固体废物的热解

合集下载

固体废物的热解

固体废物的热解
• 随着温度的升高,除大分子裂解外,许多 中间产物也发生二次裂解, C5 以下分子及 H2成分增多,气体产量成正比增长,而各 种酸、焦油、炭渣产量相对减少。城市生 活垃圾热分解产物比例与温度的关系。
城市生活垃圾热分解产物比例与温度的关系
(2)加热速率
• 通过加热温度和加热速率的结合,可控制 热解产物中各组分的生成比例。
固体废物热解处理技术
• 本章主要内容为:固体废物热解定义,以 及与焚烧的区别,热解原理,热解适用对 象、国内外发展趋势。
• 了解固体废物热解定义,以及与焚烧的区 别,流态化热解及国外热解发展趋势。
• 理解热解原理,热解适用对象。 • 掌握典型的热解工艺。
• 8.1 概述
• 定义:有机物在无氧或缺氧状态下加热, 使之分解的过程称为热解。

• 3、热解法与焚烧的区别
• 热解法与焚烧法相比是完全不同的两个过程:
①焚烧的产物主要是二氧化碳和水, 而热解的产物主要是 燃的低分子化合物:气态的有氢气、甲烷、一氧化碳; 液态的有甲醇、丙烔、醋酸、乙醛等有机物及焦油、溶 剂油等;固态的主要是焦炭或炭黑。
②焚烧是一个放热过程,而热解需要吸收大量的热量。 ③焚烧产生的热能量大的可用于发电,量小的只可供加
• 在低温-低速加热条件下,有机物分子有足 够的时间在其最薄弱的接点处分解,重新 结合为热稳定性固体,而难以进一步分解, 反而产物中固体含量增加;
• 而在高温-高速加热条件下,有机物分子结 构发生全面裂解,产生大范围的低分子有 机物,热解产物中气体的组分增加。
(3)保温时间
• 物料在反应器中的保温时间决定了物料分解 转化率。为了充分利用原料中的有机质,尽 量脱出其中的挥发分,应延长物料在反应器 中的保温时间。

固体废物的热解的技术

固体废物的热解的技术
(2)加热速率对产品成分比例影响较大。一般,在较低和较 高的加热速率下热解产品气体含量高。
(3)废料在反应器中的保温时间决定了物料分解转化率。 保温时间长,分解转化率高,热解充分,但处理量少; 保温时间短,则热解不完全,但处理量高。 (4)废物成分:有机物成分比例大,热值高,可热解性较好,
产品热值高,可回收性好,残渣少;含水率低,干燥耗热 少,升温到工作温度时间短;较小的颗粒尺寸促进热量传 递,保证热解过程的顺利进行。
(5)反应器类型:一般固定燃烧床处理量大,而流态燃烧床 温度可控性好。气体与物料逆流行进,转化率高,顺流行 进可促进热传导,加快热解过程。
(二)热解工艺分类
一个完整的热解工艺包括进料系统、反应器、回收净化
系统、控制系统几个部分。其中,反应器部分是整个工艺的
核心,热解过程在其中发生,其类型决定了整个热解反应的
轮,成倾斜排列,相邻圆 桶间旋转方向相反,有独 立的一次空气导管,由圆 桶底部经滚筒表面的送气 孔到达废物层。
2、炉床型焚烧炉
采用炉床盛料,燃烧在 炉床上物料表面进行, 适于处理颗粒小或粉末 状固体废物以及泥浆状 废物,分为固定炉床和 活动炉床两大类。 (1)固定炉床-多段炉 又叫多膛炉或机械炉, 是一种有机械传动装置 的多膛焚烧炉,可以长 期连续运行、可靠性相 当高的焚烧装置,广泛 应用于污泥的焚烧处理。 缺点:机械设备较多, 需要较多维修与保养; 需要二次燃烧除臭。 固定床。
(2)活动炉床-旋转窑焚烧炉 活动炉床:转盘式、隧道式、回转式。
旋转窑焚烧炉:应用最多的活动炉床焚烧炉。它是一个略微 倾斜而内衬耐火砖的钢制空心圆筒,窑体通常很长,通 过炉体整体转动达到固体废物均匀混合并沿倾斜角度向 出料端移动。
根据燃烧气体和固体废物前进方向是否一致,旋转窑焚烧炉 分为顺流和逆流两种。前者常用于处理高挥发性固废; 后者常用于处理高

固体废物的焚烧和热解)

固体废物的焚烧和热解)

二恶英等
有机硫化物 或氮化物
有害有机废物,经焚烧处理后要求:主要有害有机 组 成 物 的 破 坏 去 除 率 ( destruction and removal efficiency,简写为DRE)应达到99.9%以上。
DRE

进入焚烧炉的主要有机
有害组成物重量或浓度 排出焚烧炉的主要有机 有害组成物的重量或浓 进入焚烧炉的主要有机 有害组成物的重量或浓 度
水蒸汽
融渣或灰渣
典型的固定燃烧床热解反应器
排出气体 980~1650℉
破碎的 固体废物
1400~1800℉
灰渣
预热的 空气或O2
蒸汽
热燃料
流化床热解反应器
废物
燃料气体再循环


燃烧室

蒸馏容器

烧嘴
锅炉
回转炉热解反应器
残渣卸出
分离器 燃烧器出口
燃 烧 炉 产品气体
产品气体
气体冷却 洗涤器
去除焦油
流化床焚烧炉是近年发展起来的一种高效 焚烧炉,在工业上具有广泛应用。 优点是:
1) 焚烧时,流化床内粒子处于激烈运动 状态,粒子与气体之间的传热与传质速度 很快,因而单位面积的处理能力很大;
2) 因流化床内处于完全混合状态,所以 加到流化床的固体废物,除特别粗大的块 体之外,都可以瞬间分散均匀;
3) 流化床结构简单,适用于气态、液态、 固体废物的焚烧。
还原焙烧
固体废物中的高价金属氧化物 还原剂 还原焙烧低价金属氧化物或金属
生产中常用的还原剂:固体碳、气体CO和H2 凡是对氧的化学亲和力比对被还原的金属对氧 的化学亲和力大的物质都可以作为该金属氧化物 的还原剂使用。

比较热解和焚烧的工艺特点

比较热解和焚烧的工艺特点

比较热解和焚烧的工艺特点
热解和焚烧是两种常见的固体废物处理工艺,它们具有以下不同的特点:
1. 热解:热解是一种通过高温和无氧环境下将固体废物转化为可燃气体和固体残渣的过程。

其特点包括:
- 高温无氧:热解过程在高温下进行,通常在600-1000之间,同时排除氧气以避免燃烧反应。

- 产物利用:热解的产物主要包括可燃气体(如合成气、甲烷)和固体残渣。

这些产物可以进一步被利用,例如用作能源或化学原料。

- 热效率高:热解过程能够高效利用能量,因为产生的燃烧气体可以用来产生热能。

2. 焚烧:焚烧是一种通过高温和氧气完全氧化固体废物,将其转化为灰渣、烟气和热能的过程。

其特点包括:
- 完全氧化:焚烧过程需要充足的氧气供给,以确保固体废物完全燃烧。

因此,焚烧是在高温和氧气环境下进行的。

- 热能回收:通过焚烧可以产生高温烟气,可以用于产生蒸汽或直接转化为电能,从而回收能量。

- 烟气处理:焚烧产生的烟气中会含有一些有害气体和颗粒物,需要进行处理和净化,以满足排放标准。

综上所述,热解和焚烧的主要差别在于热解是在无氧环境下进行,产物主要是可
燃气体和固体残渣,而焚烧是在氧气环境下进行,产物包括灰渣、烟气和热能。

两种工艺都具有能源回收的特点,但是焚烧需要更多的氧气供给,并且需要进行烟气处理。

选取哪种工艺主要取决于废物的性质和处理要求。

固体废物的热解的基本原理和处理技术

固体废物的热解的基本原理和处理技术

从热值为11619kJ/kg的垃圾1kg可以得到热值为1139kcal 的热解油0.150L,其他热量则通过残渣和炭黑损失掉 了。在热解过程中还消耗掉1724kJ的外加能量,扣除 这部分能量后,相当于只回收了3045kJ的能量。
(五) 流化床系统
将垃圾破碎至50mm以下的粒径,经定量输 送带传至螺杆进料器,由此投入热解炉内。
(四) 常见污泥处理系统
(1)浓缩—机械脱水一处置脱水滤饼; (2)浓缩—机械脱水一焚烧—处置灰分; (3)浓缩—消化—机械脱水—处置脱水滤饼; (4)浓缩—消化—机பைடு நூலகம்脱水—焚烧—处置灰分
1. 污泥消化与调理
目的:提高污泥浓缩脱水效率,浓缩或脱水前 的预处理
消化:厌氧、好氧——有机物稳定化
调理——洗涤(淘洗调节)、加药(化学调节)、 加热加压及冷冻熔融法(使内部水游离)。
物的生成反应,不能以此来简单地评价城市垃圾的热 解效果。
Kaiser等人曾对城市垃圾中各种有机物进行 过实验室的间歇实验,得到的气体产物组 成,随热解操作条件的变化而变化
三、废塑料热解原理
废塑料的种类:聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯 (Ps)、聚氯乙烯(PVC)、酚醛树脂、脲醛树脂、PET、 ABS树脂等。
废塑料 高热值——焚烧——损伤焚烧设备; 焚烧产物——二噁英的主要来源 所以,各国制定……限制大量焚烧废塑料
——塑料热解制油技术的发展
第一节 热解原理及方法
一、热解的定义
热解在英文中使用“pyrolysis”一词.在工 业上也称为干馏。它是将有机物在无氧或 缺氧状态下加热,使之分解为:
①以氢气、一氧化碳、甲烷等低分子碳氢化 合物为主的可燃性气体;
竖式炉内由上向下移动与??相遇——换 热——??

固体废物的热解的基本原理和处理技术

固体废物的热解的基本原理和处理技术

二、热解过程及产物
1. 有机物的热解反应可以用下列通式来表示:
上述反应产物的收率取决于原料的化学结构、 物理形态和热解的温度及速度。
如Shafizadeh等人对纤维素的热解过程进行 了较为详细的研究后.提出了用下图描述纤维 素的热解和燃烧过程。
2. 热解反应所需的能量取决于各种产物的生 成比,而生成比又与加热的速度、温度及原 料的粒度有关。
他认为通过部分燃烧热解产物来直接提供 热解所需热量的情况,应该称为部分燃烧 (Partial-combustion)或缺氧燃烧 (starved-air-combustion)。
他还提倡将二者统称为PTGL(Pyrolysis, Thermal Gasfication or Liquification) 过程。美国化学会为了表示对J.Jones的 尊敬采纳了这一倡议,而将在欧洲和日本 广为流行的不进行破碎、分选,直接焚烧 的方式称为mass burning。
(4)由于保持还原条件,Cr3+不会转化为Cr6+;
(5)NOx的产生量少。
美国:微生物学、热化学两条技术 路线
热化学:
(1)以产生热、蒸汽、电力为目的的燃烧技术;
(2)以制造中低热值燃料气、燃料油和炭黑为目 的的热解技术;
(3)以制造中低热值燃料气或NH3、CH30H等 化学物质为目的的气化热解技术
废塑料 高热值——焚烧——损伤焚烧设备; 焚烧产物——二噁英的主要来源 所以,各国制定……限制大量焚烧废塑料
——塑料热解制油技术的发展
第一节 热解原理及方法
一、热解的定义
热解在英文中使用“pyrolysis”一词.在工 业上也称为干馏。它是将有机物在无氧或 缺氧状态下加热,使之分解为:

第四章-固体废物的焚烧与热分解课件

第四章-固体废物的焚烧与热分解课件

第四章 固体废物的焚烧与热分解
(二)焚烧废气的污染控制 固体废物焚烧采用的空气污染控制技术主要有湿式、干式及
半干式三种。 二氧化硫和盐酸等酸性气体可以用水喷射的方法把它们从烟 道气流中除去 。 烟尘的防治方法一般是在煤烟尚未凝集变大之前,增加氧气 浓度,提高温度,加速煤烟的燃烧速度。 二噁英的处置采用流动焚烧系统,整个系统由焚烧炉、燃烧 气连续测定仪和气体净化器组成 恶臭的防治,通常是利用辅助燃料将焚烧温度提高到1000oC, 使恶臭物质完全燃烧;或利用催化剂在150-400oC下进行催化燃 烧;利用水或酸、碱溶液也可以对恶臭物质进行吸收;活性炭、 分子筛、土粒、干鸡粪等作为吸附剂吸附废气中的恶臭;或采用 冷却的方法,将废气进行冷却,使恶臭物质冷却成液体从而与气 体分离。
混合强度指固体废物与助燃空气的混合程度。 5. 过剩空气
在实际焚烧系统中,氧气与可燃物无法完全达到理想的混合及反 应程度,为了使燃烧完全,需要提供比理论空气量更多的空气,保证 氧化过程占主导地位,同时使热解过程最小化。
通常把温度(Temperature)、停留时间(Time)、混合强度(Turb ulence)(一般称为3T) 和过剩空气率称为焚烧四大控制参数。
八. 焚烧设备
1. 固定炉排焚烧炉 2. 机械炉排式焚烧炉 3. 回转窑焚烧炉(见图) 4. 流化床焚烧炉(见图)
5. 二噁英零排放化固体废物焚烧炉
第四章 固体废物的焚烧与热分解
垃圾进料口
烟道
辅助燃料喷嘴
回转窑
二次燃烧室
余热锅炉
垃圾进料 口若悬河
烧嘴
炉膛
烟气
后燃尽段
炉渣出口
灰砂
热砂流化床
回转窑焚烧炉
第四章 固体废物的焚烧与热分解

固体废物热解处理

固体废物热解处理
环境专业课:固体废物处理与处置
(1)新日铁系统
是一种热解和熔融为一体的综合处理工艺,通过控 制炉温及供氧条件,使垃圾在同一炉内完成干燥、 热解、燃烧和熔融。
系统采用竖式热解熔融炉。 系统采用空气作为助燃气。
环境专业课:固体废物处理与处置
干燥段温度约为 300oC;
热解段温度为 300~1000oC;
环境专业课:固体废物处理与处置
按热解温度分类:
低温热解:热解温度一般在600oC以下,适用于农~ 700oC之间,适用 于单一物料(如废轮胎、塑料)的热解转化。
高温热解:热解温度一般在1000oC以上。
环境专业课:固体废物处理与处置
环境专业课:固体废物处理与处置
以纤维素热分解为例:
环境专业课:固体废物处理与处置
热解产物
热解过程的主要产物有:
可燃性气体:H2、CO、CH4、C2H4和其它少量高分子碳 氢化合物气。热值可达6390~10230kJ/kg(固体废物), 而维持热解过程所需的热量约为2560kJ/kg(固体废物), 故剩余气体变成热解过程 的有使用价值的产品。
环境专业课:固体废物处理与处置
4、热解工艺分类
按加热方式分类:
间接加热:将物料与直接供热介质在热解反应器(或 热解炉)中分开的一种热解过程。可利用间壁式导热 或以一种中间介质(热砂料)来传热,加热被热解物 料。适用于小规模处理场合。
直接加热:热解反应所需的热量是被热解物料直接燃 烧(注:物料部分燃烧或热解产物燃烧)或向热解反 应器提供的补充燃料燃烧产生的热。
环境专业课:固体废物处理与处置
环境专业课:固体废物处理与处置
热解的主要特点
可将固体废物中的有机物转化为以燃料气、油和 炭黑为主的储存性能源;

固体消解方法

固体消解方法

固体消解方法
固体消解方法是一种将固体废物进行分解的方法,可以将其转化为液态或气态的物质,从而达到减量、无害化或资源化的目的。

常见的固体消解方法包括:
1. 酸解法:通过酸与固体废物中的物质发生化学反应,将其分解成液态或气态的物质。

常用的酸有盐酸、硫酸、硝酸等。

2. 焚烧法:将固体废物在高温下进行燃烧,使其中的有机物质被氧化,从而达到减量、无害化或资源化的目的。

3. 热解法:通过加热将固体废物中的有机物质进行分解,得到可燃气体、油和炭黑等物质。

4. 生物处理法:利用微生物将固体废物中的有机物质进行分解,得到稳定的腐殖质、二氧化碳和水等物质。

根据不同的固体废物类型和实际情况,可以选择不同的固体消解方法。

在选择消解方法时,需要考虑废物的性质、处理要求和经济效益等因素。

固体废物处理与资源化课件第八章固体废弃物的热解_图文

固体废物处理与资源化课件第八章固体废弃物的热解_图文

1.按供热方式的分类
⑴直接加热法
供给被热解物的热量是被热解物(所处理的废物) 部分直接燃烧或者向热解反应器提供补充燃料燃烧时产 生的热。
直接加热法的设备简单,而且采用高温,其处理量 和产气率也较高,但所产气热值不高,作为单一燃料直 接利用还不行,另外,高温热解,在NOX产生的控制上 ,还需认真考虑。
1.61 1.52 1.73 1.66
2.14/6=0.36 1.2/6=0.20 8.28/6=1.4 4.0/6=0.67
热解过程的化学反应包括:
⑴裂解反应: ⑵异构反应 ⑶去氧去氮过程: ⑷此外,还有环化、热聚合反应等
三.热解工艺
热解产物的组成和数量,基本上可由下面因素决定: ⑴物料特性及预处理情况 ⑵热解反应器里的温度水平和物料的停留时间 ⑶热解的方法:直接加热或间接加热
• 压力 固体废物热分解一般在常压高温下进行,加 压低温热分解时,可以增加油的转化率,但设备 、技术要求都比较复杂 。
• 加热速率:低温-低速加热条件下,有机物分子有 足够的时间在其最薄弱的接点处分解,重新结合 为热稳定性固体,而难以进一步分解,固体产率 增加;高温-高速加热条件下,有机物分子结构发 生全面断裂,生成大范围的低分子有机物,产物 中气体组分增加。
§8-2热解反应器
1.固定床反应器
2.流化床反应器
3.回转炉
4.双塔循环式热解反应器
§8-3 典型固体废物的热解
一.废塑料的热解
目前,国内大宗的塑料品种主要有:聚乙烯(PE)、 聚氯乙烯(PVC)、聚丙烯(PP)、聚苯乙烯(PS)。
废塑料热解处理的主要产物为C1~C44的燃料油和燃 料气以及固体残渣。在通常情况下,热解产生的燃料气基 本上在系统内部全部消耗掉,生成的燃料油也部分得到消 耗。在配备发电设施的系统中,最终得到的燃料油产品约 为总投入物料的40%。

5固体废物处理与处置-固体废物的热处理

5固体废物处理与处置-固体废物的热处理

7300
2863
14600
17
5.1.3 固体废物的燃烧过程
可燃物质
助燃物质 引燃火源
必备条件
焚烧
温度 着火条件
蒸发 挥发 分解 烧结、熔融 氧化还原
理论式
CxHyOzNuSvClw + (x + v + y/4 – w/4 – z/2) O2→ xCO2 + wHCl + 0.5uN2 + vSO2 + (y-w) /2 H2O
6
焚烧技术的发展史
我国始于1980′
除尘
资源化
智能化
..
多功能
… 综合性
4
除尘/脱硫/脱硝技术发展
1970~1990 烟气净化投资占1/2~2/3
3 1960’
自控、移动式机械炉排焚烧炉,多 样化,焚烧温度↗850-1100℃以上
2
大型机械化炉排;较高效率的烟气净化系统
20世纪初
(机械、静电除尘和洗涤)
1
机械化连续垃圾焚烧炉,处理能力、焚烧效果、治污↗
19世纪中后期
旋风收尘
焚毁带病毒、病菌的垃圾。→英1874、美1885、法等试验研究,建立间歇 式固定床焚烧炉,效率低,残渣量大,无烟气、残渣处理设施
7
垃圾发电站
高温焚烧已经发展成为一种应用最广、最有前途的生活垃圾和危险废物的 处理方法之一。集焚烧、发电、供热和环境美化为一体。德、法、美、日
从炉内实际过程看,送入的垃圾有的物质还在预热干燥,而 有的物质已经开始燃烧,甚至已燃尽了。
对同一物料来说,物料表面已进入了燃烧阶段,而内部还在 加热干燥。
21
1、干燥------水分汽化、蒸发 传导干燥、对流干燥和辐射干燥 2、热分解------化学分解、聚合反应 放热反应,吸热反应 3、燃烧------可燃物质的快速分解和高温氧化过程 蒸发燃烧(蜡质类)、分解燃烧(纸、木材)、表面燃烧(木炭、

固废的固化处理及热解与焚烧处理

固废的固化处理及热解与焚烧处理

固体废物的固化处理利用物理或化学方法将有害固体废物固定或包容在惰性固体基质内,使之呈现化学稳定性或密封性。

固化所用的惰性材料称为固化剂。

有害废物经过固化处理所形成的固化产物称为固化体。

固化方法:水泥固化、石灰固化、热塑性材料固化、有机聚合物固化、自胶结固化、玻璃固化对固化处理的基本要求(1)有害废物经过固化处理后所形成的固化体应具有良好的抗渗透性、抗浸出性、抗干湿性、抗冻融性及足够的机械强度等,最好能作为资源加以利用。

(2)固化过程中材料和能量消耗要低,增容比要低。

(3)固化工艺过程简单,便于操作。

水泥固化技术(Cement solidification)水泥固化:是以水泥为固化剂将有害废物进行固化的一种处理方法,从而达到减小表面积、降低渗透性,使之能在较为安全的条件下运输与处置的目的。

水泥固化原理:水泥是一种无机胶结剂,经水化反应后可形成坚硬的水泥块,能将砂、石等骨料牢固地凝结在一起。

水泥固化有害废物就是利用水泥的这一特性。

常用作固化剂的水泥:硅酸盐水泥和火山灰质硅酸盐水泥。

石灰固化处理( Lime solidification)以石灰和具有火山灰活性的物质(如粉煤灰、垃圾焚烧灰渣、水泥窑灰等)为固化基材,活性硅酸盐类为添加剂对危险废物进行稳定化与固化处理的方法。

适用于稳定石油冶炼污泥、重金属污泥、氧化物、废酸等无机污染物,并已用于烟道气脱硫的废物的固化。

该法简单,物料来源方便,操作不需特殊设备及技术,比水泥固化法便宜,但石灰固化处理得到固化体的强度较低,所需养护时间较长,并且体积膨胀较大,增加清运和处置的困难,因而较少单独使用。

热塑性材料固化处理热塑性材料固化(沥青、石蜡、聚乙烯、聚丙烯等):是用熔融的热塑性物质在高温下与干燥脱水危险废物混合,以达到对废物稳定化的目的的过程。

以沥青类材料作为固化剂,与危险废物在一定的温度、配料比、碱度和搅拌作用下发生皂化反应,使有害物质包容在沥青中并形成稳定固化体的过程。

第05章_有机固体废物热处理技术

第05章_有机固体废物热处理技术

5.2
固体废物焚烧技术
5.2.2 焚烧效果的评价指标
固体废物焚烧的目的有:(1) 使废物减量;(2) 使废热释 出而再利用;(3) 使废物中的毒性物质得以摧毁。 在焚烧处理危险废物时,以有害物质破坏去除效率或焚 毁去除率,作为焚烧处理效果的评价指标。焚毁去除率是 指某有机物经焚烧后减少的百分比。
5.2
5.2
4. 焚烧温度
固体废物焚烧技术
5.2.3 焚烧效果的评价指标
焚烧温度取决于废物的燃烧特性(如热值、燃点、含水 率)以及焚烧炉结构、空气量等。一般来说,焚烧温度 越高,废物燃烧所需的停留时间越短,焚烧效率也越高。 但是,如果温度过高,会对炉体材料产生影响,还可能 发生炉排结焦等问题。
5.2
5. 过剩空气
5.2
1. 物料尺寸
固体废物焚烧技术
5.2.3 焚烧效果的评价指标
物料尺寸越小,则所需加热和燃烧时间越短。另外,尺 寸越小,比表面积则越大,与空气的接触随之越充分, 有利于提高焚烧效率。一般来说,固体物质的燃烧时间 与物料粒度的1~2次方成正比。
5.2
2. 停留时间
固体废物焚烧技术
5.2.3 焚烧效果的评价指标
固体废物焚烧技术
5.2.2 焚烧效果的评价指标
在焚烧垃圾及一般性固体废物时,以燃烧效率作为焚烧 处理效果的评价指标。焚烧效率是指烟道排出气体中CO2 浓度与CO2和CO浓度之和的百分比。 在我国的焚烧污染控制标准中,采用热灼减率反映灰渣 中残留可焚烧物质的量。热灼减率是指焚烧残渣经灼热减 少的质量占原焚烧残渣质量的百分数。
固体废物焚烧技术
5.2.3 焚烧效果的评价指标
为了保证氧化反应完全进行,从化学反应的角度应提供 足够的空气。但是,过剩空气的供给会导致燃烧温度的 降低。一般情况下,过剩空气量应控制在理论空气量的 1.7~2.5倍。

固体废物的热解教学课件

固体废物的热解教学课件

筛分
去除固体废物中的异物, 如金属、玻璃等。
干燥
去除固体废物中的水分, 以降低热解过程中的能耗 。
热解
加热
将预处理后的固体废物加热到热 解温度,使其中的有机物发生热
解反应。
热解产物
热解产物包括气体、液体和固体 ,其中气体和液体是重要的能源
和化工原料。
热解温度
热解温度是影响热解产物的重要 因素,不同的废物需要不同的热
料和炭的化学过程。
热解过程
热解过程包括干燥、热解、燃烧和 炭化等阶段,其中有机物在高温下 热解成可燃气体、液体燃料和炭。
热解产物
热解产物包括可燃气体、液体燃料 和炭,其中可燃气体和液体燃料是 热解的主要产物,具有较高的能源 利用价值。
技术
固定床热解技术
回转窑热解技术
固定床热解技术是将固体废物放置在 固定床反应器中进行热解,产物通过 冷凝器进行冷凝,分为气体、液体和 固体三相。
特点
具有污染性、资源性和社会性。
分类
01
02
03
按来源分类
工业固体废物、生活垃圾 以及其他固体废物。
按危害特性分类
一般固体废物和危险固体 废物。
按处理方式分类
可回收利用的废物、不可 回收利用的废物以及有害 废物。
02
热解的原理与技术
原理
热解原理
热解是将固体废物在无氧或少量 氧的条件下,通过高温加热,使 有机物转化为可燃气体、液体燃
热解装备研发
研发新型高效、低耗、环保的 热解反应器及配套设备,提升
热解技术的工程应用能力。
THANKS
感谢观看
开发高效热解炉
研究和开发新型高效热解炉,提高热解效率,降低能耗和投资成本 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七学习单元第七学习单元(8课时):固体废物的热解7.1 固体废物热解原理7.2 固体废物热解方式7.3 影响热解的主要因素7.4 几种固体废物的热解工艺流程本学习单元的重点和难点:固体废物的热解原理固体废物热解的主要影响因素7.1固体废物热解原理7.1.1导言1、为什么要学习本单元?让大家了解热解的概念、原理、过程及产物、热解工艺、热解方式、热解的主要因素、典型固体废物的热解工艺流程的相关知识。

2、本单元学习内容热解的概念、原理、过程及产物、热解工艺、热解方式、热解的主要因素(反应温度、反应湿度、加热速率、反应时间、废物组成)、典型固体废物(如:塑料、橡胶、城市垃圾、污泥)热解的产物及工艺流程。

3、学习目标掌握固体废物热解概念、原理、热解过程与工艺;了解固体废物的热解方式;掌握影响热解的主要因素;了解典型固体废物的热解技术;掌握焚烧与热解技术的异同点。

7.1.2 热解的概念热解是一种古老的工业化生产技术,该技术最早应用于煤的干馏,所得到的焦炭产品主要作为冶炼钢铁的燃料。

在工业上称之为干馏。

热解(pyrolysis):固体废物热解是利用有机物的热不稳定性,在无氧或缺氧条件下受热分解的过程。

热解法与焚烧法相比是完全不同的二个过程,焚烧是放热的,热解是吸热的,焚烧的产物主要是二氧化碳和水,而热解的产物主要是可燃的低分子化合物:气态的有氢、甲烷、一氧化碳,液态的有甲醇,丙酮、醋酸,乙醛等有机物及焦油,溶剂油等,固态的主要是焦炭或碳黑。

焚烧产生的热能量大的可用于发电,量小的只可供加热水或产生蒸汽,就近利用。

而热解产物是燃料油及燃料气,便于贮藏及远距离输送。

7.1.3热解的原理热解原理应用于工业生产已有很长的历史,木材和煤的干馏、重油裂解生产各种燃料油等早已为人们所知。

但将热解原理应用到固体废物制造燃料,还是近几十年的事。

国外利用热解法处理固体废物已达到工业规模,虽然还存在一些问题,但实践表明这是一种有前途的固体废物处理方法。

1927年美国矿业局进行过一些固体废物的热解研究。

60年代,人们开始以城市垃圾为原料的资源化研究,证明热解过程产生的各种气体可作为锅炉燃料。

1970年Sanner等进行实验证明,城市垃圾热解不需要加辅助燃料,能够满足热解过程中所需热量的要求。

1973年Battle 研究使用垃圾热解过程所产生的能量超过固体废物含能量的80%获得成功。

原联邦德国于1983年在巴伐利亚的Ebenhausen 建设了第一座废轮胎、废塑料、废电缆的热解厂,年处理能力为600-800吨废物。

而后,又在巴伐利亚州的昆斯堡建立了处理城市垃圾的热解工厂,年处理能力为35000吨废物,成为原联邦德国热解新工艺的实验工厂。

美国纽约市也建立了采用纯氧高温热解法日处理能力达3000吨的热解工厂。

1981年我国农机科学研究院,利用低热解的农村废物进行了热解燃气装置的试验取得成功。

小型农用气化炉已定点生产,为解决农用动力和生活能源,找到了方便可行的代用途径。

热解的原理:可以将固体废物中的有机物转化为以燃料气、燃料油和炭黑为主的贮存性能源;由于是缺氧分解,排气量少,有利于减轻对大气环境的二次污染;废物中的硫、重金属的有害成分大部分被固定在炭黑中;由于保持还原条件,Cr(III)不会转化为Cr(VI);NOx的产生量少。

7.1.4热解的过程及产物热解的过程及产物:固体废物热解过程是一个复杂的化学反应过程。

包括大分子的键断裂,异构化和小分子的聚合等反应,最后生成各种较小的分子。

高温热解:T>1000℃,供热方式几乎都是直接加热。

中温热解:T=600~700℃,主要用在比较单一的废物的热解,如废轮胎、废塑料热解油化。

低温热解:T< 600℃。

农业、林业和农业产品加工后的废物用来生产低硫低灰的炭,生产出的炭视其原料和加工的深度不同,可作不同等级的活性炭和水煤气原料。

7.1.5 热解工艺一个完整的热解工艺包括:进料系统、反应器、回收净化系统、控制系统几个部分。

热解反应器包括:固定床、流化床、旋转炉、分段炉等热解工艺:热解的基本工艺有两种:一种是将废塑料加热熔融,通过热解生成简单的碳氢化合物,然后在催化剂的作用下生成可燃油品。

另一种将热解和催化热解分为两段。

热解工艺主要由:前处理-熔融-热分解-油品回收-残渣处理-中和处理-排气处理等七道工序组成。

焙烧是在低于熔点的温度下热处理废物的过程,目的是改变废物的化学性质和物理性质,以便于后续的资源利用。

固体物料在高温不发生熔融的条件下进行的反应过程,可以有氧化、热解、还原、卤化等,通常用于无机化工和冶金工业。

7.2 固体废物热解方式热分解过程由于供热方式、产品状态、热解炉结构等方面的不同,热解方式各异。

按供热方式可分成内部加热和外部加热。

外部加热是从外部供给热解所需要的能量。

内部加热是供给适量空气使可燃物部分燃烧,提供热解所需要的热能。

外部供热效率低,不及内部加热好,故采用内部加热的方式较多。

按热分解与燃烧反应是否在同一设备中进行,热分解过程可分成单塔式和双塔式。

按热解过程是否生成炉渣可分成造渣型和非造渣型。

按热解产物的状态可分成气化方式、液化方式和碳化方式。

还有的按热解炉的结构将热解分成固定层式、移动层式或回转式,由于选择方式的不同,构成了诸多不同的热解流程及热解产物。

7.3 影响热解的主要因素影响热解过程的主要因素有反应温度、反应湿度、加热速率、反应时间、废物组成等。

7.3.1 反应温度温度是影响热解的关键因素,热解产物的产量和成分都可通过控制反应器的温度有效地改变。

热解温度与气体产量成正比,而各种液体物质和固体残渣均随分解温度的增加而相应减少。

再者,热解温度不仅影响气体产量,也影响气体质量。

7.3.2 反应湿度热解过程中湿度会影响产气的量和成分、热解内部化学过程以及整个系统的能量平衡。

热解过程中的水分主要来自两个方面,一是来自物料自身的含水量,二是来自外加的高温水蒸气。

反应过程中生成的水分其作用主要接近于外加的高温蒸汽。

对于不同的物料,其含水率是不同的。

对同一种物料而言,它的含水率就比较稳定。

我国城市生活垃圾的含水量一般均在40%左右,有的超过60%。

这部分水在热解过程前期的干燥阶段总是先失去,最后凝结在冷却系统中或随热解气一同排出。

如果它以水蒸气的形式与可燃的热解气共存,则会严重过降低热解气的热值和可用性,所以在热解系统中要求将水分凝结下来,以提高热解气的可用性。

7.3.3 加热速率加热速率对热解过程有比较大的影响,从而影响热解产物的生成。

通过加热温度和加热速度的结合,可控制热解产物中各组分的生成比例。

在低温-低速加热条件下,有机物分子有足够的时间在其最薄弱接点处分解,重新结合为热稳定性固体而难以进一步分解,因而产物中固体含量增加;在高温-高速条件下,热解速度快,有机物分子结构发生完全裂解,生成大范围的低分子有机物,产物中气体的组分增加。

7.3.4 反应时间所谓反应时间,就是指反应物料完成反应在炉内停留的时间。

它与许多因素有关,如:物料尺寸、物料分子结构、反应器内的温度水平、热解方式等,而且反应时间还影响热解产物的成分和总量。

一般情况下,反应物的尺寸越小反应时间越短;物料分子结构越复杂反应时间越长;反应温度越高反应物颗粒内外温差梯度就越大,加快物料被加热的速度,缩短反应时间。

热解方式对反应时间的影响比较大,直接热解与间接热解相比热解时间短。

这是因为直接热解时反应器同一断面的物料基本上处于等温状态,而避式间接热解方式加热时反应器同一个断面的物料就不是等温状态,它们之间存在一定的温差;采用中间介质的间接热解方式,热解反应时间直接与处理的量有关,处理量大小与反应器的热平衡直接相关,与设备尺寸相关;采用间接加热的沸腾床,反应时间短,但是单位时间的处理量不大,要加大处理量相应的设备尺寸就需要加大。

7.3.5 废物组成物料的组成包括有机物成分、含水率、尺寸大小等,这些性质对热解过程有重要影响。

不同的物料成分不同,可热解性也不一样。

有机物成分比例大、热值高的物料。

其热解性相对就好,产品热值高,可回收性好,残渣也少。

物料含水率低,加热到工作温度所需要的时间短,干燥和热解过程的能耗就少。

物料颗粒尺寸较小的有利于促进热量传递,保证热解过程的顺利进行。

通常,城市固体废物比大多数工业固体废物更适合用热解方法生产燃气、焦油以及各种有机液体,但是产生的固体残渣较多。

此外,影响热解的因素还有物料的预处理、反应器类型、供气供氧等。

7.4 几种固体废物的热解工艺流程7.4.1 塑料的热解产物及工艺流程1、热解产物塑料的品种除前面提到过的热塑性及热固性二大类外,由其受热分解后的产物又可分成解聚反应型塑料和随机分解型塑料,以及二者兼而有之的中间分解型塑料。

解聚反应型塑料受热分解时聚合物解离、分解成单体,主要是切断了单体分子之间的结合键。

这类塑料有聚氧化甲烯、聚a-甲基苯乙烯、聚甲基丙烯酸甲酯、四氟乙烯塑料等,它们几乎100%的分解成单体。

随机分解型塑料受热分解时链的断裂是随机的,因此产生无一定数目的碳原子和氢原子结合的低分子化合物。

这类塑料有聚乙烯、聚氯乙烯等。

大多数塑料的受热分解,二者兼而有之。

各种分解产物的比例,随塑料的种类、分解的温度而不同,一般温度越高,气态的(低级的)碳氢化合物的比例越高。

由于产物组分复杂要分解出各种单个组分比较困难,一般只以气态、液态和固态三类组分回收利用,此外,还有利用塑料的不完全燃烧回收炭黑的热解类型。

塑料中含氯、氰基团的,热分解产品中一般含HCl和HCN,而塑料制品中含硫较少,热分解得到的油品含硫分也相应较低下,是一种优质的低硫燃料油,为此,日本开发了废塑料与高硫重油混合热解以制得低硫燃料油的工艺。

2、热解流程由于塑料具有:①导热系数较低0.07-0.3kcal/(m•h•℃)(相当于干木材),当加热到熔点温度(100-250℃)时,中心温度还很低,继续加热,外部温度可达500℃以上并产生碳化,而内部温度才达到可熔化的程度。

由于外部炭化妨碍内部的分解,故热效率低下。

②塑料品种多,废塑料品种混杂,分选困难。

因此开发了独特的废塑料热解流程。

(1)减压分解流程日本三洋电机根据塑料导热系数低的特点开发利用微波炉与热风炉加热、减压蒸馏的流程,于1972年6月完成3吨/天处理量的试验性工厂。

经破碎的废塑料送入熔化炉,并在其中加入发热效率高的热媒体如碳粒,当微波照射时产生热量。

由热风炉与微波同时加热至230-280℃使塑料熔融。

如含聚氯乙烯时产生的氯化氢可在氯化氢回收塔回收,熔融的塑料除去金属等不熔融的物质以后,送入反应炉,用热风加热到400-500℃(6.7×104Pa绝对)分解,生成的气体经冷却液化回收燃料油。

(2)聚烯烃浴热解流程(低温热分解流程)这是日本川崎重工开发的一种方法。

相关文档
最新文档