汽车理论(二)名词解释
汽车理论-名词解释
第一章汽车的动力性1.汽车动力性指标:最高车速、加速时间、最大爬坡度2.加速时间表示加速能力:原地起步加速时间和超车加速时间3.驱动力:地面驱动轮的反作用力F t=T t/r=T tq i g i oηT/r4.驱动轮的转矩: T t= T tq i g i oηT5.发动机转矩特性:节气门全开,发动机外特性曲线;节气门部分开启,部分负荷特性。
6.功率:Pe=T tq n/95507.使用外特性曲线:带上全部设备时的发动机特性曲线8.传动系功率损失:机械和液力损失9.自由半径:车轮处于无载时的半径10.静力半径Rs:汽车静止时,车轮中心至轮胎与道路接触面间的距离11.滚动半径rr:车轮几何中心到速度瞬心的距离。
12.驱动力图:根据下列两个公式:Ua=0.377nr/i g i o F t=T t/r=T tq i g i oηT/r以及发动机外特性曲线,做出的F t - u a关系图,即驱动力图13.滚动阻力Ff产生的原因:轮胎(主要)、路面变形产生迟滞损失14.轮胎的迟滞损失:轮胎在加载变形时所消耗的能量在卸载恢复时不能完全收回,一部分能量消耗在轮胎部摩擦损失上,产生热量,这种损失称为轮胎的迟滞损失。
15.滚动阻力系数f:车轮在一定条件下滚动时所需之推力与车轮负荷之比,即单位车重所需的推力,Ft=Wf16.影响滚动阻力的因素:车速、轮胎结构、气压、路面条件、驱动力、转向17.地面切向反作用力Fx:是真正作用在驱动轮上的驱动汽车行驶的力,它的数值为驱动力减去驱动轮上的滚动阻力。
18.临界车速:超过后产生驻波现象,轮胎温度快速增加,大量发热导致轮胎破损或爆胎。
19.驻波现象:在高速行驶时,轮胎离开地面后因变形所产生的扭曲并不立即恢复,其残余变形形成了一种波20子午线轮胎比斜交轮胎的滚动阻力小20%~30%;21.气压:越高,轮胎变形及由其产生的迟滞损失就越小,滚动阻力也越小。
22.驱动力:Ft增大,胎面滑移增加,F f增大。
车辆工程考研汽车理论名词解释
1.汽车的动力性:汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行 驶速度。
2。
最高车速:在水平良好路面上汽车能达到的最高行驶车速。
3。
原地起步加速时间:汽车由Ⅰ档或Ⅱ档起步,并以最大的加速强度逐步换至最高档后到某一预定的 距离或车速所需的时间。
4。
超车加速时间:用最高档或次高档由某一较低车速全力加速至某一高速所需的时间.5。
自由半径:车轮处于无载时的半径.6.静力半径:汽车静止时,车轮中心至轮胎与道路接触面间的距离。
7。
滚动阻力系数:车轮在一定条件下滚动时所需之推力与车轮负荷之比。
8.空气阻力:汽车直线行驶时受到的空气作用力在行驶方向上的分力。
(空气阻力:压力阻力、摩擦 阻力; 压力阻力:形状阻力、干扰阻力、内循环阻力、诱导阻力。
)9.旋转质量换算系数:一般把旋转质量的惯性力偶矩转化为平衡质量的惯性力,常以δ份计入旋转质 量惯性力偶矩后的汽车旋转质量系数。
10。
动力因数:驱动力和空气阻力之差与汽车重力的比值。
11。
附着力ϕF :地面对轮胎切向反作用力的极限值。
12.附着系数ϕ :地面对轮胎切向作用力的极限值ϕF 与驱动轮法向反作用力Z F 之比。
13.附着率ϕC :作用在驱动轮上的转矩所引起的地面切向反作用力X F 与驱动轮法向反作用力Z F 的比 值。
(汽车的附着力决定于附着系数以及地面作用于驱动轮的法向反作用力。
)14.后备功率:汽车发动机功率与阻力功率的差值.15。
燃油经济性:在保证动力性的条件下,汽车以尽量少的燃油消耗量经济行驶的能力。
16.碳平衡法:燃油经过发动机燃烧后,排气中碳质量的总和与燃烧前的燃油中碳质量总和应该相等。
17.比功率:单位汽车总质量所具有的发动机功率。
18。
传动系最大传动比:变速器Ⅰ挡传动比1g i 与主减速器传动比i 0的乘积。
19。
C 曲线:燃油经济性——加速时间曲线。
20。
制动性:汽车行驶能在短距离内停车且维持行驶方向稳定性和在下长坡时能维持一定车速的能力。
汽车理论常用的名词解释
汽车理论常用的名词解释引言:汽车已经成为现代社会不可或缺的一部分,它在我们的生活中发挥着重要的作用。
然而,对于许多人来说,汽车领域的名词和术语可能令人困惑。
在本文中,我们将解释一些汽车理论常用的名词,帮助读者更好地理解汽车技术和概念。
1. 动力系统动力系统是指驱动汽车运行的能源来源,通常包括发动机、传动系统和燃料系统。
发动机是汽车的心脏,它将燃料转化为机械能,驱动车轮运动。
传动系统负责将发动机的动力传递给车轮,常见的传动系统包括手动变速器和自动变速器。
燃料系统则负责供应燃料给发动机,并确保燃料的燃烧效率。
2. 悬挂系统悬挂系统是汽车的重要组成部分,它连接车身和车轮,减震和保持车身的稳定性。
常见的悬挂系统包括独立悬挂和非独立悬挂。
独立悬挂允许每个车轮单独运动,提供更好的悬挂效果和行驶舒适性。
非独立悬挂则更简单和经济实用,适用于一些传统的小型汽车。
3. 制动系统制动系统是用于减速和停车的关键系统。
常见的制动系统包括盘式制动系统和鼓式制动系统。
盘式制动系统通过压紧刹车盘上的刹车片来实现制动效果,具有较好的散热性能和制动力。
鼓式制动系统则通过压紧刹车鼓内的刹车片来实现制动效果,适用于一些较低速度的车辆。
4. 车身结构车身结构是指汽车的外部形状和内部构造,它对于汽车的安全性、稳定性和舒适性有着重要的影响。
常见的车身结构包括轿车、SUV、MPV等。
轿车通常具有较低的底盘高度,适合城市行驶和舒适驾驶。
SUV具有较高的路面离去角和通过角,适合越野和不平路面驾驶。
MPV则注重座椅的多功能性和空间利用率,适合家庭出行和商务需求。
5. 节能环保技术随着环境保护意识的提升,节能环保技术在汽车领域的应用也越来越重要。
常见的节能环保技术包括混合动力和纯电动技术。
混合动力汽车结合了传统燃油发动机和电动机的优势,减少了燃料消耗和尾气排放。
纯电动汽车则完全依靠电能驱动,零尾气排放,具有更好的环保性能。
结论:在汽车理论中,理解常见名词的含义对于了解汽车技术和概念至关重要。
汽车理论名词解释 (2)
汽车理论名词解释1、汽车的动力性:是指汽车在良好的水平路面上直线行驶时由汽车收到的纵向外力所决定的、所能达到的平均行驶车速。
2、汽车的超车加速时间:指由最高档或次高档由某一较低车速全力加速至某一高速所需的时间。
3、汽车的最大爬坡度:指满载(或一定质量)的汽车在良好路面上Ⅰ挡所能爬上的最大坡度。
4、汽车的驱动力:由发动机产生的转矩经传动系传到驱动轮上,此时作用于驱动轮上的转矩产生一个对地面上的圆周力,地面对驱动力的反作用力是驱动汽车的外力,称为驱动力。
5、发动机外特性曲线:发动机节气门全开(或高压油泵在最大供油量位置)时发动机的转速特性曲线。
6、使用外特性曲线:带上全部设备时的发动机特性曲线。
擦等功率损失。
7、汽车的驱动力图:一般用根据发动机外特性确定的驱动力与车速之间的函数关系曲线来全面表示汽车的驱动力,称为汽车驱动力图。
8、汽车驱动力—行驶阻力平衡图:在汽车驱动力图上把汽车行驶中经常遇到的滚动阻力和空气阻力也画上做出汽车驱动力——行驶阻力平衡图。
9、汽车的爬坡能力:汽车在良好路面上克服摩擦阻力和空气阻力后的余力全部用来克服坡度阻力时能爬上的坡度。
10、空气升力:由于流经汽车顶部与底部的空气流速不同而产生的作用于汽车的空气升力。
11、附着率:汽车直线行驶状况下,充分发挥驱动力作用时要求的最低附着系数。
12、汽车的功率平衡:在汽车行驶的每一瞬间,发动机发出的功率始终等于机械传动损失功率与全部运动阻力所消耗的功率。
13、滑水现象:在某一车速下在胎面在胎面下的动水压力的升力等于垂直载荷时,轮胎将完全漂浮在水膜上面而与路面毫不接触的现象。
14、制动器的水衰退现象:当汽车涉水时,水进入制动器,短时间内制动效能的降低的现象。
15、制动效率:车轮不锁死的最大制动强度与车轮和地面间附着系数的比值。
16、汽车的操纵稳定性:指在驾驶员在不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过转向车轮给定方向行驶,且遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
汽车理论名词解释
l
FX b FZ
FY FZ
抗热衰退性:汽车在高速制动或长坡连续制动,制动效能的保持程度。 热衰退:制动器温度上升后,制动器产生的摩擦力矩常会有显著下降,这种现 象称为制动器的热衰退 制动效能因数 Kef:单位制动轮缸推力 F 所产生的制动摩擦力 F。
pu
等速百公里油耗:汽车在一定的载荷下,以最高挡位在水平良好路面等速行驶 100km 所消耗燃油量 发动机的转速特性:Pe、Ttq、b=f(n)的关系曲线 使用外特性曲线:带上全部附件设备时的发动机特性曲线 自由半径:车轮处于无载时的半径 静力半径 rs:汽车静止时,车轮中心至轮胎与道路接触面间的距离 滚动半径 rr:车轮几何中心到速度瞬心的距离。 滚动阻力系数:车轮在一定条件下滚动时所需要的推力与车轮负荷之比。 动力因数 D: D=(Ft-Fw)/G 轮胎的迟滞损失:轮胎在加载变形时所消耗的能量在卸载恢复时不能完全收回, 一部分能量消耗在轮胎内部摩擦损失上,产生热量,这种损失称为轮胎的迟滞 损失 驻波现象: 在高速行驶时, 轮胎离开地面后因变形所产生的扭曲并不立即恢复, 其残余变形形成了一种波,这就是驻波。此时轮胎周缘不再是圆形,而呈明显 的波浪形。 临界车速(最高车速) :当汽车车速超过临界车速时,轮胎会出现驻波现象,其 周缘呈明显的波浪状,且轮胎温度快速增加。 附着力:地面对轮胎切向反作用力的极限值(最大值) 附着条件:地面作用在驱动轮上的切向反力小于驱动轮的附着力 附着率:汽车直线行驶状况下,充分发挥驱动力作用时要求的最低附着系数 ∁������ = ������ /������������
������
比功ቤተ መጻሕፍቲ ባይዱ:发动机功率与滚动阻力和空气阻力消耗的发动机功率的差值
Pe 1
T
( Pf Pw )
汽车理论名词解释
1.汽车的动力性:2.驱动力:3最高车速:4发动机的转速特性曲线:5.使用外特性曲线:6自由半径:7汽车的上坡能力:8静力半径;9驱动力图;10弹性物质的迟滞损失:11滚动阻力系数:12驱动力系数:13空气阻力:14坡度阻力:15道路阻力:16加速阻力:17汽车的爬坡能力:18动力特性图:19附着力:20附着系数;21静态轴荷的法向反作用力:22动态分量:23附着率:24汽车功率平衡图25后备功率26汽车的燃油经济性27等速百公里燃油消耗量28滑行29汽车比功率30驾驶性能31最小转动比32最大转动比33传动系总转动比34汽车的制动性35制动效能36制动效能的恒定性37制动时汽车的方向稳定性38制动器制动力39制动力系数40侧向力系数41制动距离42制动减速度43水衰退性44制动跑偏45侧滑46前轮失去转向能力47航向角48I曲线49B曲线50制动器制动力分配曲线51同步附着系数52F线组53R线组54制动效率55利用附着系数56汽车的操纵稳定性57角输入58力输入59回正性60横摆角速度频率响应特性61典型行驶工况性能62极限行驶性能63转向盘角阶跃输入下进入的稳态响应64转向盘角阶跃输入下进入的瞬态响应65客观评价法66主观评价法67侧偏角68外倾角69侧偏力70侧偏现象71侧偏刚度72高宽比73回正力矩74外倾侧向角75稳态横摆角速度增益76反应时间77峰值反应时间78汽车因数79侧倾中心80悬架的侧倾角刚度81悬架的线刚度82车厢的侧倾角84侧倾转向85不足侧倾转向86变形转向角87不足变形转向角88过多变形转向角89侧向力变形转向系数90汽车的平顺性91汽车的通过性92牵引效率93间隙失效94顶起失效95汽车的通过性的几何参数96最小离地间隙97纵向通过角98接近角99离去角100最小转弯直径填空题1、汽车动力性的评价一般采用三个方面的指标,它们分别是最高车速、和。
2、汽车的动力性系指汽车在良好路面上行驶时由汽车受到的纵向决定的所能达到的平均行驶速度。
汽车理论名词解释
19、 I曲线:前、后车轮同时抱死时前、后轮制动器制动力的关系 曲线。
20、 侧偏力:地面作用于车轮的侧向反作用力。 21、 汽车的平顺性:保持汽车在行驶过程中产生的振动和冲击环境
对乘员舒适性的影响在一定界限之内。(保持汽车在行驶过程中 乘员所处的振动环境具有一定舒适程度和 保持货物完好的性 能。) 22、 汽车的通过性:指它能以足够高的平均车速通过各种坏路和无 路地带(如松软地面、凹凸不平地面等)及各种障碍(如陡 坡、侧坡、壕沟、台阶、灌木丛、水障等)的能力。 23、 汽车的制动性:汽车行驶时能在短距离内停车且维持行驶方向 稳定性和在下长 24、 坡时能维持一定车速的能力。 25、 汽车的功率平衡图:若以纵坐标表示功率,横坐标表示车速, 将发动机功率Pe、汽车经常遇到的阻力功率(Pf+Pw)/ηt 对车速 的关系曲线绘在坐标图上,即得汽车功率平衡图。 26、 稳态横摆角速度增益(转向灵敏度):稳态横摆角速度与前轮 转角之比。 27、 汽车的最高车速Umax:在水平良好的路面上汽车能达到的最高 行驶车速。 28、 压力阻力:作用在汽车外形表面上的法向压力的合力在行驶方 向上的分力。 29、 复合动力的电力驱动装置 30、 汽车的最小离地间隙:汽车满载、静止时,支承平面与汽车上 的中间区域最低点之间的距离。 31、 汽车的燃油经济性:在保证动力性的条件下,汽车以尽量少的 燃油消耗量经济行驶的能力。 32、 附着率:汽车直线行驶状况下,充分发挥驱动力作用时要求的 最低附着系数。 33、 β线:前、后制动器制动力之比为固定值时,前轮制动 器制动 力与汽车总制动器制动力之比。(不少两轴汽车的前、后制动 器制动力为一固定比值。设Fµ1为前轮制动器制动力,Fµ2为后 轮制动器制动力,Fµ=Fµ1+Fµ2为总制动器制动力,则 β=Fµ1/Fµ为制动器制动力分配系数。Fµ2=(1−β/β)Fµ1的函 数曲线为一条过坐标原点的直线,斜率为1−β∕β。即实际前、
汽车理论名词解释
13 a :1.制动器制动力:在轮胎边缘克服制动器摩擦力矩所需的切向力。
2.驱动轮附着率:驱动轮受到的地面切向力与垂直载荷的比值。
3.牵引系数:单位车重的挂钩牵引力(净牵引力)。
4.滑动率: 滑动率s 定义为%100⨯-=ur u s ω,式中,u 为车速; r 为车轮半径;ω为车轮角速度。
5.转向灵敏度:横摆角速度与前轮转角(或转向盘转角)之比.b:1.道路阻力系数:指滚动阻力系数与道路坡度之和。
2.附着椭圆:在一定侧偏角下,轮胎极限切向力与侧偏力的关系。
3.发动机负荷率:在一定挡位下汽车等速行驶时发动机的部分负荷功率与全油门功率之比。
4.牵引效率:驱动轮输出功率与输入功率之比。
5.特征车速:具有不足转向特性汽车的横摆角速度增益的最大值所对应的车速。
12:1.动力因数:驱动力与空气阻力的差值与汽车重力之比。
2.中性转向点:使汽车前、后轮产生同一侧偏角的侧向力作用点。
3.临界减速度: 在同步附着系数路面上制动,前后轮同时抱死时的减速度。
(12、09)4.悬挂质量分配系数: 车身俯仰运动回转半径的平方与质心到前后轴距离之积的比值。
5.车厢侧倾中心:车厢侧倾轴线通过车厢前、后轴处横断面上的瞬时转动中心。
(12、08)09:流线型因数:汽车的空阻力系数与迎风面积的乘积侧偏现象:轮胎接地中心的移动方向与车轮平面方向不一致的现象特征车速:具有不足转向特性的汽车,最大横摆角速度对应的车速静态储备车速:中性转向点到前轴的距离a ’和质心到前轴的距离a 之差与轴距L 的比值08:1.制动效能因数:单位制动轮缸推力Fpu 所产生的制动器摩擦力 F2.轮胎侧偏角:车轮接地印迹中心的移动方向与车轮平面的夹角3.牵引效率:驱动轮输出功率与输入功率之比。
4.接近角:汽车满载、静止时,前端突出点向前轮所引出切线与地面间的夹角。
γ1越大,越不易发生触头失效。
07:汽车比功率:单位汽车总质量具有的发动机功率,单位kw/t附着率最小转弯直径: 汽车动力性及指标:指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的,所能达到的平均行驶速度。
汽车理论名词解释
动力因数 汽车牵引性能的主要指标。
是剩余牵引力(总牵引力减空气阻力)和汽车总重之比。
此值越大,汽车的加速、爬坡和克服道路阻力的能力越大。
同步附着系数:F μ1、F μ2具有固定比值的汽车,使前、后车轮同时抱死的路面附着系数挂钩牵引力:车辆的土壤推力FX 与土壤阻力 Fr 之差I 线:前、后轮车轮同时抱死时前、后轮制动器制动力的关系曲线——理想的前、后轮制动器制动力分配曲线。
C 曲线:燃油经济性加速时间曲线。
制动跑偏:制动时汽车自动向左或向右偏驶f 线组:后轮没有抱死,在各种ψ值路面上前轮抱死的前后地面制动力关系曲线 r 线组:前轮没有抱死而后轮抱死的前后地面制动力关系曲线比功率:单位汽车总质量具有的发动机功率,单位:kW/t滑移率:轮胎直进时刹车或加速时轮胎胎印和路面间所产生的滑移。
侧滑:制动时汽车的某一轴或两轴发生横向移动。
中性转向:斜率为1/L 横摆角速度增益比中过多转向:得 摆角速度增益传动系的最小传动比:最高档传动比与i 0的乘积传动系的最大传动比:变速器1档传动比i g1与主减速器传动比i 0的乘积静态储备系数 S.M.:中性转向点到前轮的距离与汽车质心到前轴距离 a 之差与轴距L 之比L a a -'=S.M.稳态横摆角速度增益(转向灵敏度):稳态横摆角速度与前轮转角之比侧偏角:接触印迹的中心线与车轮平面的夹角汽车的上坡能力:用满载(或某一载质量)时汽车在良好路面上的最大爬坡度i max表示的滑水现象:在某一车速下,在胎面下的动水压力的升力等于垂直载荷时,轮胎将完全漂浮在水膜上面而与路面毫不接触。
汽车的制动效能:在良好路面上,汽车以一定初速度制动到停车的制动距离或制动时汽车的减速度。
轮胎的侧偏现象:当车轮有侧向弹性时,即使侧向反作用力没有达到附着极限,车轮行驶方向亦将偏离车轮平面,这就是轮胎的侧偏现象。
横摆角速度稳定时间:顶起失效:当车辆中间底部的零件碰到地面而被顶住的情况触头失效:当车辆前端触及地面而不能通过的情况。
汽车理论复习题 名词解释
1.动力因数:剩余牵引力(总牵引力减空气阻力)和汽车总重之比2.回正力矩:使转向车轮恢复到直线行驶位置的主要恢复力矩之一3.汽车的比功率:发动机最大净功率/汽车总质量4.通过性:汽车能够以足够高的平均车速通过各种坏路和无路地带和各种障碍的能力5.I 曲线:也叫理想曲线,后轮制动器制动力分配曲线,是指前后轮同时抱死时前、后轮制动器制动力分配曲线6.侧偏特性:汽车在行驶中,在侧向力的作用下,弹性轮胎滚动方向偏离汽车行驶方向一角度7.汽车的动力性:汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度8.附着条件:地面作用在驱动轮上的切向反力小于驱动轮的附着力9.制动力系数:地面制动力与垂直载荷之比为制动力系数b ϕ。
轮胎的侧偏现象:当车轮有侧向弹性时,即使Y F 没有达到附着极限,车轮行驶方向亦将偏离车轮平面cc 的现象10.制动力系数的最大值称为峰附着系数p ϕ。
%100=S 的制动力系数称为滑动附着系数s ϕ11.等速百公里油耗:汽车在一定载荷下,以最高档在水平良好路面等速行驶100KM 所消耗的燃油量12.制动效率与利用附着系数:车轮不锁死的最大制动强度与车轮和地面间附着系数的比值;制动强度为Z 时汽车第i 轴产生的地面制动力与地面对第i 轴的法向反力的比值13.静态储备系数SM :中性转向点到前轮的距离与汽车质心到前轴距离a 之差与轴距L 之比。
14.制动器的热衰退:制动器温度上升后,制动器产生的摩擦力矩常会有显著下降,这种现象称为制动器的热衰退。
15.制动器制动力:在轮胎周缘克服制动器摩擦力矩所需的切向力称为制动器制动力。
16.后备功率:发动机功率与滚动阻力和空气阻力消耗的发动机功率的差值。
17.汽车行驶平顺性:汽车的行驶平顺性是指汽车在一定的速度范围内行驶时,能够保证驾驶员与旅客不会因车身振动而引起不舒适和疲劳的感觉,以及保持运送货物完整无损的性能18.轮胎的弹性延迟损失:由于内部摩擦,轮胎加、卸载的变形造成的能量损失现象19.同步附着系数:制动力分配系数β线和理想制动力曲线I 的交点的附着系数20.稳定横摆角速度增益:汽车前轮角阶越输入下汽车稳态横摆角速度和前轮转角之比21.汽车加速阻力:加速时,要克服汽车质量加速运动时的惯性力22.特征车速:不足转向特性下稳态摆角速度增益取最大值时的车速23.操纵稳定性:在驾驶员不感觉过分紧张、疲劳的条件下,汽车能按照驾驶员通过转向系及转向车轮给定的方向行驶;且当受到外界干扰时,汽车能抵抗干扰而保持稳定行驶的性能24.空气阻力:汽车直线行驶时受到的空气作用力在行驶方向上的分力25.驱动力:车发动机产生的转矩,经传动系传至驱动轮上。
汽车理论名词解释
1t F 2t F 3t F 4t F 5t F 全开部分开TtF0Ft汽车理论汽车的动力性:汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
三个评定指标:汽车的最高车速u amax 、汽车的加速时间t 、汽车的最大爬坡度 i max 。
u a 驱动力Ft :发动机产生的转矩经传动系传到驱 动轮,产生驱动力矩Tt ,驱动轮在Tt 的作用下给地面作用一圆周力F 0,地面对驱动轮的反作用力Ft 即为驱动力。
发动机转速特性:如将发动机的功率P e 、转矩T tq 以及燃油消耗率b 与发动机曲轴转速之间的函数关系以曲线表示,则此曲线称为发动机转速特性曲线或简称发动机特性曲线。
带上全部附件设备时的发动机特性曲线,称为使用外特性曲线。
一般,使用外特性与外特性相比:汽油机的最大功率约小15%; 货车柴油机的最大功率约小5%;轿车与轻型货车柴油机的最大功率约小10%。
传动系统功率损失可分为机械损失和液力损失两大类。
一般用根据发动机外特性确定的驱动力与车速之间的函数关系曲线Ft-u a 来全面表示汽车的驱动力,称为汽车的驱动力图。
tq g 0Tt T i i F rη=Ff+FW F f迟滞损失:轮胎在加载变形时所消耗的能量在卸载时恢复时不能完全收回,一部分能量消耗在轮胎内部摩擦损失上,产生热量。
影响滚动阻力系数的因素:(1)车速 (2)轮胎结构 子午线轮胎比斜交轮胎的滚动阻力小20%~30%;滚动阻力与轮胎的帘线(棉、人造丝、尼龙、钢丝)和橡胶品质有关。
(3)气压 气压越高,轮胎变形及由其产生的迟滞损失就越小,滚动阻力也越小。
(4)驱动力 (5)路面条件 (6)转向 离心力前、后轮产生侧偏力,侧偏力沿行驶方向产生分力,滚动阻力增加。
汽车直线行驶时受到的空气作用力在行驶方向的分力称为空气阻力。
随着车辆行驶速度的增加,空气阻力也逐渐成为最主要的行车阻力,在时速200km/h 以上时,空气阻力几乎占所有行车阻力的85%。
汽车理论名词解释
1.滚动阻力系数滚动阻力系数 车轮在一定条件下滚动时所需的推力与车轮负荷之比。
2.制动器制动力制动器制动力在轮胎周缘克服制动器摩擦力矩所需的切向力。
3.侧向力系数侧向力系数侧向力与垂直载荷之比。
侧向力与垂直载荷之比。
4.稳态横摆角速度增益稳态横摆角速度增益稳态横摆角速度与前轮转角之比。
稳态横摆角速度与前轮转角之比。
5. 汽车动力因数汽车动力因数 由汽车行驶方程式可导出由汽车行驶方程式可导出则被定义为汽车动力因数。
被定义为汽车动力因数。
6 附着椭圆附着椭圆驱动力或制动力在不同侧偏角条件下的曲线包络线接近于椭圆,一般称为附着椭圆。
7. 汽车前或后轮(总)侧偏角汽车前或后轮(总)侧偏角 汽车行驶过程中,因路面侧向倾斜、侧向风或曲线行驶时离心力等的作用,车轮行驶方向与车轮汽车行驶过程中,因路面侧向倾斜、侧向风或曲线行驶时离心力等的作用,车轮行驶方向与车轮平面的夹角。
平面的夹角。
8.回正力矩.回正力矩是圆周行驶时使转向车轮恢复到直线行驶位置的主要恢复力矩之一,称为回正力矩。
9.挂钩牵引力挂钩牵引力车辆的土壤推力F X 与土壤阻力与土壤阻力 F r 之差之差 10.纵向附着系数纵向附着系数11.制动距离.制动距离制动距离S 是指汽车以给定的初速,从踩到制动踏板至汽车停住所行驶的距离 12.12.侧偏力侧偏力侧偏力汽车行驶过程中,因路面侧向倾斜、侧向风或曲线行驶时离心力等的作用,车轮中心沿轴方向将作用有侧向力,在地面上产生相应的地面侧向反作用力,使得车轮发生侧偏现象,这个力称为侧偏力。
为侧偏力。
13.汽车平顺性及评价指标汽车平顺性及评价指标 汽车行驶平顺性,是指汽车在一般行驶速度范围内行驶时,能保证乘员不会因车身振动而引起不舒服和疲劳的感觉,以及保持所运货物完整无损的性能。
14. 驱动力与(车轮)制动力驱动力与(车轮)制动力dtdu g dtdu g i f dtdu Gm GF F GF F D fi wt d y d d +=++=++=-=)(Dz T 0a u YyF Y F Y F由路面产生作用于车轮圆周上切向反作用力。
汽车理论(二)名词解释
汽车理论(二)名词解释一. 名词解释01.附着椭圆P140汽车运动时,在轮胎上常同时作用有侧向力与切向力。
一定侧偏角下,驱动力增加时,侧偏力逐渐有所减小,这是由于轮胎侧向弹性有所改变。
当驱动力相当大时,侧偏力显著下降,因为此时接近附着极限,切向力已耗去大部分附着力,而侧向能利用的附着力很少。
作用有制动力时,侧偏力也有相似的变化。
驱动力或制动力在不同侧偏角条件下的曲线包络线接近于椭圆,称为附着椭圆。
它确定了在一定附着条件下切向力与侧偏力合力的极限值.02.稳态横摆角速度增益. P147汽车等速行驶时,在前轮角阶跃输入下进入的稳态响应就是等速圆周行驶。
常用稳态横摆角速度与前轮转角之比) 来评价稳态响应. 该比值称为稳态横摆角速度增益或转向灵敏度。
它是描述汽车操纵稳定性的重要指标。
?04.侧偏力和轮胎的侧偏现象P136侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风或曲线行驶时的离心力等的作用,车轮中心沿轮胎坐标系Y轴方向有侧向力FY,相应地在地面上产生地面侧向反作用力FY,FY即侧偏力。
侧偏现象:当车轮有侧向弹性时,即使地面侧向反作用力FY没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。
07.回正力矩Tz P140在轮胎发生侧偏时,会产生作用于轮胎绕OZ轴的力矩Tz.圆周行驶时,Tz是使转向车轮恢复到直线行驶的主要恢复力矩之一,称为回正力矩.11.轮胎坐标系P136为了讨论轮胎的力学特性,需要建立一个轮胎坐标系。
规定如下:垂直车轮旋转轴线的轮胎中分平面称为车轮平面。
坐标系的原点O 为车轮平面和地平面的交线与车轮旋转轴线在地平面上投影线的交点。
车轮平面与地平面的交线取为X 轴,规定向前为正。
Z 轴与地面垂直,规定指向上方为正。
Y 轴在地面上,规定面向车轮前进方向时,指向左方为正。
12.汽车前或后轮(总)侧偏角P161汽车前、后轮(总)侧偏角包括:1)考虑到垂直载荷与外倾角变动等因素的弹性侧偏角;2)侧倾转向角;3)变形转向角。
汽车理论名词解释
汽车的最大爬坡度:一档最大爬坡度使用外特性曲线:带上全部附件设备时的发动机特性曲线发动机部分负荷特性曲线:节气门部分开启部分供油的发动机特性曲线充气轮胎弹性车轮的弹性迟滞损失:消耗在轮胎各组成部分相互间的摩擦以及橡胶帘线等物质的分子间的摩擦,转化为热能消失在大气中滚动阻力系数:车轮在一定条件下滚动时所需推力与车轮负荷之比,即单位汽车重力所需推力滚动半径:r=s2πnw汽车的驱动力图:用根据发动机外特性确定的驱动力与车速之间的函数关系来全面表示汽车的驱动力道路阻力系数:φ=f+i f:滚动阻力系数i:坡度比功率:单位汽车总质量具有的发动机功率汽车动力特性图:地面对轮胎切向反作用力的极限值附着率:汽车直线行驶状况下充分发挥驱动力作用时要求的最低附着系数动力因数:附着利用率附着力汽车后备功率发动机负荷率质量利用系数:装载质量与整车装备质量之比发动机的燃油消耗率发动机万有特性汽车循环行驶实验工况传动系的最小传动比:传动系的总传动比其中为变速器传动比为主传动比为分动器或付变速器传动比,若没有分动器或副变速器且变速器直接档时,传动系最小传动比就是主传动传动系最大传动比:就是变速器一档传动比与主减速器传动比的乘积汽车的制动效能:指汽车迅速降低车速直至停车的能。
评定制动效能的指标是制动距离和制动减速东制动效能的恒定性:主要指的是抗热衰退性,指汽车高速行驶或下长坡连续制动时制动效能保持的程度滑动率汽车滑动附着系数:滑动率为百分百的制动力系数峰值附着系数:制动力系数的最大值,一般出现在s=15%~20%制动距离:汽车以一定的速度行驶时,从驾驶员开始操纵制动控制装置到汽车完全停住为止所驶过的距离。
制动器制动力分配系数:前制动器制动力与汽车总制动器制动力之比来表明分配的比例同步附着系数:线与曲线的交点处的附着系数f线组:各种φ值路面上只有前轮抱死时的前后轮地面制动力的分配关系r线组:各种φ值路面上只有后轮抱死时的前后轮地面制动力的分配关系前轴利用附着系数:汽车以一定的减速度制动时,,除去制动强度外不发生前轮抱死所要求的总大于其制动强度的最小路面附着系数汽车的制动效率:车轮不锁死的最大制动减速度与车轮和地面间附着系数的比值航向角转向盘角阶输入下汽车的瞬态响应:转向盘角阶跃输入前后,在等速直线行驶与等速圆周行驶这两个稳态运动之间的过渡过程是一种瞬态,相应的瞬态运动响应称为转向盘角阶跃输入下的瞬态响应超调量:最大横摆角速度与横摆角速度的稳态值的比值轮胎的侧偏现象::当车轮有侧向弹性时,即使没有达到附着极限,车轮行驶方向亦将偏离车轮平面,这就是轮胎的侧偏现象轮胎侧偏刚度:地面对轮胎的侧偏力与对应产生的侧偏角的比值侧偏刚度为负值回正力矩:轮胎发生侧偏是产生作用于轮胎绕OZ轴的力矩。
汽车理论二
5.4.2 侧倾对稳态响应的影响
• 侧倾时垂直载荷在左、右车轮上的重新分 配
1) 离心 分 力 布到前 轴 后 : bs as Fs1y = Fsy ,Fs2 y = Fsy L L 2) 侧 力矩 倾 在前 轴的 配( 后 分 类似 并联 簧) 弹 Tφr1 = Kφr1φr, φr 2 = Kφr 2φr T ) 此 的内 轮垂 反力 外 直 的变 量 动 3 由 引起 对前 轮:∆Fz1B = Fs1yh +Tφr1 + F 1yhu1 1 1 u 对后 轮:∆Fz2B2 = Fs2 yh2 +Tφr 2 + F 2 yhu2 u 内外 轮变 量相 ,方向 化 同 相反 。
转向盘角阶跃输入下的稳态响应、瞬态响应、 转向盘中间位置操纵稳定性、回正性、转向 半径、转向轻便性、直线行驶能力、典型行 驶工况性能、极限行驶能力。 •近似为线性系统
•车辆坐标系
6个自由度 个自由度
• 转向盘角阶跃输入下的时 域响应 稳态响应:不足、中性和 过多转向 瞬态响应:反映时间、超 调量、波动频率、稳定时 间
ucr = − 1 / K
5.3.4 横摆角速度频率响应特性
• 幅频特性 • 相频特性
• 评价频率特性的5个参数
5.4 汽车操纵稳定性与悬架的关系
• 考虑垂直载荷、外倾角变动的弹性侧偏角 • 侧倾转向角 • 变形转向角
5.4.1 汽车的侧倾
• 车厢侧倾轴线 侧倾中心
• 侧倾角刚度
dT Kφr = dφr
,称为稳定性因数。
R= u
ωr
=
L
δ
(1 + ku 2 )
汽 进入 态( 速 周 动 后 车 稳 匀 圆 运 ) u2 ∑F = F 1 + F 2 = m Y Y Y R F 1 ⋅ a = F 2 ⋅b Y Y
汽车理论名词解释
《汽车理论》1、汽车的动力性的评价指标:最高车速、加速时间、最大爬坡度。
4、汽车的燃油经济性评价指标: L/100km和MPG或mile/Usgal. 。
6、汽车的稳态转向特性分为三种类型:不足转向,中性转向,过多转向。
8、汽车支承通过性评价指标:牵引系数TC,牵引效率TE,燃油利用指数E f。
10、汽车试验的两种评价方法:客观评价法和主观评价法。
11、汽车的附着力决定于:附着系数和驱动轮法向反作用力。
12、确定汽车传动系的最大传动比时,要考虑:最大爬坡度,附着率,汽车最低稳定车速。
13、为了模拟实际的汽车运行状况而进行的油耗实验中,室内实验我国用 4工况,载货汽车室外道路实验时,一般 6工况。
15、制动效能的恒定性,制动使汽车的方向稳定性是汽车制动性的评价指标。
在道路上进行制动实验时,一般要测定汽车的制动距离,制动减速度、制动时间参数。
16车厢侧倾时,若非独立悬架汽车的转向系统与悬架运动学上关系不协调时,将引起侧翻现象。
17、汽车操纵稳定性的道路实验转向轻便性常用的评价参数:转向盘最大转矩,转向盘最大作用力,转向盘作用功。
1、评价制动效能的指标:制动距离,制动减速度、制动时间参数。
2、汽车通过性几何参数:最小离地间隙,纵向通过角,接近角,离去角,最小转弯半径。
3、汽车平顺性评价指标:加权加速度均方根值,撞击悬架限位概率,行驶安全性。
4、汽车的制动性评价指:制动效能、制动效能的恒定性、制动时的方向稳定性。
5、汽车常用原地起步加速时间、超车加速时间来表明汽车的加速能力。
6、汽车的稳态转向特性的三种类型:不足转向,中性转向,过多转向。
7、平顺性评价指标:加权加速度均方根值,撞击悬架限位概率,行驶安全性。
8、平顺行驶实验中一般要测定悬挂系统的部分:固有频率和阻尼比。
9、一般汽车的最大爬坡度在30%左右,即16.7º。
10、越野汽车的最大爬坡度为60%,即31º。
11、发动机转速特性曲线分为发动机外特性曲线和发动机部分负荷特性曲线。
汽车理论名词解释
名词解释1.汽车的通过性:是指它以足够高的平均车速通过各种坏路和无路地带(如松软地面、凹凸不平地面等)及各种障碍(如陡坡、侧坡、壕沟、台阶、灌木丛、水障等)的能力。
2.间隙失效:由于汽车与地面的间隙不足而被地面托住、无法通过的情况。
3.最小离地间隙:汽车满载、静止时支撑平面与汽车上中间区域(0.8b内)最低点间的距离4.纵向通过角:汽车满载静止时,分别通过前后车轮的外缘作垂直于汽车纵向对称平面的切平面,当两平面交于车体下部较低部位时所夹的锐角。
(大,顶起失效)5.接近角:汽车满载、静止时,前端突出点向前轮所引切线与地面的夹角。
(大,不易触头)6.离去角:汽车满载、静止,后端突起点向后轮所引切线与地面的夹角(大,不易托尾失效)7.最小转弯直径:当转向盘转到极限位置、汽车以最低稳定车速转向行驶时,外侧转向车轮的中心平面在支撑平面上滚过的轨迹圆直径。
8.转弯通道圆:当转向盘转到极限位置,汽车以最低稳定车速转向行驶时,车体所有点在支撑平面上的投影均位于圆周以外的最大内圆称为转弯通道内圆,车体上所有点均为于圆周以内的最小外圆转弯通道外圆。
(内外圆半径相差小,汽车机动性好)9.汽车的平顺性:汽车平顺性主要是保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限范围之内。
主要根据乘员主观感觉的舒适性来评价。
1.白噪声:路面速度功率谱密度幅值在整个频率范围内为一常数,幅值大小只与不平度系数大小有关。
2.侧翻阈值:汽车开始侧翻时所受到的侧向加速度(阈值大事故率低)3.汽车操纵稳定性:驾驶者不感到过分紧张疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定方向行驶。
切当遭遇到外界干扰时,汽车抵抗干扰而保持稳定行驶的能力。
4.侧偏力:汽车在行驶过程中,由于路面的侧向倾斜侧向风或曲线行驶时的离心力等的作用,车轮中心沿Y轴方向将作用有侧向力F相应的在地面上产生的侧向反作用力Fy,5.侧偏角:接触印迹中心线aa不止与车轮错开一定的距离。
汽车理论名词解释
1.旋转质量换算系数2.稳态横摆角速度增益3.制动力分配系数:前制动器制动力与汽车总制动器制动力之比,来表明分配的比例,称为制动器制动力分配系数。
4.航向角5.汽车的通过性6.偏频:在车身与车轮双质量系统中只有单独一个质量振动时的部分频率7.悬挂质量分配系数:前制动器制动力与汽车总制动器制动力之比来表明分配的比例8.后备功率9.滑动率10.悬架的侧倾角刚度Kφr1.附着系数φ:地面对轮胎切向作用力的极限值与驱动轮法向反作用力之比。
2.悬架的侧倾角刚度Kφr: 侧倾时(车轮保持在路面上),单位车厢转角下,悬架系统与厢总的弹性恢复力偶矩3.汽车的同步附着系数φ0;4.汽车的稳定性因数K5.汽车的后备功率6.滑动率s: 滑动率定义为,其中为车轮中心速度,为没有地面制动力时的车轮半径,为车轮角速度1. 旋转质量换算系数:一般把旋转质量的惯性力偶矩转化为平衡质量的惯性力,常以δ份计入旋转质量惯性力偶矩后的汽车旋转质量系数2. 附着利用率:其定义式为,其中对应于制动强度为z、汽车第i轴产生的地面制动力,为制动强度为z时,地面对轴的发向反力,为第i轴对应于制动强度为z的利用附着系数3. 制动力分配数:前制动器制动力与汽车总制动器制动力之比4. 航向角:制动时汽车纵向轴线与原定行驶方向的夹角。
5. 转向灵敏度:稳态的横摆角速度与前轮转角之比6. 车厢侧倾中心:车厢的侧倾轴线通过车厢的前后轴处横断面上的瞬时转动中心,称为侧倾中心7. 悬挂质量分配系数:其定义式为,…………1.汽车道路阻力系数答案解析:单位汽车总质量克服滚动阻力和坡度阻力的能力。
2.汽车比功率答案解析:单位汽车总质量具有的发动机功率即mp e。
3.汽车循环行驶试验工况答案解析:指在循环试验中等速、加速、减速、怠速、停车等工况。
4.汽车制动力系数答案解析:制动力与垂直载荷之比。
5.汽车悬挂质量分配系数答案解析:ε=aby2ρ即车身绕横轴y轴的旋转半径的平方与质心到前后轴距离的乘积之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.名词解释1、汽车使用性能:汽车能够适用各种使用条件,以最高效率、最低消耗、安全可靠地完成运输工作的能力。
2、滚动阻力系数:车轮在等速平路行驶时滚动时所需之推力与车轮负荷之比。
3、滑移率:在车轮运动中滑动成分所占的比例。
4、制动器制动力:在轮胎周缘克服制动器摩擦力矩所需的力。
5、侧向力系数:6、稳态横摆角速度增益:稳态横摆角速度与前轮转角之比。
7、汽车的动力因数:是剩余牵引力(总牵引力减空气阻力)和汽车总重之比:8、附着椭圆:驱动力或制动力在不同侧偏角条件下的曲线包络线接近于椭圆,称为附着椭圆。
9、汽车前或后轮(总)侧偏角:包括1)考虑到垂直载荷与外倾角变动等因素的弹性侧偏角;2)侧倾转向角;3)变形转向角。
10、回正力矩:是使转向车轮恢复到直线行驶的主要恢复力矩之一,它是由接地面内分布的微元侧反向力产生的。
11侧偏力和轮胎的侧偏现象:侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风或曲线行驶时的离心力等的作用,车轮中心沿轮胎坐标系Y轴方向有侧向力FY,相应地在地面上产生地面侧向反作用力FY,FY即侧偏力。
侧偏现象:当车轮有侧向弹性时,即使地面侧向反作用力FY没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。
12轮胎坐标系:为了讨论轮胎的力学特性,需要建立一个轮胎坐标系。
规定如下:垂直车轮旋转轴线的轮胎中分平面称为车轮平面。
坐标系的原点O 为车轮平面和地平面的交线与车轮旋转轴线在地平面上投影线的交点。
车轮平面与地平面的交线取为X 轴,规定向前为正。
Z 轴与地面垂直,规定指向上方为正。
Y 轴在地面上,规定面向车轮前进方向时,指向左方为正。
13.侧倾转向:在侧向力作用下车厢发生侧倾,由车厢侧倾所引起的前转向轮绕主销的转动,后轮绕垂直地面轴线的转动,即车轮转向角的变动,称为侧倾转向14.悬架的侧倾角刚度:指侧倾时(车轮保持在地面上),单位车厢转角下,悬架系统给车厢的总弹性恢复力偶矩。
T 为悬架系统作用于车厢的总弹性恢复力偶矩;φr为车厢转角。
可以通过悬架的线刚度或等效弹簧来计算悬架的侧倾角刚度。
15.横摆角速度频率响应特性:在分析汽车的操纵稳定性时,常以前轮转角δ或转向盘转角δsw为输入,汽车横摆角速度ωr为输出,来表征汽车的动特性。
横摆角速度频率响应特性包括幅频特性和相频特性。
16.悬挂质量分配系数:y为车身绕横轴y 的回转半径,a、b 为车身质量至前、后轴的距离。
大部分汽车ε=0.8~1.2 .17.侧偏刚度k:FY −α曲线在α=0°处的斜率称为侧偏刚度k,单位为N/rad . FY =kα .18.高宽比:以百分数表示的轮胎断面高H与轮胎断面宽B 之比100% HB×叫高宽比,又叫扁平率。
19.滑水现象:在一定车速下,汽车经过有积水层的路面时,轮胎将完全漂浮在水膜上面而与路面毫不接触,滑动附着系数ϕs ≈0,侧偏力完全丧失,方向盘和刹车会完全不起作用是一种极度危险的状态。
此即滑水现象。
20汽车的操纵稳定性:指驾驶员在不感到过分紧张、疲劳的条件下,汽车能遵循驾驶员通过转向系及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
21.汽车的平顺性:汽车行驶平顺性,是指汽车在一般行驶速度范围内行驶时,能保证乘员不会因车身振动而引起不舒服和疲劳的感觉,以及保持所运货物完整无损的性能。
22汽车的通过性:汽车能以足够高的平均车速通过各种坏路和无路地带及各种障碍的能力。
描述汽车通过性的几何参数主要包括最小离地间隙、接近角、离去角、纵向通过角等。
23.不足转向、中性转向、过多转向的特点:在转向盘保持一固定转角δsw下,缓慢加速或以不同车速等速行驶时,随着车速的增加,不足转向汽车的转向半径R 增大;中性转向汽车的转向半径维持不变;而过多转向汽车的转向半径越来越小。
操纵稳定性良好的汽车应具有适度的不足转向特性。
二. 填空题02.降低悬架系统固有频率可以减小车身加速度。
这是改善汽车平顺性的基本措施。
04.在侧向力作用下,若汽车前轴左、右车轮垂直载荷变动量较大,汽车趋于增大不足转向量;若后轴左、右车轮垂直载荷变动量较大,汽车趋于减小不足转向量.05.减小俯仰角加速度的办法主要有使悬挂质量分配系数ε﹥1 和使前后悬架交联,轴距加长有利于减小俯仰角振动.07.平顺性要求车身部分阻尼比ζ取较小值,行驶安全性要求取较大值。
阻尼比增大主要使动挠度的均方根值明显下降.10.汽车的稳态转向特性分成三种类型:不足转向,中性转向和过多转向.11.汽车速度越高,时间频率功率谱密度Gq(f)的值越小.13.汽车的重心向前移动,会使汽车的过多转向量减小.14.汽车的时域响应可以分为稳态响应和瞬态响应.15.一般而言,最大侧偏力越大,汽车的极限性能越好,圆周行驶的极限侧向加速度越高.16.减小车轮质量对平顺性影响不大,主要影响行驶安全性.19.对于双轴汽车系统振动,当前、后轴上方车身位移同相位时,属于垂直振动,当反相位时,属于角振动.20. 汽车在弯道行驶中,因前轴侧滑而失去路径跟踪能力的现象称为驶出,后轴侧滑甩尾而失去稳定性的现象称为激转。
24.稳定性因数K 值越小,汽车的过多转向量越大.25.在路面随即输入下,车身各点垂直位移的均方根值,在轴距中心处最小,距轴距中心越远处越大。
32.汽车横摆角速度的频率特性包括相频特性和幅频特性.33.描述道路谱的两种方式为空间频率功率谱和时间频率功率谱.35.最大土壤推力是指地面对驱动轮或履带的切向反作用力.36.由轮胎坐标系有关符号规定可知,负的侧偏力产生正的侧偏角.37.当汽车质心在中性转向点之前时,汽车具有不足转向特性.39.轮胎的气压越高,则轮胎的侧偏刚度越大.(气压过高后刚度不变)41.采用软的轮胎对改善平顺性,尤其是提高车轮与地面间的附着性能有明显好处。
42.汽车前后轮总侧偏角包括弹性侧偏角、变形转向角、侧倾转向角。
43. 具有不足转向特性的汽车,当车速为uch = 1/ K 时,汽车稳态横摆角速度增益达到最大值。
uch即为特征车速。
当不足转向量增大时K增大,uch降低。
44.具有过多转向特性的汽车,当车速为ucr = .1/ K 时,稳态横摆角速度增益趋于无穷大。
ucr 即为临界车速。
ucr 越低,K值越小(即|K|越大),汽车过多转向量越大。
48.汽车悬架系统的固有频率f0降低,则悬架动挠度fd增大。
51.车厢侧倾时,因悬架形式不同,车轮外倾角的变化有三种情况:保持不变、沿地面侧向反作用力方向倾斜、沿地面侧向反作用力作用方向相反方向倾斜。
52.左、右车轮垂直载荷差别越大,平均侧偏刚度越小。
53.为了保持汽车的稳定性,当后轴要侧滑时,应对汽车施加外侧的横摆力偶矩;当前轴要侧滑时,应对汽车施加内侧的横摆力偶矩。
此外还应对汽车施加纵向减速度。
三. 问答题01.分析轮胎结构、工作条件对轮胎侧偏特性的影响?答:1)轮胎的尺寸、形式和结构参数对侧偏刚度有显著影响。
尺寸较大的轮胎侧偏刚度高。
子午线轮胎侧偏刚度高,钢丝子午线轮胎比尼龙子午线轮胎的侧偏刚度还要高些。
2)高宽比对侧偏刚度影响很大,高宽比小的宽轮胎侧偏刚度高。
3)垂直载荷的变化对轮胎侧偏特性有显著影响。
一定范围内增大垂直载荷,轮胎侧偏刚度增大,但垂直载荷过大侧偏刚度反而减小。
4)轮胎的充气压力对侧偏刚度也有显著影响。
随着轮胎充气压力的增大侧偏刚度增大,但气压过高后刚度不变。
5)在一定侧偏角下,驱动力或制动力增加时,侧偏力会逐渐减小。
6)路面粗糙程度、干湿状况对轮胎侧偏特性尤其是最大侧偏力有很大影响,路面有薄水层时,由于滑水现象,会出现完全丧失侧偏力的情况。
7)行驶车速对侧偏刚度的影响很小。
04.在一个车轮上,其由制动力构成的横摆力偶矩的大小,取决于那些因素?答:由制动力构成的横摆力偶矩会使车厢绕车辆坐标系z 轴旋转,从而产生横摆角速度,影响汽车的稳态响应,进而影响汽车的操纵稳定性。
在一个车轮上,由制动力构成的横摆力偶矩的大小取决于以下因素:1)制动器制动力的大小;2)车轮垂直载荷的大小;3)附着(椭)圆规定的纵向力与侧向力的关系;4)车轮相对于汽车质心的位置。
06.分析悬架系统阻尼比ζ对衰减振动的影响.答:悬架系统阻尼比ζ对衰减振动有两方面的影响:1)与有阻尼固有频率ωr有关2ωr =ω0 1−ζ。
2)决定振幅的衰减程度,其中d 为减幅系数。
汽车悬架系统阻尼比ζ的数值通常在0.25 左右,属于小阻尼。
07.试从汽车操纵稳定性的角度出发,分析电控四轮转向系统和车辆稳定性控制系统的控制的实质及特点.答:4WS 汽车转弯行驶时,后两轮也随着前两轮有相应的转向运动。
一般两轮转向汽车(2WS)在中、高速作圆周行驶时,车身后部甩出一点,车身以稍稍横着一点的姿态作曲线运动(如图所示),增加了驾驶者在判断与操作上的困难。
电控4WS 汽车的质心侧偏角总接近与零,车厢与行驶轨迹方向一致,汽车自然流畅地作曲线运动,驾驶者能方便地判断与操作,显著地改善了操纵稳定性。
改变制动力在前、后轴上的分配比例,可以起到控制汽车曲线运动的作用。
车辆稳定性控制系统是以ABS 为基础发展而成的。
系统主要在大侧向加速度、大侧偏角的极限工况下工作。
它利用左、右两侧制动力之差产生的横摆力偶矩来防止出现难以控制的侧滑现象,如在弯道行驶中因前轴侧滑而失去路径跟踪能力的驶出现象以及后轴侧滑甩尾而失去稳定性的激转现象等危险工况,从而显著地改善了汽车的安全性和操纵稳定性。
08.车厢的侧倾力矩由哪几部分组成?答:由以下三部分组成,1)悬挂质量离心力引起的侧倾力矩;2)侧倾后,悬挂质量重力引起的侧倾力矩;3)独立悬架中,非悬挂质量的离心力引起的侧倾力矩;12.汽车横摆角速度的瞬态响应的特点是什么?用什么量来表示?答:有以下几个特点:1)在时间上有滞后(反应时间τ)汽车的横摆角速度要经过一段时间后才能第一次达到稳态横摆角速度ωr0。
用反应时间τ来表示。
τ应小些为好,这样转向响应才迅速。
2)在执行上有误差(超调量最大横摆角速度ωr1常大于稳态值ωr0,称为超调量,它表示执行指令误差的大小。
3)横摆角速度有波动(波动频率ω)横摆角速度ωr以频率ω在ωr0值上下波动。
ω叫做波动频率,它是表征汽车操纵稳定性的一个重要参数,值小些为好。
4)进入稳态需要经历一段时间(稳定时间δ)横摆角速度达到稳态值ωr0的95%~105%之间的时间δ称为稳定时间,它表明进入稳态响应所经历的时间。
16.试从汽车平顺性和安全性的角度出发,分析铝合金轮辋的优点.答:铝合金轮辋与传统钢制轮辋相比,在汽车行驶平顺性和安全性方面主要有以下优点:1)刚性好。
可以有效地减少路面冲击对轮辋形状的破坏,提高行驶安全性;2)散热性能好。