解三角形(1)---正弦定理

合集下载

解三角形知识点

解三角形知识点

《必修五》解三角形知识点归纳一、正弦定理 正弦定理:2sin sin sin a b cR A B C=== 文字语言:在一个三角形中,各边和它所对角的正弦的比相等. 符号语言:2sin sin sin a b cR A B C=== 特点:对称美、和谐美 (一)理解定理1、正弦定理:在△ABC 中,2sin sin sin sin sin sin a b c a b cR A B C A B C++====++【在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角,从而知正弦定理的基本作用是进行三角形中的边角互化】2、正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如角化边sin sin b Aa B=②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a BA b= 3、常用公式及其结论⑴正弦定理包含三个等式sin sin a b A B =,sin sin b c B C =,sin sin a c A C=每一个等式中都包含四个量,可以“知三求一” (2)三内角和为180︒即180A B C ︒++=,222A B C π+=- (3)两边之和大于第三边,两边之差小于第三边,,;,,.a b c a c b b c a a b c b c a a c b +>+>+>-<-<-< (4)面积公式:2111sin sin sin 2sin sin sin 2224abcS ab C bc A ac B R A B C R===== ⑸三角函数的恒等变形:sin()sin A B C +=,cos()cos A B C +=- ,()tan tan A B C +=-,sincos 22A B C +=,cos sin 22A B C+=,tan tan 22A B C +=,tan tan +tan tan tan tan A B C A B C +=⋅⋅ ⑹C B A c b a sin :sin :sin ::= ⑺角化边: C R c B R b A R a sin 2sin 2sin 2===⑻边化角:RcC Rb B Ra A 2sin 2sin 2sin ===⑼在△ABC 中,①若B b A a cos cos =,则△ABC 是等腰三角形或直角三角形; ②若B a A b cos cos =,则△ABC 是等腰三角形;③若222cos cos +cos 1A B C +=或cos cos cos a A b B c C +=,则△ABC 是直角三角形.⑽在△ABC 中,sin sin sin A B C a b c A B C >>⇔>>⇔>>(二)题型:使用正弦定理解三角形共有三种题型题型1: 利用正弦定理公式原型解三角形题型2: 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化.例如:222222sin 3sin 2sin 32A B C a b c +=⇒+=题型3: 三角形解的个数的讨论 方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数.(三)三角形内角平分线定理:△ABC 中,AD 是A ∠的角平分线,则DCBDAC AB = 我们知道,当一个三角形已知任意两角和一边时,根据全等三角形的判定定理可以得知这个三角形就是唯一确定的,也就是可解的.先由三角形内角和定理求出第三个角,再由正弦定理计算另两边.另外,一个三角形的三边之间必须满足:任意两边之和大于第三步且任意两边之差小于第三边.当已知一个三角形的三边时,已知的三条边必须满足上面的条件才能够作出三角形.否则作不出三角形,当然也无法解三角形.从上面的探讨可以得知,已知三角形的三边要解三角形时,必须满足三边关系,解三角形才有意义.当已知三边时,连续利用余弦定理的推论求出较小边的对角,再用三角形内角和求出第三个角. 如果已知三角形的两边及其夹角,那么根据三角形的判定定理我们知道这个三角形是唯一确定的,也就是可解的.我们可以利用余弦定理计算第三边,用余弦定理的推论或正弦定理计算其余两个角. 如果已知任意两边及其中一边的对角如何来解三角形呢?我们先看下面的例题: 例题:已知:在△ABC 中,22,25,133,a cm b cm A ︒===解三角形. 解:22,25,133a cm b cm A ︒===∴根据正弦定理,得sin 25sin133sin 0.831122b A B a ︒==≈ 0180B ︒︒<< ∴56.21B ︒≈,或123.79B ︒≈ 180A B C ︒++= ∴9.21C ︒=-或76.79C ︒=-【师】:问题出在哪里呢?【生】:分析已知条件,我们注意到,133a b A ︒<=,是一个钝角,根据三角形的性质应该有A B <,因而B 也是一个钝角.而在一个三角形中是不可能存在两个钝角的.【师】:从上面的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.如:①已知32,2,60===O b a A ,求B (有一个解);②已知32,2,60===O a b A ,求B (有两个解)二、余弦定理(一)知识与工具:余弦定理:222222222222222222cos 22cos 2cos cos 22cos cos 2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩(二)题型:使用余弦定理解三角形共有三种现象的题型题型1:利用余弦定理公式的原型解三角形题型2:利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。

解三角形_公式汇总

解三角形_公式汇总

解三角形公式汇总一、正弦定理公式正弦定理:推论1:(边化角)推论2:(角化边)题型(1)已知sinB求B:一题多解型判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。

(2)asin B=2b:方法:边化角,推论1,a:b=sinA:sinB(3)3sin A=5sinB或sinA:sinB:sinC=1:2:3方法:角化边,推论2,sinA:sinB=a:b二、余弦定理公式余弦定理:(已知两边及夹角,求第三边)推论1:(已知三边,求角)推论2:(三边的平方关系)a2+b2-c2=2abcosCb2+c2-a2=2bccosAa2+c2-b2=2accosB题型(1)已知a,b,角C,求c方法:已知两边及夹角,求第三边,余弦定理c2=a2+b2-2abcosC(2)已知a:b:c=1:2:,求cosB方法:已知三边求角,余弦定理推论1,(3)已知,求cosA方法:已知三边平方关系,余弦定理推论2,b2+c2-a2=2bccosA三、求三角形面积公式:题型1:已知a,b,c,A 求△ABC的面积.方法:带公式题型2:已知A,a,b+c,求△ABC的面积.方法:四、判断三角形形状题型:cos cos sin+=,判断三角形形状b Cc B a A方法1:角化边公式:sinA:sinB:sinC=a:b:c 或结论:方法2:边化角公式:a:b:c = sinA:sinB:sinC将原式转化为sinBcosC+sinCcosB=sin2A,用三角恒等变换公式求解。

注:三角形内常见角度转化:五、解三角形应用举例仰角:俯角:坡度:。

解三角形正弦定理余弦定理三角形面积公式

解三角形正弦定理余弦定理三角形面积公式

解三角形正弦定理余弦定理三角形面积公式三角形是平面几何中的一个基本图形,研究三角形的性质与定理在数学中具有重要地位。

本文将介绍三角形中的三个重要定理,正弦定理、余弦定理和三角形的面积公式。

一、正弦定理:正弦定理是研究三角形中角度和边长之间关系的重要定理。

给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。

那么,正弦定理可以表述为:sin(A) / a = sin(B) / b = sin(C) / c其中,sin(A)表示A角的正弦值,a表示边a的长度。

正弦定理可以从三角形的面积公式推导得出。

二、余弦定理:余弦定理是研究三角形中角度和边长之间关系的另一个重要定理。

给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。

那么,余弦定理可以表述为:c^2 = a^2 + b^2 - 2ab * cos(C)其中,cos(C)表示C角的余弦值,c表示边c的长度。

余弦定理可以用来求解三角形的边长或角度,进而计算三角形的面积。

三、三角形的面积公式:给定一个三角形,设其底边长度为b,对应的高为h。

那么,三角形的面积可以通过以下公式来计算:S=1/2*b*h其中,S表示三角形的面积。

在计算三角形的面积时,还可以使用海伦公式。

海伦公式可以通过三角形的三边长来计算三角形的面积,其公式如下:S=√(p*(p-a)*(p-b)*(p-c))其中,p表示三角形的半周长,计算公式为:p=(a+b+c)/2在使用海伦公式计算三角形面积时,需确保三条边长满足三角不等式,即任意两边之和大于第三边的长度。

总结:通过正弦定理、余弦定理和三角形的面积公式,可以解决三角形相关的问题。

正弦定理和余弦定理给出了通过角度和边长计算三角形的方法,而三角形的面积公式提供了计算三角形面积的途径。

这些定理在三角形等应用中具有重要的价值,对于解题和扩展应用都非常有帮助。

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R( 其中R 是三角形外接圆的半径)sin A sinB sinC2. 变形:1)a b c a b csin sin sinC sin sin sinC 2)化边为角:a:b:c sin A:sin B:sinC;a sin A;b sin B a sin Ab sinBc sinC c sin C3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC4)化角为边:sin A a;sin B b ; sin A asin B b sinC c sinC c5)化角为边:sin A a sinB b,sinC c2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A; 求出 b 与cc sinC ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边c sinC4. △ABC中,已知锐角A,边b,则① a bsin A 时,B 无解;② a bsin A 或 a b 时, B 有一个解;③ bsinA a b 时, B 有两个解。

如:①已知 A 60 ,a 2,b 2 3,求 B (有一个解 )②已知 A 60 ,b 2,a 2 3,求 B (有两个解 ) 注意:由正弦定理求角时,注意解的个数。

三角函数解三角形正弦定理和余弦定理课件理新ppt

三角函数解三角形正弦定理和余弦定理课件理新ppt

正弦定理的应用
01
正弦定理可以应用于求解三角形中的边、角、面积等问题,其中最常用的应用 是求解三角形的三边关系和三角形的面积公式。
02
在求解三角形的三边关系时,可以使用正弦定理得到两边之比的表达式,再结 合余弦定理得到第三边的表达式,从而得到三边之间的关系。
03
在求解三角形的面积公式时,可以使用正弦定理得到三角形的底和高,从而得 到三角形的面积公式。
三角函数解三角形正弦定理和余弦 定理课件理新ppt
xx年xx月xx日
contents
目录
• 引言 • 正弦定理 • 余弦定理 • 案例分析 • 结论与展望 • 参考文献
01
引言
课程背景
1
三角函数是数学中的基础内容之一,具有广泛 的应用价值。
2
解三角形是三角函数应用的重要方面之一,涉 及到很多实际问题。
《三角函数解题方 法与技巧》
《高中数学竞赛教 程》
《三角函数图像与 性质》
THANKS
利用正弦定理和余弦定理解三角形
如何根据三角形的已知信息求解三边长
利用正弦定理求解三角形边长
利用余弦定理求解三角形边长
通过具体案例展示,进行计算
三角形的判定方法
如何判断一个三角形是否为直 角三角形
利用正弦定理和余弦定理进行 三角形判定
通过具体案例展示,进行计算
05
结论与展望
总结正余弦定理在解三角形中的应用
正弦定理:对于任意三角形,已知一边和它的对角 ,无法确定三角形的大小和形状,需要再知道其他
一些信息才能确定三角形的大小和形状.
余弦定理:对于任意三角形,已知三边,可确定这 个三角形的形状和大小;已知两边和其中一边的对

正弦定理和余弦定理解直角三角形

正弦定理和余弦定理解直角三角形

第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 33.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角a <b sin A a =b sin A b sin A<a <b a ≥b无解 一解(直角) 两解(一锐角, 一钝角)一解(锐角)A 为直角或钝角 a ≤b a >b 无解 一解(锐角)1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞)C .(0,10) D.⎝⎛⎦⎤0,403 4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .6∶5∶4 B .7∶5∶3C .3∶5∶7D .4∶5∶66.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90°14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .1.在△ABC 中,有以下结论: (1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ; (3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .52.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π123.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .44.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.235.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 8.△ABC 中,已知a =2,b =4,C =60°,则A =________.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.能力提升 13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150°2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等边三角形 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30° B .60° C .90° D .120°4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C .能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π314.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA ·BC = 23,求a+c 的值.1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(至少有一边)才能求解,常见类型及其解法见下表:已知条件 应用定理 一般解法一边和两角 (如a ,B ,C ) 正弦定理由A +B +C =180°,求角A ;由正弦定理求出b 与c .在有解时只有一解.两边和夹角 (如a ,b ,C ) 余弦定理正弦定理由余弦定理求第三边c ;由正弦定理求出小边所对的角;再由A +B +C =180°求出另一 角.在有解时只有一解.三边(a ,b ,c )余弦定理 由余弦定理求出角A 、B ;再利用A +B +C =180°,求出角C .在有一解时只有一解. 两边和其中一边的对角如 (a ,b ,A ) 余弦定理 正弦定理 由正弦定理求出角B ;由A +B +C =180°,求出角C ;再利用正弦定理或余弦定理求c .可有两解、一解或无解.2.根据所给条件确定三角形的形状,主要有两种途径 (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)一、选择题 1答案 D 2答案 C 解析 由正弦定理a sin A =b sin B, 得4sin 45°=bsin 60°,∴b =2 6. 3答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 5答案 C解析 由a sin A =b sin B 得sin B =b sin Aa=2sin 60°3=22.∵a >b ,∴A >B ,B <60° ∴B =45°. 6答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C . ∴tan C =- 3. 又C ∈(0°,180°),∴C =120°. 二、填空题 7答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°. ∴C =75°.8答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C,∴AB =BC sin C sin A =1×sin 150°1010=102.9答案 1解析 由正弦定理,得 3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1. 10答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°,∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11解 ∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4. ∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3. 12解 a =23,b =6,a <b ,A =30°<90°.又因为b sin A =6sin 30°=3,a >b sin A ,所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°. 当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3. 所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.13答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2. ∴sin(π4+B )=1. 又0<B <π,∴B =π4. 由正弦定理,得sin A =a sin B b =2×222=12. 又a <b ,∴A <B ,∴A =π6. 1.1.1 正弦定理(二)一、选择题1答案 D2答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin C cos C, ∴tan A =tan B =tan C ,∴A =B =C .3答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C . ∴0<c ≤403. 4答案 A解析 由a =2b cos C 得,sin A =2sin B cos C ,∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C ,∴sin(B -C )=0,∴B =C .5答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6,∴b +c 4=c +a 5=a +b 6. 令b +c 4=c +a 5=a +b 6=k (k >0), 则⎩⎪⎨⎪⎧ b +c =4k c +a =5ka +b =6k ,解得⎩⎪⎨⎪⎧ a =72k b =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1. 二、填空题7答案 2 3解析 ∵cos C =13,∴sin C =223, ∴12ab sin C =43,∴b =2 3. 8答案 2 解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B, ∴sin B =12,故B =30°或150°.由a >b , 得A >B ,∴B =30°,故C =90°,由勾股定理得c =2.9答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C=2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183, ∴sin C =12,∴c sin C =a sin A=12,∴c =6. 三、解答题11证明 因为在△ABC 中,a sin A =b sin B =c sin C=2R , 所以左边=2R sin A -2R sin C cos B 2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin B sin A. 12解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2. ∴△ABC 为等腰三角形或直角三角形.13答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45. 所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87. 1.1.2 余弦定理(一)一、选择题1答案 A2答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2. 4答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34. 5答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a 22bc ⇒a 2+b 2=c 2,符合勾股定理. 故△ABC 为直角三角形.6答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C , ∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C ,∴C =45° .二、填空题7答案 120°8答案 30°解析 c 2=a 2+b 2-2ab cos C=22+42-2×2×4×cos 60°=12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12. ∵a <c ,∴A <60°,A =30°.9答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12, ∴θ=120°. 10答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13, ∴cos C =a 2+b 2-c 22ab =-113,sin C =1213, ∴tan C =-12=-2 3.11解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12, 又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32. 1.1.2 余弦定理(二)一、选择题1答案 C解析 ∵(a +b -c )(a +b +c )=ab ,∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12, ∴cos C =-12,∴∠C =120°. 2答案 C解析 ∵2cos B sin A =sin C =sin(A +B ),∴sin A cos B -cos A sin B =0,即sin(A -B )=0,∴A =B .3答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7,不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12. ∴C =120°.∴最小外角为60°.4答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0.∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5答案 A解析 在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab .∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角.二、填空题7答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C=a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.8答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1. ∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2,化简得:0<a <8.又∵a +2a -1>2a +1,∴a >2,∴2<a <8.9答案 12解析 S △ABC =12AB ·AC ·sin A =12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49,∴AB +AC =7,∴△ABC 的周长为12.10答案 13π3解析 S △ABC =12bc sin A =34c =3, ∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A=12+42-2×1×4cos 60°=13,∴a =13.∴2R =a sin A =1332=2393, ∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin B sin C ·cos A =a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c2=左边. 所以a 2-b 2c 2=sin (A -B )sin C . 12解 (1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC = |BA |·|BC |·cosB = accosB = 21.∴ac=35,∵cosB =53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54 = 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =b sin B. ∴sin C =c b sin B =542×45=22. ∵c <b 且B 为锐角,∴C 一定是锐角.∴C =45°.13答案 A 解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1, ∴0<sin C ≤12. ∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6, ∴0<C ≤π6. 14解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由BA ·BC = 23得ca ·cosB = 23 由cos B =34,可得ca =2,即b 2=2. 由余弦定理:b 2=a 2+c 2-2ac ·cos B ,得a2+c2=b2+2ac·cos B=5,∴(a+c)2=a2+c2+2ac=5+4=9,∴a+c=3.。

解三角形

解三角形
A.5( 6 2 ) B.5( 6 2 )
C .10( 6 2 ) D.10( 6 2 )
典例:
例1:在△ABC中,∠B=450,AC= cosC= 2 5
5
(1)求BC边的长
10 ,
(2)记AB的中点为D,求中线CD的长度
例2:
在ABC中,m

(cos
C
,

sin
C
),n

(cos
(4)余弦定理的变式:cos C a2 b2 c2 2ab
(5)三角形面积公式:SΔ

1 ah
2
,


1 ab sinC
2
(6)在△ABC中,易推出: ① sinA=sin(B+C),cosA=-cos(B+C),
tanA=-tan(B+C)
② sin A cos B C , cos A sin B C ,
解斜三角形
知识要点归纳
(1)正弦定理:
a b c 2R sinA sinB sinC
(2)余弦定理: c2=a2+b2-2abcosC
(3)正弦定理的变式:
a=2RsinA b=2RsinB
sin A a sinB b
2R
2R
c=2RsinC.
sinC c 2R
a : b : c sin A: sinB : sinC
基础训练: 1、在△ABC中, 若A 600,a 4 3,b 4 2
则B=

2、在△ABC中, a=6,b= 6 3 ,A=300
则边c=

3、在△ABC中,sinA:sinB:sinC=2:3:4, 则CosB=_________

正弦定理

正弦定理

发展简史
历史上,正弦定理的几何推导方法丰富多彩。根据其思路特征,主要可以分为两种。
第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷 格蒙塔努斯所采用。“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角 函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。纳绥尔丁同时延长两个内角 的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造 半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径 法”。
正弦定理
三角学中的基本定理
01 发展简史
03 验证推导 05 定理推广
目录
02 定理定义 04 定理意义
正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它 所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为 直径)。
在解三角形中,有以下的应用领域:
物理学中,有的物理量可以构成矢量三角形。因此,在求解矢量三角形边角关系的物理问题时,应用正弦定理, 常可使一些本来复杂的运算,获得简捷的解答。
定理推广
推论 △ABC中,若角A,B,C所对的边为a,b,c,三角形外接圆半径为R,直径为D,正弦定理进行变形有 1. 2.,, 3. 4. (等比,不变) 5. (三角形面积公式) 三面角正弦定理 若三面角的三个面角分别为α、β、γ,它们所对的二面角分别为A、B、C,则 多边形的正弦关系
18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角 形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相 当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。

专题一、二:解三角形

专题一、二:解三角形

专题一正余弦定理知识梳理1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:2sin sin sin a b cR A B C===(R 为△ABC 外接圆的半径)常见的变形有:①::sin :sin :sin a b c A B C =;②sin sin a A b B =,sin sin a A c C =,sin sin b Bc C=;③sin sin sin sin sin sin a b c a b cA B C A B C++===++;④边化角公式:2sin a R A =,2sin b R B =,2sin c R C =;⑤角化边公式:sin 2a A R =,sin 2b B R =,sin 2c C R=;⑥sin sin sin sin sin sin A B a b A BA B a b A B A B a b A B <⇔<⇔<⎧⎪=⇔=⇔=⎨⎪>⇔>⇔>⎩;2.解三角形:一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形。

利用正弦定理可以解两类三角形:①已知三角形的任意两个角与一边,求其他两边和另一角。

②已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。

剖析:已知两角与一边,用正弦定理,有解时,只有一解。

已知两边及其中一边的对角,用正弦定理,可能有两解、一解、或无解,一般常用的方法是利用大边对大角,小边对小角定理来验证。

3.在△ABC 中常见的公式:(如图)①111sin sin sin 222S ab C ac B bc A===②111222a b c S ah bh ch ===AcbaBCh aAcbaBC③4abcS R=(R 表示三角形外接圆的半径)④22sin sin sin S R A B C =⑤1()2S r a b c =++(r 表示三角形内切圆的半径)⑥海伦公式:S =,其中1()2p a b c =++.4.余弦定理定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍。

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理(2)课件新人教a必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理(2)课件新人教a必修5

梳理
一个了三角形的边与对角的正弦之间的联系.所以正弦定理主要功能就是把 边化为对角的正弦或者反过来.简称边角互化.
思考2
什么时候适合用正弦定理进行边角互化? 答案
尽管正弦定理给出了三角形的边与对角的正弦之间的联系, 但毕竟不是边等于对角正弦,这里还涉及到外接圆半径.故使 用时要么能消掉外接圆半径(如思考1),要么已知外接圆半径.
由正弦定理,得sin2
A=sin
660°,∴sin
A=
2 2.
∵BC=2< 6=AC,∴A 为锐角,
∴A=45°,∴C=75°.
123
2.在△ABC中,若
a cos
A=cobs
B=cocs
C, 则△ABC是
答案
解析
A.直角三角形
B.等边三√角形
C.钝角三角形
D.等腰直角三角形
由正弦定理,知csoins AA=csoins BB=csoins CC, ∴tan A=tan B=tan C, 又∵A,B,C∈(0,π),∴A=B=C,
故三角形为等边三角形.
知识点三 正弦定理在解决较为复杂的三角形问题中的作用
思考1
在△ABC中,已知acos B=bcos A.你能把其中的边a,b化为 用角表示吗(打算怎么用上述条件)? 答案
可借助正弦定理把边化成角:2Rsin Acos B=2Rsin Bcos A, 移项后就是一个三角恒等变换公式sin Acos B-cos Asin B=0.
1.sin A∶sin B∶sin C= a∶;b∶c
a 2.sin
A=sinb
B=sinc
C=sin
a+b+c A+sin B+sin
C=
2R

解三角形最全知识点总结

解三角形最全知识点总结

解 三 角 形正弦定理要点1 正弦定理在一个三角形中,各边和所对角的正弦值的比相等,即a sinA =b sinB =csinC.要点2 解三角形三角形的三个角A ,B ,C 和三条边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形. 正弦定理可以解决的问题1.已知两角及一边解三角形,只有一解.2.已知两边及一边的对角解三角形,可能有两解、一解或无解.方法1:计算法.方法2:已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中,已知a ,b 和A 时,解的情况如下:要点3 正弦定理的变式CB A c b a sin :sin :sin ::)1(=RA aC B A c b a C A c a C B c b B A b a 2sin sin sin sin sin sin sin sin sin sin )2(==++++=++=++=++A c C aB cC b A b B a sin sin ;sin sin ;sin sin )3(===B Cb A C ac A B a C B c b C A c B A b a sin sin sin sin ;sin sin sin sin ;sin sin sin sin )4(======(边化角)C R c B R b A R a sin 2;sin 2;sin 2)5(===要点5 常用结论1.A +B +C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2.5.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .6.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.7.sin A =sin B ⇔A =B ; sin(A -B )=0⇔A =B ; sin2A =sin2B ⇔A =B 或A +B =π2A 为锐角 A 为钝角或直角图形关系式 a<bsinA a =bsinA bsinA <a <b a ≥b a >b a ≤b 解个数 无解 一解 两解 一解 一解 无解(角化边)R c C R b B R a A 2sin ;2sin ;2sin )6(===要点4 三角形的面积公式 Bac A bc C ab S ABC sin 21sin 21sin 21===∆题型一 解三角形例1 已知在△ABC 中,c =10,A =45°,C =30°,求a ,b 和B.例2(1)在△ABC 中,(1)a =6,b =2,B =45°,求C ;(2)A =60°,a =2,b =233,求B ;(3)a =3,b =4,A =60°,求B.题型二 判断三角形解的个数(1)在△ABC 中,a =1,b =3,A =45°.则满足此条件的三角形的个数是( ) A .0 B .1 C .2 D .无数个(2)在△ABC 中,已知b =30,c =15,C =26°,则此三角形解的情况是( ) A .一个解 B .两个解 C .无解 D .无法确定(3)已知△ABC 中,a =x ,b =2,B =45°,若这个三角形有两解,求x 的取值范围【解析】 例1 ∵a sinA =c sinC ,∴a =csinA sinC =10×sin45°sin30°=10 2.B =180°-(A +C)=180°-(45°+30°)=105°.又∵b sinB =c sinC ,∴b =csinB sinC =10×sin105°sin30°=20sin75°=20×6+24=5(6+2).例2(1)由正弦定理a sinA =b sinB ,得sinA =asinB b =6×222=32.又0°<A<180°,且a>b ,∴A>B.∴A =60°或120°.∴C =75°或C =15°. (2)由正弦定理,得sinB =bsinAa=233×322=22.∵a =2=323>b ,∴A>B ,∴B =45°. (3)由正弦定理,得sinB =bsinA a =4×323=23>1.∴这样的角B 不存在.练习(1)A . (2) B. (3)2<x<2 2题型三 判断三角形的形状 例3 (1)在△ABC 中,已知a 2tanB =b 2tanA ,试判断△ABC 的形状.(2)在△ABC 中,若sinA =2sinB ·cosC ,sin 2A =sin 2B +sin 2C ;(3)在△ABC 中,cosA a =cosB b =cosCc.【解析】 (1)由已知,得a 2sinB cosB =b 2sinAcosA.由正弦定理a =2RsinA ,b =2RsinB(R 为△ABC 的外接圆半径),得4R 2sin 2AsinB cosB =4R 2sin 2BsinAcosA.∴sinAcosA =sinBcosB ,∴sin2A =sin2B.∵2A ∈(0,2π),2B ∈(0,2π),∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.(2)由已知a 2=b 2+c 2.∴A =90°,C =90°-B.由sinA =2sinB ·cosC ,得1=2sinB ·cos(90°-B).∴sinB =22(负值舍去).∴B =C =45°.∴△ABC 为等腰直角三角形.(3)由已知,得cosA sinA =cosBsinB.∴cosA ·sinB =cosB ·sinA.∴tanA =tanB.∵A ,B ,C ∈(0,π),∴A =B.同理可证:B =C.∴△ABC 为等边三角形.题型四 正弦定理中的比例性质例4 (1)已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,求a -2b +csinA -2sinB +sinC.(2)在△ABC 中,若(b +c)∶(c +a)∶(a +b)=4∶5∶6,求sinA ∶sinB ∶sinC . 【解析】 (1)∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°.∵a sinA =b sinB =c sinC =1sin30°=2,∴a =2sinA ,b =2sinB ,c =2sinC.∴a -2b +c sinA -2sinB +sinC=2. (2)若(b +c)∶(c +a)∶(a +b)=4∶5∶6,则存在常数k(k>0),使得b +c =4k ,c +a =5k ,a +b =6k ,解得a =72k ,b =52k ,c =32k. ,则有a ∶b ∶c =7∶5∶3,所以sinA ∶sinB ∶sinC =a ∶b ∶c =7∶5∶3题型五 三角形的面积公式例5 (1)在△ABC 中,A =30°,c =4,a =3,求△ABC 的面积. (2)若△ABC 的面积为3,BC =2,C =60°,求边AB 的长.(3)在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,求θcos .(4)在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.【解析】(1)由正弦定理,得sinC =csinA a =4sin30°3=23.,∵c>a ,A 为锐角,∴角C 有两解.①当角C 为锐角时,cosC =1-sin 2C =53,sinB =sin(180°-30°-C)=sin(150°-C)=sin150°cosC -cos150°sinC =12·53+32·23=16(5+23), ∴S △ABC =12acsinB =12×3×4×16(5+23)=5+23;②当角C 为钝角时,cosC =-53,sinB =sin(150°-C)=16(23-5), ∴S △A B C =12acsinB =23- 5.综上可知:△ABC 的面积为23+5或23- 5.(2)在△ABC 中,由面积公式,得S =12BC ·CA ·sinC =12×2·AC ·sin60°=32AC =3,∴AC=2.∴△ABC 为等边三角形,∴AB =2.(3)∵S △ABC =12AB ·BCsin ∠ABC =12×2×5×sin θ=4,∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.(4)因为cosB =2cos 2B2-1=35,故B 为锐角,sinB =45.所以sinA =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =asinC sinA =107,所以S =12acsinB =12×2×107×45=87.1.1.2 余 弦 定 理要点1 余弦定理三角形中任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即:C ab b a c cos 2222-+=;A bc c b a cos 2222-+=;B ac c a b cos 2222-+=要点2 余弦定理的推论bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 222-+= 要点3 由余弦定理如何判断三角形形状是锐角三角形是锐角是钝角三角形是钝角是直角三角形是直角ABC A c b a ABC A c b a ABC A cb a∆⇒⇔+∆⇔⇔+>∆⇔⇔+=<222222222要点4 利用余弦定理可以解决的问题(1)已知两边和夹角解三角形(2)已知两边及一边的对角解三角形 (3)已知三边解三角形题型一 已知两边和夹角解三角形例1 (1)在△ABC 中,已知a =2,b =22,C =15°,求A.【解析】 方法一:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3. ∴c =6- 2.又b>a ,∴B>A.∴A 为锐角.由正弦定理,得sinA =a c sinC =26-2×6-24=12.∴A =30°.方法二:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3.∴c =6- 2.∴cosA =b 2+c 2-a 22bc =32.又0°<A<180°,∴A =30°.题型二 已知两边及一边的对角解三角形例2(1)在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a.(2)在△ABC 中,已知a =2,b =2,A =45°,解此三角形. 【解析】(1)方法一:由余弦定理,得b 2=a 2+c 2-2accosB ,得32=a 2+(33)2-2a ×33×cos30°.∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理,得sinA =asinBb=6×123=1.∴A =90°,∴C =60°.方法二:由b<c ,B =30°,b>csin30°=33×12=332知本题有两解.由正弦定理,得sinC =csinB b =33×123=32.∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6. 当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.(2)由a 2=b 2+c 2-2bccosA ,得22=(2)2+c 2-22ccos45°, c 2-2c -2=0,解得c =1+3或c =1-3(舍去).∴c =1+ 3.cosB =c 2+a 2-b 22ca =22+(1+3)2-(2)22×2×(1+3)=32.∴B =30°,C =180°-(A +B)=180°-(45°+30°)=105°.题型三 已知三边解三角形例3 在△ABC 中,已知a =7,b =3,c =5,求最大角和sinC.【解析】 ∵a>c>b ,∴A 为最大角.∴cosA =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A<180°,∴A =120°.∴sinA =sin120°=32. 由正弦定理,得sinC =csinAa=5×327=5314.∴最大角A 为120°,sinC =5314. 题型四 判断三角形的形状 例4 (1)在△ABC 中,cos 2A2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC 的形状.(2)在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cosA ·sinB =sinC ,试确定△ABC的形状.【解析】(1)方法一:在△ABC 中,∵cos 2A2=b +c 2c ,∴1+cosA 2=b 2c +12,∴cosA =b c.又由余弦定理知cosA =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc,∴b 2+c 2-a 2=2b 2.∴a 2+b 2=c 2.∴△ABC 是以C 为直角的直角三角形.方法二:由方法一知cosA =b c ,由正弦定理,得b c =sinB sinC,∴cosA =sinBsinC .∴sinCcosA =sinB =sin[180°-(A +C)]=sinAcosC +cosAsinC.∴sinAcosC =0,∵A ,C 是△ABC 的内角,∴sinA ≠0.∴只有cosC =0,∴C =90°. ∴△ABC 是直角三角形.(2)方法一(角化边):由正弦定理,得sinC sinB =cb.由2cosA ·sinB =sinC ,得cosA =sinC 2sinB =c 2b .cosA =c 2+b 2-a 22bc ,∴c 2b =c 2+b 2-a 22bc.即c 2=b2+c 2-a 2,∴a =b.又∵(a +b +c)(a +b -c)=3ab ,∴(a +b)2-c 2=3b 2,∴4b 2-c 2=3b 2,∴b =c. ∴a =b =c ,∴△ABC 为等边三角形.方法二(边化角):∵A +B +C =180°,∴sinC =sin(A +B).又∵2cosA ·sinB =sinC ,∴2cosA ·sinB =sinA ·cosB +cosA ·sinB. ∴sin(A -B)=0.又∵A 与B 均为△ABC 的内角,∴A =B.又由(a +b +c)(a +b -c)=3ab ,得(a +b)2-c 2=3ab ,a 2+b 2-c 2+2ab =3ab.即a 2+b 2-c 2=ab ,由余弦定理,得cosC =12.而0°<C<180°,∴C =60°.又∵A =B ,∴△ABC 为等边三角形.1.2 应用举例(第一课时)解三角形的实际应用举例要点1 基线(1)定义:在测量上,根据测量需要适当确定的线段叫做基线.(2)性质:在测量过程中,要根据实际需要选取合适的基线,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.要点2 仰角和俯角在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,要点3 方位角指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.要点4 方向角从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°;正南方向:指目标在正南的方向线上.依此类推正北方向、正东方向和正西方向.要点5 坡度坡面的铅直高度和水平宽度L 的比叫做坡度(或叫做坡比).即坡角的正切值.要点6 测量距离的基本类型及方案类别两点间不可通或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=a2+b2-2abcosC AB=asinCsin(B+C)①AC=asin∠ADCsin(∠ACD+∠ADC)②BC=asin∠BDCsin(∠BCD+∠BDC)③AB=AC2+BC2-2AC·BC·cos∠ACB要点7测量高度的基本类型及方案类别点B与点C,D共线点B与点C,D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=a1tan∠ACB-1tan∠ADBAB=asin∠BDC×tan∠ACBsin(∠BCD+∠BDC)题型一 有关距离问题例1 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A ,B 之间的距离.【解析】 如图所示,在△ACD 中,∠ACD =∠ACB +∠BCD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =∠ADB +∠ADC =75°,∠CBD =60°. ∴BC =3sin75°sin60°=6+22. 在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos75°=3+2+3-3=5,∴AB =5,∴A ,B 之间的距离为 5 km.题型二 测量高度例2 A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD. 【解析】 如图,在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m). ∵CD ⊥平面ABD ,∠CAD =45°,∴CD =AD =800(3+1)≈2 186(m).所以,山高CD 为2 186 m.题型三 测量角度例3 某货船在索马里海域航行中遭海盗袭击,发出呼救信号,我海军护航舰在A 处获悉后,立即测出该货船在方位角为45°,距离为10海里的C 处,并测得货船正沿方位角为105°的方向,以10海里/小时的速度向前行驶,我海军护航舰立即以10 3 海里/小时的速度前去营救,求护航舰的航向和靠近货船所需的时间.【解析】 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t. 在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BCcos120°, 可得(103t)2=102+(10t)2-2×10×10tcos120°,整理得2t 2-t -1=0, 解得t =1或t =-12(舍去).舰艇需1小时靠近货船.此时AB =103,BC =10,在△ABC 中,由正弦定理,得BC sin ∠CAB =AB sin120°.所以sin ∠CAB =BCsin120°AB =10×32103=12.所以∠CAB =30°.所以护航舰航行的方位角为75°.1.2 应用举例(第二课时)题型一 有关面积问题三角形面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12 bc sin A =12 ac sin B .(3)S =12·r ·(a +b +c )(r 为内切圆半径 ).(4),))()((c p b p a p p S ---=其中2cb a p ++=例1 (1)已知△ABC 的面积为1,tanB =12,tanC =-2,求△ABC 的边长以及△ABC 外接圆的面积.(2)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.①若△ABC 的面积等于3,求a ,b ; ②若sinB =2sinA ,求△ABC 的面积.【解析】(1) ∵tanB =12,∴0<B<π2.∴sinB =55,cosB =255.又∵tanC =-2,∴π2<C<π.∴sinC =255,cosC =-55.则sinA =sin(B +C)=sinBcosC +cosBsinC =55×⎝ ⎛⎭⎪⎫-55+255×255=35. ∵a sinA =b sinB ,∴a =bsinA sinB =35b.则S △ABC =12absinC =12·35b 2·255=1. 解得b =153,于是a = 3.再由正弦定理,得c =asinC sinA =2153. ∵外接圆的直径2R =a sinA =533,∴R =536.∴外接圆的面积S =πR 2=25π12.(2)①∵S =12absinC =12ab ·32=3,∴ab =4. ①∵c 2=a 2+b 2-2abcosC =(a +b)2-2ab -2abcosC =(a +b)2-12=4,∴a +b =4. ② 由①②可得a =2,b =2.②∵sinB =2sinA ,∴b =2a.又∵c 2=a 2+b 2-2abcosC =(a +b)2-3ab =4,∴a =233,b =433.∴S =12absinC =233题型二 正余弦定理的综合问题例2 (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asinA =(2b +c)sinB +(2c +b)sinC.①求A 的大小;②求sinB +sinC 的最大值.(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sinAcosC =3cosAsinC ,求b.【解析】 (1)①由已知,根据正弦定理,得2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc.由余弦定理,得a 2=b 2+c 2-2bccosA.故cosA =-12,∴A =120°.②由(1),得sinB +sinC =sinB +sin(60°-B)=32cosB +12sinB =sin(60°+B). 故当B =30°时,sinB +sinC 取得最大值1.(2)由余弦定理,得a 2-c 2=b 2-2bccosA.又a 2-c 2=2b ,b ≠0,所以b =2ccosA +2.① 又sinAcosC =3cosAsinC ,∴sinAcosC +cosAsinC =4cosAsinC. ∴sin(A +C)=4cosAsinC ,sinB =4sinCcosA.由正弦定理,得sinB =bc sinC.故b =4ccosA.② 由①②解得b =4.例3 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7. (1)①求cos ∠CAD 的值;②若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.(2)如图所示,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.①求sin ∠BAD ; ②求BD ,AC 的长.【解析】(1)①在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.②设∠BAC =α,则α=∠BAD -∠CAD.因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫2772=217,sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin(∠BAD -∠CAD)=sin ∠BADcos ∠CAD -cos ∠BADsin ∠CAD =32114×277-⎝ ⎛⎭⎪⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=AC sin ∠CBA .故BC =AC ·sin αsin ∠CBA=7×32216=3.(2)①在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B)=sin ∠ADCcosB -cos ∠ADCsinB =437×12-17×32=3314.②在△ABD 中,由正弦定理,得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cosB =82+52-2×8×5×12=49.所以AC =7.题型三 证明恒等式例4 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sinC.(2)在△ABC 中,记外接圆半径为R.求证:2Rsin(A -B)=a 2-b2c .(3)已知在△ABC 中,a 2=b(b +c),求证:A =2B.【证明】 (1)由余弦定理,得a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2cacosB , 两式相减,得a 2-b 2=b 2-a 2-2bccosA +2cacosB.∴a 2-b 2c 2=acosB -bcosAc.由正弦定理,知a c =sinA sinC ,b c =sinB sinC .∴a 2-b 2c 2=sinAcosB -sinBcosA sinC =sin (A -B )sinC .(2)由正弦定理的变形形式:sinA =a 2R ,sinB =b 2R 及由等号左边的a 2,b 2,c 2,运用余弦定理进行转化,即可得.左边=2R(sinAcosB -cosAsinB)=a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =a 2-b2c =右边.(3)方法一:∵a 2=b(b +c),根据正弦定理,得sin 2A =sinB(sinB +sinC),即sin 2A -sin 2B =sinBsinC. ∴cos2B -cos2A2=sinBsinC.∴sin(A +B)sin(A -B)=sinBsinC.又在△ABC 中,sin(A +B)=sinC ≠0,∴sin(A -B)=sinB.∴A -B =B 或(A -B)+B =π(舍去).∴A =2B. 方法二:2bcosB =2b ×a 2+c 2-b 22ac =b (c 2+bc )ac =b (b +c )a =a ,即2bcosB =a ,根据正弦定理,得sinA =2sinBcosB ,即sinA =sin2B.∴A =2B 或A +2B =π. 若A +2B =π,则B =C.由a 2=b(b +c),知a 2=b 2+c 2. ∴B =C =π4,A =π2,∴A =2B.。

正弦定理在三角形中的应用

正弦定理在三角形中的应用

正弦定理在三角形中的应用三角形是几何学中的重要概念,它由三条边和三个角组成。

在三角形的研究中,正弦定理是一项关键的定理,它可以帮助我们计算和推导三角形的各种关系,从而更好地理解和应用三角形的性质和特点。

本文将探讨正弦定理在三角形中的应用。

正弦定理表达了一个三角形的一个角的正弦值与该角的对边与该角所在边的比值之间的关系。

根据正弦定理,对于任何三角形,都有以下公式成立:sin(A) / a = sin(B) / b = sin(C) / c其中,A、B、C分别表示三角形的三个角的度数,a、b、c分别表示对应的边的长度。

根据这个公式,我们可以推导出许多有用的结论和应用。

首先,正弦定理可以帮助我们求解三角形的边长。

如果我们已知一个三角形的两个角的度数和一个对边的长度,我们可以通过正弦定理来计算出其他两个边的长度。

例如,已知一个三角形的两个角的度数分别为30度和60度,对边的长度为2,我们可以利用正弦定理计算出其他两个边的长度。

sin(30°) / 2 = sin(60°) / b = sin(90° - 30° - 60°) / c通过计算得出:sin(30°) / 2 = sin(60°) / b = sin(90° - 30° - 60°) / c1 /2 = (√3 / 2) / b = 1 / c由此可得:b = 2 * (√3 / 2) = √3c = 1因此,在已知条件下,这个三角形的两个边的长度分别为√3和1。

其次,正弦定理还可以帮助我们求解三角形的角度。

如果我们已知一个三角形的两个边的长度和一个角的度数,我们可以通过正弦定理来计算出其他两个角的度数。

例如,已知一个三角形的两个边的长度分别为3和4,以及一个角的度数为60度,我们可以利用正弦定理计算出其他两个角的度数。

sin(60°) / 3 = sin(A) / 4通过计算得出:sin(60°) / 3 = sin(A) / 4√3 / 2 / 3 = sin(A) / 4从而得到:sin(A) = (√3 / 2) * (4 / 3) = 2√3 / 3通过求反正弦函数,可以得到:A ≈ 70.53°由此可知,这个三角形的另外两个角的度数分别为60度和70.53度。

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形.正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。

解三角形正弦定理

解三角形正弦定理
考点:1.余弦定理.
26.
【解析】
试题分析:因为 ,所以 ,由余弦定理可得 ,又因为 ,所以 .
考点:余弦定理.
27.5
【解析】由正弦定理,知 ,解得BC=5 (海里).
28.
【解析】
试题分析:因为2asinB= b,所以
或 ,又由于△ABC为锐角三角形所以 .
考点:正弦定理的应用.
29.3
【解析】
考点:正余弦定理
2.A
【解析】
试题分析: ,则角 等于 ,故选A.
考点:余弦定理
3.B
【解析】
试题分析:由 得
考点:正弦定理解三角形
4.D
【解析】
试题分析:根据正弦定理 有 ,解得 ,所以 或 ,因为 ,所以 ,因此都符合题意,故选D.
考点:正弦定理.
5.D
【解析】
试题分析:由 变形为
或 或 ,三角形为等腰三角形或直角三角形
A. B. C. D.
7.若 ,且 ,那么 是
A.直角三角形B.等边三角形
C.等腰三角形D.等腰直角三角形
8.在 中, , , ,则 =()
A. B. 或
C. D. 或
9.在 中, , ,则此三角形一定是()
A.直角三角形 B.钝角三角形
C.等腰直角三角形 D.等边三角形
10.在△ABC中,内角 所对的边分别是 ,已知a=7, ,则 的值是
试题解析:(Ⅰ)△ABC中,∵ ,∴sinB= = ,又 A= ,

= .…………………6分
(Ⅱ)由(Ⅰ)知 .由正弦定理知: ,∴ ,
∴ .…………………12分
考点:正余弦定理解三角形
37.(1) (2) 或

解三角形的三种定理

解三角形的三种定理

解三角形的三种定理三角形是几何学中重要的概念之一,解三角形的定理是研究三角形性质和求解其中未知量的基础。

本文将介绍三种解三角形的定理,分别是正弦定理、余弦定理和正切定理。

一、正弦定理正弦定理是解三角形常用的定理之一,用于求解三角形中的边长和角度。

假设三角形的三边分别为a、b和c,对应的角度为A、B和C,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC其中,等式两边的比值都相等。

根据已知条件可知,如果已知三角形的两个角和一个对应边的关系,就可以利用正弦定理求解其他未知量。

二、余弦定理余弦定理是解三角形中常用的定理之一,适用于计算三角形中的边长和角度。

假设三角形的三边分别为a、b和c,对应的角度为A、B和C,则余弦定理可以表示为:c² = a² + b² - 2abcosC根据已知条件可知,如果已知三角形的两个边和一个对应夹角的关系,就可以利用余弦定理求解其他未知量。

三、正切定理正切定理是解三角形中常用的定理之一,适用于计算三角形中的角度。

假设三角形的三边分别为a、b和c,对应的角度为A、B和C,则正切定理可以表示为:tanA = (b/a),tanB = (a/b),tanC = (a/b)根据已知条件可知,如果已知三角形的两个边的关系,就可以利用正切定理求解其他未知量。

综上所述,正弦定理、余弦定理和正切定理是解三角形最常用的三种定理。

在实际问题中,可以根据已知条件选择合适的定理求解三角形的未知量。

为了准确求解,需要提前了解三角形的性质和应用场景,并根据具体情况选择合适的解题方法。

解题过程中,还需注意运用角度和边长的单位一致,避免计算误差。

同时,需注意解题过程中的推导和计算步骤,确保结果的准确性。

总结起来,正弦定理、余弦定理和正切定理是解三角形的三种常用定理,它们在求解三角形中的边长和角度方面起到了重要的作用。

熟练运用这些定理,并结合实际问题,可以快速、准确地求解三角形的未知量。

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形知识点清单一.正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R(其中R是三角形外接圆的半径)sin A sin B si2.变形:1) a b c a b csin sin si nC sin sin si nC2)化边为角:a :b: c sin A: sin B :s in C -a si nA.b sin B a sin AJb sin Bc sin C c sin C '3)化边为角:a 2Rsin A, b 2Rsi nB, c 2Rs inC4)化角为边:sin A a ;J sin B b ; si nA aJ7sin B b sin C c sin C c5)化角为边:sin A a sin B b si nC c2R‘2R'2R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=18°0,求角A,由正弦定理-Sn) - Sn^; b sin B c sin C a sin A;求出b与cc sin C②已知两边和其中一边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理旦血求出角B,由A+B+C=180求出角C,再使用正b sin B弦定理旦泄求出c边c sin C4. △ ABC中,已知锐角A,边b,贝U①a bsin A时,B无解;②a bsinA或a b时,B有一个解;③ bsin A a b 时,B 有两个解。

如:①已知A 60 ,a 2,b2, 3 ,求B (有一个解) ②已知A 60 ,b 2,a23,求B (有两个解)注意:由正弦定理求角时,注意解的个数。

2019人教版数学必修5第一章 解三角形

2019人教版数学必修5第一章 解三角形

第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C解析 由正弦定理a sin A =bsin B,得4sin 45°=b sin 60°,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°答案 C解析 由a sin A =b sin B 得sin B =b sin A a =2sin 60°3=22.∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C ) =3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C . ∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°. ∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C,∴AB =BC sin C sin A =1×sin 150°1010=102.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A , 化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C,∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb =2×222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.解 在锐角三角形ABC 中,A ,B ,C <90°, 即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题: 1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C ,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎤0,403 答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C ,∴sin(B -C )=0,∴B =C . 5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .6∶5∶4 B .7∶5∶3 C .3∶5∶7 D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6. 令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4k c +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72k b =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2, ∴a sin A =b sin B =c sin C =2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________. 答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A=6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A .证明 因为在△ABC 中,a sin A =b sin B =csin C =2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin Bsin A=右边.所以等式成立,即a -c cos B b -c cos A=sin Bsin A .12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A =sin 120° cos A -cos 120°sin Asin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35,故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.1.在△ABC 中,有以下结论: (1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ;(3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角, 由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a =a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.5.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C . 由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C ,∴C =45° .二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30° 解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60° =12 ∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.答案 120° 解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎪⎨⎪⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32.能力提升 13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∴sin C =22.∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R .(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0,即sin(A -B )=0,∴A =B . 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30° B .60° C .90° D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角, 则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0.∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab .∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2, 则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2. 由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC , ∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3.三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c2=左边. 所以a 2-b 2c 2=sin (A -B )sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且·=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵·=-21,∴·=21.∴· = ||·||·cosB = accosB = 21.∴ac=35,∵cosB = 53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理) ∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设· =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由BA ·BC =23得ca ·cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a ,∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°.由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin ∠ACB sin ∠ABC=50×2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°.由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120° =28x 2-20x +100=28(x 2-57x )+100=28⎝⎛⎭⎫x -5142-257+100 ∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小.二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得 BC sin ∠CAB =ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126×2232=24(n mile).(2)在△ADC 中,由余弦定理得 CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile). 即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°,由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°, ∴△ACD 为正三角形.∴AC =CD =32(km). 在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km).答 河对岸A 、B 两点间距离为64km. 能力提升13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得: (20t )2+402-2×20t ×40·cos 45°=302. 化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2,由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. ∴B 1B 2=10 2.因此,乙船速度的大小为10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,2033 m答案 A解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△P AB 中,由正弦定理可得60sin (45°-30°)=PBsin 30°,PB =60×12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600·sin 2θ=2003·sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( )A .16B .17.5C .18D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α, 则a +b =9,a 2+b 2-2ab cos α=17,a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16.二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =t v ,AC =3t v ,B =120°,由正弦定理知BC sin ∠CAB=ACsin B ,∴1sin ∠CAB =3sin 120°, ∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝⎛⎫-12=3a 2,∴AC =3a . 8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12,由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A = 1-⎝⎛⎭⎫782=158. 由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BC sin (α-β), ∴AC =BC cos αsin (α-β)=h cos αsin (α-β). 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β).即山高CD 为h cos αsin βsin (α-β).12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A , 在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M . DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =(BE -FC )2+BC 2=902+1202=150(m).在△DEF 中,由余弦定理的变形公式,得 cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD =30°,∠ADB =30°,∠ACB =45° ∵AB =30, ∴BC =30,BD =30tan 30°=30 3. 在△BCD 中,CD 2=BC 2+BD 2-2BC ·BD ·cos 30°=900, ∴CD =30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章 解三角形 复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45° D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0,∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0)C.⎝⎛⎭⎫-12,0D.⎝⎛⎭⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0),∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m (2k +1)>2mk 3mk >m (k +1),∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin (α-β)B.a sin αsin βcos (α-β)C.a sin αcos βsin (α-β)D.a cos αcos βcos (α-β) 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin (α-β)=ADsin β.∴a sin (α-β)=h sin αsin β,∴h =a sin αsin βsin (α-β). 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ·AB ·sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ·AC cos 60°=552+162-2×16×55×12=2 401.∴BC =49.6.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc , sin C =23sin B ,则A 等于( ) A .30° B .60° C .120° D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b=6b 243b2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12×3×5×45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A=____________.答案 2393解析 由S =12bc sin A =12×1×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2解析 如图所示,BC sin 45°=ACsin 30°∴BC =AC sin 30°×sin 45°=2012×22=20 2 (km). 三、解答题11.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状.解 由(a +b +c )(b +c -a )=3bc , 得b 2+2bc +c 2-a 2=3bc ,即a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =π3.又sin A =2sin B cos C .∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a,∴b 2=c 2,b =c ,∴△ABC 为等边三角形.12.在△ABC 中,若已知三边为连续正整数,最大角为钝角. (1)求最大角的余弦值;(2)求以此最大角为内角,夹此角的两边之和为4的平行四边形的最大面积. 解 (1)设这三个数为n ,n +1,n +2,最大角为θ, 则cos θ=n 2+(n +1)2-(n +2)22·n ·(n +1)<0,化简得:n 2-2n -3<0⇒-1<n <3.。

高中数学 第二章 解三角形 2.1 正弦定理与余弦定理 2.1.1 正弦定理课件 北师大版必修5

高中数学 第二章 解三角形 2.1 正弦定理与余弦定理 2.1.1 正弦定理课件 北师大版必修5
∴本题有一解.
∵sin B=
sin

=
10sin60 °
5 6
=
2
2
, ∴ = 45°,
∴A=180°-(B+C)=75°.
∴a=
sin
sin
=
10sin75 °
sin45 °
=
10×
6+ 2
4
2
2
= 5( 3 + 1).
题型一
题型二
题型三
题型四
题型二
判断三角形的形状
【例 2】 在△ABC 中,若 lg a-lg c=lg sin B=-lg 2, 且为锐角,
sin
∴C=60°或 C=120°.

当 C=60°时,A=90°,
1
∴S△ABC = ·AC·sin A=2 3.
2
当 C=120°时,A=30°,
1
∴S△ABC = ·AC·sin A= 3.
2
故三角形的面积是 2 3或 3.
=
3
2
.
1
2
3
4
5
1在△ABC中,若b=2asin B,则A的值是(
BC=
.
解析:c=AB=3,B=75°,C=60°,则 A=45°.


由正弦定理,得
=
,
所以 a=BC=
答案: 6
sin
sin
sin
3sin45 °
sin
sin60 °
=
= 6.
π
【做一做 3-2】 在△ABC 中,若 a=3,b= 3, = ,
3
.
则的大小为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形(1)---正弦定理
【定理推导】
如图1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

思考: (1)∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?
(2)显然,边AB 的长度随着其对角∠C 的大小的增大而增大,能否用一个 等式把这种关系精确地表示出来?
如图1-2,在Rt ∆ABC 中,设BC=a 、AC=b 、AB=c ,根据锐角三角函数
中正弦函数的定义,有a
sinA c =,sin b B c =,又sin 1c C c
==,
则a b c c sinA sinB sinC ===,从而在直角三角形ABC 中,
sin sin sin a b c A B C ==。

思考:那么对于任意的三角形,以上关系式是否仍然成立?(分为锐角三角形和钝角三角形两种情况)
如图1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则:sin sin a
b
A
B
=
, 同理可得
sin sin c
b
C
B
=
,从而
sin sin a
b
A
B
=
sin c
C
=
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

证法二:(向量法)过点A 作j AC ⊥ ,由向量的加法可得AB AC CB =+

()j AB j AC CB ⋅=⋅+ ∴j AB j AC j CB ⋅=⋅+⋅
()()0
0cos 900cos 90-=+- j AB A j CB C ∴sin sin =c A a C ,即
sin sin =
a c
A C
证明三:(外接圆法)如图所示,∠A =∠D ,∴
2sin sin a a
CD R A D
===, 同理:sin b B =2R ,sin c
C
=2R
同理,过点C 作⊥ j BC ,可得sin sin =b c B C ,从而a b c sinA sinB sinC
==
类推:当∆ABC 是钝角三角形时,以上关系式仍然成立。

从上面的探究过程,可得以下定理:
c b a
C
B A (图1-2)
c
b a
C
B
A (图1-3)
c b a
C
B
A j C
B
A
(图1-1)
a
b
c
O
B C
A
D
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a b c sinA sinB sinC
==
【解析定理】
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,
sin b k B =,sin c k C =;
(2)a b c sinA sinB sinC ==
等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C
从而知正弦定理的基本作用为:
①已知三角形的任意两角及其一边可以求其他边,如sin sin b A
a B
=
; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b
=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

【例题分析】
【例1】已知在B b a C A c ABC 和求中,,,30,45,1000===∆
解:0030,45,10===C A c
∴00105)(180=+-=C A B
由C c A a sin sin = 得:21030
sin 45sin 10sin sin 0
=⨯==C A c a 由C c B b sin sin = 得:256575sin 2030
sin 105sin 10sin sin 00
+==⨯==C B c b 【例2】C B b a A c ABC ,,2,45,60和求中,===∆
解:2
3
245sin 6sin sin ,sin sin 0=⨯==∴=a A c C C c A a 0012060,1800或=∴︒<<︒C C
1360
sin 75sin 6sin sin ,75600
+=====∴C B c b B C 时,当, 1360
sin 15sin 6sin sin ,151200
-=====∴C B c b B C 时,当 或0060,75,13==+=∴C B b 00120,15,13==-=C B b
【例3】在C A a c B b ABC ,,1,60,30和求中,===∆
解:∵21
3
60sin 1sin sin ,sin sin 0=⨯==∴=b B c C C c B b
00090,30,,60,==∴<∴=>B C C B C B c b 为锐角,
∴222=+=c b a
【变式】02,135,3,ABC a A b B ∆===中,求
【课后作业】 1、在△ABC 中,
k C
c
B b A a ===sin sin sin ,则k 为( ) A 、2R
B 、R
C 、4R
D 、
R 2
1
(R 为△ABC 外接圆半径) 2、在ABC ∆中,已知角3
3
4,2245=
==b c B ,
,则角A 的值是( ) A.
15
B.
75
C.
105
D. 75或
15
3、在△ABC 中,=︒=︒=c b a B A ::,60,30则若
4、在ABC ∆中,若14,6760===a b B , ,则A=
5、在△ABC 中,︒=︒==120,30,6B A AB ,则三角形ABC 的面积为
6、在ABC ∆中,已知 45,2,3===B b a ,解三角形。

7、在C A a c B b ABC ,,1,60,30和求中,===∆
8、在C B b a A c ABC ,,2,45,60和求中,===∆。

相关文档
最新文档