2019版【人教版】八年级下期末质量检测数学试题及答案
2019【人教版】八年级下数学期末考试卷(含答案)
2019【人教版】八年级下数学期末考试卷(含答案)八年级下学期数学期末检测试题姓名:_______ 总分:_______一、选择题(每小题3分,共30分)1.要使式子有意义,则x的取值范围是()A。
x。
0 B。
x ≥ -2 C。
x ≥ 2 D。
x ≤ 22.矩形具有而菱形不具有的性质是()A。
两组对边分别平行 B。
对角线相等 C。
对角线互相平分 D。
两组对角分别相等3.下列计算正确的是()A。
4 × 2 ÷ 3 = 4 B。
15 + (-3) = -15C。
3 + 4 = 7 D。
3 - 4 = -14.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A。
1 B。
-1 C。
3 D。
-3y 3 px -2 15.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元) 2 000 2 200 2 400 2 600人数(人) 1 3 4 2A。
2400元、2400元 B。
2400元、2300元C。
2200元、2200元 D。
2200元、2300元6.四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A。
AB ∥ DC,AD ∥ BC B。
AB = DC,AD = BCC。
AO = CO,BO = DO D。
AB ∥ DC,AD = BC7.如图,菱形ABCD的两条对角线相交于O,若AC = 6,BD = 4,则菱形ABCD的周长是()A。
24 B。
16 C。
4 D。
28.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长()A。
2 B。
3 C。
4 D。
19.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A。
人教版2019学年八年级下数学期末试卷跟答案(共十套)
人教版2019学年八年级下数学期末试卷(一)亲爱的同学:1、没有比脚再长的路,没有比人更高的山。
祝贺你完成八年级的学习,欢迎参加本次数学期末考试!你可以尽情地发挥,仔细、仔细、再仔细!祝你成功!, 满分120分,考试时量120分钟。
一、选择题(本大题共10个小题, 每小题3分,满分30分. 每小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填在下表中相应的题号下)1.下列几组数中,能作为直角三角形三边长度的是A. 2,3,4B. 4,5,6C. 6,8,11D. 5,12,132.在平面直角坐标系中,点(—1,2)在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.点P(—2,3)关于y轴的对称点的坐标是A、(2,3 )B、(-2,—3)C、(—2,3)D、(—3,2)4.下列汉字或字母中既是中心对称图形又是轴对称图形的是5.下列命题中,错误的是A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等6.矩形的对角线长为20,两邻边之比为3 : 4,则矩形的面积为A.56 B. 192 C. 20 D. 以上答案都不对7.将直线y=kx-1向上平移2个单位长度,可得直线的解析式为A.y=kx+1 B.y=kx-3 C.y=kx+3 D.y=kx-18.一次函数y=(k-3)x+2,若y随x的增大而增大,则k的值可以是A.1 B.2 C.3 D.49.已知一次函数的图象经过点(0,3)和(-2,0),那么直线必经过点A.(-4,-3) B.(4,6) C.(6,9) D.(-6,6) 10.关于x的一次函数y kx k=+的图象可能是二、填空题(本大题共8个小题, 每小题3分, 满分24分)11.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为________米.12.如图,在四边形ABCD中,已知AB=CD,再添加一个条件(写出一个即可,图形中不再添加助线),则四边形ABCD是平行四边形。
2019版【人教版】八年级下期末质量检测数学试题及答案
2019版数学精品资料(人教版)下学期期末质量检测初二年数学试题(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.在平面直角坐标系中,点(3,2)关于y 轴对称的点的坐标是()A .(3,2) B.(3,2) C.(3,2)D.(3,2)2.函数21xy中,自变量x 的取值范围是()A .x >2B .2xC .x ≥2D .2x 3.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的().A .方差B .中位数C .众数D .平均数4.下列说法中错误..的是()A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形.5.已知反比例函数2yx,在下列结论中,不正确...的是().A .图象必经过点(1,2)B .y 随x 的增大而减少C .图象在第一、三象限D .若x >1,则y <26.如图,菱形ABCD 中,∠ A=60°,周长是16,则菱形的面积是()A .16B .16C .16D .87.如图,矩形ABCD 的边6BC,且BC 在平面直角坐标系中x 轴的正半轴上,点B 在点C 的左侧,直线kx y 经过点A (3,3)和点P ,且26OP .将直线kx y沿y 轴向下平移得到直线b kx y,若点P 落在矩形ABCD 的内部,则b 的取值范围是()A .3b B .3bC .36b D .33b 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.第6题图第7题图8.化简:baba 22.9.将0.000000123用科学记数法表示为.10.在□ABCD 中,∠A :∠B=3:2,则∠D =度.11.一次函数b kx y的图象如图所示,当0y时,x 的取值范围是.12.某校为了发展校园足球运动,组建了校足球队,队员年龄分布如右上图所示,则这些队员年龄的众数是.13.化简:1112xx x=.14.若点M (m ,1)在反比例函数xy3的图象上,则m =.15.直线2yx与y 轴的交点坐标为.16.在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D 的坐标为.17.如图,在△ABC 中,BC =10,AB = 6,AC = 8,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 的中点,则(1)BAC度;(2)AM 的最小值是.三、解答题(9题,共89分)在答题卡上相应题目的答题区域内作答.18.(9分)计算:421)1.3(5119.(9分)先化简,再求值:111122a aa aaa ,其中2a 20.(9分)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,60AOB ,2AB,求AD 的长.BADCO第11题图第12题图第17题图21.(9分)如图,一次函数b kx y 的图象与反比例函数xm y的图象交于点A )5,2(,C ),5(n ,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数xm y和一次函数b kx y 的表达式;(2) 连接OA ,OC .求△AOC 的面积.22.(9分)某学校设立学生奖学金时规定:综合成绩最高者得一等奖,综合成绩包括体育成绩、德育成绩、学习成绩三项,这三项成绩分别按1︰3︰6的比例计入综合成绩.小明、小亮两位同学入围测评,他们的体育成绩、德育成绩、学习成绩如下表.请你通过计算他们的综合成绩,判断谁能拿到一等奖?体育成绩德育成绩学习成绩小明96 94 90 小亮90939223.(9分)某校初二年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度.24.(9分)如图,在矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD ,BC 于点E ,F ,垂足为点O .(1)连接AF ,CE ,求证:四边形AFCE 为菱形;(2)求AF 的长.O ABCxyD25.(13分)甲、乙两人从学校出发,沿相同的线路跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向体育馆,如图是甲、乙两人在跑步的全过程中经过的路程y (米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;(2)求乙跑步的速度及乙在途中等候甲的时间;(3)求乙出发多长时间第一次与甲相遇?26.(13分)如图,在平面直角坐标系中,直线1l :621xy分别与x 轴、y 轴交于点B 、C ,且与直线2l :x y21交于点A .(1)点A 的坐标是;点B 的坐标是;点C 的坐标是;(2)若D 是线段OA 上的点,且COD 的面积为12,求直线CD 的函数表达式;(3)在(2)的条件下,设P 是射线CD 上的点,在平面内是否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.2016年春洛江区期末质量检测初二数学参考答案及评分标准一、选择题(每小题3分,共21分) 1.D ;2.B ;3.A ;4.B ;5.B ;6.D ;7.C ;二、填空题(每小题4分,共40分)8.a 2;9. 71023.1;10. 72;11. 2x ;12. 14岁(没有单位不扣分);13.1x ;14.3;15.(0,2);16.(1,1);17. (1)90;(2) 2.4三、解答题(共89分)18.(9分) 解:421)1.3(51=2215…………………………8分=6………………………………………9分19.(9分)解:111122a a a a a a =11)1()1)(1(1a a a a aa a …………3分=1111a a a …………………………5分=1aa …………………………………6分当2a时,原式=122…………………7分=2………………………9分20. (9分) 解:在矩形ABCD 中OD OC OB OA ,………………2分90BAD……………………………3分∵60AOB∴AOB 是等边三角形………………5分∴2AB OB ………………………6分在RtBAD 中,32242222ABBDAD ………………9分21.(9分) 解:(1)∵反比例函数xm y 的图象经过点A ﹙-2,-5﹚,∴m=(-2)×( -5)=10.∴反比例函数的表达式为xy10.……………………………………………………2分∵点C ﹙5,n ﹚在反比例函数的图象上,∴2510n.∴C 的坐标为﹙5,2﹚.…………………………………………………………………3分∵一次函数的图象经过点A ,C ,将这两个点的坐标代入b kxy,得.5225b kb k ,解得.31bk ,………………………………………………………5分∴所求一次函数的表达式为y =x -3.…………………………………………………6分(2) ∵一次函数y=x -3的图像交y 轴于点B ,∴B 点坐标为﹙0,-3﹚.………………………………………………………………7分∴OB =3.∵A 点的横坐标为-2,C 点的横坐标为5,∴S △AOC = S △AOB + S △BOC =22152215212-21OB OB OB .………………9分22.(9分)解:小明的综合成绩=0.1960.3940.69091.8…………………………(4分)小亮的综合成绩=0.1900.3930.69292.1………………………(8分)∵92.1>91.8 , ∴小亮能拿到一等奖. …………………………………………(9分)23.(9分)解:设中巴车速度为x 千米/小时,则旅游车的速度为x 2.1千米/小时.………1分依题意得6082.14040xx ………………………5分解得50x ………………………7分经检验50x是原方程的解且符合题意………………………8分答:中巴车的速度为50千米/小时.………………………9分24.(9分)(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO =∠CFO,∵AC的垂直平分线EF,∴AO = OC,AC⊥EF,………………………………2分在△AEO和△CFO中∵OCAO COFAOE CFOAEO∴△AEO ≌△CFO(AAS),………………………………3分∴OE = OF,∵O A= OC,∴四边形AECF是平行四边形,………………………………4分∵AC⊥EF,∴平行四边形AECF是菱形;……………………………………5分(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,…………………………………………6分∵BC=8cm,∴BF=(8-a)cm,在Rt△ABF中,由勾股定理得:42+(8-a)2=a2,…………8分a=5,即AF=5cm。
2019新人教版八年级下册数学期末试卷及答案
1FEDCBA(-1,1)1y (2,2)2yxyO10203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第8题)12345678八年级数学(下)期末检测试卷一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子2x -有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )A .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58 (D )每月阅读数量超过40的有4个月ADOACB10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2019年下期八年级期末质量检测数学试题参考答案及评分标准
2019年下期八年级期末质量检测数学试题(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分150分,考试时间120分钟。
)第Ⅰ卷(选择题共40分)一、选择题(本大题10个小题,每小题4分,共40分。
请在每小题给出的四个选项中,将唯一正确的答案序号填在题后括号里)1. 4的平方根是().A. 2± B. -2 C. 2 D. 162.下列运算正确的是().A.222()x y x y-=-B.532623xxx=⋅ C.236(3)9x x=D.1243x x x÷=3.下列说法错误的是().A.到角两边距离相等的点在这个角的平分线上.B.是无理数.C.命题“相等的角是对顶角”,它的逆命题是假命题.D.在ABC∆中,AB=AC,AD⊥BC于点D,则BD=CD,AD平分∠BAC.4.北京是我国首都,据调查北京城镇居民家庭2010﹣2017年每百户移动电话拥有量折线统计图如下图所示,请你根据图中信息,得出相邻两年每百户移动电话拥有量变化最大的是().A .2010年至2011年 B.2011年至2012年 C .2014年至2015年 D .2016年至2017年5.已知AB =8cm ,分别以线段AB 的两个端点的为圆心,5cm 为半径画弧,两弧交于点C 、D ,连结线段CD ,则CD =( )cm 。
A.3 B.4 C.5 D.66.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时,应先假设结论的反面。
下列假设正确的是( ). A.假设三角形中没有一个内角小于60°.B.假设三角形中没有一个内角等于60°.C.假设三角形中没有一个内角小于或等于60°.D.假设三角形中有一个内角大于60°7.下列三条线段能构成等腰直角三角形的是( ).A. 8.数形结合是初中数学重要的思想方法,下图就是用几何图形描述了一个重要的数学公式,这个公式是( ). A.22()()a b a b a b -=+-B.222()2a b a ab b -=-+C.2()a a b a ab -=-D.222()a b a b -=-9.若223)(1)x px q x +++(的展开式后既不含x 二次项又不含x 的一次项,则2(.)p q 的值是( ).A.16B.136- C.16- D.13610.如图,AD 是△ABC 的边BC 上的高,再添加下列条件中的某一个就能推出△ABC 是等腰三角形.①BD =CD ; ②∠BAD =∠CAD ;③AB +BD =AC +CD ; ④AB ﹣BD =AC ﹣CD ;⑤∠BAD=∠ACD.可以添加的条件序号正确答案是(). A.①② B.①②③ C.①②③④ D.①②③④⑤第Ⅱ卷(非选择题,共110分)二、填空题(每小题4分,共24分)把答案直接填在横线上。
2019学年人教版八年级下册期末考试数学试卷及答案
2019学年人教版八年级下册期末考试数学试卷及答案(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--(人教版)精品数学教学资料八年级下学期期末考试数学试卷一、选择题(每小题3分,共42分)将唯一正确答案的代号字母填在下面的方格内1.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x≥2B.x>2C.x≠2D.2.(3分)(2013?莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10B.10,C.11,D.11,103.(3分)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个4.(3分)下列计算中,正确的是()A.B.C.D.5.(3分)如图,在?ABCD中,延长CD至点E,延长AD至点F,连结EF,如果∠B=110°,那么∠E+∠F=()A.110°B.70°C.50°D.30°6.(3分)函数的自变量x的取值范围为()A.x≥2且x≠8B.x>2C.x≥2D.x≠87.(3分)下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.同一底上两个角相等的四边形是等腰梯形8.(3分)若ab>0,mn<0,则一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)如图,在梯形ABCD中,AB∥DC,DE∥CB,若CD=4,△ADE周长为18,那么梯形ABCD的周长为()A.22B.26C.38D.3010.(3分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1)B.(,1)C.(1,)D.(,2)11.(3分)在下列各图象中,y不是x函数的是()A.B.C.D.12.(3分)已知点(﹣6,y1),(8,y2)都在直线y=﹣x﹣6上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较13.(3分)雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料米,B种布料米,可获利50元;做一套N型号的时装需用A种布料米,B种布料米,可获利润45元.当M型号的时装为多少套时,能使该厂所获利润最大()A.40B.44C.66D.8014.(3分)在某火车站托运物品时,不超过3kg的物品需付元,以后每增加1kg(不足1kg按1kg计)需增加托运费元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.二、填空题(共5小题,每小题3分,共15分)答案直接填在题中横线上15.(3分)如果,那么xy的值为_________ .16.(3分)一组数据0,﹣1,6,1,﹣1,这组数据的方差是_________ .17.(3分)(2008?广安)在平面直角坐标系中,将直线y=2x﹣1向上平移动4个单位长度后,所得直线的解析式为_________ .18.(3分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为_________ ,点D的坐标为_________ .19.(3分)如图,在菱形ABCD中,AB=13cm,BC边上的高AH=5cm,那么对角线AC 的长为_________ cm.三、解答题(共58分)20.(8分)计算(1)﹣÷(2×);(2).21.(6分)如图,在?ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.22.某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:五项成绩素质考评得分(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10106107乙班108898丙班910969根据统计表中的信息解答下列问题:(1)请你补全五项成绩考评分析表中的数据:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班10乙班8丙班9 9(2)参照表中的数据,你推荐哪个班为区级先进班集体?并说明理由;_________(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照按3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为市级先进班集体?23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)月份用水量(m3)收费(元)9510927(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y于x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?24.小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是_________ km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(10分)(2013?赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.26.(12分)如图,已知点A(2,0)、B(﹣1,1),点P是直线y=﹣x+4上任意一点.(1)当点P在什么位置时,△PAB的周长最小?求出点P的坐标及周长的最小值;(2)在(1)的条件下,求出△PAB的面积.参考答案1-10、ADBDB ACBBB 11-14、CABA15、-616、17、y=2x+318、(﹣1,0);(0,)19、20、(1)(2)2+21、证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,在△AOE与△COF中,,∴△AOE≌△COF(SAS);(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF,∵AH∥CG,∴四边形AGCH是平行四边形;∵AC平分∠HAG,∴∠HAC=∠GAC,∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴CG=AG;∴?AGCH是菱形.22、解:(1)丙班的平均数为=(分);甲班成绩为6,7,10,10,10,中位数为10(分);乙班的众数为8分,填表如下:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班1010乙班88丙班99(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;故答案为:甲班;(3)根据题意得:丙班的平均分为9×+10×+9×+6×+9×=(分),补全条形统计图,如图所示:∵<<,∴依照这个成绩,应推荐丙班为市级先进班集体.23、解:(1)由题意5a=,解得a=;6a+(9﹣6)c=27,解得c=6.(2)依照题意,当x≤6时,y=;当x≥6时,y=6×+6×(x﹣6),y=9+6(x﹣6)=6x﹣27,(x>6)(3)将x=8代入y=6x﹣27(x>6)得y=6×8﹣27=21(元).24、解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=,∵汽车每行驶100km耗油10L,25、(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∴AB=AC=×60=30cm.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,?AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE即60﹣4t=4t解得:t=∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°)∴小丽驾车从甲地到乙地共耗油:×=升.,26、解:(1)作出点A关于直线y=﹣x+4的对称点C,连结BC交直线于点P则PB+PA=PB+PC=BC,由直线y=﹣x+4得与x轴上的交点D为(4,0)、与y轴的交点为E为(0,4),∴OD=OE=4,则∠ODE=45°,则∠ADC=90°,∴AD=CD=2,∴点C的坐标是(4,2),设直线BC的解析式为y=kx+b ,则有,解得:k=,b=,即直线BC的解析式为:y=x+.由方程组得:,即P 的坐标是(,),由勾股定理得BC=、AB=,∴△PAB 的周长是.(2)由直线BC的解析式y=x+得:点F的坐标是(﹣6,0),∴S△PAB=S△PAF﹣S△BAF =×AE×(﹣1)=.1111。
人教版2019年八年级下期末考试数学试卷及答案
第二学期期末统考 初 二 数 学一、选择题(共 24 分,每小题 3 分)下列各题均有四个选项,其中只有一个是符合题意的.1.函数 yx 2 A . x 2中自变量 x 的取值范围是B . x 2C . x 2D . x 22.五边形的内角和为A .180°B .360°C .540°D .720°3.在平面直角坐标系中,点 A (1,2)关于 x 轴对称的点的坐标是 A .(1,2) B .(1,-2) C .(-1,2) 4. 下列图形中,既是中心对称图形又是轴对称图形的是A .等边三角形B .平行四边形C .等腰梯形 5.已知 x 2 是一元二次方程 x 2+mx 8 0 的一个解,则 m 的值是D .(-1,-2) D .矩形 A . 2B . 2C .4D .2 或 46.某工厂由于管理水平提高,生产成本逐月下降. 原来每件产品的成本是 1600 元,两个月后,降至 900 元.如果产品成本的月平均降低率是 x ,那么根据题意所列方程正确的是A .1600(1x ) 900B . 900(1x ) 1600C .1600(1x )2900 D . 900(1x )216007. 10 名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:甲队 乙队队员 1173 170队员 2 175 171队员 3 175 175队员 4 175 179队员 5 177 180设两队队员身高的平均数依次为 x , x ,身高的方差依次为 S2 甲, S2 乙,则下列关系中完全正确的是A . x x , S 2S 甲2乙B . x x , S 2S 甲2乙C . xx , S 甲乙2甲 S 2乙D . xx , S 甲乙2甲S 2乙8.如图,菱形 ABCD 中,AB =2,∠B =120°,点 M 是 AD 的中点,点 P 由点 A 出发,沿 A →B →C →D 作匀速运动,到达点 D 停止,则△APM 的面积 y 与点 P 经过的路程 x 之间的函数关系的图象大致是DMACyyyyP2 12 12 12 1BO1 2 3 4 5 6 x O 1 2 3 4 5 6 x O 1 2 3 4 5 6 x O1 2 3 4 5 6 xABCD甲 乙 甲 乙甲 乙二、填空题(共18分,每小题3分)A9.如图,在△ABC中,D,E分别是边AB,AC的中点,如果BC=8,那么DE=.D E10.某地未来7日最高气温走势如图所示,那么这组数据的极差为°C.B C周一周二周三周四周五周六周日A30℃32℃32℃29℃26℃25℃26℃BCD11.如图,在菱形ABCD中,AC,BD是对角线,如果∠BAC=70°,那么∠ADC等于.12.如果把代数式x2-2x+3化成(x h)2k的形式,其中h,k为常数,那么h+k 的值是.13.如图,在梯形ABCD中,AD∥BC,如果∠ABC=60º,BD平分∠ABC,且BD⊥DC,CD=4,那么梯形ABCD的周长是.14.如图,在平面直角坐标系中有一个边长为1的正方形OABC,边O A,A DOC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形ByCOBB C11,再以对角线O B1为边作第三个正方形O B B C122,……,照此规律作下去,则点B2的坐标为_________;点B2014的坐标为_________.B2B1三、解答题(共20分,每小题5分)C1C B 15.解方程:x24x 50.B3C2O A xC316.如图,将△ABC置于平面直角坐标系中,点A(-1,3),B(3,1),C(3,3).(1)请作出△ABC关于原点O的中心对称图形△A△’B’C’;(点A的对称点是点A’,点B的对称点是点B’,点C的对称点是点C’)(2)判断以A,B’,A’,B为顶点的四边形的形状,并直接写出这个四边形的周长.y4A 4321321OCB1234x 123417.已知一次函数y 12x 1的图象与x轴交于点A,与y轴交于点B.(1)求A,B两点的坐标;(2)过B点作直线B P与x轴交于点P,且△使A B P的面积为2,求点P的坐标.18.已知:如图,点E,F□是□ABCD中AB,DC边上的点,且AE=CF,联结DE,BF.求证:DE=BF.D F CA E B四、解答题(共24分,每小题6分)19.已知关于x的一元二次方程x22x 2k 40有两个不相等的实数根.(1)求k (2)若k 的取值范围;为正整数,且该方程的根都是整数,求k的值.20.为了解某校学生的身高情况,随机抽取该校若干名学生测量他们的身高,已知抽取的学生中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高分组表女生身高频数分布表男生身高频数分布直方图组别A B C D身高/cmx 155155x 160160x 165165x 170组别ABCDE频数81210c4频率a0.300.250.150.101412108642频数A B C D E身高/cmE x 170合计b 1.00请根据以上图表提供的信息,解答下列问题:(1)在女生身高频数分布表中:a=,b=,c=;(2)补全男生身高频数分布直方图;(3)已知该校共有女生400人,男生380人,请估计身高在165≤x<170之间的学生约有多少人.....21.为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过180立方米的部分按每立方米5元收费;超过180立方米不超过260立方米的部分按每立方米7元收费;超过260立方米的部分按每立方米9元收费.(1)设每年用水量为x立方米,按“阶梯水价”应缴水费y元,请写出y(元)与x(立方米)之间的函数解析式;(2)明明家预计2015年全年用水量为200立方米,那么按“阶梯水价”收费,她家应缴水费多少元?22.如图,矩形ABCD的对角线AC,BD交于点O,D E∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长;(2)求四边形OFCD的面积.EA DO五、解答题(共14分,每小题7分)BF C23.如图,在平面直角坐标系xOy中,直线l1与x轴交于点A(3,0),与y轴交于点B,且与直线l2:y43x的交点为C(a,4).(1)求直线l 的解析式;1(2)如果以点O,D,B,C 为顶点的四边形是平行四边形,直接写出点D的坐标;y4BCl2l1(3)将直线l1沿y轴向下平移3个单位长度得到直线l3,A3O x点P(m,n)为直线l2上一动点,过点P作x轴的垂线,分别与直线l,l13交于M,N.当点P在线段MN 上时,请直接写出m的取值范围...24.把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.A D A DFMNB EC E BMC图1N图2F初二数学试题答案及评分参考一、选择题(共24分,每小题3分)题号答案1D2C3B4D5A6C7B8B二、填空题(共18分,每小题3分)题号91011121314答案4740°320(-2,2)(21007,-21007)三、解答题(共20分,每小题5分)15.解方程:x24x 50.解:(x 5)(x 1)0,-------2分∴x 50或x 10.∴x 5,x 1.------- 5分1 216.解:(1)如右图:------- 3分4A321y4321OCB1234x(2)正方形;85.-------5分B‘1217.解:(1)令y=0,则x=-2;令x=0,则y=1;C ∴A 点坐标为(-2,0);B点坐标为(0,1).-------2分34A‘(2)∵△ABP的面积为2,∴12OB AP 2.-------3分又∵OB=1,∴AP=4.∴点P的坐标为(-6,0),(2,0).------- 5分18.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.-------2分∵AE=CF,∴AB-AE=CD-CF,即EB=DF.-------3分D F C∴四边形DEBF是平行四边形.------- 4分∴DE=BF.-------5分A EB 其他证法相应给分.四、解答题(共24分,每小题6分)19.解:(1)∵方程x22x 2k 40有两个不相等的实数根,∴D=22- 4(2k-4)>0.-------2分∴k<52.-------3分(2)∵k为正整数,∴k=1,2.-------4分当k=1时,原方程为x2+2x-2=0,此方程无整数根,不合题意,舍去.-------5分当k=2时,原方程为x2+2x=0,解得,x=0,x=-212.符合题意.综上所述,k=2.-------6分20.解:(1)a=0.20,b=40,c=6,-------3分(2)如右图:-------4分141210频数(3)400创0.15+380840=60+76=136(人),864∴身高在165≤x<170之间的学生约有136人.-------6分2A B C D E身高/cm21.解:(1)当0#x180时,y=5x;-------1分当180<x?260时,y=5?180+7(x180),即y=7x-360;-------2分当x>260时,y=5创180+7(260-180)+9(x-260),即y=9x-880.’5x0x 180 ;综上所述, y7x 360 180 x 260 ;-------4 分9x 880x 260 .(2)当 x =200 时, y = 7 x - 360 = 7? 200 360 =1040(元).∴按“阶梯水价”收费,她家应缴水费 1040 元. -------6 分22.解: (1)∵四边形 ABCD 是矩形,∴∠BAD =90°,∴∠EAD =180°—∠BAD =90°. 在 △R t EAD 中,∵AE =6,AD =8,∴ DE =AE 2 + AD 2=10 .-------1 分E∵DE ∥AC ,AB ∥CD ,∴四边形 ACDE 是平行四边形. ∴AC =DE =10. -------2 分在 △R t ABC 中,∠ABC =90°,1∵OA =OC ,∴ BO = AC = 5 . -------3 分2AOD∵BF =BO ,∴BF =5. -------4 分(2)过点 O 作 OG ⊥BC 于点 G ,BGFC∵四边形 ABCD 是矩形, ∴∠BCD =90°,∴CD ⊥BC . ∴OG ∥CD .∵OB =OD ,∴BG =CG ,∴OG 是△BCD 的中位线. -------5 分 由(1)知,四边形 ACDE 是平行四边形,AE =6,∴CD =AE =6.∴OG = 1 2CD = 3 .∵AD =8,∴BC =AD =8.∴S D BCD 1 1 = 鬃BC CD = 24 , S = 鬃BF OG = 2 215 2.∴ S 四边形O FCD= S - S = D BCD D BOF 33 2. -------6 分其他证法相应给分. 五、解答题(共 14 分,每小题 7 分)23.解:(1)∵直线 l : y 2 4 3x 经过点 C (a ,4),∴ 4 3a = 4 ,∴ a = 3 .------- 1 分∴点 C (3,4).设直线 l 1的解析式为y kx b ,∵直线 l 1与 x 轴交于点 A ( 3 ,0),且经过点 C (3,4),∴ ,∴3k b 4.2 k ,3 b2.∴直线 l 1的解析式为y2 3x 2 .------- 2 分 (2)点 D 的坐标是(3,2),(3,6)或( - 3 , - 2 ).------- 5 分D BOF 3k b 0,(3)-32#x3.-------7分25.解:(1)MA=MN且MA⊥MN.(2)(1)中结论仍然成立.-------2分-------3分证明:联结DE,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.在△R t ADF中,∵M是DF的中点,∴MA=12DF =MD=MF.A D3∴∠1=∠3.∵N 是EF的中点,∴MN是△DEF的中位线.56∴1MN=DE2,MN∥DE.------- 4分E24B7MC∵△BEF为等腰直角三角形,∴BE=BF,∠EBF=90°.∵点E,F分别在正方形的边CB,AB的延长线上,N1∴AB+BF=CB+BE,即AF=CE.F ∴△ADF≌△CDE.------- 5分∴DF=DE,∠1=∠2.∴MA=MN,∠2=∠3.-------6分∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°—(∠3+∠5)=90°.∴∠7=∠6=90°,MA⊥MN.-------7分其他证法相应给分.。
【强烈推荐】2019新人教版八年级下册数学期末试卷及答案
2019新人教版八年级下册数学期末试卷及答案(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是()7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAA D O二、填空题(本题共10小题,满分共30分)11.48-1-⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2019新人教版八年级下册数学期末试卷及答案
八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子2x -有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAA D O二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2019年人教版八年级下册期末考试数学试卷及答案
人教版中小学精品教学资料八年级下学期期末考试数学试卷一、选择题(每小题3分,共42分)将唯一正确答案的代号字母填在下面的方格内1.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x≥2 B.x>2 C.x≠2 D.2.(3分)(2013•莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,103.(3分)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个4.(3分)下列计算中,正确的是()A.B.C.D.5.(3分)如图,在▱ABCD中,延长CD至点E,延长AD至点F,连结EF,如果∠B=110°,那么∠E+∠F=()A.110°B.70°C.50°D.30°6.(3分)函数的自变量x的取值范围为()A.x≥2且x≠8 B.x>2 C.x≥2 D.x≠87.(3分)下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.同一底上两个角相等的四边形是等腰梯形8.(3分)若ab>0,mn<0,则一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)如图,在梯形ABCD中,AB∥DC,DE∥CB,若CD=4,△ADE周长为18,那么梯形ABCD 的周长为()A.22 B.26 C.38 D.3010.(3分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1)B.(,1)C.(1,)D.(,2)11.(3分)在下列各图象中,y不是x函数的是()A.B.C.D.12.(3分)已知点(﹣6,y1),(8,y2)都在直线y=﹣x﹣6上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较13.(3分)雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N 两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利润45元.当M型号的时装为多少套时,能使该厂所获利润最大()A.40 B.44 C.66 D.8014.(3分)在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg 按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.二、填空题(共5小题,每小题3分,共15分)答案直接填在题中横线上15.(3分)如果,那么xy的值为_________.16.(3分)一组数据0,﹣1,6,1,﹣1,这组数据的方差是_________.17.(3分)(2008•广安)在平面直角坐标系中,将直线y=2x﹣1向上平移动4个单位长度后,所得直线的解析式为_________.18.(3分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为_________,点D的坐标为_________.19.(3分)如图,在菱形ABCD中,AB=13cm,BC边上的高AH=5cm,那么对角线AC的长为_________cm.三、解答题(共58分)20.(8分)计算(1)﹣÷(2×);(2).21.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.22.某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:五项成绩素质考评得分(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10 10 6 10 7乙班10 8 8 9 8丙班9 10 9 6 9根据统计表中的信息解答下列问题:(1)请你补全五项成绩考评分析表中的数据:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10乙班8.6 8丙班9 9(2)参照表中的数据,你推荐哪个班为区级先进班集体?并说明理由;_________(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照按3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为市级先进班集体?23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)月份用水量(m3)收费(元)9 5 7.510 9 27(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y于x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?24.小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是_________km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(10分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.26.(12分)如图,已知点A(2,0)、B(﹣1,1),点P是直线y=﹣x+4上任意一点.(1)当点P在什么位置时,△PAB的周长最小?求出点P的坐标及周长的最小值;(2)在(1)的条件下,求出△PAB的面积.参考答案1-10、ADBDB ACBBB 11-14、CABA15、-616、6.817、y=2x+318、(﹣1,0);(0,)19、20、(1)(2)2+21、证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,在△AOE与△COF中,,∴△AOE≌△COF(SAS);(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF,∵AH∥CG,∴四边形AGCH是平行四边形;∵AC平分∠HAG,∴∠HAC=∠GAC,∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴CG=AG;∴▱AGCH是菱形.22、解:(1)丙班的平均数为=8.6(分);甲班成绩为6,7,10,10,10,中位数为10(分);乙班的众数为8分,填表如下:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班8.6 10 10乙班8.6 8 8丙班8.6 9 9(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;故答案为:甲班;(3)根据题意得:丙班的平均分为9×+10×+9×+6×+9×=8.9(分),补全条形统计图,如图所示:∵8.5<8.7<8.9,∴依照这个成绩,应推荐丙班为市级先进班集体.23、解:(1)由题意5a=7.5,解得a=1.5;6a+(9﹣6)c=27,解得c=6.(2)依照题意,当x≤6时,y=1.5x;当x≥6时,y=6×1.5+6×(x﹣6),y=9+6(x﹣6)=6x﹣27,(x>6)(3)将x=8代入y=6x﹣27(x>6)得y=6×8﹣27=21(元).24、解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=52.8km/h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=33.5km,∵汽车每行驶100km耗油10L,25、(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∴AB=AC=×60=30cm.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE即60﹣4t=4t解得:t=∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°)∴小丽驾车从甲地到乙地共耗油:33.5×=3.35升.26、解:(1)作出点A关于直线y=﹣x+4的对称点C,连结BC交直线于点P,∴PA=PC,AD=CD,则PB+PA=PB+PC=BC,由直线y=﹣x+4得与x轴上的交点D为(4,0)、与y轴的交点为E为(0,4), ∴OD=OE=4,则∠ODE=45°,则∠ADC=90°,∴AD=CD=2,∴点C的坐标是(4,2),设直线BC的解析式为y=kx+b,则有,解得:k=,b=,即直线BC的解析式为:y=x+.由方程组得:,即P的坐标是(,),由勾股定理得BC=、AB=,∴△PAB的周长是.(2)由直线BC的解析式y=x+得:点F的坐标是(﹣6,0),∴S△PAB=S△PAF﹣S△BAF=×AE×(﹣1)=.。
人教版2019学年八年级下册数学期末试卷含答案(共十套)
人教版2019学年八年级下数学期末试卷(一)一、填空题(共8小题,每小题3分,满分24分)1.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别甲=82分,乙=82分,S甲2=245分,S乙2=90分.那么成绩较为整齐的是班(填“甲”或“乙”).2.如图,字母A所代表的正方形面积为.3.若x,y为实数,且|x+2|+=0,则()2016=.4.将直线y=2x+6向下平移4个单位长度得到的直线为.5.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F的值为度.6.如图,y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是.7.如图,已知正方形ABCD的对角线长为,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为.8.在平面直角坐标系中,点A,B,C的坐标分别是(0,0),(5,0),(2,3),若以点A,B,C,D为顶点的四边形是平行四边形,则符合条件的D点有个.二、选择题(共8小题,每小题4分,满分32分)9.要调查昆明市民喜欢看的电视节目,应关注的是哪个数据的代表()A.众数 B.中位数C.平均数D.加权平均数10.函数y=的自变量x的取值范围是()A.x>6 B.x<6 C.x≥6 D.x≤611.下列式子中,属于最简二次根式的是()A.B.C. D.12.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分13.能够判定一个四边形是菱形的条件是()A.对角线互相垂直平分B.对角线互相平分且相等C.对角线相等且互相垂直 D.对角线互相垂直14.一次函数y=﹣5x+3不经过第()象限.A.一B.二C.三D.四15.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,且DF=1,连接AF,CF,若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.1516.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.三、解答题(共9小题,满分64分)17.计算:(1)﹣()0+;(2)(3﹣2+)÷2;(3)(2+)(2﹣)﹣(+1)2.18.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8cm,BD=6cm,DH ⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.19.如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE ∥DF.20.今年6月南博会在我市成功举办,吸引了众多的国内外人士,期间,对六家大宾馆、饭店中游客的年龄(年龄取整数)进行了抽样统计,经整理后分成六组,并绘制成条形统计图,如图所示,请结合图形回答下列问题:(1)这次抽样的总人数是人;(2)样本中年龄的中位数落在第小组内(只要求写出答案);(3)这天的游客约有600000人,请估计在20.5﹣50.5年龄段的游客约有多少人?21.为迎接南博会,要在会场周围的一块四边形空地上种植草坪进行绿化,经测量∠B=90°,AB=7米,BC=24米,CD=15米,AD=20米,求这块四边形草坪ABCD的面积.22.甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示.(1)请根据图象回答:甲先出发小时后,乙才出发;在甲出发小时后,两人相遇,这时他们离A地千米;(2)乙的行驶速度是千米/小时;(3)分别求出表示甲、乙的路程y(千米)与时间x(小时)之间的函数表达式(不要求写出自变量的取值范围).23.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC,∠BAN=90°,求证:四边形ADCN是矩形.24.六一儿童节,某学习用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.其中,书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y1,y2(元)与所买水性笔支数x(支)的函数解析式(请化简函数解析式),并写出自变量x的取值范围;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜.25.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)求菱形ABCO边长;(2)求直线AC的解析式;(3)动点P从点A出发,沿折线ABC的方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式.人教版2019学年八年级下数学期末试卷(二)一、选择题(本大题共8小题,每小题3分,共24分)1.以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a< b C.4﹣a>4﹣b D.a﹣4>b﹣43.一个多边形的内角和等于1800°,则这个多边形的边数是()A.8 B.10 C.12 D.144.已知等腰三角形两边长为3和7,则周长为()A.13 B.17 C.13或17 D.115.下列多项式中不能用公式法分解因式的是()A.﹣x2﹣y2+2xy B.a2+a+C.﹣m2+49n2D.﹣a2﹣b26.下列等式中不恒成立的是()A.=B.=C.=D.=7.如图,□ABCD中,O为对角线AC的中点,AC⊥AB,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°8.如图,∠A=50°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.50°C.60°D.70°二、填空题(本大题共8小题,每小题3分,共24分)9.多项式a2+4a分解因式的结果是.10.命题“如a2>b2,则a>b”的逆命题是命题(填“真”或“假”).11.若分式的值为0,则x的值为.12.在△ABC中,AB=12,AC=5,AD平分∠BAC,则△ABD与△ACD的面积之比是.13.已知函数y=ax+b与y=cx+d的图象如图所示,则关于x的不等式ax+b≥cx+d的解集是.14.如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=.15.在□ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.16.在平面直角坐标系中,已知点A(0,4),B(8,0),点C在x轴上,且在点B的左侧,若△ABC是等腰三角形,则点C的坐标是.三、解答题(本大题共2小题,每小题5分,共10分)17.分解因式:(9x2+y2)2﹣36x2y2.18.先化简,再求值:(1+),其中x=0.四、解答题(本大题共2小题,每小题5分,共10分)19.求解下面的不等式组,并将解集画在数轴上..20.解分式方程: +=1.五、解答题(本大题共2小题,每小题7分,共14分)21.如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是;(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是;(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是.22.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?六、解答题(本大题共2小题,第23小题8分,第24小题10分,共18分)23.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.24.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.人教版2019学年八年级下数学期末试卷(三)一、选择题(每题3分)1.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥12.一次函数y=6x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,64.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13 B.17 C.20 D.265.某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差s2如表所示,如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是()8A.甲B.乙C.丙D.丁6.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +17.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分8.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4 B.4C.4D.289.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.10.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1) C.(0,2) D.(0,3)二、填空题(每题3分)11.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).12.某射击运动员在一次射击训练中,共射击了6次,所得成绩(单位:环)为:6、8、7、7、8、9,这组数据的中位数是.13.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.14.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.15.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.三、解答题16.计算:×(﹣)+|﹣2|+()﹣3﹣(π﹣3.14)0.17.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC 上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?18.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.19.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.20.我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.21.在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.22.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.人教版2019学年八年级下数学期末试卷(四)一、选择题(每小题3分,共48分)1.下列计算正确的是()A.B.C.D.2.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.43.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.644.一次函数y=2x+4交y轴于点A,则点A的坐标为()A.(0,4) B.(4,0) C.(﹣2,0)D.(0,﹣2)5.一次函数y=kx+b的图象如图所示,则k、b的值为()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.如图,在平行四边形ABCD中,连接对角线AC、BD,图中的全等三角形的对数()A.1对 B.2对 C.3对 D.4对7.下列命题中:①两条对角线互相平分且相等的四边形是正方形;②菱形的一条对角线平分一组对角;③顺次连结四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.真命题的个数是()A.1 B.2 C.3 D.48.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm9.甲乙两人在跳远练习中,6次成绩分别为(单位:米):甲:3.8 3.8 3.9 3.9 4.0 4.0;乙:3.8 3.9 3.9 3.9 3.9 4.0.则这次跳远练习中,甲乙两人成绩方差的大小关系是()A.>B.<C.=D.无法确定10.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数B.中位数C.众数D.方差11.匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A.B.C.D.12.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5 B.k<5 C.k>﹣5 D.k<﹣513.直线l的解析式是y=kx+2,其中k是不等式组的解,则直线l的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.15.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()cm2.A.4 B.8 C.12 D.1616.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8) C.(0,8)D.(0,16)二、填空题(每空2分,共8分)17.计算:=.18.如图:阴影部分(阴影部分为正方形)的面积是.19.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=.20.如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是.三、解答题(共44分)21.计算:(1)﹣﹣+(+1)0(2)(+)2﹣(﹣)2.22.一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?23.如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?24.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是.(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.25.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?26.如图,直角梯形ABCD中,AD∥BC,AB=cm,AD=24cm,BC=26cm,∠B=90°,动点P从A开始沿AD边向D以1cm/s的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动.P、Q同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为ts,问:(1)t=时,四边形PQCD是平行四边形.(2)是否存在一个t值,使PQ把梯形ABCD分成面积相等的两部分?若存在请求出t的值.(3)当t为何值时,四边形PQCD为等腰梯形.(4)连接DQ,是否存在t值使△CDQ为等腰三角形?若存在请直接写出t的值.人教版2019学年八年级下数学期末试卷(五)一、选择题(共12小题,每小题3分,满分36分)1.下列说法错误的是()A.42的算术平方根为4 B.2的算术平方根为C.的算术平方根是D.的算术平方根是92.下列各数:3.14159,0,0.3131131113…(相邻两个3之间1的个数逐次加1),﹣,﹣,其中无理数有()A.1个B.2个C.3个D.4个3.若代数式有意义,则实数x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠3 C.x>﹣1 D.x>﹣1且x≠34.下列各组数的三个数,可作为三边长构成直角三角形的是()A.1,2,3 B.32,42,52C.,,D.,,5.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD6.不等式﹣4x+6≥﹣3x+5的解集在数轴上表示正确的是()A.B.C.D.7.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2 B.﹣2 C.1 D.﹣18.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>39.如图所示,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD 的周长是()A.4 B.8 C.12 D.1610.如图是一次函数y=ax﹣b的图象,则下列判断正确的是()A.a>0,b<0 B.a>0,b>0 C.a<0,b<0 D.a<0,b>011.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1≥y2的x的取值范围为()A.x≥1 B.x≥2 C.x≤1 D.x≤212.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为()A.105°B.112.5°C.120°D.135°二、填空题(共5小题,每小题3分,满分15分)13.一个实数的两个平方根分别是m﹣5和3m+9,则这个实数是.14.通过平移把点A(1,﹣3)移到点A1(3,0),按同样的平移方式把点P(2,3)移到P1,则点P1的坐标是.15.顺次连接平行四边形各边中点所形成的四边形是.16.已知: +|b﹣1|=0,那么(a+b)2016的值为.17.如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,则∠BPD的度数为.三、解答题(共8小题,满分69分)18.化简计算:(1)﹣15++;(2)×﹣4×(1﹣)2.19.(1)解不等式:,并求出它的正整数解.(2)解不等式组:.20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.21.如图,在矩形ABCD中,E是BC上一点,且AE=BC,DF⊥AE,垂足是F,连接DE.求证:(1)DF=AB;(2)DE是∠FDC的平分线.22.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)判定点C(4,﹣2)是否在该函数图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?24.如图,在正方形ABCD中,E是边AD上一点,将△ABE绕点A按逆时针方向旋转90°到△ADF的位置.已知AF=5,BE=13(1)求DE的长度;(2)BE与DF是否垂直?说明你的理由.25.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(千米)与行驶时间x(小时)之间的函数关系式,并写出(1)求甲车离出发地的距离y甲自变量的取值范围;(千米)(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.人教版2019学年八年级下数学期末试卷(六)一.选择题(本大题共12个小题,每小题三分,共36分,在每小题给出的4个选项中,只有一项,符合题目要求的)1.计算的结果是()A.B.C.2x D.2y2.下列几何图形中,即是中心对称图形又是轴对称图形的是()A.四边形B.等腰三角形C.菱形 D.梯形3.下列多项式中,能运用公式法进行因式分解的是()A.a2+b2B.x2+9 C.m2﹣n2D.x2+2xy+4y24.如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和45.分式﹣可变形为()A.﹣B. C.﹣D.6.如果三角形三个外角度数之比是3:4:5,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定7.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.148.要使分式为零,那么x的值是()A.﹣2 B.2 C.±2 D.09.解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3 D.2﹣(x+2)=3(x ﹣1)10.已知=3,则的值为()A.B.C.D.﹣11.如图,矩形ABCD的面积为10cm2,它的两条对角线交于,点O1以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC n O n的面积为()A.10cm2B.cm2C.cm2D.12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④二.填空题(共7小题)13.分解因式:x2y﹣y3=.14.菱形的周长是40cm,两邻角的比是1:2,则较短的对角线长.15.函数y=中,自变量x的取值范围是.16.已知两个分式:A=,B=,其中x≠±2,则A与B的关系是.17.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.18.若x=3是分式方程=0的根,则a的值是.19.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三.解答题(本大题共8小题,共63分,解答应写出文字说明,证明过程,或演算步骤)20.(1)当时,求的值(2)解方程.21.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.22.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.已知:如图所示,E为正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数.25.甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.26.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=.27.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.四、选择题(共1小题,每小题0分,满分0分)28.(2016•满洲里市模拟)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19五、解答题(共2小题,满分0分)29.(2016春•历下区期末)分解因式:4x2+4xy+y2﹣4x﹣2y﹣3.30.(2016春•历下区期末)如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.人教版2019学年八年级下数学期末试卷(七)一、选择题(本题共15小题,每小题3分,共45分)1.下列图形中,不属于中心对称图形的是()A.圆B.等边三角形C.平行四边形D.线段2.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(2015云南)不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<34.化简+的结果是()A.x B.x﹣1 C.﹣x D.x+15.下列多项式中,能用公式法分解因式的是()A.﹣m2+n2B.a2﹣2ab﹣b2C.m2+n2D.﹣a2﹣b26.把分式,,进行通分,它们的最简公分母是()A.x﹣y B.x+y C.x2﹣y2D.(x2﹣y2)7.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2 B.5 C.8 D.108.下列语句:①每一个外角都等于60°的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式有意义的条件是分子为零且分母不为零.其中正确的个数为()A.1 B.2 C.3 D.49.一个多边形的内角和与外角和相等,则这个多边形的边数为()A.6 B.5 C.4 D.810.如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.9 B.10 C.11 D.1211.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b 的解集正确的是()A.x>1 B.x>﹣1 C.x<1 D.x<﹣112.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3 C.4 D.513.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是()。
人教版2019学年八年级下册数学期末试卷及答案(共10套)
3.下列选项中,平行四边形不一定具有的性质是( ).人教版 2019 学年八年级数学期末测试题(一)一、选择题(每题 4 分,12 个题,共 48 分)1.函数 y =1x + 2A . x ≠ -2自变量 x 的取值范围是( ).B . x = -2C . x ≠ 0D . x ≠ 22.在一次期末考试中,某一小组的 5 名同学的数学成绩(单位:分)分别是 130,100,108,110,120,则这组数据的中位数是().A .100B .108C .110D .120...A .两组对边分别平行B .两组对边分别相等C .对角线互相平分D .对角线相等4、下列各式中①;②; ③ a 2 ; ④; ⑤ x 2 - 1 ;⑥ x 2 + 2 x + 1 一定是二次根式的有( )个。
A . 1 个B. 2 个C. 3 个D. 4 个5. 计算:(2a - 1)2 + (1 - 2a )2 的值是()A. 0B. 4a - 2C. 2 - 4aD. 2 - 4a 或 4a - 26.已知,如图长方形 ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点 B 与 点 D 重合,折痕为 △E F ,则 ABE 的面积为( )A .3cm 2C .6cm 2B .4cm 2D .12cm 27.若一个直角三角形的两边长分别是 5 和 12,则第三边长为()(A)13(B)119(C) 13 或 119(D)无法确定8.如图,已知四边形 ABCD 为菱形,AD = 5cm , BD = 6cm ,则此菱形的面积为().□A .12cm 2B .24cm 2C .48cm 2D .96cm 2(第 10 题图)9.如图,矩形 ABCD 中,对角线 AC 、BD 交于点 O .若 AOB 60 ,BD 10 ,则 AB的长为().A . 5 3B . 5C . 4D . 310.如图, ABCD的周长为 40 , BOC 的周长比 AOB 的周长多 10 ,则 AB 为().A .5B .10C .15D .2011.已知一次函数 y=kx+b 的图象如右图所示,当 x <0 时,y 的取值范围是()A.y >0B.y <0 C -2<y <0D y <-2金额(元)y 76 64O 1 x-2O40 50 质量(千克)12.小李以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜后,余下的每千克降价 0.4 元,全部售完。
人教版2019年八年级下期末考试数学试卷含答案
一.选择题:(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的,把“答B.C.D.13八年级数学试卷....题卡”上相应的字母处涂黑.1.下列图形中,是中心对称图形的是A. B. C. D.2.在平面直角坐标中,点P(-3,5)在()A.第一象限B.第二象限C.第三象限D.第四象限3.若一个多边形的内角和等于720°,则这个多边形的边数是A.8B.7C.6D.54.在一个不透明的盒子中放有2个黄色乒乓球和4个白色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出白色乒乓球的概率为A.1212365.在函数y=1x-3中,自变量x的取值范围是()A.x≠3B.x≠0C.x>3D.x≠-36.正方形具有而矩形没有的性质是()A.对角线互相平分B.对边相等C.对角线相等D.每条对角线平分一组对角7.如图,函数y=a x-1的图象过点(1,2),则不等式a x-1>2的解集是A.x<1B.x>1C.x<2D.x>28.如图,矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发沿A→B→C→D运动,到达点D运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间函数关系的图象是()D CPMA. B.A BC. D.二.填空题(本题共16分,每小题4分)9.如图,在□ABCD中,已知∠B=50°,那么∠C的度数是.A DB C10.已知一个菱形的两条对角线的长度分别为6和8,那么这个菱形的周长是.11.甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.通常新手的成绩不太稳定,那么根据图中的信息,估计甲和乙两人中的新手是;他们这10次射击成绩的方差的大小关系是s2甲s2“>”或“=”).乙(填“<”、12.如图所示,在平面直角坐标系中,已知点P的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…OPn(n为正整数).那么点P6的坐标是,点P2014的坐标是.三.解答题:(本题共30分)13.用指定的方法解下列方程:(每小题5分,本题共10分)x2+4x-1=0(用配方法)(2)2x2-8x+3=0(用公式法)(1)14.(本题5分)已知:如图,E、F□是ABCD对角线AC上两点,AF=CE.求证:BE∥DF.15.(本题5分)已知x2-5x=14,求代数式(x-1)(2x-1)-(x+1)2+1的值.16.(本题5分)如图,四边形ABCD中,E、F、G、H分别是AB、B D、C D、A C的中点.(1)判断四边形EFGH是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.D G CHFA E B17.(本题5分)已知:关于错误!未找到引用源。
人教版2019学年八年级下数学期末试卷跟答案(共10套)
人教版2019学年八年级下数学期末试卷(一)一、选择题(每小题4分,共40分).1.下列各式中不属于分式的是()A.B.C.D.2.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为()A.0.156×10﹣5B.0.156×105C.1.56×10﹣6D.1.56×1063.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(3,﹣4)D.(﹣3,﹣4)4.函数中自变量x的取值范围是()A.x≠﹣1 B.x≠0 C.x=0 D.x≠15.在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.506.函数y=x﹣2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,在▱ABCD中,AC与BD交于点O,下列说法正确的是()A.AC=BD B.AC⊥BD C.AO=CO D.AB=BC8.已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,则此菱形的面积为()A.48cm2B.24cm2C.18cm2D.12cm29.如图,矩形ABCD中,AC与BD交于点O,若∠AOB=60°,AB=5,则对角线AC的长为()A.5 B.7.5 C.10 D.1510.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二、填空题(每小题4分,共24分).11.计算:﹣=.12.将直线y=2x向下平移3个单位,得到的直线应为.13.已知反比例函数的图象经过点(2,3),则m=.14.如图,在▱ABCD中,∠B=70°,则∠D=°.15.甲、乙两人各进行10次射击比赛,平均成绩均为8环,方差分别是:S=3,S=1,则射击成绩较稳定的是(填“甲”或“乙”).16.如图1,在矩形ABCD中BC=5,动点P从点B出发,沿BC﹣CD﹣DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(共86分).17.计算:(2﹣π)0﹣()﹣1+(﹣1)2016.18.解方程:.19.某校要在甲、乙两名学生中选拔一名参加市级歌唱比赛,对两人进行一次考核,两人的唱功、舞台形象、歌曲难度评分统计如下表所示,依次按三项得分的5﹕2﹕3确定最终成绩,”捐款活动.小明将捐款情况进行了统计,并绘制成如下的条形统计图(1)填空:该班同学捐款数额的众数是元,中位数是元;(2)该班平均每人捐款多少元?21.如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.22.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.23.如图,直线y1=k1x+b与反比例函数(x<0)的图象相交于点A、点B,其中点A的坐标为(﹣2,4),点B的坐标为(﹣4,m).(1)求出m,k1,k2,b的值;(2)请直接写出y1>y2时x的取值范围.24.某旅游风景区门票价格为a元/人,对团体票规定:10人以下(包括10人)不打折,10人以上超过10人的部分打b 折,设游客为x人,门票费用为y元,y与x之间的函数关系如图所示.(1)填空:a=,b=;(2)请求出:当x>10时,y与x之间的函数关系式;(3)导游小王带A旅游团到该景区旅游,付门票费用2720元(导游不需购买门票),求A 旅游团有多少人?25.如图,已知直线y=kx+b与坐标轴分别交于点A(0,8)、B(8,0),动点C从原点O 出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒1个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t 秒.(1)直接写出直线的解析式:;(2)若E点的坐标为(﹣2,0),当△OCE的面积为5 时.①求t的值;②探索:在y轴上是否存在点P,使△PCD的面积等于△CED的面积?若存在,请求出P 点的坐标;若不存在,请说明理由.26.如图,正方形ABCD的边长为4,点P为对角线BD上一动点,点E在射线BC上.(1)填空:∠PBC=度.(2)若BE=t,连结PE、PC,则|PE+PC的最小值为,|PE﹣PC|的最大值是(用含t的代数式表示);(3)若点E 是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.人教版2019学年八年级下数学期末试卷(二)一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分.1.使分式有意义的x的取值范围为()A.x≠1 B.x≠﹣1 C.x≠0 D.x≠±12.点P(﹣1,4)关于x轴对称的点P′的坐标是()A.(﹣1,﹣4)B.(﹣1,4)C.(1,﹣4)D.(1,4)3.对角线相等且互相平分的四边形是()A.一般四边形B.平行四边形C.矩形D.菱形4.若点P(m﹣1,3)在第二象限,则m的取值范围是()A.m>1 B.m<1 C.m≥﹣1 D.m≤15.近视眼镜的度数s(度)是镜片焦距d(米)的反比例函数,其大致图象是()A.B.C.D.6.某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x米,根据题意可列方程为()A.B.C.D.7.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=,则折痕CE的长为()A.2 B.C.D.3二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.计算:=.9.已知函数y=﹣x+3,当x=时,函数值为0.10.某种流感病毒的直径是0.0000085cm,这个数据用科学记数法表示为cm.11.某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是.12.已知a+=3,则a2+的值是.13.将直线向下平移3个单位,得到直线.14.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为.15.点A(x1,y1),B(x2,y2)是反比例函数的图象上两点,若0<x1<x2,则y1、y2的大小关系是.16.已知样本x1,x2,x3,x4的平均数是,方差是S2,则样本x1+3,x2+3,x3+3,x4+3的平均数是;方差是.17.如图,在函数的图象上有点P1、P2、P3…、P n、P n,点P1的横+1坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将+1图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=,S n=.(用含n的代数式表示)三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.计算:(π﹣2016)0+()﹣1﹣×|﹣3|.19.先化简,再求值:,其中x=﹣2.20.如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.21.某学校为选拔数学能力突出的学生参加中学生数学竞赛,组织了多次测试,其中甲乙两位同学成绩较为优秀,他们在六次赛前测试中的成绩(单位:分)如下表所示.如果根据这六次成绩选拔其中一人参加比赛,你认为哪一位比较合适?为什么?22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.黄商超市用2500元购进某种品牌苹果进行试销,由于销售状况良好,超市又调拨6000元资金购进该品牌苹果,但这次进货价比上次每千克少0.5元,购进苹果的数量是上次的3倍.(1)试销时该品牌苹果的进货价是每千克多少元?(2)如果超市按每千克4元的定价出售,当售出大部分后,余下600千克按五折出售完,那么超市在这两次苹果销售中共获利多少元?24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25.如图,已知反比例函数y=(k<0)的图象经过点,过点A作AB⊥x轴于点B,连结AO.(1)求k的值;=2S△AOC.求:(2)如图,若直线y=ax+b经过点A,与x轴相交于点C,且满足S△ABC①直线y=ax+b的表达式;②记直线y=ax+b与双曲线y=(k<0)的另一交点为D(n,﹣1),试求△AOD以及使得不等式ax+b>成立的x的取值范围.的面积S△AOD26.如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,AB=3,AD=2,经过点C的直线y=x﹣2与x轴、y轴分别交于点E、F.(1)求:①点D的坐标;②经过点D,且与直线FC平行的直线的函数表达式;(2)直线y=x﹣2上是否存在点P,使得△PDC为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M,使得以点M、D、C、E为顶点的四边形是平行四边形,请直接写出点M的坐标.人教版2019学年八年级下数学期末试卷(三)一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各曲线中,不能表示y是x的函数的是()A. B.C. D.2.下列命题中,逆命题是真命题的是()A.直角三角形的两锐角互余B.对顶角相等C.若两直线垂直,则两直线有交点D.若x=1,则x2=13.函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠04.2015年1月1日起,杭州市城区实行全新的阶梯水价,之前为了解某社区居民的用水情况,随机对该社区20户居民进行了调查,下表是这20户居民2014年8月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()A.平均数是10(吨)B.众数是8(吨)C.中位数是10(吨)D.样本容量是20 5.如图l1:y=x+3与l2:y=ax+b相交于点P(m,4),则关于x的不等式x+3≤ax+b的解为()A.x≥4 B.x<m C.x≥m D.x≤16.如图,E是正方形ABCD的边BC的延长线上一点,若CE=CA,AE交CD于F,则∠FAC的度数是()A.22.5° B.30°C.45°D.67.5°7.已知:|a|=3,=5,且|a+b|=a+b,则a﹣b的值为()A.2或8 B.2或﹣8 C.﹣2或8 D.﹣2或﹣88.如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE= BC,成立的个数有()A.1个B.2个C.3个D.4个二、填空题:共6个小题,每小题3分,共18分.9.﹣﹣×+=.10.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于.11.直线y=﹣2x+m﹣3的图象经过x轴的正半轴,则m的取值范围为.12.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.13.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=.14.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三、解答题:共9个小题,满分70分.15.计算:(1);(2)()2﹣(3+)(3﹣).16.先化简,再求值:÷(2+),其中x=﹣1.17.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.18.如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;(2)某人乘坐13km,应付多少钱?(3)若某人付车费42元,出租车行驶了多少千米?19.如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).(1)只用直尺(没有刻度)和圆规按下列要求作图.(要求:保留作图痕迹,不必写出作法)Ⅰ)AC⊥y轴,垂足为C;Ⅱ)连结AO,AB,设边AB,CO交点E.(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.20.如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.21.如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD 的中点,试说明四边形AECF是平行四边形.22.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.23.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6,4),E为AB的中点,过点D(8,0)和点E的直线分别与BC、y轴交于点F、G.(1)求直线DE的函数关系式;(2)函数y=mx﹣2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;(3)在(2)的条件下,求出四边形OHFG的面积.人教版2019学年八年级下数学期末试卷(四)一、精心选一选,慧眼识金.1.下列二次根式中是最简二次根式是()A.B.C. D.2.下列函数是一次函数的是()A.y=4x2﹣1 B.y=﹣C.y= D.y=3.已知▱ABCD中,∠B=4∠A,则∠D=()A.18°B.36°C.72°D.144°4.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、135.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a6.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分.张老师得分的情况如下:领导平均给分80分,教师平均给分82分,学生平均给分90分,家长评价给分84分,如果按照1:3:5:1的权进行计算,那么张老师的综合评分为()A.84分B.85分C.86分D.87分7.一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣3,0),B(0,2),当函数图象在第二象限时,自变量x的取值范围是()A.﹣3<x<0 B.x<0 C.﹣3<x<2 D.x>﹣38.如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C⇒B⇒A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP 的面积y关于x的函数关系()A.B.C.D.二、耐心填一填,一锤定音!(每小题2分,共16分)9.函数y=中自变量x的取值范围是.10.若x>1,化简=.11.一组数据101,98,99,100,102的平均数=100,方差S2=.12.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是.13.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为.14.平行四边形ABCD的对角线AC、BD相交于点O,若AC+BD=24厘米,△OAB 的周长是18厘米,则AB=厘米.15.一个直角三角形的两边长为5cm,12cm,则这个直角三角形的第三边长为.16.如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为.三、认真算一算,又快又准!每题6分,共18分.17.计算:(﹣2)﹣.18.若a=,b=,求a2b+ab2的值.19.如图,△ABC中,∠B=90°,AB=3,BC=4,若CD=12,AD=13.求阴影部分的面积.四、细心想一想,用心做一做!每题8分,共32分.20.如图,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,若∠CAE=15°,求∠BOE的度数.21.八年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:时间)分成5组:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是;(2)补全频数分布直方图;(3)试估计全校3000名学生在家做家务的时间在1.5小时以上的有多少人?22.已知两条直线y1=k1x,y2=k2x﹣9交于点A(3,﹣6).(1)求k1,k2的值.(2)在平面直角坐标系中,画出两条直线的图象.(3)求这两条直线y轴围成的三角形的面积.23.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO 上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.五、你一定是生活中的智者!共10分.24.6月30日以来的强降雨造成某地洪灾.某市组织20辆汽车装运食品、药品和生活用品三种物质共100吨前往灾区.按计划20辆汽车都要装运,且每辆汽车只能装运同一种物质,且必须装满.根据下表提供的信息,解答下列问题.(1)设装运食品的车辆数为x,装运药品的车辆数为y,求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么有几种车辆安排方案?请写出所用的方案.人教版2019学年八年级下数学期末试卷(五)一、选择题(每小题4分,共40分)1.化简分式,结果是()A.x﹣2 B.x+2 C.D.2.寨卡病毒是一种通过蚊虫进行传播的虫媒病毒,其直径约为0.0000021cm.将数据0.0000021用科学记数法表示为()A.2.1×10﹣7B.2.1×107C.2.1×10﹣6D.2.1×1063.下列图形中,不属于中心对称图形的是()A.等边三角形B.菱形C.矩形D.平行四边形4.如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BCD.AB∥DC,AB=DC5.已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.286.为筹备期末座谈会,班长对全班同学爱吃哪几种水果作了民意调查.根据调查数据决定最终买什么水果应参照的统计量是()A.众数B.中位数C.平均数D.方差7.为了解某小区中学生在暑期期间的学习情况,王老师随机调查了7位学生一天的学习时间,结果如下(单位:小时):3.5,3.5,5,6,4,7,6.5.这组数据的中位数是()A.6 B.6.5 C.4 D.58.如图,水以恒速(即单位时间内注入水的体积相同)注入如图的容器中,容器中水的高度h与时间t的函数关系图象可能为()A.B.C.D.9.已知函数y=2x﹣3的自变量x取值范围为1<x<5,则函数值的取值范围是()A.y<﹣2,y>2 B.y<﹣1,y>7 C.﹣2<y<2 D.﹣1<y<7 10.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35°B.55°C.65°D.75°二、填空题(每题4分,共24分).11.若分式的值为0,则x的值等于.12.已知A(1,﹣2)与点B关于y轴对称.则点B的坐标是.13.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=3.5.则射击成绩比较稳定的是(填“甲”或“乙“).14.在▱ABCD中,若∠B=50°,则∠C=°.15.在菱形ABCD 中,AC=3,BD=6,则菱形ABCD的面积为.16.已知函数y=2x+b经过点A(2,1),将其图象绕着A点旋转一定角度,使得旋转后的函数图象经过点B(﹣2,7).则①b=;②旋转后的直线解析式为.三、解答题(共86分).17.计算:.18.先化简,再求值:÷,其中x=﹣3.19.解分式方程:.20.如图,在平面直角坐标系中,已知一次函数y=﹣2x+6的图象与x轴交于点A,与y轴交于点B.试求出△OAB的面积.21.如图,在▱ABCD中,E,F分别在AD,BC上,且AE=CF,连结BE、DF.求证:BE=DF.22.某校八年级共有四个班,各班的人数如图1所示,人数比例如图2所示.(1)试求出该校八年级的学生总人数;(2)请补充条形统计表;(3)在一次数学考试中,1班、2班、3班、4班的平均成绩分别为92分、91分、90分、95分.试求出该校八年级学生在本次数学考试的平均分.23.如图,已知四边形ABCD的对角线AC、BD相交于点O,OB=OD,BF=DE,AE∥CF.(1)求证:△OAE≌△OCF;(2)若OA=OD,猜想:四边形ABCD的形状,请证明你的结论.24.小聪、小明两兄弟一起从家里出发到泉港区图书馆查阅资料,已知他们家到区图书馆的路程是5千米.小聪骑自行车,小明步行,当小聪从原路回到家时,小明刚好到达区图书馆.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离家的路程S(千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)填空:小聪在泉港区图书馆查阅资料的时间为分钟;(2)试求出小明离开家的路程S (千米)与所经过的时间t(分钟)之间的函数关系式;(3)探究:当小聪与小明迎面相遇时,他们离家的路程是多少千米?25.如图,在平面直角坐标系中,A(a,0)、B(0,b)是矩形OACB的两个顶点.定义:如果双曲线y=经过AC的中点D,那么双曲线y=为矩形OACB的中点双曲线.(1)若a=3,b=2,请判断y=是否为矩形OACB的中点曲线?并说明理由.(2)若y=是矩形OACB的中点双曲线,点E是矩形OACB与中点双曲线y=的另一个交点,连结OD、OE,四边形ODCE的面积S=4,试求出k的值.26.已知正方形ABCD,AB=8,点E、F分别从点A、D同时出发,以每秒1m的速度分别沿着线段AB、DC向点B、C方向的运动,设运动时间为t.(1)求证:OE=OF.(2)在点E、F的运动过程中,连结AF.设线段AE、OE、OF、AF所形成的图形面积为S.探究:①S的大小是否会随着运动时间为t的变化而变化?若会变化,试求出S与t的函数关系式;若不会变化,请说明理由.②连结EF,当运动时间为t为何值时,△OEF的面积恰好等于的S.DE 图 1ACBD 图 2A C B人教版2019学年八年级下数学期末试卷(六)(全卷满分120分,考试时间120分钟)一、选择题:(每小题3分,共30分)1、H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001 m .将0.0000001用科学记数法表示为( )A 、0.1×10-7B 、1×10-7C 、0.1×10-6D 、1×10-6 2、下列哪个点在函数3+-=x y 的图像上( ) A 、(-5,8) B 、(0.5,3) C 、(3,6) D 、(1,1)3、如果,那么等于( ) A 、3:2 B 、2:3 C 、2:5D 、3:54、某校男子篮球队12名队员的年龄如下:16、17、17、18、15、18、16、19、18、18、19、18,这些队员年龄的众数和中位数分别是 ( )A 、17、17B 、17、18C 、16、17D 、18、18 5、函数的图像经过点(1,-1),则函数的图像不经过第( )A 、一象限B 、二象限C 、三象限D 、四象限6、若分式2422---x x x 的值为零,则x 的值为( )A 、2和 、2 C 、-2 、47、如图1,在平行四边形ABCD 中,,CE 平分交AD 边于点E ,且,则AB 的长为( )、4 、3、、28、已知直线y =kx +b 经过一、二、四象限,则直线y =bx -k 的图象只能是( )32=ba ba a +xky =2-=kx y 2-B D 7=AD BCD ∠4=AE A B C 25D9、如图2,小明在作线段AB 的垂直平分线时,他是这样操作的:分别以点A 和点B 为圆心,以大于AB 的一半的长为半径画弧,两弧相交于点C 和点D ,则直线CD 就是所要作的线段AB 的垂直平分线。
2019版【人教版】八年级下数学期末考试数学试题及答案
2019版数学精品资料(人教版)八年级质量检测一、选择题(本大题10小题,每小题4分,共40分)1.下列式子中,表示y 是x 的正比例函数的是()A .5x yB .xy3C .23xyD .xy322.在△ABC 中,若∠BAC =90°,则()A .BC =AB +ACB .AC 2=AB 2+BC2C .AB 2=AC2+BC2D .BC 2=AB 2+AC23.某地2月份上旬的每天中午12时的气温(单位:°C )如下:18,18,14,17,16,15,18,17,16,14.则这10天中午12时的气温的中位数是()A .16 B .16.5C .17D .184.比5大的数是()A .1B .3C .2D .255.如图1,已知四边形ABCD 是矩形,对角线AC ,BD 交于点P ,则下列结论正确的是()A .AC 是∠BAD 的平分线B .AC ⊥BDC .AC =BDD .AC >2BP6.如图2,在四边形ABCD 中,点E ,F ,G 分别是边AB ,AD ,DC 的中点,则EF =()A .BD31B .BD21C .BG21D .BG7.如图3,某个函数的图象由线段AB 和BC 组成,其中点A (0,2),B (23,1),C (4,3),则此函数的最大值是()A .1B .2C .3D .48.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为节约成本车间规定每天生产的螺钉和螺母刚好配套.设每天安排x 个工人生产螺钉,则下列方程中符合题意的是()A .x x 12002222000B .x x 12002220002C .xx20002221200D .xx200022120029.如图4,在正方形ABCD 的外侧作等边三角形DCE ,若∠AED =15°,则∠EAC =()A .15°B .28°C .30°D .45°10.在下列直线中,与直线3x y 相交于第二象限的是()图1图4图2图3。
2019年人教版八年级下册数学期末试卷含参考答案
2019年人教版八年级下册期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的。
1、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是 A 、(2,-4) B 、(4,-2) C 、(-1,8) D 、(16,21)2、如果分式x-11有意义,那么x 的取值范围是A 、x >1B 、x <1C 、x ≠1D 、x =13、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考 A 、众数 B 、平均数 C 、加权平均数 D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
D 、对角线互相垂直的四边形面积等于对角线乘积的一半。
10、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、30011、甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:通过计算可知两组数据的方差分别为0.22=甲S ,7.22=乙S ,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。
人教版2019学年八年级下册数学期末试卷含答案(共8套)
人教版2019学年八年级下数学期末试卷(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.不等式2x﹣3≥0的解集是()A.x≥B.x>C.x>D.x≤2.在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个3.下列多项式能用完全平方公式进行分解因式的是()A.x2+1 B.x2+2x+4 C.x2﹣2x+1 D.x2+x+14.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=05.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3 cm B.6 cmC.9 cm D.12 cm6.如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()A.x<2 B.x>2 C.x<﹣1 D.x>﹣17.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到8.如果把分式中的x、y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍9.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.210.下列哪组条件能判别四边形ABCD是平行四边形()A.AB∥CD,AD=BC B.AB=CD,AD=BC C.∠A=∠B,∠C=∠D D.AB=AD,CB=CD二、填空题:11.已知函数y=2x﹣3,当x时,y≥0;当x时,y<5.12.若分式方程=有增根,则这个增根是x=.13.分解因式:2x2﹣12x+18=.14.计算x2﹣3x﹣10=(x+a)(x+b)的结果是.15.如图,在▱ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为15,AB=6,那么对角线AC+BD=.16.若x2+2(m﹣3)+16是关于x的完全平方式,则m=.17.当x=时,分式无意义;当x=时,分式的值为0.18.若x2﹣3x﹣10=(x+a)(x+b),则a=,b=.三、解答题(本小题共8个小题,共66分)19.(8分)解不等式(组),并把解集在数轴上表示出来.(1)5(x+2)≥1﹣2(x﹣1)(2).20.(8分)因式分解:(1)x(x﹣y)﹣y(y﹣x)(2)﹣8ax2+16axy﹣8ay2.21.(8分)解方程:(1)(2)=3.22.(10分)解答下列问题:(1)先化简,再求值,其中x=﹣2,y=1.(2)先分解因式,再求值:已知a+b=2,ab=2,求的值.23.(8分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?24.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.25.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.26.(10分)现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?人教版2019学年八年级下数学期末试卷(二)一、选择题:本大题共12小题,每小题3分,共36分1.下列图形中,不属于中心对称图形的是()A.圆B.等边三角形C.平行四边形D.线段2.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y3.下列从左到右的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣zy)+z D.﹣8x2+8x﹣2=﹣2(2x﹣1)24.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°5.分式﹣可变形为()A.﹣B. C.﹣D.6.下列语句:①每一个外角都等于60°的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式有意义的条件是分子为零且分母不为零.其中正确的个数为()A.1 B.2 C.3 D.47.不等式组的解集在数轴上表示为()A.B.C.D.8.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3 C.4 D.59.若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠±2)10.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE ≌△CDF,则添加的条件是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠211.若不等式ax<b的解集为x>2,则一次函数y=ax+b的图象大致是()A.B.C.D.12.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α二、填空题:每小题4分,共24分13.若分式的值为零,则x=.14.如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为.15.若不等式组有解,则a的取值范围是.16.如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是.17.若关于x的方程﹣1=0有增根,则a的值为.18.对于非零的两个实数a、b,规定a⊕b=,若2⊕(2x﹣1)=1,则x的值为.三、解答题:共60分19.解不等式组:,并把不等式组的解集在数轴上表示出来.20.解方程:.21.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.22.先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.23.如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE于G点,交DF 于F点,CE交DF于H点,交BE于E点.求证:△EBC≌△FDA.24.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.25.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?人教版2019学年八年级下数学期末试卷(三)一、选择题:本大题共12小题,每小题3分,共36分1.下列各式中,是分式的是()A.B.C.D.2.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2ab B.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3 D.ax﹣ay=a(x﹣y)3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD4.不等式组的解集在数轴上表示为()A.B.C.D.5.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB 的长为()A.3cm B.6cm C.9cm D.12cm6.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>07.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°8.若解分式方程产生增根,则m=()A.1 B.0 C.﹣4 D.﹣59.将(﹣2)2015+(﹣2)2016因式分解后的结果是()A.22015 B.﹣2 C.﹣22015D.﹣110.如图,△ABC中,AB边的垂直平分线交AB于点E,交BC于点D,已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm11.已知关于x的不等式组的整数解共有2个,则整数a的取值是()A.﹣2 B.﹣1 C.0 D.112.甲地到乙地之间的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由甲地到乙地的行驶时间缩短了1.5小时,设原来火车的平均速度为x千米/小时,则下列方程正确的是()A.﹣1.8=B. +1.8=C. +1.5=D.﹣1.5=二、填空题:每小题4分,共24分13.分式有意义的条件是.14.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax ﹣3的解集为.15.已知x2+4xy+my2是完全平方式,则m的值是.16.如果一个多边形的内角和是其外角和的一半,那么这个多边形是边形.17.如图,▱ABCD的对角线相交于O,且AB=6,△OCD的周长为23,▱ABCD的两条对角线的和是.18.观察下列顺序排列的等式:a1=1﹣,a2=﹣,a3=﹣,a4=﹣,….试猜想第n个等式(n为正整数):a n=.三、解答题:共60分19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.22.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C(﹣1,4),请按下列要求画图:(1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1;(2)△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.23.某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本,求打折前每本笔记本的售价是多少元?24.已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,连接AF,CE.(1)求证:四边形AECF是平行四边形;(2)如果E,F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.25.如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.人教版2019学年八年级下数学期末试卷(四)一、选择题(本大题共10个小题,1-5小题,每小题3分;6-10小题,每小题3分,共25分)1.二次根式中字母x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7 B.7,6.5 C.6.5,7 D.5.5,73.下列四个点,在正比例函数的图象上的点是()A.(2,5) B.(5,2) C.(2,﹣5)D.(5,﹣2)4.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16 B.18 C.19 D.215.下列计算正确的是()A.B. C.4D.36.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.某校生物课外活动小组有10名学生,他们的年龄如下(岁):14 14 15 15 15 16 16 16 16 17.其中能较好地反映该生物课外活动小组年龄特征的是()A.只有平均数B.只有中位数C.只有众数D.平均数、中位数、众数均可8.下列说法不正确的有()①三内角之比是1:2:3的三角形是直角三角形;②三内角之比为3:4:5的三角形是直角三角形;③三边之比是3:4:5的三角形是直角三角形;④三边a,b,c满足关系式a2﹣b2=c2的三角形是直角三角形.A.1个 B.2个 C.3个 D.4个9.如图,菱形ABCD的边长是4,∠B=120°,P是对角线AC上一个动点,E是CD的中点,则PE+PD的最小值为()A.2 B.2 C.4 D.210.如图,在直线y=x+1上取一点A1,以O、A1为顶点做第一个等边三角形OA1B1,再在直线上取一点A2,以A2、B1为顶点作第二个等边三角形A2B1B2,…,一直这样做下去,则第10个等边三角形的边长为()A.()9 B.()10C.29•D.210•二、填空题(本大题共6个小题,每小题3分,共18分)11.若正方形的边长为4,则它的对角线长是.12.计算的结果为.13.如图,平行四边形ABCD中,BE平分∠ABC,且E是AD的中点,若AB=2,则平行四边形ABCD的周长是.14.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.15.无论m取什么值,一次函数y=(m﹣2)x+2m+1(m≠2)的图象总经过一个确定的点,那么,这个确定的点的坐标是.16.将1、、、按如图方式排列,若规定(m,n)表示第m排的第n 个数,如(4,2)表示的数是,则(5,4)与(18,15)表示的两数之积是.三、解答题(本大题共7个小题,共57分)17.计算:﹣()18.如图,平行四边形ABCD中,E,F分别是BA,DC延长线上的点,且AE=CF,过E作EM⊥BE交AD于点M,过F作FN⊥DF交BC于点N.求证:AM=CN.19.小明、小亮都是射箭爱好者,他们在相同的条件下各射箭5次,每次射箭的乘积情况如表:(1)请你根据表中的数据填写下表:(2)从平均数和方差相结合看,谁的成绩好些?20.如图是小阳同学所走的路程s(米)与时间t(分钟)的函数关系图,观察图中所提供的信息,解答下列问题:(1)小阳同学在前5分钟内的平均速度是多少?(2)小阳同学在中途停了多长时间?(3)当10≤t≤20时,求s与t的函数关系式.21.如图,矩形ABCD的长为8,宽为6,现将矩形沿对角线BD折叠,C点到达C′处,C′B交AD于E.(1)判断△EBD的形状,并说明理由;(2)求DE的长.22.红光运输队欲用A,B,C三种型号的汽车共80辆为某企业一次性将700吨货物从M地运往N地(要求每种型号的汽车都满载),三种型号的汽车的载重量及应获取的运费如表:设派用A型汽车x辆,B型汽车y辆,红光运输队应获取的总运费为w元.(1)用含x、y的代数式表示派用的C型汽车的辆数;(2)求y关于x的函数关系式并直接写出x的取值范围;(3)求w关于x的函数关系式;(4)若红光运输队获取的总运费为18600元,请问他们的派车方案是怎样的?23.探索与发现(1)正方形ABCD中有菱形PEFG,当它们的对角线重合,且点P与点B重合时(如图1),通过观察或测量,猜想线段AE与CG的数量关系,并证明你的猜想;(2)当(1)中的菱形PEFG沿着正方形ABCD的对角线平移到如图2的位置时,猜想线段AE与CG的数量关系,并证明你的猜想.人教版2019学年八年级下数学期末试卷(五)一、选择题(每小题3分,共24分)1.下列各式中是分式的是()A.(x+y)B.C.D.2.一种微粒的半径约为0.00004米,将0.00004用科学记数法可表示为()A.4×105B.4×106C.4×10﹣5D.4×10﹣63.下列各式中正确的是()A.(10﹣2×5)0=1 B.5﹣3=C.2﹣3=D.6﹣2=4.分式方程=的解是()A.5 B.10 C.﹣5 D.﹣105.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE6.如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y=(k为常数)在第一象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()A.逐渐减小B.逐渐增大C.先增大后减小D.不变7.如图,在平面直角坐标系中,点P(,a)在直线y=2x+2与直线y=2x+4之间,则a 的取值范围是()A.2<a<4 B.1<a<3 C.1<a<2 D.0<a<28.如图所示,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别为1和3,则正方形ABCD的边长是()A.2B.3 C.D.4二、填空题(每小题3分,共18分)9.要使分式有意义,则x的取值应满足.10.计算÷8x2y的结果是.11.直线y=3x﹣3与两坐标围成的三角形的面积是.12.某学校决定招聘一位数学教师,对应聘者进行笔试和试教两项综合考核,根据重要性,笔试成绩占30%,试教成绩占70%.应聘者张宇、李明两人的得分如右表:如果你是校长,你会录用.13.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.14.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=.三、解答题(共78分)15.先化简,再求值:(﹣)÷,其中x=2.16.高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.17.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.18.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.19.如图,将▱ABCD的边BA延长到点E,使AE=AB,连接EC,交AD于点F,连接AC、ED.(1)求证:四边形ACDE是平行四边形;(2)若∠AFC=2∠B,求证:四边形ACDE是矩形.20.甲、乙两人从学校沿同一路线到距学校3000m的图书馆看书,甲先出发,他们距学校的路程y(m)与甲的行走时间x(min)之间的函数图象如图所示,根据图象解答下列问题:(1)甲行走的速度为m/min,乙比甲晚出发min.(2)求直线BC所对应的函数表达式.(3)甲出发min后,甲、乙两人在途中相遇.21.感知:如图①,在矩形ABCD中,点E是边BC的中点,将△ABE沿AE折叠,使点B落在矩形ABCD内部的点F处,延长AF交CD于点G,连结FC,易证∠GCF=∠GFC.探究:将图①中的矩形ABCD改为平行四边形,其他条件不变,如图②,判断∠GCF=∠GFC是否仍然相等,并说明理由.应用:如图②,若AB=5,BC=6,则△ADG的周长为.22.如图,在平面直角坐标系中,▱ABCD的顶点A、B、D的坐标分别为(2,0)、(6,0)、(0,3),顶点C在函数y=(x>0)的图象上.(1)求k的值.(2)将▱ABCD向上平移,当点B恰好落在函数y=(x>0)的图象上时,①求平移的距离;②求CD与函数y=(x>0)图象的交点坐标.人教版2019学年八年级下数学期末试卷(六)一、选择题1.下列根式中,属于最简二次根式的是()A. B.C.D.2.已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.283.下列各式中,计算正确的是()A.3+3=6B.=1 C.÷=4 D.×2=44.以下列长度(单位:cm)为边长的三角形是直角三角形的是()A.4,5,6 B.6,8,9 C.6,12,13 D.8,15,175.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()A.甲B.乙C.丙D.丁6.已知k<0,b>0,则直线y=kx+b的图象只能是如图中的()A. B. C. D.7.一次函数y=3x﹣6的图象与x轴的交点坐标是()A.(0,﹣6)B.(0,6) C.(2,0) D.(﹣2,0)8.▱ABCD中,∠A=30°,AB边上的高为6,则BC的长为()A.12 B.6 C.6D.69.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是矩形C.当AC⊥BD时,它是菱形D.当AC=BD时,它是正方形10.如图,正方形ABCD的边长为8,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.2 B.2C.8﹣4D.8﹣8二、填空题11.计算:=______.12.代数式在实数范围内有意义,则x的取值范围是______.13.若直线y=kx经过点(2,6),则它的解析式是______.14.若一次函数y=kx+b的图象经过点A(x1,1),B(x2,﹣2),已知x1<x2,则k______0.(填“>”、“<”或“=”)15.▱ABCD的对角线AC、BD相交点O,△OAB是等边三角形,且AB=3,则▱ABCD的面积是______.16.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=6,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点,得△A3B3C3,…,则△A n B n C n的周长=______.三、解答题17.计算:2×÷10.18.如图,已知菱形ABCD的对角线交于点O,周长是16,BD=2,求AC.19.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?四、解答题20.已知一次函数的图象经过点A(1,1)和点B(2,7),求这个一次函数的解析式.21.如图已知∠AOB,OA=OB,点F在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线(请保留画图痕迹).22.市政府决定对市直机关800户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的中位数和众数,并求出平均数;(3)请根据这800户家庭中月平均用水量不超过12吨的家庭数.五、解答题23.某市创建文明城区的活动中,有两段长度相等的彩色道转铺设任务,分别交给甲、乙两个施工队同时进行施工,如图是反映所铺设彩色道转的长度y(米)与施工时间x(时)之间关系的部分图象,请解答下列问题:(1)求乙队在0≤x≤2的时段内的施工速度;(2)求乙队在2≤x≤6的时段内,y与x之间的函数关系式;(3)要施工多长时间甲、乙两队所铺设彩色道砖的长度刚好相等?24.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.人教版2019学年八年级下数学期末试卷(七)、选择题1.数据5,3,2,1,4的中位数是()A.4 B.1 C.2 D.32.已知四边形ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=5,c=13,则b的长为()A.10 B.11 C.12 D.134.化简的结果是()A.B.2C.3D.45.下面哪个点在函数y=x+1的图象上()A.(﹣2,0)B.(﹣2,1)C.(2,0) D.(2,1)6.要使二次根式有意义,自变量x的取值范围是()A.x>4 B.x<4 C.x≥4 D.x≤47.一次函数y=﹣5x+3的图象经过的象限是()A.一、二、三B.一、二、四C.一、三、四D.二、三、四8.有下列三个命题,其中正确的个数为()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是菱形;③邻边相等的矩形是正方形.A.3 B.2 C.1 D.09.已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是()A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较10.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为______.12.如下图,一旗杆被大风刮断,旗杆顶端着地点B距旗杆底部C为3m,折断点A离旗杆底部C的高度4m,则旗杆原来的高度为______m.13.已知一次函数y=﹣3x+1的图象经过点(a,1)和点(﹣2,b),则a=______,b=______.14.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是______.15.若实数x,y满足,则xy的值为______.16.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为______cm2.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:﹣+.18.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,求EF的长.19.已知:一次函数y=(2a+4)x﹣(3﹣b),当a,b为何值时:(1)y随x的增大而增大;(2)图象经过第二、三、四象限.四、解答题(本大题3小题,每小题7分,共21分)20.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.21.如图,▱ABCD的对角线AC的垂直平分线与AD,BC分别交于点E,F.求证:四边形AECF是菱形.22.如图是某篮球队队员年龄结构直方图,根据图中信息解答下列问题.(1)该队队员年龄的平均数.(2)该队队员年龄的众数和中位数.五、解答题(本大题3小题,每小题9分,共27分)23.某单位有一块四边形的空地,∠B=90°,量得各边的长度如图(单位:米),现计划在空地内种草.(1)连接AC,证明△ACD是直角三角形;(2)若每平方米草地造价30元,这块全部种草的费用是多少元?24.某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.25.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:求证:△ABN≌△ADN;(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.人教版2019学年八年级下数学期末试卷(八)注意:本试卷分试题卷和答题卡两部分.考试时间90分钟,满分100分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.一、选择题(本大题共8小题,每小题3分,共24分)下列各小题均有四个选项,其中只有一个是正确的.1.下列图案既是轴对称图形又是中心对称图形的是A .B .C .D .2.如果a b >,那么下列不等式中一定成立的是A .22a b >B .11a b ->-C .11a b +>-D .11a b +>-3.如图,在ABCD 中,3AB =,5AD =,BCD ∠的平分线交BA 的延长线于点E ,则AE 的长为A .3B .2.5C .2D .1.54.不等式组301x x +>⎧⎨≤⎩的解集在数轴上表示正确的是A .B .C .D .(第3题图) (第5题图) (第7题图)5.如图,已知在Rt ABC 中,90ABC ∠=,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径画弧,两弧在直线BC 上方的交点为点P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED BC ⊥;②A EBA ∠=∠;③EB 平分AED ∠; ④12ED AB =中,一定正确的是 A .①②③ B .①②④ C .①③④ D .②③④6.将下列多项式分解因式,结果中不含因式1x -的是A .21x -B .221x x ++C .221x x -+D .(2)(2)x x x -+-7.如图,已知长方形ABCD ,一条直线将该长方形ABCD 分割成两个多边形,则所得任一多边形內角和度数不可能是A .720B .540C .360D .1808.若不等式组30x a x >⎧⎨-≤⎩,只有三个正整数解,则a 的取值范围为 A .01a ≤< B .01a << C .01a <≤ D .01a ≤≤二、填空题(每小题3分,共21分)9.x 的2倍与y 的差大于1,可列不等式: .10.若分式242x x --的值为0,则x 的值为 . 11.用反证法证明“一个三角形不能有两个角是直角”时应首先假设 .12.当0y ≠时,22b by x xy=,这种变形的依据是 . 13.小明同学在社团活动中给发明的机器人设置程序:(a ,n ).机器人执行步骤是:向正前方走a 米后向左转n ,再依次执行相同程序,直至回到原点.现输入3a =,60n =,14.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若24AC BD +=15.小明想从一张长为8cm ,宽为6cm 的长方形纸片上剪下一个腰为5cm 的等腰三角形,要求等腰三角形的一个顶点与长方形的一个顶点重合,其余的两个顶点在长方形的边上,则剪下的等腰三角形的底边长为 .(第13题图) (第14题图)三、解答题(本大题共7个小题,共55分)16.(6分)给出三个分式:11a -、11a +、222a a -,请你把这三个分式(次序自定)填入18.(5分)在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:一次函数与不等式的关系19.(9分)在下列分式方程解应用题时:(1)主要步骤有:①审清题意;②设未知数;③根据题意找 关系,列出分式方程;④解方程,并 ;⑤写出答案.(2)请你联系实际设计一道关于分式方程4800500020x x =+的应用题,要求表述完整,条件充分,并写出解答过程.20.(9分)如图,已知在△ABC 中,BAC ∠的平分线与线段BC 的垂直平分线PQ 相交于点P ,过点P 分别作PN 垂直于AB 于点N ,PM 垂直于AC 于点M ,求证:BN=CM .一次函数与方程的关系21.(9分)2016年5月20日是第27个中国学生营养日,某校社会实践小组在这天开展活动菁优网,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量; (2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.22.(11分)在△ABC 中,=AB AC ,=30A ∠,将线段BC 绕点B 逆时针旋转60得到线段BD ,再将线段BD 平移到EF ,使点E 在AB 上,点F 在AC 上. (1)如图1,直接写出ABD ∠和CFE ∠的度数;(2)在图1中:AE 和CF 有什么数量关系?请说明理由;(3)如图2,连接CE ,判断△CEF 的形状并加说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版数学精品资料(人教版)下学期期末质量检测初二年数学试题(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.在平面直角坐标系中,点(3,2-)关于y 轴对称的点的坐标是( ) A .(3,2) B.(3,2-) C.(3-,2)D.(3-,2-)2.函数21-=x y 中,自变量x 的取值范围是( ) A .x >2 B .2≠x C .x ≥2D .2=x3.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的( ). A . 方差 B .中位数 C . 众数 D .平均数 4.下列说法中错误..的是( ) A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形; C .两条对角线互相垂直的矩形是正方形; D .两条对角线相等的菱形是正方形. 5.已知反比例函数2y x=,在下列结论中,不正确...的是( ). A .图象必经过点(1,2) B .y 随x 的增大而减少 C .图象在第一、三象限 D .若x >1,则y <26.如图,菱形ABCD 中,∠ A =60°,周长是16,则菱形的面积是( )A .16B .16C .16D .87.如图,矩形ABCD 的边6=BC ,且BC 在平面直角坐标系中x 轴的正半轴上,点B 在点C 的左侧,直线kx y =经过点A (3,3)和点P ,且26=OP .将直线kx y =沿y 轴向下平移得到直线b kx y +=,若点P 落在矩形ABCD 的内部,则b 的取值范围是( ) A .30<<b B .03<<-b C .36-<<-bD .33<<-b二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.第6题图第7题图8.化简:=÷ba b a 22. 9.将0.000000123用科学记数法表示为 . 10.在□ABCD 中,∠A :∠B =3:2,则∠D = 度.11.一次函数b kx y +=的图象如图所示,当0>y 时,x 的取值范围是 .12.某校为了发展校园足球运动,组建了校足球队,队员年龄分布如右上图所示,则这些队员年龄的众数是 .13.化简:1112---x x x = . 14.若点M (m ,1)在反比例函数xy 3-=的图象上,则m = . 15.直线2y x =+与y 轴的交点坐标为 .16.在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为(﹣1,1)、 (﹣1,﹣1)、(1,﹣1),则顶点D 的坐标为 . 17.如图,在△ABC 中,BC =10,AB = 6,AC = 8,P 为 边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 的 中点,则(1)=∠BAC 度;(2)AM 的最小值是 . 三、解答题(9题,共89分)在答题卡上相应题目的答题区域内作答.18.(9分)计算:421)1.3(510+⎪⎭⎫ ⎝⎛--+--π19.(9分)先化简,再求值:111122----÷-a a a a a a ,其中2=a 20.(9分)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,60=∠AOB ,2=AB ,求AD 的长.BAD第11题图第12题图第17题图21.(9分)如图,一次函数b kx y +=的图象与反比例函数xmy =的图象交于点A )5,2(--,C ),5(n ,交y 轴于点B ,交x 轴于点D . (1) 求反比例函数xmy =和一次函数b kx y +=的表达式; (2) 连接OA ,OC .求△AOC 的面积.22.(9分)某学校设立学生奖学金时规定:综合成绩最高者得一等奖,综合成绩包括体育成绩、德育成绩、学习成绩三项,这三项成绩分别按1︰3︰6的比例计入综合成绩.小明、小亮两位同学入围测评,他们的体育成绩、德育成绩、学习成绩如下表.请你通过计算他们的综合成绩,判断谁能拿到一等奖?23.(9分)某校初二年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度.24.(9分)如图,在矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD ,BC 于点E ,F ,垂足为点O .(1)连接AF ,CE ,求证:四边形AFCE 为菱形; (2)求AF 的长.25.(13分)甲、乙两人从学校出发,沿相同的线路跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向体育馆,如图是甲、乙两人在跑步的全过程中经过的路程y (米)与甲出发的时间x (秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了 米,甲的速度为 米/秒; (2)求乙跑步的速度及乙在途中等候甲的时间; (3)求乙出发多长时间第一次与甲相遇?26.(13分)如图,在平面直角坐标系中,直线1l :621+-=x y 分别与x 轴、y 轴交于点B 、C ,且与直线2l :x y 21=交于点A . (1)点A 的坐标是 ;点B 的坐标是 ;点C 的坐标是 ; (2)若D 是线段OA 上的点,且COD ∆的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内是否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.2016年春洛江区期末质量检测初二数学参考答案及评分标准一、选择题(每小题3分,共21分)1.D ;2.B ;3.A ;4.B ;5.B ;6.D ;7.C ; 二、填空题(每小题4分,共40分)8.a2; 9. 71023.1-⨯; 10. 72; 11. 2<x ; 12. 14岁(没有单位不扣分); 13. 1+x ; 14.3-;15.(0,2); 16.(1,1); 17. (1)90;(2) 2.4 三、解答题(共89分)18.(9分) 解:421)1.3(51+⎪⎭⎫⎝⎛--+--π=2215+-+…………………………8分 =6………………………………………9分19.(9分)解:111122----÷-a a a a a a =11)1()1)(1(1----+⋅-a a a a a a a …………3分 =1111---+a a a …………………………5分 =1-a a…………………………………6分当2=a 时,原式=122-…………………7分=2………………………9分 20. (9分) 解:在矩形ABCD 中OD OC OB OA ===,………………2分90=∠BAD ……………………………3分∵60=∠AOB∴AOB ∆是等边三角形………………5分∴2==AB OB ………………………6分 在Rt BAD ∆中, 32242222=-=-=AB BD AD ………………9分21.(9分) 解:(1)∵ 反比例函数xmy =的图象经过点A ﹙-2,-5﹚, ∴ m =(-2)×( -5)=10. ∴ 反比例函数的表达式为xy 10=. ……………………………………………………2分 ∵ 点C ﹙5,n ﹚在反比例函数的图象上, ∴ 2510==n . ∴ C 的坐标为﹙5,2﹚. …………………………………………………………………3分 ∵ 一次函数的图象经过点A ,C ,将这两个点的坐标代入b kx y +=,得⎩⎨⎧+=+-=-.5225b k b k ,解得⎩⎨⎧-==.31b k , ………………………………………………………5分∴ 所求一次函数的表达式为y =x -3. …………………………………………………6分 (2) ∵ 一次函数y =x -3的图像交y 轴于点B ,∴ B 点坐标为﹙0,-3﹚. ………………………………………………………………7分 ∴ OB =3.∵ A 点的横坐标为-2,C 点的横坐标为5,∴ S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB . ………………9分22.(9分)解:小明的综合成绩=0.1960.3940.69091.8⨯+⨯+⨯=…………………………(4分)小亮的综合成绩=0.1900.3930.69292.1⨯+⨯+⨯=………………………(8分) ∵92.1>91.8 , ∴小亮能拿到一等奖. …………………………………………(9分) 23.(9分)解:设中巴车速度为x 千米/小时,则旅游车的速度为x 2.1千米/小时.………1分依题意得6082.14040=-x x ………………………5分 解得50=x ………………………7分 经检验50=x 是原方程的解且符合题意 ………………………8分 答:中巴车的速度为50千米/小时. ………………………9分 24.(9分)(1)证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠AEO =∠CFO ,∵AC 的垂直平分线EF ,∴AO = OC ,AC ⊥EF ,………………………………2分 在△AEO 和△CFO 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠OC AO COF AOE CFO AEO ∴△AEO ≌△CFO (AAS ),………………………………3分 ∴OE = OF , ∵O A= OC ,∴四边形AECF 是平行四边形,………………………………4分 ∵AC ⊥EF ,∴平行四边形AECF 是菱形;……………………………………5分 (2)解:设AF =acm , ∵四边形AECF 是菱形,∴AF=CF =acm ,…………………………………………6分 ∵BC =8cm , ∴BF=(8-a )cm ,在R t △ABF 中,由勾股定理得:42+(8-a )2=a 2,…………8分 a=5,即AF=5cm 。
………………………………………………9分25.(13分) 解:(1)900,1.5.…………………………4分 (2)过B 作BE ⊥x 轴于E .甲跑500秒的路程是500×1.5=750米,……………………5分 甲跑600米的时间是(750﹣150)÷1.5=400秒,…………6分 乙跑步的速度是750÷(400﹣100)=2.5米/秒,……………7分 乙在途中等候甲的时间是500﹣400=100秒.………………8分(3)∵D (600,900),A (100,0),B (400,750), ∴OD 的函数关系式是x y 5.1=……………………9分AB 的函数关系式是2505.2-=x y ……………11分根据题意得⎩⎨⎧-==2505.25.1x y xy解得250=x ,…………………………12分 ∴乙出发150秒时第一次与甲相遇.…………13分26. (13分)解:(1)(6,3);(12,0);(0,6);………………3分 (2)设D (x ,x ),∵△COD 的面积为12, ∴12621=⨯x , 解得:4=x ,∴D (4,2),………………………………………………5分 设直线CD 的函数表达式是b kx y +=,把C (0,6),D (4,2)代入得:⎩⎨⎧+==b k b426,解得:⎩⎨⎧=-=61b k ,则直线CD 解析式为6+-=x y ;……………………7分 (3)存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形,如图所示,分三种情况考虑:(i )当四边形C Q OP 11为菱形时,由901=∠COP ,得到四边形C Q OP11为正方形,此时6111===OC OP P Q ,即1Q (6,6);………………………………………………9分 (ii )当四边形22CQ OP 为菱形时,由C 坐标为(0,6),得到2Q 纵坐标为3,把3=y 代入直线2OQ 解析式x y -=中,得:3-=x ,此时2Q (﹣3,3);…………11分(iii )当四边形C P OQ 33为菱形时,则有63333====Q P CP OC OQ ,此时3Q (3,﹣3),……………………………………13分综上,点Q 的坐标是(6,6)或(﹣3,3)或(3,﹣3).。