分性与矢量性推导下列公式B A B A A B A B B A rr r r r r r r r r )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇ AA A A A r r r r r )(21)(2∇⋅−∇=×∇×解1BA B A A B A B B A vv v v v v v v v v )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇首先算符∇是一个微分算符其具有对其后所有表达式起微分的作用对于本题∇将作用于BA vv 和又∇是一个矢量算符具有矢量的所有性质因此利用公式b a c b c a b a c vv v v v v v v v )()()(⋅−⋅⋅=××可得上式其中右边前两项是∇作用于Av 后两项是∇作用于Bv2根据第一个公式令AvB v可得证2. 设u 是空间坐标xy z 的函数证明.)()()(duA d u u A du Ad u u A u dudf u f rr rr ×∇=×∇⋅∇=⋅∇∇=∇证明1ududfe z u du df e y u du df e du df e z u f e y u f e x u f u f z y x x u z y x ∇=∂∂⋅+∂∂⋅+⋅=∂∂+∂∂+∂∂=∇∂∂r r r r r r )()()()(2du A d u zu dz u A d y u du u A d x u du u A d z u z A y u A x u A u A z y x z y x rr r r r r r r ⋅∇=∂∂⋅+∂∂⋅+∂∂⋅=∂∂+∂∂+∂∂=⋅∇)()()()()()()(3=∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=∂∂∂∂∂∂=×∇z x yy z x x y z z y u x z y xe y A x A e x A z A e z A y A u A u A A zy x e e e u A r r r r rr r r r r r r r r rr )()()()()()()(duA d u e y u du A d x udu A d e x u du A d z u du A d e z u du A d y u du A d z x y y z x x y z r r r r r r r r r r ×∇=∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=)()()(3. 设2'2'2')()()(z z y y x x r −+−+−=为源点'x 到场点x 的距离r 的方向规定为从源点指向场点1 证明下列结果并体会对源变数求微商(''''ze y e x e z y x∂∂+∂∂+∂∂=∇r r r 与对场变数求微商)(ze y e x e z y x∂∂+∂∂+∂∂=∇r r r 的关系 )0.(0,0,11,3'333''≠=−∇=⋅∇=×∇−=−∇=∇=−∇=∇r rr r r r r r r r r r r r r r r r r r (最后一式在人r 0点不成立见第二章第五节)2求均为常矢量及其中及000,)],sin([)]sin([),(,)(,,E k a r k E r k E r a r a r r rr r r r r r r r r r r r r r ⋅×∇⋅⋅∇⋅∇∇⋅×∇⋅∇证明3)()()('''=∂−∂+∂−∂+∂−∂=⋅∇z z z y y y x x x r r 0'''=−−−∂∂∂∂∂∂=×∇z z y y x x z y x e e e r z y xr r r r ])'()'()')][(()[()(z y x z y x z z y y x x e z z e y y e x x e ze y e x e a e a e a r a v r v v v v v v v r v −+−+−∂∂+∂∂+∂∂⋅++=∇⋅ ])'()'()')[((z y x z yxe z z e y y e x x za y a x a v r v −+−+−∂∂+∂∂+∂∂= ae a e a e a z z y y x x vvvv=++=ar a r r a r a r a vv v r v v v v v v ⋅∇⋅+×∇×+∇⋅+×∇×=⋅∇)()()()()( a a r a r r a v r v v v v v ⋅⋅+×∇×+∇⋅=)()()( ar a r a vvv v v ⋅∇⋅+×∇×+=)()())(sin()](sin([)]sin([000E r k E r k r k E rr r r r r r r r ⋅∇⋅+⋅⋅∇=⋅⋅∇0])sin()sin()sin([E e r k z e r k y e r k x z y x r r r r r r r r r ⋅∂∂+⋅∂∂+⋅∂∂= ))(cos())(cos(0E k r k E e k e k e k r k z z y y x x r r r r rr r r r r ⋅⋅=++⋅=000)sin()]sin([)]sin([E r k E r k r k E rr r r r r r r r ×∇⋅+×⋅∇=⋅×∇4. 应用高斯定理证明∫∫×=×∇SVfS d f dV r r r 应用斯托克斯Stokes 定理证明∫∫=∇×LSl d S d φφr r证明1)由高斯定理∫∫⋅=⋅∇SVgS d g dV r r r即∫∫++=∂∂+∂∂+∂∂S zz y y x x V zy x dS g dS g dS g dV z g y g x g )( 而dVk f yf x j f x f z i f z f y dV f x y z x y z V ])()()[(r r r r ∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=×∇∫∫ ∫−∂∂+−∂∂+−∂∂=dVi f j f zk f i f y j f k f x y x x z z y )]()()([r r r r r r 又])()()[(k S d f dS f j dS f dS f i dS f dS f f S d y Sx x y x z z x z y y z Sr rr r r ∫∫−+−+−=× ∫−+−+−=zy x y x z x z y dS i f j f dS k f i f dS j f k f )()()(rr r r r r 若令if j f H k f i f H j f k f H y x Z x z y z y x rr r r r r −=−=−=,, 则上式就是∫∫⋅=⋅∇SVH S d dV H r r r,高斯定理则证毕2)由斯托克斯公式有∫∫⋅×∇=⋅SlSd f l d f r r r r∫∫++=⋅lz z y y x x ldl f dl f dl f l d f )(rr ∫∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=⋅×∇S zx y y z x x y z S dS f y f x dS f x f z dS f z f y S d f )()()(r r 而∫∫++=lz k y j x i ldl dl dl l d )(φφφφr∫∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=∇×S y x x z z y S k dS x dS y j dS z dS x i dS y dS z S d r r r r )()()(φφφφφφφ ∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=zy x dS i yj x dS k x i z dS j z k y )()()(rr r r r r φφφφφφ若令k z j y i x f f f φφφ===,,则证毕5. 已知一个电荷系统的偶极矩定义为,),()('''∫=VdV x t x t P r r r ρ利用电荷守恒定律0=∂∂+⋅∇tJ ρr 证明P r 的变化率为∫=V dV t x J dtPd ''),(r r r证明∫∫∇−=∂∂=∂∂V V dV x j dV x t tP '''''''r r r r r ρ ∫∫∫⋅∇−=⋅∇−⋅∇−=∇−=∂∂V x V x dVj x j dV j x j x dV x j tP '''''''''''''''')((])()([)(r r r r r∫∫⋅−=Sx Sd j x dV j r r '若)0(,0)(,==⋅∞→∫S j S d j x S rr r 则 同理∫∫=∂∂=∂∂'')(,)(dVj t dV j t z z y y ρρr r 即∫=V dV t x j dtPd ''),(r r r6. 若m r是常矢量证明除R 0点以外矢量3R R m A r r r ×=的旋度等于标量3RR m r r ⋅=ϕ的梯度的负值即ϕ−∇=×∇A r其中R 为坐标原点到场点的距离方向由原点指向场点证明mr m r r m r m R m R R m A vv v v v v v v ])1[()]1([1)(1)()]1([)(3∇⋅∇−∇⋅∇−∇∇⋅+∇⋅∇=∇××−∇=××∇=×∇)0(,1)(≠∇∇⋅=r rm vr m m r r m r m R R m 1)()()1()]1([)]1([)(3∇∇⋅−×∇×∇−∇×∇×−=∇⋅−∇=⋅∇=∇vv v v v v ϕ rm m r 1)(])1[(∇∇⋅−=∇⋅∇−vvϕ−∇=×∇∴A v7有一内外半径分别为r 1和r 2的空心介质球介质的电容率为ε使介质内均匀带静止自由电荷f ρ求1 空间各点的电场2极化体电荷和极化面电荷分布解1∫∫=⋅dV S d D f Sρrr , (r 2>r>r 1)f r r r D ρππ)(3443132−=⋅即)(,3)(123313r r r r r r r E f >>−=∴rr ερ 由)(,)(342313200r r r r Q S d E f f S >−==⋅∫ρεπεr r )(,3)(2303132r r r rr r E f >−=∴r r ρε 01时E r r r <2)EE E P e r r r r )(00000εεεεεεχε−=−=)(3]3)([)()(3310331300r rr r r r r r E P f f P r r r r r −⋅∇−−=−⋅∇−−=⋅∇−−=⋅−∇=∴ρεεερεεεεερ f f ρεεερεεε)()03(300−−=−−−=nn P P P 21−=σ考虑外球壳时r r 2 n 从介质1指向介质2介质指向真空2=n Pfr r f n P r r r rr r r P ρεερεεεσ32313203313013)1(3)(2−−=−−===r 考虑到内球壳时r r 23)(133130=−−−==r r f P rrr r rρεεεσ8内外半径分别为r 1和r 2的无穷长中空导体圆柱沿轴向流有恒定均匀自由电流J f 导体的磁导率为µ求磁感应强度和磁化电流解fS f I S d D dtd I l d H =⋅+=⋅∫∫rr r r 当0,0,1===<B H I r r f rr 故时 当r 2>r>r 1时)(2212r r j S d j rH l d H f Sf l−=⋅==⋅∫∫ππr r r r r j r r r r r r j B ff rr v ×−=−=22122122)(2)(µµ 当r>r 2时)(22122r r j rH f −=ππ r j r r r B frr r ×−=2212202)(µ )2()1())()(2212000rr r r j H H M J f M M−××∇−=−×∇=×∇=×∇=r r r r r µµµµµχ )(,)1()1(2100r r r j H f <<−=×∇−=r r µµµµ指向介质从介质21(),(12n M M n Mr r rr−×=α 在内表面上0)2)1(,012212021=−−===r r rr r M M µµ故)(,012r r M n M ==×=rr rα在上表面r r 2时)1(22)(0212221211222−−−=×−×−=×−=−×===µµαr f r r fr r Mj rr r r j r r r r r M n M n rr r rrr r r rf j rr r r 2212202)1(−−−=µµ9证明均匀介质内部的体极化电荷密度P ρ总是等于体自由电荷密度f ρ的倍)1(0εε−−证明ff P E E P ρεεερεεεεεερ)1()()()(0000−−=−−=⋅∇−−=−⋅−∇=⋅−∇=r r r 10证明两个闭合的恒定电流圈之间的相互作用力大小相等方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律)证明1线圈1在线圈2的磁场中的受力 ∫×=23121222024l r r l d I B v v v πµ21112B l d I F d v v v×=∫∫∫∫××=××=∴12123121221210312122211012)(4)(4l l l l r r l d l d I I r r l d I l d I F v r vvv v v πµπµ )()(41221312123121212210∫∫⋅−⋅=l l l d l d r r r r l d l d II v v v v v v πµ12线圈2在线圈1的磁场中受的力同1可得∫∫⋅−⋅=21)()(41232121321212121021l l l d l d r r r r l d l d I I F v v v v v v v πµ2分析表达式1和21式中第一项为0)1()(21221212221212231212123121212=−⋅==⋅=⋅∫∫∫∫∫∫∫l l l l l l r l d r dr l d r r l d l d r r l d l d 一周v v v v v v v v 同理对2式中第一项 ∫∫=⋅210)(3212121l l r r l d l d v v v ∫∫⋅−==∴12)(421312122102112l l l d l d r r II F F v v rv v πµ11. 平行板电容器内有两层介质它们的厚度分别为l 1和l 2电容率为21εε和今再两板接上电动势为Ε的电池求1 电容器两板上的自由电荷密度f ω2 介质分界面上的自由电荷密度f ω若介质是漏电的电导率分别为21σσ和当电流达到恒定时上述两问题的结果如何解在相同介质中电场是均匀的并且都有相同指向则,)00f 2211212211==−=−Ε=+σεε介质表面上E E D D E l E l n n故122112122121,εεεεεεl l E l l E +Ε=+Ε=又根据fn n D D σ=−21 n 从介质1指向介质2在上极板的交面上 121f D D σ=− D 2是金属板故D2即12212111εεεεεσl l D f +== 而02=f σ)0(,'1'1'2'2'13=−=−=D D D D D f 是下极板金属故σ 13122121ff l l σεεεεεσ−=+−=∴ 若是漏电并有稳定电流时222111,σσjE j E r r r r == 又 ===Ε=+积稳定流动电荷不堆,2121222111j j j j j l j l n nrrr σσ 得+Ε==+Ε==+Ε==1221122212212111221121:,σσσσσσσσσσl l j E l l j E l l j j 即12212`13σσσεσl l D f +Ε==上1221122σσσεσl l D f +Ε−=−=下Ε+−=−=1221121232σσσεσεσl l D D f 中12. 证明1 当两种绝缘介质得分界面上不带面自由电荷时电场线的曲折满足1212tan tan εεθθ=其中21εε和分别为两种介质的介电常数21θθ和分别为界面两侧电场线与法线的夹角2当两种导电介质内流有恒定电流时分界面上电场线曲折满足1212tan tan σσθθ=其中21σσ和分别为两种介质的电导率证明(1)根据边界条件112212sin sin ,0)(θθE E E E n ==−×即vv 由于边界面上0=fσ故)(12=−⋅D D n v vv 即111222cos cos θεθεE E = 12121122,εεθθεθεθ==∴tg tg tg tg 即有(2)根据E J vv σ=可得电场方向与电流密度同方向由于电流I 是恒定的故有1221cos cos θθj j =即122211cos cos θσθσE E =而0)(12=−×E E n v vv 即 1122sin sin θθE E = 故有2121σσθθ=tg tg 13试用边值关系证明在绝缘介质与导体的分界面上在静电情况下导体外的电场线总是垂直于导体表面在恒定电流的情况下导体内电场线总是平行于导体表面证明1导体在静电条件下达到静电平衡01导体内E v∴ 而 0)(12=−×E E n v vv 02=×∴E n vv故0E v垂直于导体表面3导体中通过恒定电流时导体表面0=fσ∴导体外0,022==D E vv即 而 0:,0)(10112=⋅=⋅==−⋅E n D n D D n f v vv v v v v εσ即 01=⋅∴E n vv 导体内电场方向和法线垂直即平行于导体表面14内外半径分别为a 和b 的无限长圆柱形电容器单位长度电荷为fλ板间填充电导率为σ的非磁性物质1 证明在介质中任何一点传导电流与位移电流严格抵消因此内部无磁场2求f λ随时间的衰减规律3 求与轴相距为r 的地方的能量耗散功率密度4求长度为l 的一段介质总的能量耗散功率并证明它等于这段的静电能减少率1 证明由电流连续性方程0=∂∂+⋅∇t J f ρr 据高斯定理 D f r⋅∇=ρ 0=∂⋅∂∇+⋅∇∴tDJ rr 即0=∂∂⋅∇+⋅∇tDJ rr 0.0)(=∂∂+∴=∂∂+⋅∇∴t DJ t D J r r r r 即传到电流与位移电流严格抵消(2)解由高斯定理得∫∫=⋅dl dl r D f λπrr 2 rf r f e r E e r D rr r r πελπλ2,2==∴ 又ED E J t D J rr r r rr εσ===∂∂+,,0 t e E E tEE εσεσ===∂∂+∴0,0r r r r rt r r f e e re r r rεσπελπελ−=∴220电动力学习题解答 第一章 电磁现象的普遍规律tf f e εσλλ−=∴03解re r t t D J ft f πλεσπλεσ2)2(0⋅=∂∂−=∂∂−=−r r 能量耗散功率密度σπελσρ222)2(1rJ J f ==5解 单位体积rdrl dV π2⋅= ∫==b a f f abl rdr l r P ln22)2(222πεσλπσπελr 静电能 abl dr r l dV E D W f b a f baln2212212122⋅⋅==⋅=∫∫πελπελr r 减少率 ab l t a b l t W f ff ln2ln 222πεσλλπελ=∂∂⋅−=∂∂−1. 一个半径为R 的电介质球极化强度P=K2r r电容率为(1) 计算束缚电荷的体密度和面密度(2) 计算自由电荷体密度(3) 计算球外和球内的电势(4) 求该带电介质球产生的静电场总能量解(1)2222/)11(rK r rr r K r r K P P −=⋅∇+⋅∇−=⋅∇−=⋅−∇=r r r r ρ RP P P n )(12rr r −⋅−=σ 又球外无极化电荷02=P r RK rr K n P n RRp /21=⋅=⋅=r r rr σ(2) 由公式 E D rr ε= PE D rr r +=0εεεε−=P D r r200)(rKP D f εεεεεερ−=⋅∇−=⋅∇=r r`(3)对于球外电场由高斯定理可得∫=⋅0εQs d E rr外 022002sin )(4εϕθθεεεερπ∫∫∫∫⋅−==⋅∴d drd r r KdV r E f 外r r r )(300r rεεεε−∴KRE 外同理可得球内电场20r rK Er r ⋅−εε内球外电势外外r)(rd 00εεεεϕ−⋅∴∫∞∞KRE r rrR ln)(rd rd 000rεεεεεεϕ−+−⋅⋅∫∫∞K KE E RR球内电势内外内rr r r42022020r2rr r r 2121内内内εεεεεεεεωK K K E D rr r r ⋅⋅⋅⋅⋅∴ ∫∫∫∫−⋅−⋅∴2022202)2d drd sin r r )(21d εεπεϕθθεεεωK R K V W 内内∫∫∫∫−⋅⋅−⋅=2002224200222)(2d drd sin r r 1)(21dεεεπεϕθθεεεεωRK R K V W R 外外200))(1(2εεεεπε−+=∴K R W W W 外内2 在均匀外电场中置入半径为0R 的导体球试用分离变数法球下列两种情况的电势1导体球上接有电池使球与地保持电势差;0φ2 导体球上带总电荷Q.解1当导体球上接有电池与地保持电势差0φ时以地为电势零点本问题的定解条件如下φφ内R=0R02外ϕ∇R>0R 且 =−==∞→0000cos φϕϕθϕR R R R E 外外0ϕ是未置入导体球前坐标原点的电势根据有关的数理知识可解得)cos R Ran 1n nnnn θϕ外P b ∑∞由于00cos ϕθϕ外R E R −=∞→即021210210cos )(cos cos )(cos cos a ϕθθθθθϕ+−=+++++∞→∞=+∞=∑∑R E P RbR b R b P R a R a R n n n n n n nn 外故而有)1(0),1(0,,0100>=>=−==n b n a E a a n n ϕθθϕϕcos b cos 21000Rb R R E +∴外又020100000cosb cos ,0φθθϕϕφϕ=+−====R b R R E R R R R 即外外故而又有=+−=+∴0cos cos 201000000θθφϕR b R E R b 得到 20010000,)(R E b R b =−=ϕφ最后得定解问题的解为)(cos )(cos 03000000R R RR E R R R E >+−++−=θϕφϕθϕ外2当导体球上带总电荷Q 时定解问题存在的方式是=∂∂−+>∇<∇∫∞→→)(ds (Rcos )(0)(00s0R 000R 0R 02020R R Q R E R R R R R 原点的电势是未置入导体球前坐标有限外外内外内外内φεφφϕϕθφφφφ解得满足边界条件的解是∑=0n n n n cos R 内θϕP a ∑=0n n1n n00cos R Rcos 外θθϕϕP b E由于∞→R 外ϕ的表达式中只出现了)1(0cos cos (1>=n b P n 项故θθθθϕϕcos b cos 21000Rb R R E +∴外又有0R R =外ϕ是一个常数导体球是静电平衡C R b R R E R R =+−==θθϕϕcos b cos 201000000外301201000cos cos R E b R b R E ==+−∴即θθθθϕϕcos cos 230000RR E R b R E ++外 又由边界条件Q 外∫∂∂−sds rφε 004πεQ b =∴,000R 4R R Q <−∴ϕπεϕ内023000Rcos cos R 4R R E RR E Q>+外θθπεϕ3均匀介质球的中心置一点电荷fQ 球的电容率为ε球外为真空试用分离变数法求空间电势把结果与使用高斯定理所得结果比较提示空间各点的电势是点电荷f Q 的电势RQ πε4f与球面上的极化电荷所产生的电势的叠加后者满足拉普拉斯方程解一. 高斯法在球外0R R >,由高斯定理有fP f Q Q Q Q s d E =+=⋅∫总rr 0ε对于整个导体球而言束缚电荷)0=P Q 204R Q E f πε=∴r积分后得是积分常数外C C RQ .(40f +πεϕ又由于0,0=∴=∞→C R 外ϕ)(400R R RQ f >=∴πεϕ外在球内0R R <,由介质中的高斯定理∫=⋅fQ s d D r r 又24,R Q E E D f πεε=∴=rrr积分后得到是积分常数内22f.(4C C RQ +πεϕ由于20f 44,0C R Q R Q f R R +==πεπεϕϕ故而有外内).(4400002R R R Q R Q C f f<−=∴πεπε)(44400f0ff R R R Q R Q RQ <−∴πεπεπεϕ内二. 分离变量法本题所求的电势是由点电荷f Q 与介质球的极化电荷两者各自产生的电势的叠加且有着球对称性因此其解可写作'4ϕπεϕ+=R Qf 由于'φ是球对称的其通解为R b a+='ϕ由于球心有f Q 的存在所以有∞→内R ϕ 即a4内RQ f πεϕ在球外有外0R ∞→ϕ 即Rb 4f 外R Q πεϕ 由边界条件得0f 0fRb4a 4,0R R Q R Q R ++πεπεϕϕ即外内20f20020f 0R4b 4,RR 0R Q R R Q R πεεεπεεϕεϕε−=−∂∂∂∂即外内)11(4a),11(400f 0εεπεεπε−−=∴R Q Q b f<−>∴00f00f f 00f ,444,R 4R R R Q R Q R Q R R Q πεπεπεϕπεϕ内外4 均匀介质球电容率为1ε的中心置一自由电偶极子fP r球外充满了另一种介质电容率为2ε求空间各点的电势和极化电荷分布提示同上题'431φπεφ+⋅=RR P f r r ,而'φ满足拉普拉斯方程解RR∂∂=∂∂外内φεφε21又内∑+−=∂∂l 1l 0l 31f 11l 4cos 2(0P R A R P R R πεθεφε∑−−=∂∂外l2l 0l301f 221l (4cos 2(0P R B R P RR πεθεφε比较系数)(cos θl P B00A30113012312113,24242R B A R B R A R ff=−−=+及επερεεπρ得)2(4)(2,)2(4)(22112113211211εεπερεεεεπερεε+−=+−=f fB R A 比较的系数)(cos 2θP 40224221,32R B A R B R A=ε及011(012=+R A ε所以0,022==B A 同理)3,2(,0L ===l B A l l 最后有)(,)2(4)(24cos )2(4)(2403211213132112131R R R RR R R R R R f f f f <+⋅−+⋅=+−+⋅εεπερεεπερθεεπερεεπερφrrr rr r内)(,)2(43)2(4)(24cos )2(4)(2403213211213122112131R R RR RRRRRRR f f f f f >+⋅=+⋅−+⋅=+−+⋅εεπρεεπερεεπερθεεπερεεπερφr r rrr r r r 外球面上的极化电荷密度n P P n n P r,21−=σ从2指向1如果取外法线方向则nn n n p P P )])[()])[(0102内外球外φεεφεεσ∇−−∇−=−= 0)()(0102R RRR内外∂∂−+∂∂−−=φεεφεε]cos )2(4)2(2)(2)2(4cos )(6)[()2(4cos 6)(32112121321200132102θρεεπεεεεεεεπθρεεεεεεπθρεεf f f R R R ++−−−+−−−+−−= θρεεπεεεεθρεεπεεεεεεεcos )2(2)(3cos )2(4)(6)(632112103211012201f f R R +−−=+−+−=求极化偶极子l q P f r r=可以看成两个点电荷相距l 对每一个点电荷运用高斯定理就得到在每个点电荷旁边有极化电荷 ))(1(,)1(1010f P f P q q q q −−=−−=εεεε两者合起来就是极化偶极子 f P P P r r )1(1−=εε5.空心导体球壳地内外半径为R 1和R 2球中心置一偶极子Pr球壳上带电Q 求空间各点电势和电荷分布解+⋅=∞====∇→→∞→为有限值0'1'1301022332,4,0,0r r r r r P C φφπεφφφφφr r=∂∂+∂∂−+⋅====∫∑∫∑===−+013301223131212)(cos 4,),(cos εφφθπεφφφφθφQdS rdS r P r A r r P CC CP r B R r R r l ll f R r R r l l l rr2φ=+++=+++CR A A R P C P R B R B R B f L L θπεθθcos 4cos cos 110210232222120即)4.3.2(0),3.2.1(0,0cos )4(,2111200L L =====+==l A l B R P R A C R B A l l f θπε∑∑+−−=−−=∂∂++−=+−=∂∂+−L L θφθπεθπεθφcos 2)1(cos 2cos 4cos 2311210231310113101R B R B P r B l r A R P P R lA R P r l l l f L l l f 又则∫∫∫====∂∂−02121210210344B R B R dS R B dS R B dS r ππφ000sin cos 4sin cos 22002131020*******=+=−+−=∂∂∫∫∫∫∫ππππϕθθθπεϕθθθπεφd d R R P d d R R P dS r f f 故∫∫==∂∂+∂∂−00134επφφQB r dS r 3101200004,4,4R P A R Q A Q B f πεπεπε−===最后有<<=>=<+⋅−⋅=)(,4)(,4)(,44421202203120310201R r R R QR r r Q R r R QR r P r r P f πεφπεφπεπεπεφr r r r 电荷分布在r R 1的面上313131104cos 4cos 2cos 1R P R P R P r f f f Pπθπθπθφεσ−=−+−=∂∂=在r R 2面上223042R Qr P πφεσ=∂∂−=6在均匀外电场0E r中置入一带均匀自由电荷f ρ的绝缘介质球ε求空间各点的电势解=∇++∑+061)(cos )('2'21φφρεφθφr P r B r A f l l l ll内外内φ是由高斯定理解得的f ρ的作用加上0E r的共同作用'0,cos →∞→−=r r r E φθφ外有限++∑∑+)(cos 61)(cos cos 210θρεφθθφl l e f l l l P r c r P r B r E 内外:)0R r =外内φφ++++23022010000cos P R BR B R B R E θ ++++22020120cos 610P R c R c c R f θρε即000206R B c R f =+ερ012100R c R B R E =+20232R c R B =rr ∂∂=∂∂外内φεφε∑+−−+−=∂∂)1(cos (200l l l R P B l E rθεφ外]L +++= +=∂∂∑−202101002cos 3)(cos 3P R c c R P R lc R r f l l l f εθερθερφ内LL+−−−−2423123cos2cos PRBRBRBEεθεεθε即23RBRfερ−=3112RBECεεε−−=LL42232RBRCεε−=解方程得fRBρε303−=)6131(20εερ+−=fRC33123REREB++−=εεε123εεε+−=EC及2232CRRCεε−=即0)32(2=+RRCεε022==BC同理0==llBC LL3,2=l得<+±>+−+±22223233,cos236131(6,cos)2(3cos3cosRrrERrRrrRErRErRrEfffθεεεεερερφθεεεθερθφ内外7在一个很大的电解槽中充满电导率为2σ的液体使其中流着均匀的电流0fδ今在液体中置入一个电导率为1σ的小球求稳衡时电流和电荷分布讨论21σσ>>及12σσ>>两种情况的电流分布特点先求空间电势∇∇22外内φφ外内φφRr=因为)(Rrnn=外内δδ稳恒电流认为表面无电流堆积即nn流出流入=故rr222221外内φσφσ=并且δδ=∞→r外即θφcosrEr−=∞→外()02Ej fσ=有限内∞→rφ可以理解为在恒流时0→r的小封闭曲面流入流出这时的解即为>+−+<022121300000212,cos )2(cos ,cos 23R r rR E r E R r r E θσσσσθφθσσσφ外内求内外电场)22sin 12222(φθφθθφφφe r e r e E r rr rΦ++−=−∇=)sin (cos 23)22122(0212θθθθσσσθφφe e E e r re E r r r r rr r−+=+内内内ze E r021223σσσ+=[]θθθθσσσσθθe e r R E e e E E r r rr r r sin cos 2)2()sin (cos 212133000++−+−外[]θθθθθσσσσθθe e e rR E e e E r r r rr r r r sin cos cos 3)2()sin (cos 212133000+−+−+−−+−+30302121300cos 3)2(r E e r E R E r v v θσσσσ求电流 根据内内E j vr1σ 外外E j v v2σ 及 =⋅=r f f e r r r E rr r j E j r vr v v v5025020cos )(0θσσ得])(3[2,2335302121211000rj rrr j R j j j j f f f r rr r r r −⋅=σσσσσσσ内外内)(2cos 3)()(2121000120σσσσθεεεω−+=−=−=E E E E E n n n n f 内外8.半径为0R 的导体球外充满均匀绝缘介质ε导体球接地离球心为a 处)(0R a >置一点电荷f Q 试用分离变数法求空间各点电势证明所得结果与镜像法结果相同提示).()(cos )(1cos 211022a R P aR a aR a R rn n n>=−+=∑∞=θθ解1分离变数法由电势叠加原理球外电势''f,4φφπεφ+RQ 外是球面上感应电荷产生的电势且满足定解条件 ==>=∇=∞→00)(,00''2R r r R r 外φφφ根据分离变数法得)(,)(cos 001'R r P r B l l l l>=∑∞=+θφ ∑∞=++−+∴0122f )(cos cos 214l l l lP rB ar r a Q θθπεφ外*)(,)(cos )(cos )(14010a r P rB P a r a Q l ll ln n n f <+=∑∑∞=+∞=θθπε 又0)(cos ])(4[100=+=∑∞=+=n l l oll fR r P R B a R a Q θπεφ外即 0)(4,...,04,0410201000=+=+=++l ll f f fR B a R a Q R B a R a Q R B a Q πεπεπε,4,4,41203100aQ a R B a Q a R B a Q R B fl l l f O fπεπεπε+−=−=−=∴代入*式得解2镜像法如图建立坐标系本题具有球对称性设在球内0r 处有像电荷'Q ,'Q 代替球面上感应电荷对空间电场的作用由对称性'Q 在O f Q 的连线上先令场点P 1在球面上根据边界条件有常数即=−==+fQ Q Q Q f Q Q r r r Q r Q f f'''',0将'Q 的位置选在使∆'Q P 1O∆f Q P 1O,则有常数aR r r fQ Q 0'=为达到这一目的令'Q 距圆心为r 0则 aR r a R R r 200000,==并有aQ R Q aR Q Q r r f f Q Q f0'0''−===−=常数这样满足条件的像电荷就找到了空间各点电势为).(],cos 2)(cos 2[414422020222'1a r aR r a R r aQ R ar r a Q r Qr Q fff >++−−+=+=θθπεπεπεφ外将分离变数法所得结果展开为Legend 级数可证明两种方法所求得的电势相等9接地的空心导体球的内外半径为R 1和R 2在球内离球心为a(a<R 0)处置一点电荷Q 用镜像法求电势导体球上的感应电荷有多少分布在内表面还是外表面解球外的电势及导体内电势恒为0而球内电势只要满足即可内01r =R φ因此做法及答案与上题同解略cos 2cos 2[412124121220θθπεφa R R aR R a QR Ra a R Q−+−−+=内因为球外0=φ故感应电荷集中在内表面并且为Q.R 1R2P210.上题的导体球壳不接地而是带总电荷Q 0,或使其有确定电势0ϕ试求这两种情况的电势又问0ϕ与Q 0是何种关系时两种情况的解是相等的解由于球壳上有自由电荷Q 0并且又是导体球壳故整个球壳应该是等势体其电势用高斯定理求得为2004R Q Q πε+所以球壳内的电势将由Q 的电势像电荷aQR 1−的电势及球壳的电势叠加而成球外电势利用高斯公式就可得故>+=<++−+−−+==)(,4)].(cos 2cos 2[412001202124121220R R RQ Q R R R Q Q a R R aR R a QR Ra a R Q πεφθθπεφφ外内或>=<+−+−−+==)(,).(cos 2cos 2[41202102124121220R R r R R R a R R a R R a QR Ra a R Q φφφθθπεφφ外内当20004R Q Q πεφ+=时两种情况的解相同11在接地的导体平面上有一半径为a 的半球凸部如图半球的球心在导体平面上点电荷Q 位于系统的对称轴上并与平面相距为bb>a 试用电象法求空间电势解如图利用镜像法根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型可确定三个镜像电荷的电量和位置rb r Q Q rba r Qb a Q rb a r Q b a Q rr r−=−=−===−=33222211,,,θθθπεφcos 2cos 21cos 21[4224222220R b a ba Rb aRb b R Rb b R Q +++++−−+=O),20(],cos 22242a R R b a ba Rb a><≤−++πθθ12. 有一点电荷Q 位于两个互相垂直的接地导体平面所围成的直角空间内它到两个平面的距离为a 和b 求空间电势解可以构造如图所示的三个象电荷来代替 两导体板的作用−++−+−−−+−+−=222022200)()()(1)()()(1[4b z a y x x b z a y x x Q πεφ )0,()()()(1)()()(122202220>++++−+−+++−−z y b z a y x x b z a y x x 13.设有两平面围成的直角形无穷容器其内充满电导率为的液体取该两平面为xz 面和yz 面在x 0,y 0,z 0和x 0,y 0,-z 0两点分别置正负电极并通以电流I 求导电液体中的电势解本题的物理模型是由外加电源在A B 两点间建立电场使溶液中的载流子运动形成电流I,当系统稳定时是恒定场即0=∂∂+⋅∇t j ρr 中对于恒定的电流可按静电场的方式处理于是在A 点取包围A 的包围面∫=⋅nQ s d E εr r 而又有σ⋅=⋅=∫E i s d i I rr r r }∫⋅=⇒sd E I r r σ1∴有σεεσ111I Q QI =⇒=对BQ σε1I Q Q B −=−=又在容器壁上,0=n j r即元电流流入容器壁由Ej r rσ=有0=n j r时=n E r∴可取如右图所示电像B(x 0,y 0,z 0)y14.画出函数dx x d )(δ的图说明)()(x P rr δρ∇⋅−=是一个位于原点的偶极子的电荷密度解=∞≠=0,0,0)(x x x δx x x x dx x d x ∆−∆+=→∆)()(lim )(0δδδ10)(0=≠dxxd x δ时2=∆∞−=>∆=→∆x dxx d x x 0lim )(,0x a 00δ时 +∞=∆∞−=<∆→∆xdx x d x b x 0lim )(,0)0δ15证明1)0).((1)(>=a x a ax δδ若a<0,结果如何20)(=x x δ证明1根据∑−=)(()](['kk x x x x φδφδ所以ax ax )()(δδ=2从)(x δ的定义可直接证明有任意良函数f(x),则)()(x F x x f =⋅也为良函数∫=⋅==0)()()(0x x x f dx x x x f δ16一块极化介质的极化矢量为)('x P r r 根据偶极子静电势的公式极化介质所产生的静电势为∫⋅=V dV r rx P '3'4)(πεϕr r r 另外根据极化电荷公式,)(''P n x P P P r r r r r r ⋅=⋅−∇=σρ及极化介质所产生的电势又可表为∫∫⋅+⋅∇−=S V r Sd x P dV r x P 0'''0''4)(4)(πεπεϕr r r r r 试证明以上两表达式是等同的证明∫∫∇⋅=⋅=VVdV rx P dV r r x P '''0'3'01)(41)(41r r rr r πεπεϕ 又有r P r P r P p 11)1('''∇⋅+⋅∇=∇r r r 则][41])([41'''''''''0∫∫∫∫⋅+⋅∇−=⋅∇+⋅∇−=S V V V S d r P dV r P dV r P dV r P r r r r r πεπεϕ ][41][41'0'''0∫∫∫∫+=⋅+⋅∇−=S P V P S V dS r dV rdS r n P dV r P r s rr r σρπεπε刚好是极化体电荷的总电势和极化面电荷产生的总电势之和17证明下述结果并熟悉面电荷和面偶极层两侧电势和电场的变化1 在面电荷两侧电势法向微商有跃变而电势是连续的2 在面偶极层两侧电势有跃变 P n rr ⋅=−0121εϕϕ而电势的法向微商是连续的各带等量正负面电荷密度σ±而靠的很近的两个面形成面偶极层而偶极矩密度.)lim 0l P l r rσσ→∞→=证明1如图可得,20εσss E ∆⋅=∆⋅ 022,200210=−=−=∴z z E εσεσφφεσ面z e E n r r 01112εσφ==∂∂ )(20222z e E nr −==∂∂εσφ 02211εσφφ=∂∂−∂∂∴n n 2)可得ze E r r 0εσ= 00012limlim εεσφφP n l n l E l l r r r r r r ⋅=⋅=⋅=−∴→→ 又EnE n r r =∂∂=∂∂21,φφ++z12lr.012=∂∂−∂∂∴nn φφ18.一个半径为R 0的球面在球坐标20πθ<<的半球面上电势为0ϕ在πθπ<<2的半球面上电势为0ϕ−求空间各点电势提示=−===+−=⋅⋅−⋅⋅⋅⋅⋅−+∫)(,)1()(,0)0(1)1(,12)()()(642)1(531211011偶数奇数n n P P n x P x P dx x P n n n n n n n 解=∞<=∇∇∞→→0022r r 外内外内φφφφ≤<−<≤===πθπφπθφθφ2,20,)(000f R r ∑=)(cos θφl l l P r A内 这是内φ按球函数展开的广义傅立叶级数l l r A 是展开系数∫∫⋅−+=+==−πθθθφθθφ011]sin )(cos [212]cos )(cos [21200d P l d P l f R A l R l R l ll 内内]sin )(cos sin )(cos [21220200∫∫+−+=πππθθθφθθθφd P d P l l l ])()([212100010∫∫−−+=dx x P dx x P l l l φφ ∫∫+−+=−10010)()([212dxx P dx x P l l l φ由)()1()(x P x P l ll −=−则])()()1[(2121010100∫∫+−+=+dx x P dx x P l R A l ll φ∫+−+=+1010)(]1)1[(212dxx P l l l φ当l 为偶数时00=ll R A 当l 为奇数时有101101010012)()()12()(]1)1[(212+−+=+−+=−++∫l x P x P l dx x P l R A l l l l ll φφ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−+l l l ll l φ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=−−l l l ll l φ )12()1(642)2(531)1()11()1(642)2(531)1(210210++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=++−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−−l l l l ll l l l φφ则 )12()1(642)2(531)1(2100++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−l l l R A l ll φ∑<++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−)(),(cos ))(12()1(642)2(531)1(00210R r l P R rl l l l l l 取奇数内θφφ∑+)(cos 1θφl l lP r B 外又)12()1(642)2(531)1(])(cos [212211110++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+=−−+∫l l l P l r B l l R l lφθφ外即∑>++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+−)(),(cos ))(12()1(642)2(531)1(01021R r l P rR l l l l l l 为奇数外θφ。
郭硕鸿《电动力学》第三版 课后答案详细解释
证明: (1) f (u )
f (u ) f (u ) f (u ) df u df u df u ex ey ez ex ey ez x y z du x du y du z df u u u df ( ex ey ez ) u du x y z du Ax (u ) Ay (u ) Az (u ) dAx u dAy u dAz u (2) A(u ) x y z du x du y du z d Ay dA dA u u u dA ( x ex e y z ez ) ( ex ey e z ) u du du du x y z du
(2)在(1)中令 A B 得:
( A A) 2 A ( A) 2( A ) A , 所以 A ( A) 1 2 ( A A) ( A ) A
即
2 A ( A ) 1 2 A ( A ) A 2. 设 u 是空间坐标 x, y, z 的函数,证明: df dA dA f (u ) u , A(u ) u , A(u ) u du du du
方向由原点指向场点。 证明: ( 1 / r ) r / r
3
方法(II)
mr 1 1 ) [m ( )] [( ) m ] 3 r r r 1 1 1 1 ( m ) (m ) [ ( )]m [( ) ]m r r r r 1 1 (m ) [ 2 ]m r r 2 其中 (1 / r ) 0 , (r 0) 1 A (m ) , ( r 0 ) r mr 1 又 ( 3 ) [ m ( )] r r 1 1 1 1 m [ ( )] ( ) ( m ) (m )( ) [( ) ]m r r r r 1 (m )( ) r 所以,当 r 0 时, A 7. 有一内外半径分别为 r1 和 r2 的空心介质球,介质的电容率为 ,使介质球内均匀带静 A (
(完整word版)电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
郭硕鸿《电动力学》课后答案.
电动力学答案第一章电磁现象的普遍规律1. 根据算符的微分性与向量性,推导下列公式:解:(1)(2)在(1)中令得:,所以即2. 设是空间坐标的函数,证明:,,证明:(1)(2)(3)3. 设为源点到场点的距离,的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:;;;,。
(2)求,,,,及,其中、及均为常向量。
(1)证明:可见可见,(2)解:因为,为常向量,所以,,,又,为常向量,,而,所以4. 应用高斯定理证明,应用斯托克斯(Stokes)定理证明证明:(I)设为任意非零常矢量,则根据矢量分析公式,令其中,,便得所以因为是任意非零常向量,所以(II)设为任意非零常向量,令,代入斯托克斯公式,得(1)(1)式左边为:(2)(1)式右边为:(3)所以(4)因为为任意非零常向量,所以5. 已知一个电荷系统的偶极矩定义为,利用电荷守恒定律证明p的变化率为:证明:方法(I)因为封闭曲面S为电荷系统的边界,所以电流不能流出这边界,故,同理,所以方法(II)根据并矢的散度公式得:6. 若m是常向量,证明除点以外,向量的旋度等于标量的梯度的负值,即,其中R为坐标原点到场点的距离,方向由原点指向场点。
证明:其中,(),()又所以,当时,7. 有一内外半径分别为和的空心介质球,介质的电容率为,使介质球内均匀带静止自由电荷,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
解:(1)设场点到球心距离为。
以球心为中心,以为半径作一球面作为高斯面。
由对称性可知,电场沿径向分布,且相同处场强大小相同。
当时,,。
当时,,,向量式为当时,向量式为(2)当时,当时,当时,8. 内外半径分别为和的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流,导体的磁导率为,求磁感应强度和磁化电流。
解:(1)以圆柱轴线上任一点为圆心,在垂直于轴线平面内作一圆形闭合回路,设其半径为。
由对称性可知,磁场在垂直于轴线的平面内,且与圆周相切。
电动力学答案(郭硕鸿+第三版) chapter4
sin θ 1
ww∴有(ωc
sinθ1 )2
+
β
2 z
−
α
2 z
=
ω 2 µε
w αzβz
=
1 ωµσ 2
解得
β
2 z
=
1 (µεω 2 2
−ω2 c2
sin 2 θ1 ) +
1 ω2 [(
2 c2
sin 2 θ1
− ω 2 µε )2Βιβλιοθήκη + ω 2 µ 2σ
2
]
1 2
α
2 z
=
−
1 (µεω 2 2
课 后 答 案 网
相速 kx − ωt = 0
w ∴vp
=
ω k
a 群速 dk ⋅ x − dω ⋅t = 0
d ∴vg
=
dω dk
h 2 一平面电磁波以θ = 45o 从真空入射到ε r = 2 的介质 电场强度垂直于入射面 求反射 k 系数和折射系数
解 nr 为界面法向单位矢量 < S >, < S ' >, < S '' > 分别为入射波 反射波和折射波的玻印
=
−
∂Bv
×
v H
=
∂D∂vt
⋅
v D
=
0
∂t
o ∇
⋅
v B
=
0
得
.c ∇
⋅
v B
=
v B0
⋅ ∇ei(kv⋅xv−ωt)
=
v ik
⋅
v B0e
i(kv⋅xv−ωt )
=
v ik
⋅
电动力学习题解答-郭硕鸿
v e 1. 根据算符∇ 的微分性与矢量性 推导下列公式∇ r ⋅ r = r ⨯ ∇ ⨯ r + r ⋅ ∇ r + r ⨯ ∇ ⨯ r + r ⋅ ∇ r( A B ) B ( A ) (B ) A A ( B ) ( A )Br r 1 r 2 r rA ⨯ (∇ ⨯ A ) = ∇A 2- ( A ⋅ ∇) Av v v v v v v v v v解 1 ∇( A ⋅ B ) = B ⨯ (∇ ⨯ A ) + (B ⋅ ∇) A + A ⨯ (∇ ⨯ B ) + ( A ⋅ ∇)B首先 算符∇ 是一个微分算符 其具有对其后所有表达式起微分的作用 对于本题∇ 将作用于 A v 和B v又∇ 是一个矢量算符 具有矢量的所有性质 因此 利用公式c v ⨯ (a v ⨯ v= a v ⋅ (c v ⋅ v - (c v ⋅ v可得上式 其中右边前两项是∇ 作用于b )A v 后两项是∇ 作用于B v b ) a )b2 根据第一个公式 令 AvB v可得证2. 设 u 是空间坐标 x y z 的函数 证明∇f (u ) =df∇u du r r ∇ ⋅ A (u ) = ∇u ⋅ dAdu r r∇ ⨯ A (u ) = ∇u ⨯ dA .du 证明 1∇f (u ) = ∂f (u ) e r x + ∂f (u ) e r y + ∂f (u ) e r z = df ⋅ ∂u e r x + df ⋅ ∂u e r y + df ⋅ ∂u e r z= df∇u∂x 2r ∂r ∂y∂r y∂z∂r( ) du ∂x r∂u du ∂yr y du ∂z du∂u r ( ) ∂u r∇ ⋅ A (u ) = A x (u ) + A (u ) + A z z u = dA x (u ) ⋅ dA (u ) + ⋅+ dA z u ⋅ = ∇u ⋅ dA∂x ∂y 3r r x y r∂z due r z r r ∂x du ∂y dz ∂z dur r ∂r r∇ ⨯ A (u ) = ∂∂x r ∂ r ∂y ∂ r ∂z = ( ∂A z - ∂y A y )e r ∂z x + ( ∂A x ∂z - ∂A z )e r + ( A y ∂x y ∂x - ∂A x )e r =∂y zA x (u )A y (u ) A z (u )e ∂(x - x ' )2 + ( y - y ' )2 + (z - z ' )2 zx x y y z z r= ( dA z r ∂u -dA y ∂u )e rr(dA xr ∂u - dA z ∂u )e r r + ( dA y r ∂u - dA x ∂u )e r r= ∇u ⨯ dA du ∂ydu ∂z xdu ∂z du ∂x y du ∂x du ∂y z du3. 设r =为源点 x ' 到场点 x 的距离 r 的方向规定为从源点指向场点1 证明下列结果 并体会对源变数求微商(∇'= e r∂ + e r∂ + e r ∂ ) 与对场变数求微商(∇ = e r∂ x∂xe r∂ y∂y e r ∂) 的关系z ∂zx∂x'y∂y'z∂z'∇r = -∇'r = r r , ∇ 1 = -∇' 1 = - r r , ∇ ⨯ r r = 0, ∇ ⋅ r r = -∇' r r = 0.(r ≠ 0)r r r r 3 r 3r 3 r 3 (最后一式在人 r 0 点不成立 见第二章第五节)2 求∇ ⋅ r r , ∇ ⨯ r r , (a r ⋅ ∇)r r , ∇(a r ⋅ r r), ∇ ⋅ rr ⋅ r r )]及∇ ⨯ rr ⋅ r r )],其中r rr 均为常矢量[E 0 sin(k[E 0 sin(ka , k 及E 0证明 ∇ ⋅ r r =∂(x - x ' ) + ∂x ∂( y - y ' ) ∂y+ ∂(z - z ' ) =∂z e r x e r y e r z∇ ⨯ r r=∂ ∂x x - x '∂ ∂y y - y '∂ = 0 ∂z z - z '(a v ⋅ ∇)r r = [(a e v + a e v+ a e v ) ⋅ ( ∂ e v+∂ e v + ∂ e v )][(x - x ' )e v + ( y - y ' )e r + (z - z ')e v ] x x y yz z ∂xx ∂y y∂z z x y z= (a ∂x ∂x∂ a y ∂y + a ∂ )[(x - x ')e v z ∂z x + ( y - y ')e r + (z - z ')e v ]= a e v + a e v + a e v = a v∇(a v ⋅ r v ) = a v ⨯ (∇ ⨯ r v ) + (a v ⋅ ∇)r v + r r ⨯ (∇ ⨯ a v ) + (r v ⋅ ∇) ⋅ a v= (a v ⋅∇)r v + r v ⨯ (∇⨯ a v ) + (r v ⋅ a r ) ⋅ a v= a v + r v ⨯ (∇ ⨯ a v ) + (r v ⋅ ∇) ⋅ a v ∇ ⋅ r r rr r r r rr3 + y[E0 sin(k ⋅r )] = [∇(sin(k ⋅r )] ⋅E+ sin(k ⋅r )(∇⋅E)⎰ r r rfrVf dS f= [∂sin(r⋅rr)er+∂sin(r⋅rr)er+∂sin(r⋅rr)er]E ∂xk=r rx ∂yr rky ∂zr rkz 0r r r rcos(k ⋅r )(kxex+kyey+kzez)E= cos(k ⋅r )(k ⋅E)∇⨯r r rr r r r r r[E0 sin(k ⋅r )] = [∇sin(k ⋅r )]⨯E+sin(k ⋅r )∇⨯E4.应用高斯定理证明⎰dV∇⨯r =⎰ r⨯r应用斯托克斯Stokes 定理证明r r⎰S dS ⨯∇φ=⎰L dl φ 证明1)由高斯定理dV∇⋅g r =V SdS ⋅g即 ⎰V ( ∂g x∂x +∂gy∂y+∂gz∂z )dV =SgxdSx+gydSy+gzdSz而⎰∇⨯ =⎰[(∂f -∂f )ir+ (∂f-∂f )rj + (∂f -∂)r]fdVV ∂y z∂z y∂z x∂x z∂x y∂y fxk dV=⎰[ ∂ r-frj)+∂( f ir-r+∂( frj-f ir)]dV∂x ( fykzr r∂y zrfxk )∂z x yr r又 ⎰S dS ⨯f =⎰S [( f z dS y -f y dS z )i + ( f x dS z -f z dS x ) j + ( f y dS x -f x dS y )k ] =r r r r r r⎰( f y k -f z j )dS x + ( f z i -f x k )dS y + ( f x j -f y i )dS zr r r r r r若令 H x = 则上式就是fyk -fzj , Hy=fzi -fxk , HZ=fxj -fyi ⎰∇⋅r⎰r rV2)由斯托克斯公式有HdV = dS ⋅H ,高斯定理则证毕Sr r r r⎰l f ⋅dl =⎰S ∇⨯f ⋅dSr r⎰l f ⋅dl =⎰l ( f x dl x +f y dl y +f z dl z )∇⨯r ⋅Sr dS = (∂S ∂y∂fz-∂zfy)dSx+ (∂∂z∂fx-∂xfz)dSy+ (∂∂x∂fy-∂yfx)dSz⎰S+⎰ ⎰而⎰l dl φ=⎰l (φi dl x +φj dl y +φk dl z )r r⎰ xR R A Sr⨯ ∇ ( ∂φ ∂φ )r ( ∂φ ∂φ) r (∂φ ∂φ ) r ⎰S dS φ = ⎰S ∂z dS y - ∂y dS zi + ∂x dS z - ∂z dS x j + ∂y dS x - ∂xdS y k= ⎰ ( ∂φ r -∂φ r j )dS + ( ∂φ i r - ∂φ r + ( ∂φ r j - ∂φ i r )dS∂y k ∂z x∂z∂x k )dS y ∂x ∂y z若令 f x = φi , f y = φ j , f z = φk则证毕5. 已知一个电荷系统的偶极矩定义为 r r 'r''P (t ) = ⎰V ρ (x , t )x dV ,利用电荷守恒定律∇ ⋅ J +∂ρ∂t = 0 证明 P 的变化率为r = ⎰ r rdP dt V ∂ r ∂ρr 'J (x ' , t )dV 'rr r证明P= ⎰x 'dV ' = -⎰ ∇' j ' x 'dV '∂tV∂tV∂r rr r r( P ) ∂t x= -⎰V ∇' j ' x 'dV ' = -⎰ [∇' ⋅ (x ' j ' ) - (∇' x ' ) ⋅ j ' ]dV ' = ( j ' V - ∇' ⋅ (x ' j ' )dV '= ⎰ j xdV ' - Sr x r j ⋅ d r rr 若S → ∞,则⎰(xj ) ⋅ dS = 0,( j S = 0)∂ρr 同理 ( ∂t ) y = ⎰ j y dV '∂ρr , ( ∂t ) z = ⎰ j z dV r r r即 dP = ⎰ j (x ' , t )dV ' dt Vrr m r ⨯ r m r ⋅ r 6. 若m 是常矢量 证明除 R 0 点以外 矢量 A = 的旋度等于标量ϕ =的梯R 3 R 3度的负值 即∇ ⨯ r= -∇ϕ其中 R 为坐标原点到场点的距离 方向由原点指向场点证明∇ ⨯ A v = ∇ ⨯ ( m v ⨯ R v ) R3 = -∇ ⨯[⎰ ' m v ⨯ (∇ 1 )] = (∇ ⋅ m v )∇ 1 + (m v ⋅ ∇ )∇ 1 -[∇ ⋅ (∇ 1)]m v - [ (∇ 1) ⋅ ∇]m v R r r r rS⎰= (m v⋅ ∇)∇ 1 , (r ≠ 0)r ∇ϕ = ∇ m v ⋅ R v = -∇ v ⋅ ∇ 1 = - v ⨯ ∇ ⨯ ∇ 1 - ∇ 1 ⨯ ∇ ⨯ v - v ⋅ ∇ ∇ 1 ( ) [m ( )] R 3 r m [ ( )] ( ) ( r r m ) (m )r - [(∇ 1) ⋅ ∇]m v = -(m v⋅ ∇)∇ 1r r ∴∇ ⨯ A v= -∇ϕ7有一内外半径分别为 r 1 和 r 2 的空心介质球 介质的电容率为ε使介质内均匀带静止自由电荷 ρ f求1 空间各点的电场2 极化体电荷和极化面电荷分布r r解 1 ⎰ D ⋅ dS = ⎰ ρ f dV , (r 2>r>r 1)即 D ⋅ 4πr 2 = 4π(r 3 - r 3)ρ31 fr (r 3 - r 3)ρ r∴ E =13εr 3r , (r 2 > r > r 1)r r Q f4π33由 E ⋅ dS =Sε 0 = 3ε (r 2 - r 1)ρ f , (r > r 2 )r (r 3 - r 3) r∴ E = 2 1ρ f r , (r > r 2 )3ε 0r 3 r r < r 1时 E r r 2)ε - ε 0 r r P ε 0χ e E = ε 0 0E = (ε - ε 0 )E∴ ρ = -∇ ⋅ r= - ε - ε ∇ ⋅ r= - ε - ε∇ ⋅ (r 3- r 3) ρ r= -ε - ε 0 ρ ∇ ⋅ r - r 3 rPP (0 )E () [ 1 0 3εr 3 f r ] 3ε f(r 1 r ) r 3= - ε - ε 0 ρ 3ε f σ P = P 1n - P 2n(3 - 0) = -(ε - ε 0 )ρε f考虑外球壳时 r r 2 n 从介质 1 指向介质 2 介质指向真空P 2n = 0f0 ε2 1S2 1 μσ P = P 1n = (ε - ε r 3 - r 3 0 ) 1 ρ 3εr 3 f r r r =r = (1 - ε 0ε r 3 - r 3 ) 2 1 ρ f3r 3考虑到内球壳时 r r 2σ P = -(ε - ε r 3 - r 3 0 ) 1 ρ 3εr 3f r rr =r = 08 内外半径分别为 r 1 和 r 2 的无穷长中空导体圆柱 沿轴向流有恒定均匀自由电流 J f 导体的磁导率为μ 求磁感应强度和磁化电流 解r r d r r⎰l H ⋅ dl = I f + dt ⎰ D ⋅ dS =I f r r当r < r 1时, I f = 0,故H = B = 0r r r r 2 2当 r 2>r>r 1 时⎰lH ⋅ dl = 2πrH = ⎰Sj f ⋅ dS = j f π (r - r 1 )v μj f (r 2 - r 2 )μ(r 2 - r 2 ) rrB =1=2r12r 2j f ⨯ r当 r>r 2 时2πrH = πj f (r 2 - r 2)r μ0 (r 2 - r 2 ) r rB = 21 2r 2rrj f ⨯ rμ - μ0 ) rμrr r 2 - r 2J M = ∇ ⨯ M = ∇ ⨯ (χ M H ) = ∇ ⨯ ( 0)H = ( 0- 1)∇ ⨯ ( j f ⨯ r1)2r 2= (μ - 1)∇ ⨯ r= (μ - 1) rj , (r < r < r )H f 1 2αr= n r ⨯ r -r从介质1指向介质 M(M 2 M 1 ), (nμr 2 - r 2在内表面上 M 1 = 0, M 2 = ( - 1)1 ) r =r = 0r 故αr M= n r ⨯ μ0= 0,(r = r 1) 2r 21在上表面 r r 2 时αr= r⨯ - r = - r ⨯ rr rr 2 - r 2 r ⨯ r= - r 2 - r 2 rμ -Mn ( M 1 ) n M 1 r =r= - ⨯ 1 j f r 2r 2r r =r 1 j f 2r (1)2 μ02 2rμμ μ M 22μr 2-r 2r=-( -1)21j fμ02r 24π l r r = F ⋅ ⎰⎰ ⎰⎰ 12 ⎰9证明均匀介质内部的体极化电荷密度 ρ 总是等于体自由电荷密度 ρ 的- (1 -ε 0)倍Prr rfερ fε 0证明ρ P = -∇ ⋅ P = -∇ ⋅ (ε - ε 0)E = -(ε - ε 0 )∇ ⋅ E = -(ε - ε 0 ) ε= -(1 - ε)ρ f10 证明两个闭合的恒定电流圈之间的相互作用力大小相等 方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律) 证明1 线圈 1 在线圈2 的磁场中的受力vμ v ⨯ r vdF v B 2 = 0 ⎰ 2 = v ⨯ B v I 2dl 2 1231212 I 1dl 1 2v μ v ⨯ v ⨯ r v) μ I Iv ⨯ r⨯ r v) ∴ F 12 = 0 I 1dl 14π (I 2dl 2 r 3 12 = 0 1 2 4π ⎰⎰dl 1 (dl 2 12r 3 l 1 l212 = μ0 I 1I 2v v r v 4π 2 1 r 3r vv r 3 1l 1 l 2 12v2dl (dl ⋅ 12) - l 1 l 21212(dl 12⋅ dl )12 线圈 2 在线圈 1 的磁场中受的力 同 1 可得vμ0 I 1I 2 v 21 4π 1 v r v 2 r 3 r v v v r 3 2 1 F = dl (dl l 2 l 1⋅ 21 ) - 21 21 (dl 21⋅ dl ) 2分析表达式 1 和 21 式中第一项为v v ⋅ r v ) = vv ⋅ r v=v dr=v⋅ - 1) = 0⎰⎰ dl 2 l 1 l 2(dl 1 312⎰ dl 2 ⎰ l 2dl 1v12 3 12l 2v r vdl 2 ⎰ 2l 112⎰ dl 2 (l 2一周12⎰⎰ 12 r3同理 对 2 式中第一项dl (dl l 2 l 1⋅ 21 ) = 0 21v v 12 21 = - μ0 I 1I 2 4π r r v v⎰⎰ r 3 1 212 (dl dl )l 1 l 2 1211. 平行板电容器内有两层介质 它们的厚度分别为 l 1 和 l 2 电容率为ε1和ε 2 接上电动势为E 的电池 求1 电容器两板上的自由电荷密度ω f12 r ⎰⎰ r∴ F r今再两板0 f ⎩ f2 介质分界面上的自由电荷密度ω f若介质是漏电的 电导率分别为σ1和σ 2 何当电流达到恒定时 上述两问题的结果如 解 在相同介质中电场是均匀的 并且都有相同指向⎧l 1E 1 + l 2E 2 = E 则⎨D - D = εE - ε E = 介质表面上σ = ,⎩ 1n故 E =2nε 2E 1 1 2, E =2ε1Ef0) l 1ε 2 + l 2ε1l 1ε 2 + l 2ε1又根据 D 1n - D 2n = σ fn 从介质 1 指向介质 2在上极板的交面上D 1 - D 2 = σ fD 2 是金属板 故 D 2 0即σ = D =ε1ε 2εf 11而σ = 02l 1ε 2 + l 2ε1σ f = D ' - D ' = -D ' , (D '是下极板金属 故D ' = 0)31∴σ = - 2ε1ε 2ε2 1 1= -σ3l 1ε 2 + l 2ε11若是漏电 并有稳定电流时r r j r r jE 1 = σ1 , E 2 = σ212⎧ r j rj r ⎪l 1 1 + l 22= E 又⎨ σ 1 σ 2⎪ j 1n = j 2n = j 1= j 2 , 稳定流动 电荷不堆⎧E = j 1 =σ 2E得 j = j =E⎪ 1 σ ,即: ⎨1l 1σ 2 + l 2σ11 2l 1l 2jσ E+ ⎪E 2 = 2 = 1σ1 σ 2⎛⎪ σ 2 l 1σ 2 + l 2σ1σ = D =ε1`σ 2Eσ = -D = -ε 2σ 1E f 上3l 1σ 2 + l 2σ 1f 下2l 1σ 2 + l 2σ1112f1 1 12 1 2 0 σ = D - D = ε 2σ 1 - ε 2σ1 Ef 中2l 1σ 2 + l 2σ 112. 证明1 当两种绝缘介质得分界面上不带面自由电荷时 电场线的曲折满足tan θ 2 tan θ1 = ε 2ε1其中ε1和ε 2 分别为两种介质的介电常数 θ1和θ 2 分别为界面两侧电场线与法线的夹角 2 当两种导电介质内流有恒定电流时 分界面上电场线曲折满足tan θ 2 tan θ1 = σ 2σ1其中σ1和σ 2 分别为两种介质的电导率证明 (1)根据边界条件 n ⨯ (E v - E v) = 0,即 E 2 sin θ 2 = E 1 sin θ1由于边界面上σ = 0 故n v ⋅ (D v- D v ) = 0 即ε E cos θ= ε E cos θ∴有tg θ 2 ε 2 f= tg θ1 ,即 ε1 tg θ 2 tg θ1 2=ε 2 ε11 2 221 11(2)根据 J v = σE v可得 电场方向与电流密度同方向由于电流 I 是恒定的 故有j 1 cos θ 2 = j 2cos θ1即 σ 1E 1 cos θ 2 =σ 2 E 2cos θ1而 n v ⨯ (E v- E v ) = 0 即 E 2 sin θ 2 = E 1 sin θ1tg θ 故有tg θ 2=σ 1σ 213 试用边值关系证明 在绝缘介质与导体的分界面上 在静电情况下 导体外的电场线总是垂直于导体表面 在恒定电流的情况下 导体内电场线总是平行于导体表面 证明 1 导体在静电条件下达到静电平衡∴导体内E v而n v ⨯ (E v - E v) = 0∴ n v ⨯ E v= 0 故 E v 垂直于导体表面3 2 2 12 2 2 1 f 1 0 1 1 J r r ∂ r r r r re 3 导体中通过恒定电流时 导体表面σf = 0∴导体外 E v = 0,即 D v= 0而n v ⋅ (D v - D v ) = σ = 0,即: n v ⋅ D v = n v ⋅ ε E v= 0∴ n v ⋅ E v = 0导体内电场方向和法线垂直 即平行于导体表面14 内外半径分别为 a 和 b 的无限长圆柱形电容器 单位长度电荷为λ f为σ 的非磁性物质板间填充电导率1 证明在介质中任何一点传导电流与位移电流严格抵消 因此内部无磁场2 求λ f 随时间的衰减规律3 求与轴相距为 r 的地方的能量耗散功率密度4 求长度为 l 的一段介质总的能量耗散功率 并证明它等于这段的静电能减少率1 证明 由电流连续性方程 ∇ ⋅r + ∂ρ f = 0∂t r据高斯定理 ρ f = ∇ ⋅ D ∴∇ ⋅ r + ∂∇ ⋅ r = ∇ ⋅ r + ∇ ⋅ ∂ r=DD J ∂t 0 即 J ∂t∴∇ ⋅ r + ∂ r = ∴ r + ∂r =(JD) 0. J ∂tD ∂t0 即传到电流与位移电流严格抵消(2)解 由高斯定理得⎰ D ⋅ 2πrdl = ⎰ λ f dl∴ r λ f r r λ f rD = 2πr e r ,E = 2πεr e rr D 又 J + ∂t= 0, J = σE , D = εEr r r r =σ t∴σE + ε ∂E= 0, E = E e ε∂t 0λ f r λr-σ tr∴ 2πεr e r= 0 e ε2πεr rf = f λ r∴ λ f -σ t= λ e ε 03 解r r λ f -σ t λ fJ = - ∂D = - ∂ ( 0 e ε ) = σ ⋅∂t ∂t2 2πr21 ε 2πrf 2能量耗散功率密度 J5 解ρ = Jσ = ( 2πεr ) σ单位体积dV = l ⋅ 2πrdrP ⎰a λ f ( 2πεr )2σl 2πrdr = l σλ2 2πε 2 ln b ab1 r r b 1 l λ2 1 l λ2b 静电能 W = ⎰ D ⋅ EdV = ⎰f dr = ⋅ f⋅ ln a 2 a 2 2πεr 2 2πε a减少率 - ∂W = - l λ f ln b ⋅ ∂λ f l λ2 σ = ln b ∂t 2πε a ∂t 2πε 2 ab fP 00 E 外 r ⋅1.一个半径为 R 的电介质球 极化强度 P=K(1)计算束缚电荷的体密度和面密度 (2)计算自由电荷体密度(3)计算球外和球内的电势(4)求该带电介质球产生的静电场总能量解 (1) r r2 电容率为ρ = -∇ ⋅ r = -K ∇ ⋅ rr = -K (∇ 1 ⋅ r r + 1 ∇ ⋅ r r) = -K / r 2Pσ = -n r ⋅ Pr (P 2 r 2rP 1) Rr 2r 2又 球外无极化电荷r r r r P 2 = 0 σ p = n ⋅ P 1 R = n ⋅ K r rR = K / R(2) 由公式 D = εEr r r D = ε 0 E + Prε r D = Pε - ε 0ρ = ∇ ⋅ r = ε ∇ ⋅ r = εK`fDε - ε P(ε - ε )r 2(3)对于球外电场 由高斯定理可得rr Q⎰E 外 ⋅ ds = 0εK⋅ r 2 sin θdrd θd ϕr ⋅ 4πr 2 = ⎰ ρ fdVε 0 ⎰⎰⎰ (ε - ε= 0)r 2ε 0∴rεKR rE 外 03 r(ε - ε 0 )rrKr r同理可得球内电场 E 内ε - ε 2 ∞rrεKR∴球外电势ϕ外⎰ E外⋅ dr∞ε 0 (ε - ε 0 )rrrr2 - ∴ ε ε2 a 0 0rr Rrr εKK R球内电势ϕ内⎰ E外⋅ drR⎰ E内⋅ drr ε 0 (ε - ε 0 +ln) ε - ε 0 r1 r r 1 ε K r r K rr εK 24 ω 内2 D 内⋅ E 内2 ⋅ ε ε ⋅ r 2 ⋅ ε ε ⋅ r 2 ∴ ε ε 0 r∴1εK 22K2W 内 ⎰ω内d V⎰⎰⎰ 2 ⋅ (ε - ε ⋅ r )2r2sin θdrd θd ϕ 2πεR)ε - ε 01 ε2 K 2 R 2 1 2 2πε 2 RK 2W 外 ⎰ω外d V = ⎰⎰⎰R 2 ⋅ ε (ε - ε 0 ⋅ ⋅ r )2 r 4sin θdrd θd ϕε 0 (ε - ε 0 )∴W = W 内 W 外 2πεR (1 + ε)(ε 0 K )2ε - ε 02 在均匀外电场中置入半径为 R 0 的导体球 试用分离变数法球下列两种情况的电势1 导体球上接有电池 使球与地保持电势差φ0 ;2 导体球上带总电荷 Q.解 1 当导体球上接有电池 与地保持电势差φ0 时 以地为电势零点本问题的定解条件如下φ 内 φ0R= R 0∇ 2ϕ0 R> R 0⎧⎪ϕ外 且⎨R →∞ = -E 0 R cos θ ϕ 0 ϕ 0 是未置入导体球前坐标原点的电⎜⎩ϕ外R =R 0 = φ0根据有关的数理知识 可解得ϕ外 ∑ n b nR n 1P n cos θ )由于ϕ R →∞= -E 0 R cos θ n 0ϕ 0 即ϕa + a R cos θ + ∑ a R n P (cos θ ) +b 0 + b 1 cos θ + ∑b nP (cos θ ) = -E R cos θ + ϕ外0 1 n n n =2 R R 2 n =2 Rn +1 nR →∞故而有 a 0 = ϕ 0 , a 1 = -E 0 , a n = 0(n > 1), b n = 0(n > 1)∴ϕ外 ϕ 0 E 0 R cos θb 0 +b 1RR 2∞ 外外 外∞ ∞∞20 0 2 R ncosdsR ϕ R R φ 0R R R 2 0 ⎨ 2 2s ∑ 2 2 3又ϕ外R =R 0= φ0 ,即 ϕ外 R =R 0= ϕ 0 - E 0 R cos θb 0 + R 0 b 1cos θ = φ 0故而又有⎧+ b 0 ∴⎪ R 0= φ0⎪- E R⎜⎩0 0cos θ + b 1 cos θ = 0 0得到b 0 = (φ0 - ϕ 0 )R 0 , b 1 = E 0 0最后 得定解问题的解为(φ - ϕ )R E R 3 ϕ = -E R cos θ + ϕ + 0 0 0 + 0 0cos θ (R > R ) 外 0 0R R2 当导体球上带总电荷 Q 时 定解问题存在的方式是⎧∇ 2φ 0(R < R )⎪ 内0 ⎪∇ 2φ ⎪φ 0(R > R 0 ) 有限⎪ 内 R →0 ⎪ ⎨ 外 R →∞ ⎪E 0Rcos θ + ϕ 0 (ϕ 0 是未置入导体球前坐标原点的电 ⎪φ内 ⎪ ⎪- εφ 外 R R ∂φ外 Q (R = R )⎩⎰ 0∂R解得满足边界条件的解是ϕ内 ∑ a n n =0R nP cos θϕ外 ϕ 0E 0Rcos θ b n Pn =0 R n 1cos θ由于ϕ外R →∞ 的表达式中只出现了 P 1 (cos θ cos θ项 故 b n = 0(n > 1)∴ϕ外 ϕ 0E 0 R cos θb 0 + b 1R R 2cos θ又有ϕ外R =R 是一个常数 导体球是静电平衡ϕ外 R =R 0= ϕ 0 - E 0 R 0cos θb 0 + R 0 b 1cos θ = C 0∴-E 0 R 0 cos θ +b 1 cos θ = 0 即 0b 1 = E 0 0 n 0 外 0 nf4πεR∴ r r r0 0b E R 3ϕϕE R cos θ + 0 + 0 0 cos θ 外R R 2∂φ外Q又由边界条件- ⎰ε 0s∂r ds Q ∴ b 0 =4πε∴ϕ内Q4πε 0 R 0 - ϕ 0, R < R 0QE R 3ϕ 外4πε R + 0 0 cos θ R 2E 0Rcos θ R > R 03 均匀介质球的中心置一点电荷Q f 球的电容率为ε球外为真空 试用分离变数法求空间电势 把结果与使用高斯定理所得结果比较 提示 空间各点的电势是点电荷Q 的电势Q f与球面上的极化电荷所产生的电势的叠加 后者满足拉普拉斯方程解 一. 高斯法在球外 R > R ,由高斯定理有εr ⋅ r = QQ + Q = Q对于整个导体球而言 束缚电荷Q P = 0)⎰ E ds总 f P fE = Q f4πε 0R 2积分后得ϕQ f+ C .(C 是积分常数外4πε R又由于ϕ外 R →∞ = 0,∴ C = 0∴ϕ外 =Q f 4πε 0 R(R > R 0 )在球内 R < R 0 ,由介质中的高斯定理⎰ D ⋅ ds = Q fr r r Q f又 D = εE ,∴ E =4πεR 2积分后得到 ϕ内Q f 4πεRC 2.(C 2是积分常数 00 R 2 0由于ϕ内 ϕ外R =R 0,故而有Q f4πε 0 R 0 =Q f 4πεR 0C 2∴ C 2 =Q f 4πε 0 R 0- Q f4πεR 0 (R < R 0 ).∴ϕ内Q f 4πεR Q f 4πε 0 R 0 - Q f4πεR 0(R < R 0 )二. 分离变量法本题所求的电势是由点电荷Q f 与介质球的极化电荷两者各自产生的电势的叠加 且有着球对称性 因此 其解可写作ϕ = Q f+ ϕ '4πεRb由于φ ' 是球对称的 其通解为 ϕ ' = a +RQ f由于球心有Q f 的存在 所以有ϕ内 R →0 ∞即ϕ内4πεR a在球外有ϕ 外 R →∞ 0 即ϕ外Q f b 4πεR R由边界条件得ϕ 内 ϕ外 R R 0, 即Qf+ a 4πεR 0Q f + b4πεR 0 R 0ε ∂ϕ 内 ε ∂R 0R R 0 , 即ε 0Q f 4πεR 2 - ε 0b = - 0 εQ f4πεR 2∴ b =⎧ϕ Q f1 4πε (ε Q f - 1 ), a ε , R > R Q f ( 1 4πR 0 ε 0 - 1 ) ε ⎪ 外 4πε R ∴⎨⎪ϕ Q fQ f - Q f, R < R⎛⎜ 内 4πεR 4πε 0 R 0 4πεR 0∂ϕ外 ∂R0 0∂φ外∂R⋅R R 0 R R R 0R ⋅ 0 0⋅ ⋅ ⋅ f 11 0 011r R 1 r R r r 14 均匀介质球 电容率为ε1r 的中心置一自由电偶极子 P f球外充满了另一种介质 电容率为ε 2求空间各点的电势和极化电荷分布提示 同上题r r P R φ =4πε 3+ φ ' ,而φ ' 满足拉普拉斯方程解 ε1 ∂φ内 ∂R = ε 2∂φ外∂R2P f cos θl 1又ε1 R = ε1 (-4πε13 + ∑l A l R 0 P lε = ε (- 2P f cos θ - ∑(l 1 B l P 2R 02 4πε3 l 2l比较 P l (cos θ )系数B 0 0A 0 02ρ f + ε A = -2ε 2ρ f - 2ε 2 B 1 , 及A= B 14πR 31 14πε1 3332(ε1 - ε 2 )ρ f 2(ε1 - ε 2 )ρ f 得 A 1 =4πε1 (ε1 + 2ε2 )R 3, B 1 =4πε (ε1 + 2ε 2)比较 P 2 (cos θ )的系数2ε A R3B 2, A = B 21 2 04 2 4 0 0及 A 2 (1 +ε R) = 0 1 0所以 A 2 = 0, B 2 = 0 同理 最后有A l =B l = 0,(l = 2,3L )φ ρrf R + 2(ε1 - ε 2 )ρ f R cos θ = ρr f r 2(ε + 1 - ε 2 )ρr f r R , (R < R ) 内 4πε R 3 4πε1 (ε1 + 2ε 2 )R 3 4πε1R 3 4πε1 (ε1 + 2ε 2 )R 3 0 φ ρr f R + 2(ε1 - ε 2 )ρ f cos θ = ρr f r 2(ε + 1 - ε 2 )ρr f R = 3ρr f R , (R > R ) 外 4πε R 3 4πε1 (ε1 + 2ε 2 )R 2 4πε1R 3 4πε1 (ε1 + 2ε 2 )R 3 4π (ε1 + 2ε 2 )R 3 0 ∂φ内∂R R R R ⋅ ⋅ ⋅ 10 00 0 0= ⎪ φ φ Pfε 3 ⎨ 22 ⎪球面上的极化电荷密度σ P = P 1n - P 2n , n r从 2 指向 1 如果取外法线方向 则 σ p = P 外n - P 球n = [(ε 2 - ε 0)∇φ外)]n - [(ε1 - ε 0)∇φ内)]n= -(ε 2 - ε 0 ) ∂φ外 + (ε ∂R 1- ε 0 ) ∂φ内∂R R R 0 = (ε - ε ) - 6ρ f cos θ - (ε - ε )[ 6(ε 0 - ε 2 )ρ f cos θ - 2(ε1 - ε 2 ) - 2(ε1 + 2ε 2 ) ρcos θ ]2 0 4π (ε + 2ε 2 )R3 1 0 4π (ε + 2ε 2 )R 3 4πε1 (ε1 + 2ε 2 )R 3 f=6ε1(ε 0 - ε 2 ) + 6ε 2 (ε1 - ε 0) ρ cos θ = - 3ε 0 (ε1 - ε 2 ) ρ cos θ4πε1 求极化偶极子(ε1 + 2ε 2 )R 3 f 2πε1 (ε1 + 2ε 2 )R 3f rr P f ql 可以看成两个点电荷相距 l 对每一个点电荷运用高斯定理 就得到在每个点电荷旁边有极化电荷q = (ε 0- 1)q ε1 ,-q P = (ε 0- 1)(-q )ε1两者合起来就是极化偶极子rε 0rP P = ( - 1)P f1r5.空心导体球壳地内外半径为 R 1 和 R 2 球中心置一偶极子 P 电势和电荷分布解球壳上带电Q 求空间各点 ⎧ ⎪∇2φ= 0,φ φ 3 r →∞ = 0 ⎪= C ,φ ⎪ r rr →0 = ∞ φ ⎪φ = P ⋅ r + φ ',φ ' 为有限值⎛⎜ 14πε 0r 3 1 1 r →0⎧ ⎪φ3 ∑ B l P (cos θ ),φ = C ⎪ r l +1 ⎨ 2= C ,φ2 2r =R 1 = C ⎪⎪φ = r ⋅ r r + ∑ A r l P (cos θ ) -∂φ3dS+∂φ1dS=Ql l R 23 φ 1 R 1l 3 r -R 1 1 fP f⎩ ⎪ 14πε0r3 ⎰ ∂rr =R 2⎰ ∂rr =R 1εR P R R 1R R R 2 R 3R R R R ⎪ ⎩1 1 1 ⎪ f111 R 11Q 0 0 1 1 1⎧ B 0 +B 1 cos θ + B2 P+L = C ⎪ 2 ⎪ 2 2 ⎨ cos θ + A 3 2 + A R 2 cos θ +L = C ⎜⎩ 4πε 0 20 1 1即 A =B 0 =C ,( A R +P f) cos θ = 0, B = 0(l = 1.2.3L ), A= 0(l = 2.3.4L )1 14πεR 2 ll又 ∂φ1 = - 2P f cos θ + ∑lA R l -1P = - P f cos θ + A cos θ +L ∂r 4πε 0 3 l 1 L 2πε 0 3 ∂φ3∂r = ∑(-l - 1) B l P r l +2 l = - B 0 1 - 2 B 1 cos θ +L 1∂φ3 B 0 B 02 B 0则 -⎰ ∂r dS = ⎰ R 2 dS = R 2 ⎰ dS = 4πR 12 = 4πB 0111∂φ1dS =2π π-P fcos θR 2 sin θd θd ϕ +2π π- P f cos θR 2 sin θd θd ϕ = 0 + 0 = 0 ⎰ ∂r⎰0 ⎰02πε0 3 ⎰0 ⎰04πε0 3故 - ⎰ ∂φ3dS + ∂r ∂φ1 ∂r = 4πB 0 = εB = Q 0, A = Q , A = - P f 0 4πε 0最后有0 4πε R 1 4πε 3 ⎧r r r r ⎪φ = P ⋅ r - P f ⋅ r + Q , (r < R ) ⎪4πε 0r 2 4πε 0 3 4πε 0R 2 ⎪ Q⎨φ3 =4πε , (r > R 2 ) 0 ⎪ Q ⎜φ2 = 4πε 电荷分布 0 R 2, (R 1 < r < R 2 )在 r R 1 的面上σ P 1 = ε 0 ∂φ1 ∂r = - P f cos θ 2πR 3+ - P f cos θ 4πR 3 = - P f cos θ 4πR 3在 r R 2 面上0 R R 21 11⎰ 2 1r2=-ε0∂φ3∂r=Q4πR 22σPrφ l r →∞0外 φ R R R ⎣ R l +2 ⎪ 外 ⎪⎧232 06 在均匀外电场 E 0 中置入一带均匀自由电荷 ρ f 的绝缘介质球ε 求空间各点的电势⎧∑( A r l + ⎪ B lr l +1 )P l (cos θ ) 解 ⎪φ1 ρ r2 + φ '⎨ 内 6εf⎪∇ 2φ ' = 0 ⎪⎩φ 是由高斯定理解得的ρ 的作用加上 r的共同作用内φ = -E r cos θ ,φ 'fE 0r →0 有限⎪ 外 E 0r cos θ + ∑ ⎨ 1 B l r l +1 P l (cos θ ) ⎪φ ρ r 2 + ∑c r l P (cos θ )⎛⎪ 内 6ε f e lφ内 φ外 r = R 0 ) :E R cos θ +B 0 + B 1+B 2P +1ρ R 2 + c+ c R cos θ + c R 2 P +0 0ρ f2R 0 R 0B 06εf1 02 0 2 即6εR 0 + c 0 =E 0 R 0 +2 = c 1R 0 0B 2 = c 2ε ∂φ内 ∂r = ε 0∂φ外 ∂r ∂φ内 =⎡ ρ f R +lc R l -1P (cos θ )] =ρ fR+εc cos θ + 2εc R P +L ∂r⎢ 3ε∑l 0 l 30 1 2 0 2∂φ外 ∂r= ε 0(-E 0 cos θ + ∑(-l - 1) B l P l) 0R R 3 2B 1R R R R R R 0 RR r →∞ f 3 R 40 11 ⎪φ 3 0 外- ε E cos θ -ε0B 0 -2ε0B 1cos θ -3ε0B 2 P +LL0 023 42ρ fε 0 B 02ε 0 B 13ε 0 B 2即R 0 = - 2εC 1 = -ε 0 E 0 - 32εC 2 R 0 = - LL解方程得3B = - 0ρ 03ε fC = -R 2ρ ( 1 3ε 0 + 1 ) 6ε3ε E R 33ε E B = - 0 0 0 + E3 ε + 2ε 0C = -0 0ε + 2ε 0及 2εC 2 R 0 = -3ε 0 R 0C 2即 C 2 (2εR 0 + 3ε 0 R 0 ) = 0C 2 = B 2 = 0同理 C l = B l = 0l = 2,3LL⎧ E r cos θ ± R 3ρ + E 03 0 cos θ - 3ε 0 E 0 0cos θ , r > R ⎪外0 得 ⎨3r ε 0 r(ε + 2ε 0 )r 2 0 ⎪φ ρ f r 2 ± R 2 ρ ( 1 1 3ε 0 E 0 r cos θ , r < R⎛⎜ 内 6ε0 f 3ε 6ε ε + 2ε 27在一个很大的电解槽中充满电导率为σ 2 的液体 使其中流着均匀的电流δ f 0今在液体中置入一个电导率为 σ 1 的小球 求稳衡时电流和电荷分布 讨论 σ 1 >> σ 2 及σ 2 >> σ 1 两种情况的电流分布特点先求空间电势⎧⎪∇ 2φ 0⎨ φφr = R⎜⎩∇ 2φ 0 内外因为δ内nδ 外n (r = R 0 ) 稳恒电流认为表面无电流堆积 即流入n = 流出n故 σ 12φ内2r = σ 2 2φ外2r并且δ 外 = δ 0即 φ外 r →∞ = -E 0r cos θ( j = σ 2E 0 )φ内 r →∞ 有限 可以理解为在恒流时r → 0 的小封闭曲面流入 流出内0 R ff 23σ 2 σ 1 2σ 2 ⎦内 E f fj 1 σ 1 2 ⎣ σ 1 内 j σ E f σ 1 2σ 1 2⎧φE r cos θ , r < R⎪ 内这时的解即为 ⎨⎪φ E r cos θ + E R 3 ( σ 1 - σ 2 )cos θ, r > R ⎛⎜ 外 00 0 1 + 2σ 2 r 2φe r 2φe r 1 2φ r求内外电场 E = -∇φ = -( r + θ +e φ )2r2θ r2φ e r1 2φ r 3σ 2r sin θ 2Φr rE(内 r +内e ) =E (cos θe - sin θe ) 内2r r 2θθσ 1 + 2σ 2= 3σ 2 σ1 + 2σ 2rE 0e r zrE R 3σ - σr rEE (cos θe - sin θe ) + 0 0 ( 12 )[2 cos θe + sin θe ] 外0 rθ r 3 σ 1 + 2σ 2rrE R 3σ - σr r rE (cos θe - sin θe ) + 0 0 ( 12)[3cos θe - cos θe + sin θe ] 0 r θ r 3 σ + 2σ 2r r θ σ - σ⎡3E cos θ vE v ⎤ E + R 3 ( 1 2 ) 0e - 00 0 + 2σ ⎢ r 3求电流r r 3 ⎥ 根据 r j v vv外 2 外⎧ v j ⎪ f 0 = σ 2 Ev 0 及⎨( v j ⋅ r r )r v σ E r cos θr r⎪ 0 = 2 0e r ⎩ r 53σ rr 5r σ σ 3( r j ⋅ r r )r r r得 j1j f , j= j12 R 3[ 0- 0 ]内2σ 0 外内2σ 0r 5r 3ω = ε (E - E ) = ε (E- E ) = 3ε 0E 0 cos θ (σ - σ )f2n1n外n 内nσ 1 + 2σ 2σ 20 0 r θ r θ 1 24πε a 2 + r 2 - 2ar cos θzQ far OR n r n ∞ R 0 8.半径为 R 0 的导体球外充满均匀绝缘介质ε导体球接地 离球心为 a 处(a > R 0 ) 置一点电荷Q f试用分离变数法求空间各点电势 证明所得结果与镜像法结果相同提示1 = 1 = 1 ∑∞( ) P (cos θ ).(R > a ) r 解 1 分离变数法由电势叠加原理 球外电势a n =0 aφ Q f外4πεR +φ ' ,φ ' 是球面上感应电荷产生的电势 且满足定解条件⎧∇ 2φ ' = 0,(r > R )⎪ 0⎨φ '⎪ r →∞ = 0 P⎪φ 外 r =R = 0⎩0 根据分离变数法得φ '= ∑ l =0B lr l +1 P l (cos θ ), (r > R 0 )∴φQ f1+ ∑ B lP (cos θ )*外l =0rl +1 l= Q f 1 ∑∞ ( ) P (cos θ ) + ∑ B l P (cos θ ), (r < a ) 4πε a∞ n =0 a Q f n R 0 l l =0 B lrl +1 l又φ外 r =R =∑[ πε () +l +1]P l (cos θ ) = 0n =04 a aR oQ f即4πεa + B 0 R 0= 0, Q f R 0 + B 1 4πεa a 2 = 0,..., Q f 4πεa ( R 0 )l + a B l l +1 0 Q fR 3Q f R 2l +1 Q f ∴ B = -R , B = - O , B = - 0 ,0 0 4πεa 1 a 4πεa la l 4πεa代入 * 式得解∞ R 2 + a 2 - 2aR cos θ ∞ 0R n= 0a 2 + r 2 - 2ar cos θR 2 + a 2 - 2Ra cos θQR 1aR 2 + 1 - 1cos θ R 4 2R 2 R a 2 a0 f Q QQ 1f 1QQ Q 02 镜像法如图建立坐标系 本题具有球对称性 设在球内r 处有像电荷Q ' , Q '代替球面上感应电荷对空间电场的作用 由对称性 Q '在 O Q 的连线上 P20 先令场点 P 1 在球面上 根据边界条件有Q f +Q' r r ' fr ' = 0,即 r f= - Q ' Q f = 常数将Q ' 的位置选在使∆ Q 'P O ∆ Q P O,则有r Q ' = R 0 常数为达到这一目的 令Q '距圆心为 rr a 0fr R R 2则0 = 0 , r = 0R 0 a ar 'Q ' 并有 = - r Q f= R 0 = 常数 a Q ' = -R 0Q f a 1 这样 满足条件的像电荷就找到了 空间各点电势为2φ外 = Q f 4πεr 1 + Q ' 4πεr 2 = 1 [ Q f - 4πε ], (r> a ).将分离变数法所得结果展开为 Legend 级数 可证明两种方法所求得的电势相等9 接地的空心导体球的内外半径为 R 1 和 R 2 在球内离球心为 a(a<R 0)处置一点电荷 Q用镜像法求电势 导体球上的感应电荷有多少 分布在内表面还是外表面 解 球外的电势及导体内电势恒为 0 而球内电势只要满足φ内 r R= 0即可因此做法及答案与上题同 解略φ内 =1 4πε 0 [ Q-]因为球外φ = 0故感应电荷集中在内表面 并且为 Q.R Q far 2 + ( 0 )2 + 2r 0 cos θRR 2a aR 1R 2 rz Q fQ ’P 1Q Rf R R 1φ -Q 210.上题的导体球壳不接地 而是带总电荷 Q 0,或使其有确定电势ϕ0 势 又问ϕ0 与 Q 0 是何种关系时 两种情况的解是相等的试求这两种情况的电解 由于球壳上有自由电荷 Q 0 并且又是导体球壳 故整个球壳应该是等势体 其电势用 高斯定理求得为Q + Q 04πε 0 R 2所以球壳内的电势将由 Q 的电势 像电荷- QR1 a的电势及球壳的电势叠加而成 球外电势利用高斯公式就可得故⎧ ⎪φ = 1 [ Q - QR 1a + Q + Q 0 ].(R < R ) ⎪ 内 4πεR 2 + a 2 - 2Ra cos θ R 4 2R 2 R R 1 φ =⎪ 0R 2 + 1 - 1 cos θ2⎨ ⎪ ⎪φ = Q + Q 0 , (R > R )a 2a⎛⎜ 外 4πε 0 R⎧ ⎪φ = 1 [ Q - QR 1a] + φ.(R < R )⎪ 内 4πεR 2 + a 2 - 2Ra cos θ R 4 2R 2R 或 φ =⎪0R 2 + 1 - 1 cos θ⎨ ⎪⎪ = R 2 φ ⎩ 外r 0 , (R > R 2 ) a 2a当 φ =Q + Q 0 时两种情况的解相同4πεR 211 在接地的导体平面上有一半径为 a 的半球凸部 如图 半球的球心在导体平面上点电荷 Q 位于系统的对称轴上 并与平面相距为 b b>a 试用电象法求空间电势 解 如图 利用镜像法 根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型 可确定三个镜像电荷的电量和位置 2PQ- a Q R Q = - a Q , r = a rr b1b 1ab Oa a 2 rQQ 2 = b Q , r 2 = - brbQ 3 = -Q , r 3 = -br rφ =Q [ 4πε 0 1 - R 2 + b 2 - 2Rb cos θ1 +R 2 + b 2 + 2Rb cos θ b a2+ a 4 + a 2b 2 bR cos θ⎪ 2 01Rb R +- 2 R cos θ 2a 4 a2b 2 b(x - x )2+ (y - a )2 + (z - b )2 0 (x - x )2 + ( y - a )2 + (z + b )20 (x - x )2+ (y + a )2+ (z - b )20 (x - x )2+ (y + a )2+ (z + b )20 ∂ρ = 0 z∂trjA(x y z ) 0, 0, 0σxr jr= r E n E n+a], (0 ≤ θ < π , R > a )212. 有一点电荷 Q 位于两个互相垂直的接地导体平面所围成的直角空间内 它到两个平面的距离为 a 和 b 求空间电势解 可以构造如图所示的三个象电荷来代替两导体板的作用φ =Q[1-4πε 0 -1+1-1], ( y , z > 0)13.设有两平面围成的直角形无穷容器 其内充满电导率为 的液体 取该两平面为 xz 面和 yz 面 在 x 0,y 0,z 0 和 x 0,y 0,-z 0 两点分别置正负电极并通以电流 I 求导电液体中的电势解 本题的物理模型是 由外加电源在 A B 两点间建立电场 使溶液中的载流子运动形成电流 I,当系统稳定时 是恒定场 即∇ ⋅ r j + ∂ρ = 0 中 ∂t 对于恒定的电流 可按静电场的方式处理于是 在 A 点取包围 A 的包围面r rQI = ⎰ i r ⋅ d sr} 1r r⎰ E ⋅ ds =n而又有 i E ⋅σ⇒ σI = ⎰ E ⋅ ds y∴ 有 1 I = Q⇒ Q = I ε1σ ε1 σI εB(x 0,y 0,z 0)对 B Q Q B = -Q = -σ1又在容器壁上 rj = 0, 即元电流流入容器壁 由 r j = σ r 有 r j = 0 时 r ∴可取如右图所示电像z P(x, y, z) -Q(x 0,-a,b)aQ(x 0,a,b) by+Q(x 0,-a,-b)-Q(x 0,a,-b)Q(-x 0,-y z )Q(x 0,y 0,z 0)Q(x 0,-y z )Q(x 0,y 0,z 0)-Q(-x y z ) -Q(-x 0,y 0,-z )-Q(x 0,-y 0,z 0)-Q(x 0,y 0,-z )εn = 0 y。
郭硕红电动力学习题答案__完整版
由电荷 ρ f 1 2 解 1
空间各点的电场 极化体电荷和极化面电荷分布
r r D ∫ ⋅ dS = ∫ ρ f dV ,
S
(r2>r>r1)
即
D ⋅ 4πr 2 =
4π 3 (r − r13 ) ρ f 3
3. 设 r =
( x − x ' ) 2 + ( y − y ' ) 2 + ( z − z ' ) 2 为源点 x ' 到场点 x 的距离 r 的方向规定为从 r ∂ r ∂ r ∂ + e y ' + e z ' ) 与对场变数求 ∂x ' ∂y ∂z
源点指向场点 1 证明下列结果 并体会对源变数求微商 (∇ = e x
3
r ex r ∂ ∇ × A(u ) = r∂x Ax (u )
r ey ∂ r ∂y Ay (u )
r ez r r r r r r ∂ ∂ A A ∂ ∂Ax r A ∂ A ∂ A r r ∂ y y x z z =( − )e x + ( − )e y + ( − )e z = ∂ ∂ ∂ ∂ ∂ ∂ ∂ z y z z x x y r Az (u )
l S
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
《电动力学第三版郭硕鸿》第1-5章练习题答案
10. 变化磁场激发电场
11. 电场强度随时间的变化率
∇
×
G E
=
−
G ∂B
12.
∂t
G ∇×H
=
G J+
G ∂D
13.
∂t
G 14. ∇ ⋅ D = ρ
G
15. ∇ ⋅ B = 0 16. 稳恒电流
G
G GG
17. f = ρ E + J × B (适用于电荷分布情况)
G
GG
18. e E + e v × B
0
Pn (cos
θ
)]
=
Q
⇒
b0
=
Q 4πε 0
, b1
=
−
E 0 R03 2
,bn
=
0(n
≠
0 ,1)
⇒
ϕ
=
− E 0 R cos θ
+
Q 4πε 0 R
−
E 0 R03 2R 3
cos
θ
-8-
《电动力学》各章练习题参考答案(2014) __________________________________________________________________________________
(三)证明题: 1. 书上内容P112-113。 2.书上内容P115。 3. 书上内容P115。 4. 书上内容P122。 5. 书上内容P126。
(四)计算、推导题:
1.解: G
GGG
(1)k G ek =
= G k
k
−3ex
+ G
ey
+ G
ez
郭硕鸿《电动力学》课后答案
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d du u z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇= 3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
郭硕鸿《电动力学》课后答案
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇AA A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 AA A A A A )()()(21∇⋅-⋅∇=⨯∇⨯ 即 AA A A )()(221∇⋅-∇=⨯∇⨯A 2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇= 3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿ
PDF 文件使用 "pdfFactory PrfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Waylen
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建