变压器绕组匝间短路的简单判断

合集下载

配电变压器常见故障分析判断及处理

配电变压器常见故障分析判断及处理

配电变压器常见故障分析判断及处理内容提要:配电变压器的安全运行管理工作是我们日常工作的重点,本文重点介绍变压器常见故障分析判断及处理方法,为同行们分析、判断、故障原因及故障的预防和处理提供一些依据。

关键词:变压器、故障分析、处理建筑电力用户通常采用的中小型电力变压器,他需要一个长期稳定的运行环境,正确维护电力变压器,对提高电力用户的供电可靠性具有很深远的意义。

要想正确有效的维护电力变压器正常运行,除掌握变压器的理论知识外,对运行中变压器经常出现的异常情况及故障也应具有准确的分析判断能力,从而为故障的预防和处理提供准确的依据。

一、电力变压器常见故障的分析判断电气工作人员可以随时通过对声音、振动、气味、变色、温度及其它现象的变化来判断变压器的运行状态,分析事故发生的原因、部位及程度。

从而根据所掌握的情况进行综合分析,结合各种检测结果对变压器的运行状态做出最后判断。

(一)直观判断1、声音正常运行时,由于交流电通过变压器绕组,在铁芯里产生周期性的交变磁通,引起电钢片的磁致伸缩,铁芯的接缝与叠层之间的磁力作用以及绕组的导线之间的电磁力作用引起振动,发出平均的“嗡嗡”响声。

如果产生不均匀响声或其它响声,都属不正常现象。

(1)若音响比平常增大而均匀时,则一种可能是电网发生过电压,另一种也可能是变压器过负荷,在大动力设备(如大型电动机),负载变化较大,因五次谐波作用,变压器内瞬间发出“哇哇”声。

此时,再参考电压与电路表的指示,即可判断故障的性质。

然后,根据具体情况改变电网的运行方式与减少变压器的负荷,或停止变压器的运行等。

(2)音响较大而噪杂时,可能是变压器铁芯的问题。

例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应当停止变压器的运行进行检查。

(3)音响中夹有放电的“吱吱”声时,可能是变压器或套管发生表面局部放电。

如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时应清除套管表面的脏污,再涂上硅油或硅脂等涂料。

变压器匝间短路保护

变压器匝间短路保护

变压器保护一直是电力系统继电保护中的重点,关系到整个系统的安全稳定。

据统计资料显示[1],变压器匝间短路占电力系统中大型变压器故障的50 %~60 %。

匝间短路时的一个典型特点是:短路电流可达额定电流的数十倍,但三相线电流并未显著增大[2]。

由于外部短路电流等因数的影响,变压器三相不平衡电流较大,一般情况下,变压器差动保护的整定值都设定较高,不能灵敏反映匝间故障[3],这个矛盾一直是匝间短路保护的一个难题。

为此,一些学者进行了大量研究,文献[4]中利用霍尔元件反应漏磁场变化,判定是否发生匝间短路,其主要思想如下:以高低压绕组等高变压器来分析,变压器没有发生匝间短路前其漏磁场如图磁力线分布均匀,在绕组中部P一P 截面的横向漏磁场分量为零;变压器发生匝间短路后其漏磁场如图3,由于短路匝出现较强漏磁场,从而使磁力线分布很不均匀,P-P 截面的横向漏磁场分量不为零,若利用霍尔元件安装在绕组中部P-P 截面处来测量漏磁场变化,就可简单地判定变压器是否发生了匝间短路。

利用霍尔元件测量变压器发生匝间短路时的漏磁场变化,可简单判定变压器是否发生匝间短路,但霍尔元件的可靠安装很复杂,实用较难。

文献[5]基于功率损耗突变,通过实时计算有功损耗和无功损耗的比值进行匝间短路判定。

当故障发生时,该比值可发生较大突变,从而可测到轻微匝间故障,但由于功率损耗与电压有关,该方法可能存在较大误差。

文献[6]利用短路阻抗的变化监测绕组状态从而识别变压器绕组故障。

实时采集模型变压器原、副边的电压、电流信号后,针对电压、电流传感器采集信号的特点,应用小波变换除去噪声,再利用基于离散傅里叶变换的高精度相位识别法,辨识各正弦量间的相位差,得到各负载情况下变压器绕组等效电路的短路阻抗。

变压器绕组未发生状态改变时,不同负载情况下短路阻抗的辨识差别不超过0.64%;若变压器绕组发生变形及匝间短路等故障,短路阻抗的变化量达到5.6%以上。

文献[7]提出了基于电流比变化量的匝间短路保护方法,在变压器带负载运行后,利用绕组电流以变压器两侧绕组电流比值的变化量是否超过整定值作为保护判据,保护算法简单,能够灵敏监测变压器匝间故障,本文主要介绍这种短路保护方法。

基于行波分析的变压器绕组匝间短路故障定位

基于行波分析的变压器绕组匝间短路故障定位

4 1 0 0 0 7 ; 3 . 北京信息科技大学计算机学 院 北京 1 0 0 1 0 1 )
要: 针对变压器绕组 匝间轻微短路故障定位 问题 , 本文提 出基 于行波分析 的故障定位 方法 。该 法在绕组 线端输 入低压 脉
冲 以获取行波反射信号 , 基于相关系数和 s G滤波的改进 E E MD降噪法降低噪声对行波 的干扰 , 分别采 用相似度 分析法与 能量 比值法分析行 波 , 得到大致 随故 障位置单调变化 的故 障特征集 , 再结合 遗传神经 网络建立起故 障特征 与故 障位置 的映射关 系 , 实现 匝间短路故 障定位 。仿 真和样本 实验 结果表明了本文方法的可行性 。 关键词 : 变压器 ; 故障定位 ; 匝间短路 ; 行波; E E MD降噪 ; G A — B P神经 网络
3 .S c h o o l f o C o m p u t i n g B e i i f n g, I n f o r ma t i o n S c i e n c e &T e c h n o l o g y U n i v e r s i t y , B e i j i n g 1 0 0 1 0 1 ,C h i n a )
t r a v e l i n g w a v e , w h i c h i s d e — n o i s e d w i t h t h e i m p r o v e d e n s e m b l e e m p i i r c a l mo d e d e c o m p o s i t i o n ( E E MD)d e — n o i s i n g m e t h o d b a s e d o n c o r —
r e l a t i o n c o e ic f i e n t s a n d S a v i t z k y — G o l a y ( S G) i f l t e i r n g t o r e d u c e t h e n o i s e j a m mi n g t o t h e t r a v e l i n g w a v e ; t h e n , t h e s i m i l a i r t y a n a l y s i s a n d e n e r g y r a t i o m e t h o d c o m b i n i n g d u l- a t r e e c o m p l e x w a v e l e t t r a n s f o r m( D T — C WT)a n d u n i  ̄ m r i n c i d e n c e d e g r e e a l g o i r t h m a r e a d o p t e d t o

电力变压器匝间短路故障分析及处理

电力变压器匝间短路故障分析及处理

电力变压器匝间短路故障分析及处理
一、电力变压器匝间短路故障分析
电力变压器匝间短路故障是一类常见的故障,它可能会引起电力变压器受损,严重时甚至可能会导致电力变压器损坏。

这类故障普遍存在,而由此造成的电力变压器损坏率也非常高,因此如何有效的分析和处理电力变压器匝间短路故障至关重要。

1.确定短路故障的原因及类型。

2.使用交直流双谐振分析仪,分析故障的电磁特性,以确定故障的位置。

3.使用变压器包换比及各次绕组绝缘电阻测量仪,分析电力变压器内部结构,以确定是否存在短路现象及其位置。

4.使用高频电流计量仪,分析变压器各次绕组之间的电流平衡,根据测量结果确定是否存在匝间短路。

二、电力变压器匝间短路故障处理
1.故障排除
故障排除是电力变压器短路故障处理的重要环节,应根据故障类型,正确进行。

【珍藏】变压器绕组匝间短路的判断5

【珍藏】变压器绕组匝间短路的判断5

变压器短路故障排查作业指导..................................................................................................... ①电力变压器常见故障分析及处理................................................................................................. ②变压器绕组匝间短路的简单判断................................................................................................. ⑧变压器短路故障排查作业指导1 故障现象故障后现象为:变压器主保护动作、本体非电量保护动作,当故障非常严重时可大量喷油并起火燃烧。

通常分为外部故障和内部故障。

外部短路故障类型有:绝缘套管闪络或破碎而发生的接地、变压器中低压桩头至其相应的开关柜间的母线或电缆相间、相地间发生弧光短路、对应的开关柜母线及其出线至变压器100M范围内的短路。

故障后现象为:套管、避雷器、互感器、过电压吸收器、开关、母线支柱绝缘子、架空线路绝缘子炸裂;电缆及电缆头起火;母线间有小动物或导电异物桥接,母线或带电体上有放弧痕迹等。

内部短路其主要类型有:各相绕组之间发生的相间短路、绕组的线匝之间发生的匝间短路、绕组或引出线通过外壳发生的接地故障等。

2 危害辨识2.1 工艺设备危害辨识故障造成电压波动或供电中断,使生产系统减量或停车,设备停运。

特别是变压器低压出口短路时形成的故障一般要更换绕组,严重时可能要更换全部绕组,从而造成十分严重的后果和损失,因此,尤应要引起足够的重视。

2.2 人身危害辨识2.2.1 变压器喷油、爆炸燃烧可能造成烧伤;2.2.2 瓷绝缘子炸裂时四处飞溅可能造成击伤;2.2.3 母线短路时产生的弧光可能造成肢体或眼睛灼伤;2.2.4 发生短路时引起周围发生火灾,造成烧伤或窒息;2.2.5 短路时产生的电动力引起物件掉落造成砸伤。

变压器绕组匝间短路的简单判断

变压器绕组匝间短路的简单判断

变压器绕组匝间短路的简单判断变压器是发送变企业和各行各业生产中最常用的设备之一,由于它体积大、价格高且长时间带电运行,流过高低压绕组的电流通常都很大,加上检修工质量不到位、环境污染、各类过电压等原因,容易产生各种缺陷,如果得不到准确的判断和及时的处理,将会造成很大的经济损失。

一般的常规试验对于检查变压器的接触不良、绕组断股、绝缘(整体、局部)受潮、绝缘(整体、局部)老化等灵敏度很高。

但这些试验项目对检查变压器绕组匝间短路可以说是个盲区,只用变压器的特性(空载、短路)试验才能对其作出准确判断。

但进行变压器的特性(空载、短路)试验所需试验设备多且各种试验设备体积容量大,试验电源容量要求也很大,因此做起来也很不方便。

下面将介绍一种既简单又行之有效的方法。

具体情况作一下分析:首先简单介绍一下变压器的绝缘结构:变压器的绝缘分为主绝缘和纵绝缘两部分。

主绝缘分是指绕组对地和绕组之间的绝缘;纵绝缘是指线饼间、层间和匝间的绝缘。

接下来针对变压器常规检测绝缘的试验能够鉴定的各种缺陷的具体情况进行一下对比:序号常规试验方法能发现的绝缘缺陷不能发现的绝缘缺陷所需试验设备情况1绝缘电阻、吸收比及激化指数主绝缘贯通的集中性缺陷,整体受潮及局部缺陷;纵绝缘中出现的各种缺陷;各种绝缘电阻测试仪;体积小、携带方便;2直流泄露电流主绝缘贯通的集中性缺陷,整体受潮及局部缺陷,及一些未完全贯通的集中性缺陷。

纵绝缘中出现的各种缺陷;直流高压发生器;体积小、携带方便;3介质损耗的测量主绝缘整体受潮、劣化;纵绝缘中出现的各种缺陷;各种介损测试仪;体积适中、携带比较方便;4交流耐压缺陷是主绝缘强度下降到低于试验电压;纵绝缘中出现的各种缺陷;各种交流耐压发生器;体积适中、携带比较方便;5直流电阻绕组接头的焊接质量;严重金属性匝间短路;检查分接开关的档位;绕组有无断线和接触不良;纵绝缘中出现的非金属性匝间短路;各种直流电阻测试仪;体积小、携带方便;6变压比测量绕组匝数比的正确性;检查分接开关的档位;严重金属性匝间短路;纵绝缘中出现的非金属性匝间短路;各种变比电桥;体积小、携带方便;7感应耐压试验检查变压器的纵绝缘和主绝缘的绝缘强度;缺陷未达到使绝缘强度下降至试验电压以下;各种感应耐压装置;体积较大、携带不方便,试验步骤复杂;8特性试验测量本身的损耗、参数检查纵绝缘的强度;主绝缘非严重性缺陷;大容量电源、高精度的PT、CT和各种表计;试验步骤复杂;由以上对比结果可以看出,前四种试验根本无法测出纵绝缘中出现的各种缺陷;第五、六种试验仅能够对绕组的严重金属性匝间短路缺陷做出判断,但有些绕组的匝间短路缺陷是非金属性匝间短路,它们对此则无能为力了。

变压器相间短路,匝间短路

变压器相间短路,匝间短路
3 电机使用的年头太久,绝缘老化
1、绝缘老化
2、转子摩擦
3、电机过载、缺相烧坏绝缘
4、异物掉入,转动后擦坏绝缘短路
相间短路
定义:这里的“相”指三相对称制交流电源,是由三个单相交流电源所组成的电源系统——简称三相交流电源。我国所采用的供电方式称为三相四线制交流电源,三相发电机的绕组作星形连接。各绕组的首端称端线,端线与端线之间的电压称为线电压。各绕组的末端连接在一起称中线,与端线之间的电压称为相电压。相间短路是指端线与端线之间未经过负载(即用电器)而相连接所造成的电源短路。
相间短路通常是端部相间绝缘薄膜、漆布、或双层线圈的层间垫条没有垫妥,在电机受热或受潮的情况下,这些薄弱处绝缘下降,最后击穿形成相间短路。也有绕组间联线套管处理不妥造成。
匝间短路
就是同一个绕组是由很多圈(匝)线绕成的,如果绝缘不好的话,叠加在一起的线圈之间会短路,这样一来,相当于一部分线圈直接被短路掉不起作用了。匝间短路后,电机的绕组因为一部分被短路掉,磁场就和以前不同了,不对称了,而且剩余的线圈电流比以前大了,电机运行中会振动增大,电流增大,出力相对减小。
Hale Waihona Puke 电机绕组是由漆包线一匝匝绕成的,电机运行时,电流是通过每匝线圈形成回路,产生旋转磁场使电机转动做功的,那么线匝有时因为电机振动、受潮、或老化等原因,使相邻的一匝或几匝线圈绝缘损坏,造成电流在损坏处直接通过,就是匝间短路
主要有三种原因:
1 电机过载或堵转造成电机过热使匝间绝缘损坏;
2 电机的输入电压过高而导致匝间绝缘损坏;

匝间短路测试仪工作原理及判定方法

匝间短路测试仪工作原理及判定方法

匝间短路测试仪工作原理及判定方法匝间短路测试仪是用于电机、变压器等电器设备的线圈绕组测试的一种设备。

它可以检测绕组的匝间短路现象,并诊断绕组的状态,以便及时排除故障,保证设备的正常运行。

下面我们将详细介绍匝间短路测试仪的工作原理和判定方法。

一、工作原理匝间短路测试仪主要是通过高压点火源产生高压放电信号,然后通过探头将信号发送到绕组固定在模具上进行放电检测。

其中,高压点火源一般为三角波或正弦波信号,频率在10kHz-50kHz之间,电压的级数为100V-1000V。

而探头则采用分布式电容式或共振式构成,用于放电检测时将信号传输到绕组的任意两匝间,以判断是否存在匝间短路现象。

在对绕组进行放电过程中,若绕组中存在匝间短路,则放电电压会在短路处产生部分电流,形成一个放电脉冲信号。

而放电脉冲信号可以通过特定的算法来处理,从而判断匝间是否存在短路现象。

二、判定方法匝间短路测试仪判定匝间短路主要有以下两种方法:1. 电压法电压法是通过测量绕组放电时的电压信号来判定绕组是否存在匝间短路的方法。

在进行匝间短路测试时,若绕组存在匝间短路,则会在放电时产生比正常放电电压高的放电信号,即电压上升幅度较大。

而若绕组没有匝间短路,则放电时电压信号的上升幅度会比较平缓。

因此,电压法主要是通过测量放电时的电压信号,来判断绕组是否存在匝间短路。

在测量过程中,若电压信号的上升幅度达到设定的阈值,即判定为匝间短路。

2. 时间法时间法是通过测量放电时的时间间隔来判定绕组是否存在匝间短路的方法。

在进行匝间短路测试时,若绕组存在匝间短路,则放电信号的时间间隔会比较短,而若绕组没有匝间短路,则放电信号的时间间隔会比较长。

因此,时间法主要是通过测量放电时的时间间隔,来判断绕组是否存在匝间短路。

在测量过程中,若时间间隔达到设定的阈值,则判定为匝间短路。

三、总结匝间短路测试仪是一种可以检测绕组匝间短路现象的设备。

它主要是通过高压点火源产生高压放电信号,然后通过探头将信号发送到绕组固定在模具上进行放电检测。

匝间短路保护原理

匝间短路保护原理

匝间短路保护原理
匝间短路保护是一种用于电气设备和电力系统的保护方法,主要是为了防止电机或变压器的绕组产生短路故障。

匝间短路保护原理是通过检测电流或电压的异常值来判断是否存在匝间短路,一旦检测到异常情况,及时切断电源,避免故障进一步扩大。

匝间短路保护在电机或变压器的绕组上安装特殊的传感器,用于检测电流或电压的变化。

一般情况下,电流或电压是在绕组上均匀分布的,如果发生匝间短路,电流或电压的分布将出现不均匀现象。

传感器将检测到的电流或电压信号传输给保护装置,该装置会进行数据处理和分析。

如果检测到异常值,保护装置将发出切断电源的信号,同时触发断路器等设备,以切断电源,并停止电流的流动。

匝间短路保护原理的关键在于传感器的准确性和保护装置的可靠性。

传感器需要能够准确地检测到电流或电压的异常变化,并能将信号及时传输给保护装置。

保护装置需要对传感器的信号进行高速的数据处理和分析,并能快速响应,保证在发生匝间短路时及时断开电源。

总之,匝间短路保护的原理是通过检测电流或电压的异常值来判断是否存在匝间短路,并及时切断电源,防止故障的进一步扩大。

这种保护方法在电气设备和电力系统中应用广泛,能够提高设备的安全性和可靠性。

单相变压器匝间短路故障特性探讨及案例分析

单相变压器匝间短路故障特性探讨及案例分析

一、引言单相变压器是电力系统中常见的一种变压器,具有重要的作用,但是它在使用过程中存在一些故障,其中匝间短路故障是比较常见的一种,一旦发生该故障会对电力系统的安全运行带来极大的威胁。

因此,研究单相变压器匝间短路故障特性及其解决方法对于电力系统的安全运行具有重要的意义。

本文重点探讨了单相变压器匝间短路故障的特性及其产生原因,并提出了一些有效的解决方案。

同时,本文结合实际案例进行了详细的分析和总结,旨在为相关研究和工程实践提供参考。

二、单相变压器匝间短路故障特性分析1. 匝间短路故障的定义匝间短路故障是指单相变压器的某两个绕组之间发生短路现象,导致电流过大,从而损坏变压器。

该故障通常由接线不良、绝缘老化、潮湿、污染等因素引起。

2. 匝间短路故障的特性(1)变压器发热增大当变压器出现匝间短路故障时,电流会急剧增大,从而导致变压器内部产生大量的热量。

在匝间短路故障发生之前,变压器的温度通常是比较稳定的。

而在短路故障发生后,变压器内部的温度会迅速上升,通常会导致变压器温度超过额定温度。

(2)变压器声音变化当变压器发生匝间短路故障时,会产生一些特殊的声音。

通常情况下,变压器内部产生的声音是由于其内部绕组的震动所引起的。

因此,若变压器内部出现异常的声音,则很有可能是发生了匝间短路故障。

(3)变压器漏油当变压器发生匝间短路故障时,其内部会产生大量的热量,有可能导致变压器内部的绝缘材料失效,从而引起变压器漏油现象。

因此,若变压器的油量明显减少,则很有可能是出现了匝间短路故障。

三、单相变压器匝间短路故障的解决方法1. 处理短路故障当发现单相变压器出现匝间短路故障时,应当及时采取相应的措施进行处理,避免出现严重的安全事故。

具体措施包括将变压器与电网隔离,断开电源,停止运行等。

同时,需要对变压器进行检查和维修。

2. 预防短路故障为了预防单相变压器匝间短路故障的发生,需要采取一系列措施进行防范。

具体包括:(1)加强绝缘检查及时检查变压器绝缘情况,排除可能存在的绝缘缺陷。

变压器绕组匝间短路、相间短路或对地击穿时的现象

变压器绕组匝间短路、相间短路或对地击穿时的现象

变压器绕组匝间短路、相间短路或对地击穿时的现象在变压器的运行中,可能会发生绕组匝间短路、相间短路或对地击穿等故障。

这些故障会导致变压器的失效和危险。

本文将介绍这些故障的现象。

绕组匝间短路变压器绕组匝间短路是指变压器绕组中两个不同的匝之间形成连接电路,导致电流从一个匝之间流到另一个匝之间,从而使变压器电路路径短路。

当出现绕组匝间短路时,变压器会出现以下几个现象:电压下降绕组匝间短路会导致电压下降。

这是因为电流在流经绕组时会遇到短路路径,从而导致电压降低。

电流增加绕组匝间短路会导致电流增加。

这是因为在短路的路径上,电阻减小,因此电流增加。

温度升高绕组匝间短路会导致局部电路电阻减小,因此电能被转化成热能,从而使短路部分的温度升高。

这也可能导致变压器绕组局部的绝缘失效。

绕组匝间短路会产生额外的电磁力,从而使变压器输出的声音增加。

相间短路相间短路是指变压器两个相之间形成连接电路,导致电流从一个相流到另一个相之间,从而使变压器电路路径短路。

当出现相间短路时,变压器会出现以下几个现象:电流增加相间短路会导致电流增加。

这是因为电路路径更短,电阻更小。

温度升高相间短路会导致局部电路电阻减小,因此电能被转化成热能,从而使短路部分的温度升高。

这也可能导致变压器绕组局部的绝缘失效。

噪音增加相间短路会产生额外的电磁力,从而使变压器输出的声音增加。

对地击穿对地击穿是指变压器绕组接地,导致电流流向地面。

当出现对地击穿时,变压器会出现以下几个现象:电流增加对地击穿会导致电流增加。

这是因为接地会导致电路路径更短,电阻更小。

对地击穿会导致绕组部分电压下降,电阻减小,因此电能被转化成热能,从而使接地部分的温度升高。

这也可能导致变压器绕组局部的绝缘失效。

电压变化对地击穿会导致变压器绕组与地之间形成较低阻抗的电路,因此会改变输出电压的大小。

结论绕组匝间短路、相间短路或对地击穿都会对变压器产生不同的影响。

为了保证变压器正常运行和延长变压器的寿命,应该定期检查变压器是否存在这些故障,并及时进行处理。

匝间短路原因

匝间短路原因

匝间短路原因
匝间短路是指发电机或变压器绕组中两个或两个以上匝数之间发生短路导致电流异常增大的故障。

匝间短路故障的出现会影响设备正常运行,甚至损坏设备,因此需要及时排查。

匝间短路的原因可以分为以下几种:
1.绝缘老化
发电机、变压器绕组的绝缘材料会因为长期的使用、高温、振动及负载变化等因素而逐渐衰老,导致绝缘性能下降,产生匝间短路。

特别是环氧浇注绕组在老化的过程中,环氧材料会变脆、龟裂,砂眼发生率增加,极易在电场作用下形成匝间短路。

2.过电压
当发电机或变压器的端子电压超过设备耐压极限时,会使绕组受到电压的冲击,引起电涌波和过电压,进而导致绕组支撑硬件或绕组绝缘结构破坏,导致匝间短路。

3.调压器
调压器存在问题会使得发电机或变压器运行状态不正常,进而导致匝间短路的出现。

调压器问题包括失效、调节不良、感应电压控制器电容器老化等。

4.过载
设备负载过大或运行时负载发生突变,绕组对电流的承受能力不能满足,产生匝间短路。

特别是电机的起动和停止过程中,会有瞬间高峰电流,增加了匝间短路的风险。

5.制造、安装不当
绕组从制造、运输、安装、调试等方面均存在不当的情况,例如制造过程中绕组不完整、错位串接、绕组距离不合适等;运输过程中绕组受到震动,绝缘材料受到损伤;安装过程中,绕组安装不当,挤压、夹紧等造成绕组损坏;调试过程中,变压器运行参数不合适,电感、电容影响通信、传输等负载因素不匹配等。

总之,匝间短路的出现原因复杂,需要进行详细的分析和判断。

在变压器、发电机电气系统中,应制定科学合理的运行、检修和维护措施,及时排除匝间短路的隐患,确保设备稳定、安全运行。

变压器绕组匝间短路故障判断方法探析

变压器绕组匝间短路故障判断方法探析

变压器绕组匝间短路故障判断方法探析张昕;陈鹏;余平;王贵;朱猛【摘要】针对传统变压器差动保护对匝间短路故障不能很好地快速准确判断的现状,通过利用小波变换对匝间短路故障时的电流信号进行分析,从而归纳总结出一种快速准确判断故障的方法。

该方法计算简单,所用数据量较少,能在匝间短路故障发生初期就做出快速准确判断,具有一定的可行性和实用性。

【期刊名称】《四川水力发电》【年(卷),期】2014(000)005【总页数】4页(P137-140)【关键词】匝间短路;仿真分析;方法设计;小波变换【作者】张昕;陈鹏;余平;王贵;朱猛【作者单位】雅砻江流域水电开发有限公司集控中心,四川成都 610051;雅砻江流域水电开发有限公司集控中心,四川成都 610051;雅砻江流域水电开发有限公司集控中心,四川成都 610051;雅砻江流域水电开发有限公司集控中心,四川成都 610051;雅砻江流域水电开发有限公司集控中心,四川成都 610051【正文语种】中文【中图分类】TM411+.2;TM7130 引言随着电网容量和规模的扩大,大容量变压器在电力系统中的作用日显突出,电力用户对其安全稳定运行和可靠供电提出了越来越高的要求。

差动保护作为电力变压器的主保护,随着科技水平的不断提高相关保护理论得到了不断的发展,在工程实践中也得到了较好的验证。

而根据相关资料统计[1],变压器匝间短路占电力系统中大型变压器故障的50%~60%。

匝间短路时的一个典型特点是:短路电流可达额定电流的数十倍,但三相线电流并未显著增大[2]。

由于外部短路电流等因数的影响,变压器三相不平衡电流较大,一般情况下,变压器差动保护的整定值都设定较高,不能灵敏反映匝间故障[3]。

而传统的反映变压器内部故障的瓦斯保护,无法在故障发生的初期做出快速准确的判断,往往保护动作时变压器内部故障已经发展到相当严重的程度,对变压器的安全稳定运行造成了不利影响。

因此,有必要针对变压器匝间短路故障研究出一种更实用快速准确的保护方法。

变压器匝间短路分析及研究

变压器匝间短路分析及研究

2009,10.
[2】 Hadi Saadat著 ,王葵译 .电力系统分析[M】.北京:中国电力 出 版社 ,2008,9.
[3] 时珊珊 ,鲁宗相 ,闵勇等 .微 电网孤 网运行时 的频率 特性分 析【J】.电力系统 自动化 ,2011,35(9):36--41.
2,调节过程时间也基本同方式2(25s),但由于方式3根据负荷重要 性等级进行低频减载,故障进行仿真(仿真电路见图 用下,产生很大的电磁力,甚至折断绕组发生线饼坍塌,从而进一步
1)。
加剧匝间短路故障。
四 、结 论
变压器内部发生匝间短路故障时,由于一次侧电压恒定,而电
流无明显变化.从变压器的原边很难检测到这种故障的发生,只能从
二次测的角度进行检测。
二 、变压 器 匝间短 路分析 变压器匝间短路故障的匝数一般很少。故障时绕组中一部分被
~ mIltw!I

一 !I




、 \八 i


V /^√
。一
图3 仅进行发电机调峰控制时频率误差
图5 发电机调峰控制和三次减载频率误差 四 、总 结
\ … …’。一
模型中变压器容量为 10kVA,三相输人电压为380V,二次侧输 量。这个分量可以通过磁敏元件(如霍尔元件)进行监测。
出电压为220V。仿真模型用三绕组变压器的第三绕组模拟短路匝,
用断路器控制匝间短路的发生。根据发生短路匝数不同,分别对 5%、10%、2o%的副边绕组发生匝间短路的隋况进行仿真,记录副边 三相绕组的变压 匝的电流 况,分别如图2、3,4所示。
假设匝间短路发生在绝缘强度较低的变压器副边,原来 N 匝 副边绕组中有 N 匝短路。由于 Ns很少,对原边的电感影响可以忽 略,可以认为原边绕组的电阻R。电感 Ll均没有变化。这样短路产生 的“短路变压器”副边折算到原边的电15N1 ̄4,,引起原边绕组的输人 阻抗变化也很小。当变压器的输入电压U。不变的情况下,即使发生 匝间短路,原边电流的变化量也彳 、。所以很难用检测原边电流量的 方式监测变压器的匝间短路故障。

干式变压器绕组匝间短路的原因

干式变压器绕组匝间短路的原因

干式变压器绕组匝间短路的原因
干式变压器绕组匝间短路的原因可能有以下几种:
1.绕组制造缺陷:制造过程中可能存在的绝缘损坏、绕组匝数错误、绕组连
接不良等问题,都可能导致匝间短路。

此外,绕组制造过程中的绝缘处理不当,如绝缘层受损、打结等,也可能引发匝间短路。

2.过载或过热:长期过载或过热可能导致绕组绝缘老化、损坏,从而引发匝
间短路。

特别是在高温环境中,空气中的水分含量增加,容易引起绝缘层劣化或老化,进而导致匝间短路故障。

3.电压过高:过高的电压可能导致绕组绝缘击穿,从而引起匝间短路。

在运
行过程中,干式变压器的电压过高或浪涌电压过大,也会造成匝间短路故障。

4.绕组受潮或污染:绕组受潮、污染或受到化学物质侵蚀可能导致绝缘性能
下降,增加匝间短路的风险。

5.外界因素的影响:干式变压器通常安装在比较恶劣的环境下,例如工厂、
矿井等。

在这些环境中,如果绕组受到机械碰撞、灰尘、湿气等外界因素的影响,就有可能导致匝间短路。

为了避免匝间短路的发生,可以采取以下措施:
1.提高绕组制造质量,确保绝缘层完整无损,绕组匝数正确,连接良好。

2.对干式变压器进行过载保护,避免长期过载运行。

3.定期检查干式变压器的绝缘性能,及时发现并处理绝缘老化、损坏等问题。

4.在安装和运行干式变压器时,应注意防潮、防尘、防腐蚀等措施,避免绕
组受潮或污染。

5.在恶劣环境下运行的干式变压器,应采取相应的防护措施,如增加机械保
护、改善运行环境等。

匝间短路检测原理

匝间短路检测原理

匝间短路检测原理一、引言匝间短路是指绕组中的两个匝之间发生了短路现象,导致电流绕过了原本的路径。

在电机或变压器等设备中,匝间短路会引起电流异常、温升升高等问题,严重时可能导致设备损坏。

因此,匝间短路的检测是电气设备维护和故障排除的重要环节。

二、匝间短路的原因匝间短路的原因主要有以下几种:1. 绕组绝缘老化或损坏,导致相邻匝之间绝缘失效。

2. 绕组制造过程中的质量问题,如绕组错位、绝缘层不均匀等。

3. 过载、过压等外部因素引起的绕组变形或损坏。

三、匝间短路的危害匝间短路会对电气设备造成严重的危害,主要表现在以下几个方面:1. 引起电机或变压器的温升升高,导致设备过热甚至烧毁。

2. 使电机或变压器的运行电流异常,影响设备的正常工作。

3. 降低设备的绝缘性能,增加电气击穿的风险。

4. 增加设备的能耗,降低设备的效率。

四、匝间短路的检测方法为了及时发现和排除匝间短路问题,人们开发了各种匝间短路的检测方法。

下面介绍几种常用的检测方法:1. 绝缘电阻法:通过测量绕组之间的绝缘电阻来判断是否存在匝间短路。

当绝缘电阻小于一定阈值时,可以判定存在匝间短路。

2. 交流电阻法:利用低频交流电阻测量仪,通过测量绕组之间的交流电阻来判断是否存在匝间短路。

匝间短路时,交流电阻会明显下降。

3. 直流低电压法:将低电压直流电源加到绕组上,通过测量电流来判断是否存在匝间短路。

匝间短路时,电流会增大。

4. 高频电压法:利用高频信号源产生高频电压,通过测量电流和电压的相位差来判断是否存在匝间短路。

匝间短路时,相位差会发生变化。

五、匝间短路的预防措施为了防止匝间短路的发生,可以采取以下预防措施:1. 加强绕组绝缘的质量控制,确保绕组的绝缘层均匀、完好。

2. 控制设备的运行参数,避免过载、过压等外部因素对绕组的损伤。

3. 定期进行设备的维护检查,及时发现和排除潜在的匝间短路问题。

4. 对新安装的设备进行试运行和质量验收,确保设备的正常运行和使用安全。

基于小波分析的变压器绕组匝间短路故障诊断方法

基于小波分析的变压器绕组匝间短路故障诊断方法

/2024 05基于小波分析的变压器绕组匝间短路故障诊断方法吕寅超(江苏利电能源集团有限公司)摘 要:传统变压器绕组匝间短路故障诊断方法直接对匝间短路故障参量进行提取,未对变压器绕组匝间短路故障特征进行分析,造成传统方法诊断精准度低。

为此本文提出基于小波分析的变压器绕组匝间短路故障诊断方法,对变压器绕组匝间短路故障特征进行分析。

在此基础上,基于小波分析进行匝间短路故障参量提取,设计变压器绕组匝间短路故障诊断流程,实现变压器绕组匝间短路故障诊断。

设计对比试验,试验结果表明该研究方法具有较高的故障诊断精准度。

关键词:小波分析;变压器绕组;匝间短路;故障诊断0 引言在电力系统中,变压器起着至关重要的作用,其正常运行直接关系到整个系统的稳定性和可靠性[1]。

然而,由于变压器绕组匝间短路故障等内部故障,变压器的性能可能会受到影响,严重时甚至可能导致系统故障。

因此,变压器绕组匝间短路故障进行及时、准确的诊断是必要的。

传统方法主要依赖于定期检修和人工巡检,这些方法虽然可以发现一些明显的故障,但对于早期的、潜在的故障往往难以察觉[2]。

其在不同的位置和严重程度上,对变压器性能的影响也可能不同,这给准确诊断带来了困难。

目前,常用的故障诊断方法主要有带电绕组比较法和绕组谐波分析法。

前者将带电绕组与相邻绕组进行比较,通过测量其电压、电流和相位等参数,分析差异来定位匝间短路,但是其依赖于相邻绕组进行比较,对于高压绕组或特殊结构的绕组可能无法直接应用,也受到测量精度和环境干扰的限制。

后者通过分析变压器绕组在不同频率下的谐波成分,判断其是否存在异常信号,以指示匝间短路的位置,但是其需要进行频谱分析和谐波计算,对仪器要求较高,容易受到其他因素的干扰,影响故障诊断精度。

近年来,随着信号处理技术和计算机技术的发展,越来越多的学者开始尝试利用这些技术来提高变压器故障诊断的准确性和效率[3]。

小波分析作为一种有效的信号处理工具,被广泛应用于故障诊断中。

如何快速查找变压器故障

如何快速查找变压器故障

如何快速查找变压器故障作为变压器修理人员,常常修理变压器,快速精确地找出故障点,确定故障种类,是修理变压器关键的一步。

本文总结出了一套简洁易行的方法,供大家参考。

1.看面对一台送修的变压器,首先要认真察看外观。

假如发觉器身鼓肚导电杆变色;油标管中无油或油质浑浊;有其中一项或几项,即说明变压器内部消失故障。

2.问一般送修人员即是管理该变压器的电工,对变压器运行状况和故障前后的状况较为了解。

要认真向电工询问变压器的负荷大小及安排状况,以便推断变压器是否过负荷或负荷安排不均。

假如是雷雨季节,还要了解故障前后有无雷雨天气,凹凸压侧是否安装避雷器。

因雷击造成变压器烧毁的状况比较多。

低压线路及负荷有无短路或接地状况、变压器故障前后有无其它特别状况。

3.嗅拧开油枕盖,用鼻子嗅,假如闻到一股浓烈的焦糊味,则变压器非过热即是烧毁。

假如仅嗅到一股煤油味,则变压器一般不会存在大的问题。

4.测通过以上大体可推断出变压器的故障种类。

但还必需通过测试来确认和验证。

测试项目有以下几种:(1)摇绝缘电阻。

用2500V摇表测高压对地、凹凸压之间的绝缘电阻,用500V摇表测低压对地的绝阻。

假如绝阻不高或直接指到零位,则说明绕组受潮或绝缘损坏。

(2)做变比。

在变压器高压侧A、B、C等电杆上接380V 三相电源。

并加5~10A熔断件做短路爱护。

用万能表测低压测a、b、c导电杆之间的电压及ao,bo,co的电压,并计算凹凸压测的变比。

假如三相数值不平衡,或实测变比较额定变比小,则变压器绕组即是消失了匝间短路或已完全烧毁。

(3)测空载电流。

在变压器低压侧加380V三相电压。

并在每一相电源上串接大于或等于额定空载电流的电流表。

假如某一相或两相有匝间短路状况,其空载电流必定成倍增加,远远大于额定空载电流。

变压器故障多种多样,只要在实践中不断总结阅历,是会把握查找故障的技巧的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器绕组匝间短路的简单判断
张绍峰
摘要:针对电力生产中使用的变压器几多竟是用的电炉变等运行中出现的变压器绕组匝间短路,介绍一个简易的判断方法。

关键词:变压器、匝间短路、空升;
变压器是发送变企业和各行各业生产中最常用的设备之一,由于它体积大、价格高且长时间带电运行,流过高低压绕组的电流通常都很大,加上检修工质量不到位、环境污染、各类过电压等原因,容易产生各种缺陷,如果得不到准确的判断和及时的处理,将会造成很大的经济损失。

一般的常规试验对于检查变压器的接触不良、绕组断股、绝缘(整体、局部)受潮、绝缘(整体、局部)老化等灵敏度很高。

但这些试验项目对检查变压器绕组匝间短路可以说是个盲区,只用变压器的特性(空载、短路)试验才能对其作出准确判断。

但进行变压器的特性(空载、短路)试验所需试验设备多且各种试验设备体积容量大,试验电源容量要求也很大,因此做起来也很不方便。

下面将介绍一种既简单又行之有效的方法。

具体情况作一下分析:
首先简单介绍一下变压器的绝缘结构:变压器的绝缘分为主绝缘和纵绝缘两部分。

主绝缘分是指绕组对地和绕组之间的绝缘;纵绝缘是指线饼间、层间和匝间的绝缘。

接下来针对变压器常规检测绝缘的试验能够鉴定的各种缺陷的具体情况进行一下对比:
由以上对比结果可以看出,前四种试验根本无法测出纵绝缘中出现的各种缺陷;第五、六种试验仅能够对绕组的严重金属性匝间短路缺陷做出判断,但有些绕组的匝间短路缺陷是非金属性匝间短路,它们对此则无能为力了。

后两种试验能够准确的检测出所有的绕组的匝间短路缺陷,但要进行这些大型试验对于一些大型变压器来说是有价值的,可是对较小型变压器来说则费时费力所需成本也太高了。

下面就根据现场的实际经验介绍一个简单有效的方法来判断变压器绕组的非金属性匝间短路。

2009年09月24日武电多经碳素公司#3电炉变故障过流速断跳闸,变压器本体有烧焦气味放出。

拆线后对本体进行试验。

进行的试验项目有:1、绝缘电阻;2、所有档的直流电阻;3、所有档的电压比;4、交流耐压;以上所有试验
均合格。

再次投变压器过流速断仍跳闸,吊芯检查仍未发现故障点。

组装后再次投运,过流速断再次跳闸。

在此情况下采用了这个简单的方法进行检测,发现高压侧绕组存在非金属性匝间短路。

此台变压器为太原变压器厂制造(型号:HKD7—1350/6;额定容量:1350KV A;额定电压:6000V/50~100V,额定电流:140.7~225A/16880~13500A;空载电流:一档:0.05%、九档:0.145%、十四档:1.35%)返厂后经证实确实为高压侧绕组非金属性匝间短路故障。

具体测试方法如同做变压器的空载试验,其具体过程如下:此变压器为单相变压器,在变压器满档时(一档)高压侧线间接一(0—250V)调压器并串量程相当的电流表一块并接入监视电压的(0—300V)电压表一块,缓慢升压的同时检测电流表的指示,当电压升至200V左右时电流已经到了200A,远远高于额定空载电流0.05%(0.1125A),同理在低压侧加压进行此项试验电流有所增加但不明显;故判断为高压侧存在非金属性匝间短路。

将此测量方法归纳如下:在进行变压器的故障检查试验时,怀疑存在匝间短路在进行直流电阻和变比测量不能判断时可用此方法进行简单判断,首先应在怀疑的电压等级侧进行加压试验。

根据变压器的相数选择相应的单相或三相调压器进行变压器的空载接线试验,缓慢增压的同时观察电流变化,若电流变化很大远远超出额定空载电流则为存在非金属性匝间短路。

如果选用单相或三相调压器不方便时也可直接用220V或380V电源直接合闸冲击监看电流进行判断,其效果相同。

(注意:选用的合闸电源电压必须低于加压侧的额定电压。

)这种方法的优点是:试验方法简单试验仪器少,效果明显同时花费时间少。

随着国家经济的高速发展,电力建设的超规模扩展。

变压器在各行各业中的使用也越来越多,在使用的同时也会发生各式各样的缺陷,我们只有努力学习认真观察不断的积累经验才能跟上时代的脚步。

青铝发电周晓勇
2013-7-13。

相关文档
最新文档