555电路组成的振荡电路
555振荡电路的工作原理
555振荡电路的工作原理
555振荡电路主要由比较器、RS触发器、输出级、电源等组成,其工作原理如下:
1. 稳态初始:引脚RESET为高电平,将RS触发器复位,输出Q为低电平,输出Q为高电平。
2. 充电过程:由于电容C1放电时电压较低,触发电压(VTH)较高,此时引脚THRES为低电平。
电阻R1和电阻R2的分压作用使比较器引脚TRIG为高电平。
由于RESET引脚为高电平,RS触发器复位,Q输出为低电平,Q输出为高电平。
因此,电容C1开始充电,直到电压上升到比较器引脚THRES 的触发电压。
3. 变化过程:当电容C1充电至比较器引脚THRES的触发电压时,比较器引脚THRES变为高电平,触发比较器,使RS 触发器置位。
Q输出为高电平,Q输出为低电平。
4. 放电过程:当RS触发器置位后,引脚THRES为高电平,比较器引脚TRIG变为低电平,RS触发器保持置位状态。
电容C1开始放电,直到电压下降到比较器引脚TRIG的触发电压。
5. 变化过程:当电容C1放电至比较器引脚TRIG的触发电压时,比较器引脚TRIG变为低电平,触发比较器,使RS触发器复位。
Q输出为低电平,Q输出为高电平。
通过充放电过程的反复循环,555振荡电路产生稳定的方波或
单稳态脉冲输出。
可通过调整电阻和电容的值来改变振荡频率。
555振荡电路(共29张)
A2 + + (S)
G2 Q
5 kW ⑦
100 W
③ OUT
①
NE555定时器内部(nèibù)电路
第17页,共29页。
放电管
555定时器的内部电路
逻辑(luó jí)功能表
输
入
输
正跳变 触发TH
负跳变 触发TL
复位RD
放电管T
×
×
0
导通
出 输出Q
0
<2VCC/3 <VCC/3
1
截止
1
>2VCC/3 >VCC/3
号。 因为对于RC振荡电路来说,增大电阻R即可降低振荡频率。
振荡频率 f= 1/0.7(R1+2R2)C1
即:f = 1. 443/(R1+2R2)C1
第12页,共29页。
555定时器
➢ 555定时器成本低,性能可靠,计时精确度 高。
➢ 只需要外接几个电阻,电容,就可以实现多谐振 荡器,单稳态触发器和施密特触发器等脉冲产生和 变换(biànhuàn)电路。 ➢ 其输出端的供给电流大,可直接推动多种自动控 制的负载。
屏幕菜 单选择
测量辅 助设置
辅助
操作
稳定
触发
电源
开关
屏幕
Y轴
输入
调整
插座
第24页,共29页。
扫描 调整
校准
信号
示波器面板(miàn 介绍 bǎn)
局 部 面 板 图
第25页,共29页。
测量状 态
触发电平 指示
屏幕(píngmù)刻度和标注信息
显示的 信号在 存贮器 中的位 置
第一路被 测信号指 示
第16页,共29页。
555最简单振荡电路
555最简单振荡电路555是一种常用的集成电路,也是最简单的振荡电路之一。
它可以产生稳定的方波信号,广泛应用于计时、频率测量、脉冲生成等领域。
本文将介绍555最简单的振荡电路,并对其原理进行详细解析。
555振荡电路的基本原理是利用一个RC电路和比较器构成的反馈环路,通过调节电阻和电容的数值,可以调整输出信号的频率和占空比。
555振荡电路的基本组成包括一个比较器,一个RS触发器,一个输出级和一个放大器。
其中,比较器用于比较输入电压与参考电压的大小关系,RS触发器用于存储输出的状态,输出级用于放大输出信号,放大器用于提供驱动能力。
555振荡电路最简单的形式是单稳态多谐振荡器,也称为单稳态触发器。
它由一个RC电路、一个比较器和一个RS触发器组成。
具体电路连接方式如下:- 将555的第2脚和第6脚连接在一起,作为电容C和电阻R的公共接地点;- 将电容C的一端连接到555的第6脚,另一端连接到电阻R的一端;- 将电阻R的另一端连接到正电源;- 将555的第4脚连接到555的第8脚,以提供电源给555芯片;- 将555的第8脚连接到正电源;- 将555的第1脚连接到电阻R的另一端,作为输出端;- 将555的第5脚连接到电阻R的另一端,作为控制端。
当输入电压低于参考电压时,比较器的输出为高电平,RS触发器的输出为低电平,555的第1脚输出低电平信号。
当输入电压高于参考电压时,比较器的输出为低电平,RS触发器的输出为高电平,555的第1脚输出高电平信号。
通过调节电阻R和电容C的数值,可以调整输出信号的频率和占空比。
当电阻R和电容C的数值较大时,输出信号的频率较低,占空比较小;当电阻R和电容C的数值较小时,输出信号的频率较高,占空比较大。
需要注意的是,555振荡电路的稳定性和精度与电阻R和电容C的数值有关。
当电阻R和电容C的数值不稳定或误差较大时,输出信号的频率和占空比会有所偏差。
555最简单的振荡电路是由一个RC电路、一个比较器和一个RS触发器组成的单稳态多谐振荡器。
555振荡电路芯片
555振荡电路芯片555振荡电路芯片是一种常见且广泛应用的集成电路芯片,通常用于产生稳定的方波信号或脉冲信号。
它是由美国电子工程师汉肯(Hans R. Camenzind)于1971年设计并推出的,由于其工作稳定性和多种应用场景,成为了电子工程师们常用的一种集成电路。
555振荡电路芯片内部结构简单,主要由比较器、RS触发器、放大器和电压稳定器组成。
它的输入引脚包括正常工作电压引脚Vcc和地引脚GND,以及外部引脚TRIGGER、THRESHOLD、RESET、OUT和DISCHARGE。
这些引脚通过外部元件的连接,可以实现不同类型的振荡和脉冲信号输出。
555振荡电路芯片常见的应用有以下几种:1.方波发生器:利用555振荡电路芯片的特性,可以很方便地实现稳定的方波信号输出。
通过调节电阻和电容的数值,可以控制方波的频率和占空比。
2.时钟电路:555振荡电路芯片可以产生稳定的脉冲信号,常用于数字系统的时钟电路。
通过调节电阻和电容的数值,可以控制脉冲信号的频率。
3.脉冲宽度调制(PWM):PWM是一种常见的调制技术,在电机控制、LED亮度调节等领域广泛应用。
通过调节电阻和电容的数值,可以控制PWM信号的频率和占空比,进而实现对输出信号的精确控制。
4.延时器:在某些场合,需要实现一定时间的延时操作。
555振荡电路芯片可以非常方便地实现延时功能,通过调节电阻和电容的数值,可以实现不同的延时时间。
5.触发器:通过改变输入引脚的电平状态,可以触发555振荡电路芯片的输出状态。
这种触发器在数字逻辑电路、传感器触发等应用中经常使用。
总的来说,555振荡电路芯片具有结构简单、使用方便、稳定性好的特点,被广泛应用于电子系统中。
无论是在实验室中的电子电路设计,还是在工业控制、通信设备、自动化系统等领域,都可以看到它的身影。
它不仅是电子工程师们的得力助手,也推动了电子技术的发展和应用的普及。
555振荡电路
555振荡电路概述555振荡电路是一种常用且经典的电子电路,在电子工程和电路设计中广泛应用。
它能够产生稳定的方波、矩形波和正弦波等输出信号,并具有简单、稳定和可靠的特点。
555振荡电路原理555振荡电路主要由一个集成电路芯片 NE555 和少量的外部元器件组成。
NE555是一种著名的计时器集成电路,它内部集成了比较器、电压比较器、电流开关和放大器等功能模块,可以根据外部元器件的设置来生成不同的输出信号。
555振荡电路的基本原理可以简单地描述为,当输入电压Vcc 施加在电路上时,芯片内部的比较器比较引脚的电压大小,当比较器输出高电平时,输出引脚的电压为低电平,当比较器输出低电平时,输出引脚的电压为高电平。
通过这种状态间的切换,可以实现不同类型的振荡波形输出。
555振荡电路的工作模式555振荡电路可以通过不同的连接方法实现不同的工作模式,常见的工作模式有以下几种:1. 单稳态工作模式(Monostable Mode)在单稳态工作模式下,当输入触发脉冲信号时,输出信号会在设定的时间内(由外部元器件决定)保持高电平,然后自动恢复为低电平。
这种工作模式适用于需要在一定时间后产生一个脉冲信号的应用,如触发器、定时器等。
2. 双稳态工作模式(Astable Mode)在双稳态工作模式下,输出信号会周期性地在高电平和低电平之间切换,产生连续的方波或矩形波信号。
这种工作模式适用于需要产生连续振荡信号的应用,如钟表、定时器、频率测量器等。
3. 三角波发生器工作模式(Triangle Wave Generator Mode)在三角波发生器工作模式下,通过外部电阻和电容的组合来调整输出信号的频率和幅度,从而产生稳定的三角波形信号。
这种工作模式适用于需要产生三角波信号的应用,如音频发生器、波形调制器等。
4. 正弦波发生器工作模式(Sine Wave Generator Mode)在正弦波发生器工作模式下,通过在双稳态工作模式的基础上添加一个滤波电路,可以将方波或矩形波信号转换为平滑的正弦波信号。
555电路组成的振荡电路集锦
人工启动单稳[ IRT------ 0VC C—E 4 SVi7555 3--- 0V D —t —25d 十 丄SB 1? |CT1〕特点:^KT-T. 5-CT B2 端输入•外脉冲启动或人 工启动口2)公式:Td=l. 1RT*CT D 用途:定(延)时、消抖动、分(倍)频』脉冲 输岀、J 匸速率等检测。
vriu n ~I P ,| V1(HI4-4 Cl6 4 8i T 555 3 i 5 CT 丄 —oVC CV 01〕特点:u RT-7.6-CT w 2 端输入.外脉冲启动输入 带RC 徽分电跻.2) 公式:Ti=l 1RT*CT 3) 用途:定(延)时、消 抖动、分(倍)城』脉沖 输L C 速率等检测.555电路组成的振荡电路集锦、555单稳类电路 555单稳工作方式,它可分为2种。
见图示。
* 1.L1人工启动单藉1) 特点:KT-6.2-CT, A 工启动,vo=o,稳态: VO=1 >皙稳态〔td )・2) 公式:Td=L 1M*CT3) 用途:定时,延时.第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为 2个不同的单元,并分别以1.1.1和1.1.2为代号。
他们的输入端的形式,也就是 电路的结构特点是:“ RT-6.2- CT'和“ C 「6.2- RT'。
*1.22脉冲启动单趙第2种(图2)是脉冲启动型单稳,也可以分为 2个不同的单元。
他们的输入特 点都是“ RT-7.6- CT',都是从2端输入。
1.2.1电路的2端不带任何元件,具 有最简单的形式;1.2.2电路则带有一个RC 微分电路。
、555双稳类电路―oVC CV DL )特点:CT 电2-ET,人 工启动,V0二:H 稳态; VD=O J 暂稳态 <tdJ B 2) 公式:TE lRT*Cr 3) 用途:定时,延时n1■IvlA医3 8 5 1 4555 Lb 2 R1) 特点:有諌E 两个输入,两输入阀值电压不同■输入无4 2) 用途:岀较黠,电子 开关」检测电路,家 电控制器等,3) 别名:孜限比较器、T------ 0VCC:L卩4555 JQ- 11252 51) 特点:6.2W 短接作输入,输入无匚,有滞后 电压AVT O2) 用途:电子开关r 监揑告警、脉冲整形■等. 3 )别名:滞后比较器、反 相比较器,1) 特点:E.2端短接作输入I 变化R1*魁的值 或改变VCT 以调整阀值 电压.2) 用途:方波输岀.脉 冲整形.TVCC1)特点:H RA-6 2-C" RA 与V0相连. 2) 公式:T1=T2=D 693RAC = T=C.722/KA*C™3)用途:方波输出』音响皆警』电源喪换等45557 6 21) 特点:“卜瑯-赵弋”, T与VOfflR2) 公式:Tl=T2=0.693RACT=0. T22/RA+C 3 )用途:册输出,音响 告警 >电源变擬等» 2. 1.1 R-S第一种(见图1)是触发电路,有双端输入(2.1.1 )和单端输入(2.1.2 ) 2个 单元。
用555定时器构成占空比可调多谐振荡器
★ 电路输出周期:
T = tw1+ tw2 = 0.7(R1+2R2)C
0 VCC 3
通过改变R和C可以得到 0.1Hz~300KHz的振荡频率。
用555定时器组成的多谐振荡器暂态宽度tw1≠ tw2, 而且占空比是固定不变的。 TW 1 R1 R2 q 占空比:脉冲宽度与周期之比 R1 2 R2 T 改变R1或改变R2都会引起周期T的改变。 在实际应用中常常需要频率固定而占空比可调。 占空比可调多谐振荡器电路 Vcc R1 电路特点: 4 8 Rw 7 电容C的充、放电通路分别用二极管D1 555 R2 3 VO 和D2隔离。RW为可调电位器。 D1 6 ★ 充电时,只和R1有关,tW 1 0.7 R1C D2 2 ★ 放电时,只和R2有关,tW 2 0.7 R2C 1 5 0.01μF C 通过改变RW,而不改变R1+R2相加之和 电路振荡周期T=0.7(R1+R2)C
★
用555定时器构成多谐振荡器
多谐振荡器是一种无稳态电路,接通电源后,不需外加 触发脉冲,电路就能自动产生周期性矩形脉冲或方波。 用途:主要用于产生各种方波或时间脉冲。 1、电路结构: /R:(4)正常工作接高电平 V 'O 控制电压输入端VCO(5)通过103电 容接地,起滤波作用。 VTH VTR(2)、VTH(6)通过定时电容C V TR 接地,同时通过R2与三极管集电极接 在一起。
如果R21~R28阻值 选配得当,喇叭便可以 发出八个不同音阶。
C
4
8
VCC
7
555
3
6 2
1
5
μF 0.01
2、模拟声响电路 用两个多谐振荡器 组成模拟声响电路。 适当选择定时元件, 使: f A 1H Z
555振荡电路频率计算
555振荡电路频率计算555振荡电路是一种常用的集成电路,常用于产生稳定的方波信号。
本文将介绍555振荡电路的频率计算方法。
我们需要了解555振荡电路的基本原理。
555振荡电路由一个稳态电压比较器和两个可控的电压比较器组成。
稳态电压比较器根据控制电压和参考电压的大小关系来输出高电平或低电平信号。
可控电压比较器则由外部电容和电阻组成,用于控制稳态电压比较器的阈值和触发电平。
在555振荡电路中,频率的计算主要依赖于外部电容和电阻的数值。
具体计算方法如下:1. 首先,我们需要确定555振荡电路的工作方式。
555振荡电路有三种工作方式:单稳态、双稳态和自由运行。
其中,自由运行方式(也称为多谐振荡)是最常用的工作方式,因此我们将以自由运行方式为例进行频率计算。
2. 确定电容的数值。
电容的数值决定了振荡电路的时间常数,从而影响振荡信号的频率。
假设电容的数值为C(单位为法拉),则振荡电路的时间常数T为T=1.1RC,其中R为电阻的数值(单位为欧姆)。
3. 计算工作周期T。
工作周期T等于两个时间常数之和,即T=2.2RC。
4. 根据工作周期T计算频率f。
频率f等于工作周期T的倒数,即f=1/T。
需要注意的是,555振荡电路的频率计算公式是一个近似值,实际频率可能会受到温度、供电电压等因素的影响。
因此,在实际应用中,我们需要根据具体情况进行调整和修正。
总结起来,555振荡电路的频率计算方法如下:1. 确定振荡电路的工作方式;2. 确定电容的数值;3. 根据电容和电阻的数值计算时间常数T;4. 根据时间常数T计算工作周期T;5. 根据工作周期T计算频率f。
通过以上的计算方法,我们可以准确地计算出555振荡电路的频率。
这对于设计和调试电子电路以及实现特定功能非常重要。
希望本文能对读者理解和应用555振荡电路频率计算方法提供帮助。
555多谐振荡器电路原理
555多谐振荡器电路原理555多谐振荡器电路原理555多谐振荡器电路是一种常用的电子元件,它可以产生多种频率的信号,广泛应用于电子设备中。
其原理是基于555定时器的工作原理,通过改变电容和电阻的值来改变输出信号的频率。
555定时器是一种非常常见的集成电路,它由比较器、RS触发器和输出级组成。
当输入端有高电平信号时,比较器输出为低电平,RS触发器将Q输出为高电平。
当输入端有低电平信号时,比较器输出为高电平,RS触发器将Q输出为低电平。
通过这种方式可以实现定时功能。
在555多谐振荡器中,我们需要使用其中的两个比较器来实现正弦波形和方波形的产生。
具体实现方法如下:1. 正弦波形产生正弦波形产生需要使用RC积分环路来实现。
在此过程中,通过改变RC积分环路中的R和C值可以改变正弦波形的频率。
当555定时器输出为高电平时,C1充放一次,并且通过R2和R3使得C1充放时间相等。
当定时器输出为低电平时,C1通过R2和R3放电,此时RC积分环路中的电压下降,当电压降至1/3Vcc时,比较器2的输出变为低电平,RS触发器将Q输出为低电平。
此时C1开始充放,当电压升至2/3Vcc时,比较器1的输出变为高电平,RS触发器将Q输出为高电平。
这样就完成了一个完整的正弦波形周期。
2. 方波形产生方波形产生需要使用比较器和反相器来实现。
在此过程中,通过改变R和C值可以改变方波形的频率。
当555定时器输出为高电平时,比较器1输出为高电平,反相器输出为低电平。
当定时器输出为低电平时,比较器2输出为低电平,反相器输出为高电平。
这样就完成了一个完整的方波形周期。
总结555多谐振荡器是一种常用的信号发生器,在工业、医疗、军事等领域都有广泛应用。
其原理是基于555定时器的工作原理,并通过改变RC积分环路和反相器中的元件值来改变信号频率和波形类型。
熟练掌握555多谐振荡器原理和实现方法,对于电子工程师来说是非常重要的技能。
555多谐振荡回路常见问题
555多谐振荡回路常见问题
555多谐振荡回路是一种电子电路,其常见问题包括:
1. 输出频率不稳定:由于电路参数的漂移或环境温度的变化,可能导致输出频率不稳定。
为了解决这个问题,可以采用温度补偿电路或高精度电阻、电容等元件来提高电路的稳定性。
2. 输出波形失真:在输出频率较高或占空比变化较大时,可能引起输出波形失真。
此时应调整R1、R2和C的参数值,以确保输出波形的质量。
3. 电源电压对输出频率的影响:电源电压的变化会影响输出频率的稳定性。
为了减小电源电压对输出频率的影响,可以使用稳压电源或电源滤波电路来提高电源的稳定性。
4. 电路的可靠性问题:在长时间运行或高温条件下,555多谐振荡回路的可靠性可能会降低。
为了提高电路的可靠性,可以采用金属封装、合理的散热设计等措施。
如果遇到以上问题,可以检查电路元件参数是否正确、电路连接是否良好、电源电压是否稳定等,以便找出问题所在并采取相应的解决措施。
用555定时器构成占空比可调多谐振荡器
因 此 使 扬 声 器 发 出 1KHZ 的 间歇声响信号。
VO1 VO2
通过这个例子可以作 出警笛、救护等声音效果。
精品课件
而且占空比是固定不变的。 占空比:脉冲宽度与周期之比
ቤተ መጻሕፍቲ ባይዱ
q TW 1 R1 R2
改变R1或改变R2都会引起周期T的改变。 T
R1 2R2
在实际应用中常常需要频率固定而占空比可调。
占空比可调多谐振荡器电路
电路特点:
R1
电容C的充、放电通路分别用二极管D1和
D2隔离。RW为可调电位器。
R2
★ 充电时,只和R1有关, tW10.7R1C
随V C 着 V T、 RV TH 当:VC电压充至2/3VCC以前
VCC
4
8
R1 R2
VCO
5
6
5K VR1 +- C1 R
0VTH
V2
C VTR
C
7
5K
VR2 +- C2 S 5K
G1 Q
& &Q
G2
V
' O
TD
R
当:VVVCTT电RH><12压//33充VVCC至CC ≥一2/小3V一CC大是保持21。//33VVVCCCCC
爆光时间为1.1RC,爆光时间到自动恢复为初始状态。
要改变爆光时间,只要改变R、C值即可。
精品课件
★ 用555定时器构成多谐振荡器
多谐振荡器是一种无稳态电路,接通电源后,不需 外加触发脉冲,电路就能自动产生周期性矩形脉冲或方波。
用途:主要用于产生各种方波或时间脉冲。
555多谐振荡电路
555多谐振荡电路555多谐振荡电路是一种常用的电子电路,它可以产生多种不同频率的振荡信号。
在本文中,我将详细介绍555多谐振荡电路的工作原理、电路图、元器件选择和调整方法。
一、工作原理555多谐振荡电路基于NE555集成电路,它由比较器、RS触发器和放大器组成。
其工作原理如下:1. 初始状态下,RST引脚为高电平,TRIG引脚为低电平。
2. C1通过R1和R2充放电。
当C1充满时,比较器输出翻转,并导致放大器输出高电平。
3. 放大器输出的高电平通过R3和D1反馈到TRIG引脚,使其变为高电平。
4. 当C1放电至一定程度时,比较器输出再次翻转,并导致放大器输出低电平。
5. 放大器输出的低电平通过D2反馈到TRIG引脚,使其变为低电平。
6. 重复步骤2-5形成连续的振荡。
二、555多谐振荡电路图下面是一个基本的555多谐振荡电路图示:```+--|Vcc|R1|+-+ C1| |TRIG ---|>|---| |+-+|R3|OUT -----|<|--- DIS| |GND -----+--|Gnd```三、元器件选择在设计555多谐振荡电路时,我们需要选择合适的元器件来满足我们的需求。
以下是一些常见的元器件选择建议:1. 555集成电路:可以选择NE555或其它兼容型号。
2. 电阻:根据需要选择合适的电阻值。
常用范围为几千欧姆到几兆欧姆。
3. 电容:根据需要选择合适的电容值。
常用范围为几皮法到几百微法。
4. 二极管:可以选择常见的小功率二极管,如1N4148。
四、调整方法调整555多谐振荡电路的频率可以通过改变电阻和/或电容值来实现。
以下是一些常用的调整方法:1. 改变R1和R2:增大R1或减小R2将使振荡频率降低,反之亦然。
2. 改变C1:增大C1将使振荡频率降低,反之亦然。
3. 使用可变电阻和/或可变电容:通过使用可变电阻和/或可变电容,可以在一定范围内连续调整振荡频率。
五、总结555多谐振荡电路是一种常用的电子电路,它可以产生多种不同频率的振荡信号。
555定时器构成的多谐振荡器
一、用555定时器构成的多谐振荡器1.电路组成:用555定时器构成的多谐振荡器电路如图6-11(a)所示:图中电容C、电阻R1和R2作为振荡器的定时元件,决定着输出矩形波正、负脉冲的宽度。
定时器的触发输入端(2脚)和阀值输入端(6脚)与电容相连;集电极开路输出端(7脚)接R1、R2相连处,用以控制电容C 的充、放电;外界控制输入端(5脚)通过0.01uF电容接地。
2.工作原理:多谐振荡器的工作波形如图6-11(b)所示:电路接通电源的瞬间,由于电容C来不及充电,Vc=0v,所以555定时器状态为1,输出Vo为高电平。
同时,集电极输出端(7脚)对地断开,电源Vcc对电容C充电,电路进入暂稳态I,此后,电路周而复始地产生周期性的输出脉冲。
多谐振荡器两个暂稳态的维持时间取决于RC充、放电回路的参数。
暂稳态Ⅰ的维持时间,即输出Vo的正向脉冲宽度T1≈0.7(R1+R2)C;暂稳态Ⅱ的维持时间,即输出Vo的负向脉冲宽度T2≈0.7R2C。
因此,振荡周期T=T1+T2=0.7(R1+2R2)C,振荡频率f=1/T。
正向脉冲宽度T1与振荡周期T之比称矩形波的占空比D,由上述条件可得D=(R1+R2)/(R1+2R2),若使R2>>R1,则D≈1/2,即输出信号的正负向脉冲宽度相等的矩形波(方波)。
二、多谐振荡器应用举例:1.模拟声响发生器:将两个多谐振荡器连接起来,前一个振荡器的输出接到后一个振荡器的复位端,后一个振荡器的输出接到扬声器上。
这样,只有当前一个振荡器输出高电平时,才驱动后一个振荡器振荡,扬声器发声;而前一个振荡器输出低电平时,导致后面振荡器复位并停止震荡,此时扬声器无音频输出。
因此从扬声器中听到间歇式的"呜......呜"声响。
2.电压——频率转换器:由555定时器构成的多谐振荡器中,若定时器控制输入端(5脚)不经电容接地,而是外加一个可变的电压源,则通过调节该电压源的值,可以改变定时器触发电位和阀值电位的大小。
555电路构成的多谐振荡器的工作原理
555电路构成的多谐振荡器的工作原理多谐振荡器是一种能够产生多个谐振频率的振荡器。
它由一个555定时器电路和一个RC网络组成。
555定时器是一种常用的集成电路,具有精确的定时和脉冲控制功能,可以广泛应用于计时、频率测量、脉冲调制和振荡等领域。
多谐振荡器的工作原理如下:1. RC网络起振:在多谐振荡器中,RC网络起到自激振荡的作用。
该网络由电阻R和电容C组成,通过改变RC的数值可以调节谐振频率。
假设初始电压为0V,当电源开始供电时,电容C开始充电,电压慢慢增加。
2. 555定时器触发:在电容C充电过程中,当电压达到555定时器的触发电压时,555定时器的输出端产生高电平信号。
这个电压阈值是通过555定时器的控制电压(Vth)和电源电压(Vcc)比较得出的。
一般情况下,当电容C电压达到2/3的Vcc 时,触发电压被激活。
3. 输出反转:当555定时器的输出端产生高电平时,输出引脚Q会产生低电平。
这个低电平信号会经过一个反相器,然后再返回RC网络。
4. RC网络放电:当反向信号返回RC网络时,电容C开始放电,电压开始降低。
5. 555定时器复位:当电容C电压降低到1/3的Vcc时,555定时器的复位电压(Rst)被激活,输出引脚Q产生高电平信号,使RC网络重新开始充电过程。
通过不断充电和放电的过程,RC网络和555定时器相互作用,使电路达到自激振荡的状态。
通过调节RC网络的数值,可以改变振荡频率,从而产生不同的谐振频率。
总结起来,多谐振荡器的工作原理核心在于RC网络和555定时器的相互作用。
RC网络起到谐振和放电的作用,而555定时器则根据RC网络的状态产生相应的触发信号,并控制输出信号的状态。
通过不断的充电和放电过程,实现了多谐振荡器的稳定振荡。
这种电路结构简单、可靠性高,非常适合用于产生多个谐振频率的应用场景。
555多谐振荡电路
555多谐振荡电路
555多谐振荡电路是一种经典的多谐振荡电路。
它由三个主要元件组成:555定时器、电阻和电容。
多谐振荡电路是一种非线性电路,可以产生多个频率的波形。
在此文章中,我们将详细介绍555多谐振荡
电路的原理、使用和应用。
555多谐振荡电路的原理
多谐振荡电路可以通过改变某些元件的值来产生不同的频率。
555
多谐振荡电路是一种简单而灵活的电路,它可以根据输入的电压而改
变频率。
当电压变化时,它会引起电容和电阻的变化,从而改变芯片
内部的比较器阈值。
当阈值和触发器的状态发生变化时,就会产生一
个周期性的方波输出,其振荡频率取决于电容和电阻的数值。
使用和应用
555多谐振荡电路可以用于许多不同的应用,包括音频信号发生器、模拟时钟、脉冲宽度调制和步进驱动器。
在音频信号发生器中,可以
通过调整电容和电阻的值来产生不同的频率,从而产生不同音调的声音。
在模拟时钟中,可以使用555多谐振荡电路来替代基于石英晶体
的时钟,这种电路可以产生准确的振荡信号,从而保持时间的准确度。
在脉冲宽度调制中,可以使用555多谐振荡电路来产生一个可调节的
方波输出,该方波输出的周期可以被调整以产生特定比例的宽度和占
空比。
总结
555多谐振荡电路是一种灵活且实用的电路。
它可以根据电容和电阻的不同数值而产生不同的频率。
这种电路广泛用于音频信号发生器,模拟时钟,脉冲宽度调制和步进驱动器等应用中。
除了以上应用外,
此电路还可以用作基底发生器等,所以在电路设计领域中,555多谐振荡电路是一种常用的电路。
555振荡电路
单稳态电路。6
脚接RC充放电电 路,2脚接外来 信号。
双稳态电路。
6脚和2脚同 接外来信号。
无稳态电路。
6脚和2脚同接 RC充放电电路。
+UDD
84
ui
6
2 555 3
u0
7
51
0.01μF
ui
2 3 U DD
1 3
U
DD
0
t
u0
0
t
2脚和6脚相连并和电容C相接, 7脚接在R1和R2之间
工作波形
vO
O
t
无稳态电路 多谐振荡器
2脚和6脚相连并和电容C相接, 7脚接在R1和R2之间
工作波形
vC
2 3
VCC
1 3
VCCOt NhomakorabeavOO
t tw1 tw2
tW1 0.7(R1 R2 )C tW2 0.7R2C T tW1 tW2 0.7(R1 2R2 )C
(2)电源VCC经过电阻对电容C充电,当电容电压UC上升到2∕3VCC,此时3脚 ______ A 高电平 B低电平 C维持原状态 , VD1_灭__ VD2_亮__ (3)放电三极管________ (A导通 B放大 C截止),电容通过R2和三极管放电 ,当C1放电至电源电压的1/3时,3脚再次输出高电平
555定时器构成振荡器 的工作原理
充放电电路: R1、R2及C
充 电 电 路放
电 电 路
555定时器构成闪光电路电路
频率 f=1/T 小于70,人眼可分辨
分析:
两只发光二极管交替闪烁
(1)在接通电源瞬间,电容C来不及充电,UC=0,3脚为________ ( A 高电平 B低电平 C维持原状态) VD1_亮__ VD2_灭__
利用555时基电路制成的低频振荡(闪烁发光电路)电路一电路图
利用555时基电路制成的低频振荡(闪烁发光电路)电路一电路图如图是一种闪烁发光电路,该电路正常工作时,两只发光二极管将同时一闪一闪地发光。
该电路的工作原理555音频振荡器工作原理相仿,所不同的是将电容Cl的容量增大到4.7μF。
因此,电路的振荡频率很低,NE555的3脚电位高低变化的速度减慢。
当3脚输出高电平时,发光二极管VDl、VD2同时通电发光。
当3脚输出低电平时,两只发光二极管都熄灭。
电路中的R3电阻值越大,发光亮度越小;R3阻值越小,则发光亮度越大。
值得注意的是,R3阻值如图是一种闪烁发光电路,该电路正常工作时,两只发光二极管将同时一闪一闪地发光。
该电路的工作原理555音频振荡器工作原理相仿,所不同的是将电容Cl的容量增大到4.7μF。
因此,电路的振荡频率很低,NE555的3脚电位高低变化的速度减慢。
当3脚输出高电平时,发光二极管VDl、VD2同时通电发光。
当3脚输出低电平时,两只发光二极管都熄灭。
电路中的R3电阻值越大,发光亮度越小;R3阻值越小,则发光亮度越大。
值得注意的是,R3阻值不宜太小,否则流过发光二极管的电流过大,电路耗电较大,对发光二极管会产生不利影响,甚至烧毁。
通常,流过发光二极管的电流可控制在10~20mA之间为佳。
1 555时基电路的特点555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
图1 555集成电路内部结构图555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。
555多谐振荡器电路频率的计算
555多谐振荡器电路频率的计算多谐振荡器(Multivibrator)是一种能够产生多个周期和振幅的周期信号的电路。
其中,555计时芯片是一种被广泛应用于多谐振荡器电路的集成电路。
本文将详细介绍555多谐振荡器电路频率的计算方法。
首先,我们需要了解一些基本原理和参数。
555计时芯片有8个引脚,其中最常用的是3号引脚(OUT),5号引脚(CTRL)和7号引脚(DISCH)。
在555多谐振荡器电路中,电容C和电阻R可以决定振荡器的频率。
电容C通常连接到7号引脚,而电阻R常连接到5号引脚。
电容C和电阻R的数值可以通过公式来计算振荡器的频率。
对于555多谐振荡器电路,频率的计算公式如下:f=1.44/((R1+2*R2)*C)其中,f表示振荡器的频率,单位为赫兹(Hz);R1表示电阻1的阻值,单位为欧姆(Ω);R2表示电阻2的阻值,单位为欧姆(Ω);C表示电容的容值,单位为法拉(F)。
这个公式是通过555计时芯片内部的电荷和放电过程来确定的。
在振荡器电路中,电容C通过电阻R放电,当电压下降到1/3的供电电压时,会触发控制电路,使计时芯片内部的另一个电容C开始充电。
当电压上升到2/3的供电电压时,又会触发控制电路,使另一个电容C开始放电。
这个过程会不断重复,从而产生周期性的信号。
接下来,我们通过一个实例来演示555多谐振荡器电路频率的计算。
假设我们有一个555多谐振荡器电路,R1的阻值为10,000欧姆(Ω),R2的阻值为5,000欧姆(Ω),C的容值为1微法拉(μF)。
将这些数值代入公式,我们可以计算出振荡器的频率:f=1.44/((10,000+2*5,000)*1*10^-6)f=1.44/(10,000+10,000)*1*10^-6f=1.44/(20,000)*1*10^-6f=72*10^-6f≈72kHz因此,根据上述的计算,我们可以得出这个555多谐振荡器电路的频率约为72千赫(kHz)。
555方波振荡电路
555方波振荡电路摘要:一、引言二、555 方波振荡电路的工作原理1.电路结构2.工作原理简述三、555 方波振荡电路的应用1.应用领域2.具体实例四、555 方波振荡电路的优缺点1.优点2.缺点五、结论正文:【引言】555 方波振荡电路是一种基于555 定时器芯片的振荡电路,广泛应用于各种电子设备中。
本文将详细介绍555 方波振荡电路的工作原理、应用领域、优缺点等方面的内容。
【555 方波振荡电路的工作原理】555 方波振荡电路主要由555 定时器芯片、电阻和电容组成。
电路结构如下:1.电路结构- 555 定时器芯片- 两个电阻(R1、R2)- 一个电容(C1)2.工作原理简述- 555 定时器芯片的引脚1(GND)接地- 引脚8(Vcc)接电源正极- 引脚2(Trigger)与引脚6(Reset)相连并接地,形成非门输入端- 引脚3(Output)输出方波信号- 引脚4(Discharge)接电容C1 的正极- 引脚5(Threshold)接电阻R1 与R2 的串联- 引脚7(Discharge)接电阻R2 与GND当电路接通电源时,电容C1 开始充电。
当电容电压达到555 定时器芯片的触发电压时,非门输出高电平,使定时器翻转并输出低电平。
此时,电容C1 开始放电,放电过程中,电容电压逐渐降低。
当电容电压降至低于555 定时器芯片的阈值电压时,非门输出低电平,使定时器保持翻转状态,输出高电平。
电容C1 继续放电,直至电容电压降至接近0V,此时非门再次输出高电平,重新开始充电过程。
如此循环,形成稳定的方波输出。
【555 方波振荡电路的应用】1.应用领域- 通信系统- 电子测量仪器- 自动控制设备- 家电产品2.具体实例- 在通信系统中,555 方波振荡电路可作为信号发生器产生稳定的方波信号,用于调制和解调。
- 在电子测量仪器中,555 方波振荡电路可作为标准信号源提供稳定的方波信号,用于波形观测和测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
555电路组成的振荡电路
一、555单稳类电路
555单稳工作方式,它可分为2种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
二、555双稳类电路
第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。
单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。
第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。
双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。
这是双稳工作方式的结构特点。
2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。
三、555无稳类电路
第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。
第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。
其中第1个单元电路(3.2.1)是应用最广的。
第2个单元电路(3.2.2)是方波振荡电路。
第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。
第三种(见图3)是压控振荡器。
由于电路变化形式很复杂,为简单起见,只分成最简单的形式(3.3.1)和带辅助器件的(3.3.2)两个单元。
图中举了两个应用实例。
无稳电路的输入端一般都有两个振荡电阻和一个振荡电容。
只有一个振荡电阻的可以认为是特例。
例如:3.1.2单元可以认为是省略RA的结果。
有时会遇上7.6.2三端并联,只有一个电阻RA的无稳电路,这时可把它看成是3.2.1单元电路省掉RB后的变形。