南京理工大学紫金学院《离散数学》考试卷,参考练习使用1
南京理工大学紫金学院离散数学(朱保平教授)期末复习试卷
1、(8分)已知{,{1}}A a =,{{}}B b =试求(1)2A(2)2A B ⨯2、(8分)已知Y X ,是2个任意的集合,试证明Y X Y X ⋂=⋂222。
3、(6分),*)(G 是一个群,R 是G 上的一个二元关系,且对于G y x ∈∀,,R y x ∈),( 当且仅当G ∈∃θ,使得1**-=θθx y ,试证明R 是G 上的等价关系。
4、(8分)已知集合)}3,3(),2,2(),1,1(),,(),,(),,{(c c b b a a A =,分别写出满足如下性质的二元关系:(1)该关系具有反自反性、传递性。
(2)该关系具有自反性、反对称性和对称性。
5、(8分)若在一个边长为4的正方形内任取129个点,则至少存在3个点,由它们构成的三角形(可能是退化的三角形,即一条直线)其面积小于81。
试用抽屉原理证明之。
6、(8分)已知(G ,·)是一个群,∀G g ∈,作G 到G 的一个映射g f 如下,对于G x ∈∀,x g x f g ⋅=)(。
求证g f 是双射。
7、(6分)图),(E V G =,有n 个顶点,n 4条边,存在一个7度顶点,试证明其它顶点的度数均大于7。
7、(6分)若无向图G 中只有两个奇数度结点,则这两个结点一定连通。
8、(8分)有24个人围坐一圆桌,边开会边交流网球技术。
已知这24个人中,每个人至少与其余12个人打过球,试问是否有一种坐法,使每个人左、右两人都和他打过球?试用图论的语言证明之。
9、(8分)按要求画图:(1)画一个14个顶点的哈密尔顿图但非欧拉图,有偶数条边;(2)(1)画一个14个顶点的欧拉图但非哈密尔顿图,有奇数条边;10、(6分)),(E V G =是一个无向图。
若10||>V ,则G 或者G 的补图G 是非平面图。
11、(6分)),(E V G =是一个连通图,V v ∈,deg(v)=1,E e ∈是关联顶点v 的一条边。
《离散数学》考试题库及答案
《离散数学》考试题库及答案、填空 20% (每小题2分)1.设 A = {xl(xeN)且(*5)},B = {xlx£E+且xv7}(N;自然数集,曰正偶数)则 。
2.A, B, C 表示三个集合,文图中阴影部分的集合表达式为3.设P, Q的真值为0, R, S的真值为1,则「(P v (Q r (R A「P))) T (R v「S)的真值=4.公式成逐)3人&)八户的主合取范式为5.若解释I的论域D仅包含一个元素,则在I下真值为6.设A={1, 2, 3. 4}, A上关系图为则R2 =7.设A=(a, b, c, d},其上偏序关系R的哈斯图为9.设A={a, b, c, d} , A上二元运算如下:那么代数系统VA, *>的幺元是 ,有逆元的元素为 ,它们的 逆元分别为 C10.下图所示的偏序集中,是格的为 ,二、选择20% (每小题2分)I.下列是頁命题的有(中£{{中},中} D. {①隹{{中}}2、 下列集合中相等的有( )A.{4, 3}^中;B. {①,3, 4};C. {4,中,3, 3};D. {3, 4}。
3、 设A={1, 2, 3},则A上的二元关系有()个。
A. 23;B. 32 ;C. 23x3.D. 32气4、 设R, S是集合A上的关系,则下列说法正确的是( )A.若R. S是自反的,则R°S是自反的;B.若R, S是反自反的,则R°S是反自反的;C.若R, S是对称的,则RoS是对称的;D.若R, S是传递的,则R°S是传递的。
5、设A={1, 2, 3. 4}, P (A) (A的蓦集)上规定二元系如下R = {< s,t >1 s,t e p(A) A (I 51=1 /1)则 p(A)/ R=( )A. A :B. P(A) :C. ({{!}}, {{1, 2}}, {{1, 2, 3}}, {{1, 2, 3. 4}}};D. ({①}, {2}, {2, 3}, {{2, 3, 4}}, {A}}06、设A={小,{lb (1, 3}, (1, 2, 3}}则A上包含关系“W”的哈斯图为(7、下列函数是双射的为(A. f:I^E, f(x) = 2x ;B. JN — NxN, f (n) = <n , n+l> :C. f:R_I, f(x) = [xl ;D. f:LN,f(x)(注:I—整数集,E一偶数集,N—自然数集, R—实数集))条。
《离散数学》试卷及答案
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0,也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
14、论断:“命题变元不是命题”(A)命题。
A.是;B.不是;C.不可判定
15、设S={a,b,c},T={p,q},作f:S T,则这样的f一共有(C)个。
A.9B.10C.8D.7
得
分
二、填空题(每空2分,共20分)
1、设P:2+5=3,Q:日本在亚洲;于是, 的真值为1。
2、数理逻辑中,进行推理的常用规则有前提引入规则,结论引入规则和
A. B.
C. D.
8、设集合A={a,b,c,d},B={1,2,3,4},则从A到B的函数
f={<a,2 >,<b,1 >,<c,3 >,<d,2 >}是(D)
A. f是双射函数B. f是入射函数
C. f是满射函数D. f即不是满射又不是入射函数
9、下列蕴含式为真的是(B)
A. B.
C. D.
10、设 是A到B的映射, 是B到C的映射, 是双射,则(B)
《离散数学》考试试卷(试卷库20卷)及答案
《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。
命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。
离散数学考试题及详细参考答案
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
离散数学试题1-5
参考试题02_0001一、单项选择题(共 10 道试题,共 100 分。
)1. 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、2、无、22.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().A. f◦gB. g◦fC. f◦fD. g◦g4. 集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y A},则R的性质为().A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的5. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}6. 设集合A={a},则A的幂集为( ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}7. 若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 18. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反9. 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为.A. 2B. 3C. 6D. 810. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B参考试题02_00021. 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、2、无、22. 集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y A},则R的性质为().A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}}AB. {1,2}AC. {a}AD. A4. 设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>, <b,2>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则()不是从A到B的函数.A. R1B. R2C. R3D. R1和R35. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反6. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 2C. 1D. 37. 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为.A. 2B. 3C. 6D. 88.设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3,4, 5},则元素3为B的().A. 下界B. 最小上界C. 最大下界D. 最小元9. 若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 110. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}参考试题02_0003一、单项选择题(共 10 道试题,共 100 分。
南京理工大学离散数学期末试卷
试证明(G, /J.)是一个群。
15. (6 分)设(A,·) 和 (B,*)是两个群, e1和 e2分别是A和B 的么元,cp是A到B的群同态
映射,C = {x EA仰(x) = e2} 。试证明C是A的正规子群。
ir `
树T上。
I
四、函数与群(共20分)
13. (6分)已知 (G, ·)是一个艺堡琶f是G到G的映射,且\:/x EG, f(x) = X 一1 。试
证明: f是G到G的自同构映射。
14. (8分) (G, o)是一个群,取定u·e G, 对于任意的a, b EG, a!J.b = a o u一i ob 。
(I)所有入均皂欢微信或微博。 (2) 有些人喜欢机器学习课程;但并非所有人均喜欢机器学习课程。 2. 已知知识:
(1) 3x(P(x) A Vy(D(y)➔ L(x, y))) (2)Vx(P(x) ➔ Vy(Q(y) ➔ -,L(x, y))) 结论: Vx(D(x)➔ 勹Q(x)) 试用HORN子句逻辑程序证明之。
3. 把函数h(xi, x2, x3,x5心) = f(g1(X3, 环),2,gz(X1五),g3(X5,3))化为(4,5)迭置。
二、集合与关系(共30分)
4. (8分) 已知集合A = {{a},{{0}}}, B = {人工智能}。试求:
Cl) zA
(2) zA x B
5. (8分)已知3个任意的集合X,Y,Z, 若X <I, (Yu Z), 则(X - Y) n(X - Z) -=I= 0。
— 南京理工大学课程考试试卷(学生考试用)
课程名称:
A
学分:_生L 大纲编号
试卷编号: --考试方式: 且违� 满分分值: 」毁_考试时间: ..J1Q_分钟
离散数学考试题及答案
离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
离散数学16
第 2 页
共 2 页
南京理工大学紫金学院课程考试试卷(学生考试试卷)
课程教学 大纲编号: 课程名称: 考试方式: 离散数学 闭卷 学 分: 4 试卷编号: B 100
考试时间: 120 分钟 组卷教师: 朱保平 学 号:
满分分值: 审定教师:
组卷年月: 2016 年 6 月 10 日 学生姓名:
一、知识表示与推理(每小题 6 分,共 24 分) 1、 (6 分)把下列语句翻译为谓词演算公式 (1)有些人喜欢所有的网络游戏; 但并非所有人均喜欢网络游戏。 (2)人若犯我,我必犯人。 2、 (6 分)试用命题演算的假设推理系统证明下列公式为定理 ((������ ∧ ������) → ������) → ((������ → ������) → (������ → (������ → ������))) 3、 (6 分)用归结原理证明下面的公式为定理 (������ → ������) → ((������ → ������) → ((������ ∧ ������) → (������ → (������ ∧ ������)))) 4 、 (6 分)试把函数ℎ(������1 , ������2 , ������3, ������4 , ������5) = ������(4, ������1 (������2 , 3), ������2 (������1, ������5 , ������3), ������4 )化为 (m, n ) 标 准迭置。 二、集合与关系(共 28 分) 1. (8 分)已知������ = {{微博},{∅}},������ = {2016},试求 (1) 2 A (2) B 2 A 2.(6 分)������, ������ 是 2 个任意的集合,试证明2������∩������ = 2������ ∩ 2������ 。 3. (6 分)������为 A 上的等价关系,试证明������2 也为 A 上的等价关系。 4. (8 分) 已知������={南京理工大学,{中国}, (1,1), 1, ������, ������}, 根据要求分别构造下列关系。 (1) R 有反自反性,反对称性,传递性; (2) R 有自反性,反对称性和对称性。 三、图结构(共 28 分) 1. (6 分)设图 G = (V , E ) 有 n 个顶点, 3n 条边,且存在一个度数为 5 的顶点,证明:
离散数学试题及答案
离散数学试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的运算?A. 并集B. 交集C. 差集D. 乘法2. 命题逻辑中,下列哪个命题是真命题?A. (P ∧ ¬P) → QB. (P ∨ Q) ∧ ¬(P ∧ Q)C. P → (Q → P)D. (P → Q) ∧ (Q → R) → (P → R)3. 函数f: A → B,如果f是单射,那么下列哪个选项是正确的?A. A中不同的元素在B中可能有相同的像B. B中每个元素都有原像C. A中不同的元素在B中有不同的像D. B中不同的元素在A中有不同的原像4. 在图论中,下列哪个选项不是图的基本术语?A. 顶点B. 边C. 邻接D. 矩阵5. 组合数学中,从n个不同元素中取出k个元素的组合数记作C(n, k),下列哪个选项是错误的?A. C(n, k) = C(n, n-k)B. C(n, 0) = 1C. C(n, 1) = nD. C(n, k) = C(k, n)6. 关系R是A×B上的二元关系,下列哪个选项不是关系R的性质?A. 自反性B. 对称性C. 传递性D. 可数性7. 在命题逻辑中,下列哪个命题等价于P ∨ (Q ∧ R)?A. (P ∨ Q) ∧ (P ∨ R)B. (P ∧ Q) ∨ (P ∧ R)C. (P ∨ Q) ∨ RD. (P ∨ Q) ∧ R8. 集合{1, 2, 3}的幂集含有多少个元素?A. 3B. 6C. 8D. 99. 在图论中,下列哪个选项不是树的性质?A. 无环B. 至少有两个顶点C. 任意两个顶点都由唯一路径连接D. 至少有一个环10. 在集合论中,下列哪个选项是正确的?A. 空集是任何集合的子集B. 任何集合都是其自身的超集C. 空集是任何非空集合的真子集D. 空集是其自身的并集二、简答题(每题10分,共30分)11. 简述命题逻辑中的德摩根定律,并给出一个例子。
离散数学考试题目及答案
离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。
答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。
若命题P和Q等价,则记作P⇔Q。
蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。
若命题P蕴含Q,则记作P→Q。
2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。
答案:设x属于A∩B,即x同时属于A和B。
根据并集的定义,若元素属于A或B,则它属于A∪B。
因此,x属于A∪B。
由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。
3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。
在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。
4. 描述有限自动机的组成部分及其功能。
答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。
输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。
5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。
在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。
确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。
从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。
重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。
离散数学试题及答案
离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。
答案:如果x不能被2整除,则x不是偶数。
2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。
答案:6个顶点。
3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。
答案:2^4=16个元素。
4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。
答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。
5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。
答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。
《离散数学》考试试卷(试卷库14卷)及答案
《离散数学》考试试卷(试卷库14卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分考试时限:120 分钟⼀、选择题(每题2分,共20分)1. 下述命题公式中,是重⾔式的为( )(A ))()(q p q p ∨→∧(B )q p ∨))()((p q q p →∨→?(C )q q p ∧→?)((D )q q p →?∧)(2. 对任意集合A,B,C,下列结论正确的是()(A )若A ?B,B ∈C,则A ?C ;(B )若A ∈B,BC,则A ?C ;(C )若A ?B,B ∈C,则A ∈C ;(D )若A ∈B,B ?C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系, ,则由R 产⽣的S S ?上⼀个划分共有( )个分块。
(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是⼀棵树当且仅当G 中( )(A )有些边是割边(B )每条边都是割边(C )所有边都不是割边(D )图中存在⼀条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平⾯图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下⾯命题公式中真值为1的是()(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=中,结点总度数与边数的关系是()(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公⽤⼀个电源,则⾄少需有五插头的接线板数()(A )7(B )8(C )9(D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为()(A )11 (B )14 (C )17(D )15⼆、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
离散数学考试试题及答案
离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。
离散数学试题与参考答案
《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。
(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( )(A) 1∈A (B) {1,2, 3}⊆A(C) {{4,5}}⊂A (D) ∅∈A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B ⋂C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>}5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共206. 设集合A ={∅,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><,那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系.9. 写出一个不含“→”的逻辑联结词的完备集 .10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C)12. (10分)构造证明:(P →(Q →S))∧(⌝R ∨P)∧Q ⇒R →S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)该关系具有反自反性、对称性、反对称性和传递性。 (2)该关系具有自反性、对称性、反对称性和传递性 5.(6 分) A , B , C , D 是四个任意非空集合。 f 是 A 到 B 的满射, g 是 C 到 D 的
满射,且 A C B D
,定义映射 h( x)
f (x) 当x A ,试证明 h 为 A C 到
9.(6 分) G (V , E) 是一个简单连通平面图,且 |V | 7,| E | 15 。试证明它的每个面
都是由 3 条边组成。
第 1页
共 2页
10.(8 分) T (V , E) 是一棵树。试证明
(1) T 为二部图;
(2)若该棵树仅有 3 片树叶,则至少有一个顶点度数大于等于 3。
11.(6 分) T (V , E) 是一棵树, {V1,V2} 是 T 作为偶图顶点集的二分类, |V1 | V2 |,
课程名称: 离散数学
学 分: 3
考试方式: 闭卷
考试时间: 120 分钟
组卷年月: 2011 年 11 月 26 日 组卷教师:
学生姓名:
学 号:
(学生考试试卷)
试卷编号: A 满分分值: 100
审定教师:
1.(8 分)已知集合 A {{ 1}, { }}, B {{ a}} ,试求( 1) 2 A (2) B 2 A
2.( 6 分)已知 X , Y, Z 为三个任意的集合,试证明若 ( X Y ) ( X Z ) ,则
X YZ 3.(6 分)已知 R 是 A 上自反和对称的二元关系,试证明: t( R) 是 A 上的等价关系。
4.(8 分)已知集合 A {1,2,3,4,5} ,分别写出满足如下性质的二元关系:
则 V2 中至少有一片树叶。 12.(8 分) Q 是有理数集, Q*
Q { 0} , x, y Q* , x y 4 xy 。证明 (Q* , ) 是群。
13.(6 分)有限群 G 的每个元素都有有限阶 , 且其阶数不超过群 G 的阶数 |G | 。
14.(6 分) ( H ,*) , (K ,*) 是群 (G,*) 的正规子群,证明 ( H K ,*) 也是 (G ,*) 的正规子
群。
15.(6 分)设图 G (V , E) 有 n 个顶点, 2n 条边,且存在一个度数为 3 的结点,证明:
G 中至少有一个结点的度数 5。
第 2页
共 2页
g (x) 当x C
B D 满射。
6.(6 分)已知 A { x R |0 x 1} , B { x R | 0 x 1} ,试证明 | A | | B | 。
7.(6 分) (1)画一个 11 个顶点欧拉图但非哈密尔顿图,它是简单无向图,有偶数条边;
(2)画一个 11 个顶点哈密尔顿图但非欧拉图,它是简单无向图,有奇数条边。 8.(8 分)有 60 个人围坐一圆桌,边开会边交流网球技术。已知这 60 个人中,每个 人至少与其余 30 个人打过球,试问是否有一种坐法,使每个人左、右两人都和他打 过球?试用图论的语言证明之。