锐角三角比经典练习题附带答案(2套)
锐角三角变换经典练习题附带答案
锐角三角变换经典练习题附带答案锐角三角变换是三角学中的重要概念,是一种将锐角三角函数互相转换的方法。
掌握锐角三角变换可以简化计算过程,提高计算准确性。
下面是一些经典的锐角三角变换练题,附带答案供参考。
1. 计算 $\sin(90° - x)$ 的值。
- 解答:根据余角公式,$\sin(90° - x) = \cos x$。
2. 计算 $\cos(90° - x)$ 的值。
- 解答:根据余角公式,$\cos(90° - x) = \sin x$。
3. 计算 $\tan(90° - x)$ 的值。
- 解答:根据余角公式,$\tan(90° - x) = \cot x$。
4. 计算 $\cot(90° - x)$ 的值。
- 解答:根据余角公式,$\cot(90° - x) = \tan x$。
5. 计算 $\sec(90° - x)$ 的值。
- 解答:根据余角公式,$\sec(90° - x) = \csc x$。
6. 计算 $\csc(90° - x)$ 的值。
- 解答:根据余角公式,$\csc(90° - x) = \sec x$。
以上是锐角三角变换的经典练题及答案。
通过这些练,可以更好地理解锐角三角变换的概念,并熟练运用余角公式进行计算。
锐角三角变换在解决三角函数计算问题中起到了重要的作用,值得深入研究和掌握。
注意:以上答案中的角度单位均为度。
锐角三角变换经典练题附带答案锐角三角变换是三角学中的重要概念,是一种将锐角三角函数互相转换的方法。
掌握锐角三角变换可以简化计算过程,提高计算准确性。
下面是一些经典的锐角三角变换练题,附带答案供参考。
1. 计算 $\sin(90° - x)$ 的值。
- 解答:根据余角公式,$\sin(90° - x) = \cos x$。
沪教版九年级上册数学第二十五章 锐角的三角比含答案(必刷题)
沪教版九年级上册数学第二十五章锐角的三角比含答案一、单选题(共15题,共计45分)1、拦水坝横断面如图所示,迎水坡的坡度(坡的竖直高度与水平宽度的比)是,坝高,则坡面的长度是()A. B. C. D.2、如图,一个梯子靠在垂直水平地面的墙上,梯子AB的长是2米.若梯子与地面的夹角为,则梯子顶端到地面的距离(BC的长)为()A. 米B. 米C. 米D. 米3、已知CD是Rt△ABC斜边AB上的高,AC=8,BC=6,则cos∠BCD的值是()A. B. C. D.4、如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC= ,∠ADC= ,则竹竿AB与AD的长度之比为A. B. C. D.5、如图,⊙O与正方形ABCD是两边AB,AD相切,DE与⊙O相切于点E,若正方形ABCD的边长为5,DE=3,则tan∠ODE为()A. B. C. D.6、如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有()A.2个B.3个C.6个D.7个7、在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.70°B.110°C.120°D.141°8、某人沿倾斜角为30°的斜坡前进50米,则他上升的最大高度为()A.25米B.25 米C.20 米D.25 米9、下列计算结果正确的是()A. (﹣a3)2=a9B. a2•a3=a6C. ﹣22=﹣2D.-=110、在Rt△ABC中,∠C=900,则下列式子成立的是()A.sinA=sinBB.sinA=cosBC.tanA=tanBD.cosA=tanB11、已知Rt△ABC中,∠C=90º,那么cosA表示()的值A. B. C. D.12、国家近年来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD的平台BC上(如图),测得∠AED=52°,BC=5米,CD=35米,DE =19米,则铁塔AB的高度约为(参考数据:sin52°≈0.79,tan52°≈1.28)()A.28米B.29.6米C.36.6米D.57.6米13、对于sin60°有下列说法:①sin60°是一个无理数;②sin60°>sin50°;③sin60°=6sin10°。
锐角三角比练习题
锐角三角比练习题锐角三角比练习题在初中数学中,我们经常会遇到各种各样的三角函数题目。
其中,锐角三角比是一个重要的概念。
锐角三角比指的是对于一个锐角,其正弦、余弦和正切的值。
今天,我们来练习一些锐角三角比的题目,以加深对这个概念的理解。
1. 已知一个锐角的正弦值为0.6,求其余弦值和正切值。
解析:根据三角函数的定义,正弦值表示对边与斜边的比值,即sinA = 对边/斜边。
已知sinA = 0.6,我们可以假设对边为6,斜边为10。
由此可得,余弦值为cosA = 邻边/斜边 = 8/10 = 0.8。
而正切值为tanA = 对边/邻边 = 6/8 = 0.75。
2. 已知一个锐角的余弦值为0.8,求其正弦值和正切值。
解析:根据三角函数的定义,余弦值表示邻边与斜边的比值,即cosA = 邻边/斜边。
已知cosA = 0.8,我们可以假设邻边为8,斜边为10。
由此可得,正弦值为sinA = 对边/斜边 = 6/10 = 0.6。
而正切值为tanA = 对边/邻边 = 6/8 = 0.75。
3. 已知一个锐角的正切值为0.6,求其正弦值和余弦值。
解析:根据三角函数的定义,正切值表示对边与邻边的比值,即tanA = 对边/邻边。
已知tanA = 0.6,我们可以假设对边为6,邻边为10。
由此可得,正弦值为sinA = 对边/斜边= 6/√(6^2+10^2) ≈ 0.6。
而余弦值为cosA = 邻边/斜边= 10/√(6^2+10^2) ≈ 0.8。
通过以上的练习题,我们可以发现,在已知一个锐角的某个三角比的值时,我们可以通过代入合适的数值来求解其他的三角比的值。
这也是解决三角函数题目的常用方法。
在实际生活中,锐角三角比也有着广泛的应用。
例如,我们可以利用正弦函数来计算建筑物的高度,利用余弦函数来计算两个物体之间的距离,利用正切函数来计算山坡的倾斜度等等。
锐角三角比的概念和应用在各个领域都起着重要的作用。
除了以上的练习题,我们还可以进一步深入研究锐角三角比的性质和特点。
10锐角三角比参考答案
第十章 锐角三角比一、选择题【第1题】 (13年1月宝山一模第1题)1、下列各式中,正确的是( )A 、sin 20°+ sin 30°=sin 50°B 、sin 60°=2sin 30°C 、tan 30°tan 60°=1D 、cos 30°<cos 60° 【参考答案】C【第2题】 (13年1月奉贤一模第2题)2.在Rt ABC ∆中,90C ∠=︒,a ,b ,c 分别是,,A B C ∠∠∠的对边,下列等式中正确的是( )A .sin b A c =; B . cos c B a = ; C .tan a A b =; D . cot b B a=; 【参考答案】C【第3题】 (13年1月虹口一模第3题)3、小丽在楼上点A 处看到楼下点B 处的小明的俯角是35°,那么点B 处小明 看点A 处的小丽的仰角的度数是( )A 、35°B 、45°C 、55°D 、65° 【参考答案】A【第4题】 (13年1月虹口一模第5题)5、在△ABC 中,AB =AC =2,∠B =30°,那么BC 等于( )A 、1B 、2CD 、【参考答案】D【第5题】 (13年1月金山一模第3题)3、在Rt △ABC 中,∠C =90°,BC =3,AC =4,那么∠A 的正弦值是( ) A 、34 B 、43 C 、35 D 、45【参考答案】C【第6题】 (13年1月六区统考第2题)2、已知在Rt △ABC 中,90C ∠=︒,A α∠=,AB =2,那么BC 的长等于( ) A 、2sin α B 、2cos α C 、2sin α D 、2cos α【参考答案】A【第7题】 (13年1月六区统考第5题)5、如果乙船在甲船的北偏东40°方向上,丙船在甲船的南偏西40°方向上,那么丙船在乙船的方向是( )A 、北偏东40°B 、北偏西40°C 、南偏东40°D 、南偏西40° 【参考答案】D【第8题】 (13年1月黄浦一模第2题)2、如图,地图上A 地位于B 地的正北方,C 地位于B 地的北偏东50°方向,且C 地到A 地、B 地距离相等,那么C 地位于A 地的( )A 、南偏东50°方向B 、北偏西50°方向C 、南偏东40°方向D 、北偏西40°方向【参考答案】A【第9题】 (13年1月黄浦一模第6题)6、如图,在△ABC 中,∠ACB =90°,CD 为边AB 上的高,已知BD =1,则线段AD 的长是( )A 、2sin AB 、2cos AC 、2tan AD 、2cot A 【参考答案】D【第10题】 (13年1月嘉定一模第2题)2、如图1,在直角坐标平面内有一点(3,4)P ,那么射线OP 与x 轴正半轴的夹角 的余弦值是( ) A 、43 B 、53 C 、35 D 、45【参考答案】C【第11题】 (13年1月普陀一模第5题)5.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为 ( ). (A ) 12; (B )55; (C )255; (D ) 1010. 【参考答案】B【第12题】 (13年1月徐汇一模第1题)CBA(第2题)ABDC(第6题)xy OP .图1(第5题)1、在Rt △ABC 中,∠C =90°,AC =5,AB =13,那么tan A 等于( ) A 、513 B 、512 C 、125 D 、135【参考答案】C【第13题】 (13年1月徐汇一模第3题)3、坡比等于1: )A 、30°B 、45°C 、50°D 、60° 【参考答案】A【第14题】 (13年1月闸北一模第3题)3、在Rt △ABC 中,∠C =90°,B α∠=,AC =b ,那么AB 等于( )A 、cos b α B 、sin b α C 、tan b α D 、cot bα【参考答案】B【第15题】 (13年1月长宁一模第1题)1、已知△ABC 中,∠C =90°,则cosA 等于( ) A 、BC AB B 、BC AC C 、AB AC D 、ACAB【参考答案】D二、填空题【第16题】 (13年1月长宁一模第14题)14、某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是____________。
初三锐角三角比练习题
初三锐角三角比练习题
1. 已知角A为锐角,sinA = 0.75,求cosA和tanA的值。
解析:根据三角恒等式 sin^2A + cos^2A = 1,可以得到 cos^2A = 1 - sin^2A = 1 - 0.75^2 = 1 - 0.5625 = 0.4375。
因为角A为锐角,所以cosA>0,所以cosA = √0.4375 ≈ 0.661。
又根据 tanA = sinA / cosA,可以得到tanA = 0.75 / 0.661 ≈ 1.134。
2. 已知角B为锐角,cosB = 0.6,求sinB和tanB的值。
解析:根据三角恒等式 sin^2B + cos^2B = 1,可以得到 sin^2B = 1 - cos^2B = 1 - 0.6^2 = 1 - 0.36 = 0.64。
因为角B为锐角,所以sinB>0,所以sinB = √0.64 ≈ 0.8。
又根据 tanB = sinB / cosB,可以得到 tanB = 0.8 / 0.6 = 4/3。
3. 若角C为锐角,sinC = 0.8,求cosC和tanC的值。
解析:根据三角恒等式 sin^2C + cos^2C = 1,可以得到 cos^2C = 1 - sin^2C = 1 - 0.8^2 = 1 - 0.64 = 0.36。
因为角C为锐角,所以cosC>0,所以cosC = √0.36 = 0.6。
又根据 tanC = sinC / cosC,可以得到 tanC = 0.8 / 0.6 = 4/3。
综上所述,对于角为锐角的三角函数值,可以通过给定的sin值或cos值来求出其他两个三角函数值。
锐角的三角比测试题及答案
锐角的三角比测试题及答案(三)一、填空题(每小题2分,共40分)1、Rt△ABC中,∠C=90°,BC=5,AB=13,则sinA=__________。
2、Rt△ABC中,∠C=90°,sinA=,则cosA=__________。
3、Rt△ABC中,∠C=90°,sinA=,则tgB=__________。
4、若α为锐角,cosα=,则α=__________度。
5、计算sin230°十cos230°=__________。
6、Rt△ABC中,∠C=90°,BC=2,sinA=,则AC=__________。
7、如图:厂房屋顶的人字架为等腰三角形,若跨度AB=12米,∠A=30°,则中柱CD等于__________米。
8、Rt△ABC中,∠C=90°,c=8,a=6,则最小角正切值为__________。
9、计算=__________。
10、Rt△ABC中,∠C=90°,3a=b,那么cosA的值为__________。
11、等腰三角形腰长、底边长分别为6和8,则底角正弦值为__________。
12、已知:α为锐角,tgα一1=0,则α为__________度。
13、等腰直角三角形ABC中,∠C=90°,AC=BC,则cosA·tgA=__________。
14、等腰三角形底边长为2,底边上高为,则它的顶角为__________度。
15、如图,等腰梯形的铁路路基高6米,斜面与地平面倾斜角30°,路基上底宽10米,则下底宽为__________米。
16、△ABC中,∠C∶∠B∶∠A=1∶2∶3,则三边之比a∶b∶c=__________。
17、等腰三角形顶角为12O°,底边上高为4cm,则此三角形面积为__________。
18、等腰△ABC中,AB=AC=5,BC=6,则sinA=__________。
最新人教版初中数学九年级数学下册第三单元《锐角三角函数》测试卷(包含答案解析)(2)
一、选择题1.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .1052.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( )题目 测量铁塔顶端到地面的高度测量目标示意图 相关数据 10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒ 3.如图,△ABC 的三个顶点均在格点上,则cos A 的值为( )A .12B 5C .2D 25 4.下列计算中错误的是( )A .sin60sin30sin30︒-︒=︒B .22sin 45 cos 451︒+︒=C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒5.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B .3米C .2米D .1米6.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15B .5C .355D .957.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A 2B 5C 5D .28.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()2323232323AC CD -====++-tan22.5°的值为( )A .21+B .2﹣1C .2D .129.西南大学附中初2020级小李同学想利用学过的知识测量棵树的高度,假设树是竖直生长的,用图中线段AB 表示,小李站在C 点测得∠BCA =45°,小李从C 点走4米到达了斜坡DE 的底端D 点,并测得∠CDE =150°,从D 点上斜坡走了8米到达E 点,测得∠AED =60°,B ,C ,D 在同一水平线上,A 、B 、C 、D 、E 在同一平面内,则大树AB 的高度约为( )米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)A .24.3B .24.4C .20.3D .20.410.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .4811.如图所示,矩形ABCD 的边长AB =2,BC =3△ADE 为正三角形.若半径为R 的圆能够覆盖五边形ABCDE (即五边形ABCDE 的每个顶点都在圆内或圆上),则R 的最小值是( )A .23B .4C .2.8D .2.512.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( )A .513B .1213C .512D .125二、填空题13.已知ABC 与ABD △不全等,且3AC AD ==,30ABD ABC ∠=∠=︒,60ACB ∠=︒,则CD =________.14.计算:22303060sin cos tan ︒︒︒+-=__________.15.如图,在矩形ABCD 中,6BC =,4cos 5CAB ∠=, P 为对角线AC 上一动点,过线段BP 上的点M 作EF BP ⊥,交AB 边于点E ,交BC 边于点 F ,点N 为线段EF 的中点,若四边形BEPF 的面积为18,则线段BN 的最大值为 ________ .16.如果在某建筑物的A 处测得目标B 的俯角为37°,那么从目标B 可以测得这个建筑物的A 处的仰角为_____.17.如图, 圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为__________.18.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.19.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,F 为DA 上一点,连接BF ,E 为BF 中点,CD=6,sin ∠ADB=1010,若△AEF 的周长为18,则S △BOE =_____.20.乐乐同学的身高为166cm ,测得他站立在阳光下的影长为83cm ,紧接着他把手臂竖直举起,测得影长为103cm ,那么乐乐竖直举起的手臂超出头顶的长度约为___________cm .三、解答题21.计算:()2tan 451tan 602cos30︒--︒+︒ .22.(1)计算:102272cos30(5)π-︒+-++;(2)解方程:3x 2﹣5x +2=0.23.如图,一次函数y =kx+b (k ,b 为常数,k≠0)的图象与反比例函数15y x=-的图象交于A 、B 两点,且与x 轴交于点C ,与y 轴交于点D ,A 点的横坐标与B 点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB 的面积;(3)求sin ∠OAB 的值.24.sin 30tan 452cos 45sin 60tan 60︒⋅︒︒+︒⋅︒25.如图,O 为ABC 的外接圆,AB 为O 的直径,点D 为BC 的中点.(1)连接OD .求证://OD AC .(2)设OD 交BC 于E ,若43BC =,2DE =.求阴影部分面积. 26.先化简,再求值:2311422a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中10cos302tan 45a ︒=+︒.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质和锐角三角函数定义以及勾股定理,通过转化的数学思想可以求得sin ∠BOD 的值,本题得以解决.【详解】解:连接AE 、EF ,如图所示,则AE ∥CD , ∴∠FAE=∠BOD ,∵每个小正方形的边长为1, 则222222112,2425,3332,AE AF EF =+==+==+=∴△FAE 是直角三角形,∠FEA=90°,∴32310sin 1025EF FAE AF ∠=== ∴310sin 10BOD ∠=故选:B.【点睛】本题考查了解直角三角形、锐角三角函数定义、勾股定理和勾股定理的逆定理等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.2.A解析:A【分析】过D作DH⊥EF于H,则四边形DCEH是矩形,根据矩形的性质得到HE=CD=10,CE=DH,求得FH=x−10,得到CE=x−10,根据三角函数的定义列方程即可得到结论.【详解】过D作DH⊥EF于H,则四边形DCEH是矩形,∴HE=CD=10,CE=DH,∴FH=x−10,∵∠FDH=α=45°,∴DH=FH=x−10,∴CE=x−10,∵tanβ=tan50°=EFCE =-10xx,∴x=(x−10)tan 50°,故选:A.【点睛】本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.3.D解析:D【分析】过B点作BD⊥AC,得AB的长,AD的长,利用锐角三角函数得结果.【详解】解:过B点作BD⊥AC,如图,由勾股定理得,221310+=222222+=cosA=AD AB == 故选D .【点睛】 本题考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键.4.A解析:A【分析】根据特殊角的三角函数值、二次根式的运算即可得.【详解】A、11sin 60sin 303022︒-︒==︒=,此项错误; B、222211sin 45 cos 4512222⎛⎫⎛︒+︒=+=+= ⎪ ⎪ ⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确; 故选:A .【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.B解析:B【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可.【详解】解:设点P 到直线AB 距离PC 为x 米,在Rt APC △中,tan PC AC PAC ==∠, 在Rt BPC △中,tan PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:B .【点睛】 本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.6.A解析:A【分析】根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为55,小正方形的边长为5,∴55cos 55sin 5θθ-=,∴5cos sin θθ-=, ∴()21sin cos 5θθ-=. 故选A .【点睛】 本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出5cos sin 5θθ-=. 7.B解析:B【分析】过A 点作AH ⊥BC 于H 点,先由sin ∠B 及AB=3算出AH 的长,再由tan ∠C 算出CH 的长,最后在Rt △ACH 中由勾股定理即可算出AC 的长.【详解】解:过A 点作AH ⊥BC 于H 点,如下图所示:由1sin =3∠=AH B AB ,且=3AB 可知,=1AH , 由tan =2∠=AH C CH ,且=1AH 可知,12CH =, ∴在Rt ACH ∆中,由勾股定理有:2222151()22=+=+=AC AH CH . 故选:B .【点睛】本题考查了解直角三角形及勾股定理等知识,如果图形中无直角三角形时,可以通过作垂线构造直角三角形进而求解.8.B解析:B【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值.【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x , ()22.5==211+2AC C tan ta D x n D =∠=-︒故选:B.【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.9.B解析:B【分析】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG=EF ,EG=BF ,求得∠EDF=30°,根据直角三角形的性质得到EF=12DE=4,33即可得到结论.【详解】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG =EF ,EG =BF ,∵∠CDE =150°,∴∠EDF =30°,∵DE =8,∴EF =12DE =4,DF =43, ∴CF =CD +DF =4+43,∵∠ABC =90°,∠ACB =45°,∴AB =BC ,∴GE =BF =AB +4+43,AG =AB ﹣4,∵∠AED =60°,∠GED =∠EDF =30°,∴∠AEG =30°,∴tan30°=3443AG GE AB ==++ , 解得:AB =14+63≈24.4,故选:B .【点睛】此题考查解直角三角形的应用-坡度坡角问题,根据题意作出辅助线是解题的关键. 10.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形,160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,22DH AD AC ∴== 2113,24S AC DH AC ∴=•=同理:222333,,44S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C . 【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .11.C解析:C【分析】连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,根据勾股定理可得AC ,根据直角三角形的边角关系可得∠ACB =30°,∠CAD =30°,再根据正三角形的性质可得:∠EAD =∠EDA =60°,AE =AD =DE =3△EAC 是直角三角形,由勾股定理可得EC 的长.判断△EAB ≌△EDC ,根据全等三角形的性质可得EB =EC ,继而根据题意可判断能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE ,从而此圆的圆心到△BCE 的三个顶点距离相等.根据等腰三角形的判定和性质可得F 是BC 中点,BF =CF 3EF ⊥BC ,由勾股定理可得EF 的长,继而列出关于R 的一元二次方程,解方程即可解答.【详解】如图所示,连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,∵四边形ABCD 是矩形,∴∠ABC =∠DAB =∠BCD =∠ADC =90°,AD ∥BC ,AD =BC =AB =CD =2∵BC =AB =2由勾股定理可得:AC 4∴sin ∠ACB =24AB AC ==12,sin ∠CAD =24CD AC ==12∴∠ACB =30°,∠CAD =30°∵△ADE 是正三角形 ∴∠EAD=∠EDA =60°,AE =AD =DE =∴∠EAC =∠EAD +∠CAD =90°,∴△EAC 是直角三角形,由勾股定理可得:EC∵∠EAB =∠EAD +∠BAD =150°∠EDC =∠EDA +∠ADC =150°∴∠EAB =∠EDC∵EA =ED ,AB =DC∴△EAB ≌△EDC∴EB =EC =即△EBC 是等腰三角形∵五边形ABCDE 是轴对称图形,其对称轴是直线EF ,∴能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE .从而此圆的圆心到△BCE 的三个顶点距离相等.设此圆圆心为O ,则OE =OB =OC =R ,∵F 是BC 中点∴BF =CF EF ⊥BC在Rt △BEF 中,由勾股定理可得:EF 5 ∴OF =EF -OE =5-R在Rt △OBF 中,222BF OF OB即()()22235R R +-= 解得:R =2.8∴能够覆盖五边形ABCDE 的最小圆的半径为2.8.故选C .【点睛】本题考查勾股定理的应用、全等三角形的判定及其性质、等腰三角形的判定及其性质、直角三角形的边角关系.解题的关键是理解圆内接五边形的特点,并且灵活运用所学知识. 12.B解析:B【分析】先根据勾股定理求出BC=12,再利用余弦函数的定义即可求解. 【详解】解:在Rt △ABC 中,由勾股定理得,BC 22AB AC -12,∴sin A =1213BC AB =, 故选:B .【点睛】 此题考查勾股定理以及锐角三角函数的定义,解题关键在于计算出BC 的长度.二、填空题13.或3【分析】如图△ABC ≌△ABP 当D′是PB 中点或点D″是BC 的中点时满足条件分别求解即可【详解】解:如图△ABC ≌△ABP ∴∴CAP 共线∴△BPC 是等边三角形当D′是PB 中点时AD′=BP=AC33【分析】如图,△ABC ≌△ABP ,当D′是PB 中点或点D″是BC 的中点时,满足条件,分别求解即可.【详解】解:如图,△ABC ≌△ABP ,3AC AP ==,30ABP ABC ∠=∠=︒,60ACB ∠=︒,∴60APB ∠=︒,90CAB PAB ∠=∠=︒,∴C ,A ,P 共线,BC BP AC AP ===,∴△BPC 是等边三角形, 当D′是PB 中点时,AD′=123ABC 与D'AB 满足条件, ∴D'90C P ∠=︒,∴CD′= PD′tan 60︒3PD′=3,当点D″是BC 的中点时,此时ABC 与D AB "也满足条件,∴3,∴满足条件的CD 的长为33故答案为:33【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是画出符合题意的图形,用分类讨论的思想思考问题. 14.【分析】先根据特殊角的三角函数值化简然后再计算即可【详解】解:===故答案为【点睛】本题考查了特殊角的三角函数值和实数的运算牢记特殊角的三角函数值是解答本题的关键解析:13【分析】先根据特殊角的三角函数值化简,然后再计算即可.【详解】 解:22303060sin cos tan ︒︒︒+-=221332⎛⎫+- ⎪⎝⎭⎝⎭=13344+-=13故答案为1【点睛】本题考查了特殊角的三角函数值和实数的运算,牢记特殊角的三角函数值是解答本题的关键.15.【分析】在△ABC 中求出AC 与AB 的长点P 在AC 上则6≤BP≤8由点N 为线段EF 的中点∠ABC=90º则EF=2BN 根据四边形BEPF 的面积为18利用对角线乘积的一半求面积得BN 与PB 成反比例PB 最 解析:154【分析】在△ABC 中,6BC =,4cos 5CAB ∠=求出AC 与AB 的长,点P 在AC 上 则6≤BP≤8,由点N 为线段EF 的中点,∠ABC=90º,则EF=2BN ,根据四边形BEPF 的面积为18,EF BP ⊥利用对角线乘积的一半求面积得,PB BN=18,BN 与PB 成反比例, PB 最小时,BN 最大,当PB ⊥AC 时,PB 最小,求出最小值即可.【详解】在△ABC 中,6BC =,4cos 5CAB ∠=, ∵22sin cos 1CAB CAB ∠+∠=,∴3sin 5CAB ∠=, 由正弦函数定义BC sin =ACCAB ∠, ∴AC=BC 6==103sin 5CAB ∠,由勾股定理得8==,点P 在AC 上 则6≤BP≤8,∵点N 为线段EF 的中点,由∠ABC=90º,∴EF=2BN ,∵四边形BEPF 的面积为18,EF BP ⊥,∴S 四边形EBFP =11PB EF=PB 2BN=PB BN=1822⨯, ∴PB BN=18, ∴18BN=PB, 当PB 最小时,BN 最大,当PB⊥AC时,PB最小,即S△ABC=11AB BC=AC BP 22BP最小=AB BC8624== AC105BN最大=1815= 2445故答案为:154.【点睛】本题考查锐角三角函数解直角三角形与点到直线距离最短问题,掌握锐角三角函数及其之间的关系,会用锐角三角函数解直角三角形,掌握垂线段最短,会利用面积或勾股定理求BP的最小值,解题时要理解BP最小,BN最大是解题关键.16.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故解析:37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°.【详解】如图,∵某建筑物的A处测得目标B的俯角为37°,∴目标B可以测得这个建筑物的A处的仰角为37°,故答案为:37°.【点睛】考查了解直角三角形,解题关键是理解向下看,视线与水平线的夹角叫俯角;向上看,视线与水平线的夹角叫仰角.17.【分析】根据圆周角定理得由于的直径垂直于弦根据垂径定理得且可判断为等腰直角三角形所以然后利用进行计算【详解】解:∵∴∵的直径垂直于弦∴∴为等腰直角三角形∴∴故答案是:【点睛】本题考查了垂径定理:垂直解析:【分析】根据圆周角定理得245BOC A ∠=∠=︒,由于O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以2CE ==后利用2CD CE =进行计算.【详解】解:∵22.5A ∠=︒∴245BOC A ∠=∠=︒∵O 的直径AB 垂直于弦CD∴CE DE =∴OCE △为等腰直角三角形∴2CE ==∴2CD CE ==.故答案是:【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.18.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:.【分析】连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出、BC=OB ﹣OC=2Rt △ABC 中,根据tan ∠ABO=AC BC 可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt △AOC 中,222221OA AC -=-3∴BC=OB ﹣OC=23∴在Rt △ABC 中,tan ∠ABO=23AC BC =-3 故答案是:3【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键. 19.【分析】根据题意求出AD=18设AF=则BF=在Rt △ABF 中利用勾股定理可求得求出DF=10可求出S △BDF 由三角形中位线定理可求出答案【详解】∵四边形ABCD 是矩形∴AB=CD=6∠BAD=90 解析:152【分析】根据题意求出AD=18,设AF=a ,则BF=18a -,在Rt △ABF 中,利用勾股定理可求得8a =,求出DF=10,可求出S △BDF ,由三角形中位线定理可求出答案.【详解】∵四边形ABCD 是矩形,∴AB=CD=6,∠BAD=90°,OB=OD ,∵sin ∠ADB=1010, ∴610AB BD BD ==, ∴BD 10= ∴()2222610618DA BD AB =-=-=,∵E 为BF 中点,∴AE=BE=EF ,∵△AEF 的周长为18,∴AE+EF+AF=BE+EF+AF=BF+AF=18,设AF=a ,则BF=18a -,在Rt △ABF 中,AB 2+AF 2=BF 2,∴62+a 2=(18a -)2,解得:8a =,∴DF=18-8=10.∵E 为BF 中点,O 为BD 的中点,∴OE ∥DF ,OE=12DF , ∴△BOE∽△BDF , ∴BOEBDF 14SS =, ∵BDF 12S =DF•AB=12×6×10=30, ∴S △BOE =BDF 111530442S =⨯=. 故答案为:152. 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数,相似三角形的判定与性质,中位线定理,三角形的面积等知识,熟练掌握几何基本图形的性质是解题的关键.20.40【分析】如下图利用∠BCA=∠E 可得对应的正切值相等转化为线段比可得BD 长【详解】如下图AB 为乐乐身高BD 是乐乐手臂超出头顶部分AC 是乐乐站立在阳光下的影长AE 是乐乐举起手臂后的影长根据题意AC解析:40【分析】如下图,利用∠BCA=∠E ,可得对应的正切值相等,转化为线段比可得BD 长.【详解】如下图,AB 为乐乐身高,BD 是乐乐手臂超出头顶部分,AC 是乐乐站立在阳光下的影长,AE 是乐乐举起手臂后的影长根据题意,AC=83cm ,AB=166cm ,AE=103cm∵是阳光照射的影长,∴CB ∥ED∴∠BCA=∠E∴tan ∠BCA=tan ∠E ,即:166********BD += 解得:BD=40故答案为:40【点睛】 本题考查三角函数的运用,解题关键是将题干抽象成数学模型,然后再利用三角函数的特点求解.三、解答题21.2.【分析】由特殊角的三角函数值,二次根式的性质,二次根式的加减乘除混合运算进行化简,即可得到答案.【详解】解:tan 452cos30︒︒=11)22-+⨯=11+=2.【点睛】本题考查了特殊角的三角函数值,二次根式的性质,二次根式的加减乘除混合运算,解题的关键是掌握运算法则进行化简.22.(1)32;(2)12213x x ==,. 【分析】(1)先计算负整数指数幂、化简二次根式,代入三角函数值、计算零指数幂,最后计算加减可得答案;(2)利用因式分解法求解即可.【详解】(1)1022cos30)π-︒++1212=+ 112=+ 22=+ (2)∵23520x x -+=,∴()()1320x x --=,则10x -=或320x -=, 解得12213x x ==,. 【点睛】 本题主要考查了实数的混合运算,特殊角的三角函数值,解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.(1)2y x =--;(2)8;(3. 【分析】解:(1)先根据A 、B 两点在反比例函数15y x =-的图象上,求出两点坐标,然后将A ,B 点代入y =kx+b ,即可求出解析式;(2)先求出C 点坐标,然后即可求出面积;(3)先求出D 点坐标,过点O 作OE ⊥AB 于点E ,根据 C (﹣2,0),D (0,﹣2),得出△OCD 是等腰直角三角形,求出OE ,再求出OA ,然后即可求出答案.【详解】解:(1)∵A 、B 两点在反比例函数15y x =-的图象上, ∴153x=-, 解得:x =﹣5,1553y =-=-, 故B (﹣5,3),A (3,﹣5),把A ,B 点代入y =kx+b 得:5335k b k b -+=⎧⎨+=-⎩, 解得:12k b =-⎧⎨=-⎩, 故直线解析式为:y =﹣x ﹣2;(2)y =﹣x ﹣2,当y =0时,x =﹣2,故C 点坐标为:(﹣2,0),则△AOB 的面积为:12×2×3+12×2×5=8; (3)当x =0时,y =﹣2∴D 点坐标为(0,﹣2)过点O 作OE ⊥AB 于点E ,∵ C (﹣2,0),D (0,﹣2),∴△OCD 是等腰直角三角形∴OE=OD·sin45°2,又∵223534OA +=,∴sin ∠OAB=2171734OE OA ==. 【点睛】本题考查了反比例函数和一次函数综合,等腰三角形的定义,勾股定理,锐角三角函数,掌握这些知识点灵活运用是解题关键.24.3【分析】将特殊角的三角函数值代入求解【详解】 解:sin 30tan 452cos 45sin 60tan 60︒⋅︒︒+︒⋅︒ =1231+2+3222⨯ =13+1+22=3【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 25.(1)证明见解析;(2)16433π- 【分析】(1)先根据圆周角定理可得90ACB ∠=︒,再根据垂径定理的推论可得OD 垂直平分BC ,然后根据平行线的判定即可得证;(2)设O 的半径为r ,从而可得,2OB r OE r ==-,再根据垂径定理的推论可得1232BE BC ==Rt OBE 中,利用勾股定理可得r 的值,从而可得OBC ∠的度数,最后利用扇形和三角形的面积公式即可得.【详解】(1)AB 为O 的直径,90ACB ∴∠=︒,即AC BC ⊥, 点D 为BC 的中点,OD ∴垂直平分BC ,//OD AC ∴;(2)设O 的半径为r ,则OB OD OC r ===,2DE =,2OE OD DE r ∴=-=-,由(1)已证:OD 垂直平分BC ,1122BE BC ∴==⨯=在Rt OBE 中,222OE BE OB +=,即222(2)r r -+=,解得4r =,4,2OB OE ∴==,在Rt OBE 中,1sin 2OE OBC OB ∠==, 30OBC ∴∠=︒,又OB OC =,30OCB OBC ,180120BOC OCB OBC ∴∠=︒-∠-∠=︒,则阴影部分面积为21204116236023OBC OBC S Sππ⨯-=-⨯=-扇形 【点睛】本题考查了圆周角定理、垂径定理的推论、扇形的面积公式、正弦三角函数等知识点,熟练掌握并灵活运用各定理和公式是解题关键.26.52a --,3-. 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】10cos302tan 45102122a =+=⨯⨯=︒+︒, ()()()()()()23113132522422222222a a a a a a a a a a a a a a a ⎡⎤-----⎛⎫-÷=-⋅+=⋅+=-⎢⎥ ⎪--++--+--⎝⎭⎢⎥⎣⎦当2a =时,原式== 【点睛】 考查分式的化简求值,关键是化简,掌握运算顺序是化简的关键.。
锐角三角比经典练习题附带答案(2套)
练习一一、选择题(6×4/=24/)1.在ABC Rt ∆中,∠090=C ,2=AB ,1=AC ,则B sin 的值是( )(A )21; (B )22; (C )23; (D )2.2.如果ABC Rt ∆中各边的长度都扩大到原来的2倍,那么锐角∠A 的三角比的值( ) (A ) 都扩大到原来的2倍; (B ) 都缩小到原来的一半; (C ) 没有变化; (D ) 不能确定.3.等腰三角形的底边长10cm ,周长36cm ,则底角的余弦值为……( )(A )125; (B )512; (C )135; (D )1312. 4.在ABC Rt ∆中,∠︒=90C ,31sin =B ,则A tan 的值为……( )(A )113; (B )33; (C )22; (D )31010.5.在Rt △ABC 中,∠C=90°,∠A 的对边为a ,已知∠A 和边a ,求边c ,则下列关系中正确的是…………………………………………………………………( ) (A )A a c sin =; (B )A a c sin =; (C )a=b ⋅tan A ; (D )Aac cos =. 6.在△ABC 中,若22cos =A ,3tan =B,则这个三角形一定是……( )(A )锐角三角形; (B ) 直角三角形; (C )钝角三角形; (C )等腰三角形.二、填空题(12×4/ =48/)7.在Rt ΔABC 中,∠︒=90C , 若AB =5,BC =3,,则A sin = ,=A cos ,=A tan ,8.在ABC Rt ∆中,∠︒=90C ,∠A =30°,AC =3,则BC = .9. 在△ABC 中,∠C =90°,52sin =A ,则sinB 的值是________. 10.有一个坡角,坡度3:1=i ,则坡角=α 11.在ABC Rt ∆中,∠090=C ,21cos =A ,则∠=B . 12.已知P (2,3),OP 与x 轴所夹锐角为α,则tan α=_______ . 13.如图,∆ABC 中,∠ACB =90︒,CD 是斜边上的高,若AC =8,AB =10,18题图tan ∠BCD =___________.14.如图,若人在离塔BC 塔底B 的200米远的A 地测得塔顶B 的仰角是30︒,则塔高BC =___ ___(米精确到1.0,732.13≈)A15.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m ,此时小球距离地面的高度为_________m .16.一个楼梯的面与地面所成的坡角是30︒,两层楼之间的层高3米,若在楼梯上铺地毯,地毯的长度是 米(3=1.732,精确到0.1米).17.如图,已知正方形ABCD 的边长为1.如果将对角线BD 绕着点B 旋转后,点D 落在CB 的延长线上的D '点处,联结D A ',那么cot ∠BAD /__________.18.矩形一边长为5,两对角线夹角为60°,则对角线长为 .三、解答题(3×10/ =30/)19.计算: ︒-︒︒+︒60tan 45cot 30cot 45tan .20.已知直线443y x =+交x 轴于A ,交y 轴于B ,求∠ABO 的正弦值.21.如图,将正方形ABCD 的边BC 延长到点E ,使CE=AC ,AE 与CD 相交于点F . 求∠E 的余切值._ C_14题图B15题图13题图_D ' A D C B 17题图D A四、解答题(4×12/=48/)22.某人要测河对岸的树高,在河边A 处测得树顶仰角是60︒,然后沿与河垂直的方向后退10米到B处,再测仰角是30︒,求河对岸的树高。
状元之路-初中数学培优-锐角的三角比专项训练题含详细答案
锐角的三角比第一套:锐角三角函数和函数的图像培优拔尖第二套:《解直角三角形》基础巩固及详细讲解例题第三套:解直角三角基础试题1第四套:《解直角三角形》基础测试2第五套:《解直角三角形》提高测试1第六套:解直角三角函数培优提高题2第七套:2016年全国各地中考分类解析——解直角三角形第八套:2017年全国各地中考分类解析——解直角三角形第九套:2018年全国各地中考分类解析——解直角三角形第十套:2019年全国各地中考分类解析——解直角三角形第一套:锐角三角函数和函数的图像培优拔尖一、学习目标:(一)1.理解锐角三角函数定义,会用锐角三角形定义列出函数关系式解直角三角形.2.了解锐角三角函数的四个同角间的函数恒等式,并会解一些相关的题目.3.理解锐角三角函数的性质,会比较在某个范围内正弦和正弦,正弦和余弦, 正切和正切,正切和余切的大小,及利用函数值的大小判断角的大小.4.熟记特殊角的三角函数组,并会准确的计算.5.会用解直角三角形的有关知识,解某些实际问题.(二)1.了解平面直角坐标系的有关概念,会由点的位置确定点的坐标,会由点的坐标确定点的位置.2.理解函数的意义,能根据一个具体的函数解析式,确定自变量的取值范围, 并会由自变量的值求出函数值.3.掌握正比例函数、反比例函数、一次函数、二次函数的概念及性质,会画出图象.4.能根据不同条件,用待定系数法求函数解析式.二、基础知识及需说明的问题:1.利用直角三角形边角之间的关系来解直角三角形,最主要的是记住定义。
譬如说,我们要求直角三角形中一个锐角的度数,需根据已知条件是这个角的哪些边来选择函数定义,若已知直角三边形的一个锐角和一边长求另一边长也是如此.2.正弦、正切函数都是增函数。
即当角度在00-- 900间变化时,正弦、正切值随着角度的增大而增大。
如:化简)450()cos (sin 002<<-ααα,我们先将此式由性质化简|cos sin |)cos (sin 2αααα-=-,然后看是αsin 大还是αcos 大.不妨在00450<<α中取040=α,则040sin sin =α,0050sin 40cos cos ==α(化成同名三角函数)∵0050sin 40sin <,∴0040cos 40sin <,这说明ααcos sin <,0cos sin <-αα.∴ααααααsin cos |cos sin |)cos (sin 2-=-=-(负数的绝对值是其相反数)。
锐角三角比练习题及答案
锐角三角比练习题及答案锐角三角比是高中数学中的重要知识点,它是指在一个锐角三角形中,两个较小的角的正弦、余弦、正切值的比例关系。
在这篇文章中,我将为您提供一些锐角三角比的练习题以及它们的答案,帮助您进一步熟悉和巩固这一知识点。
练习题一:已知三角形ABC中,∠A为锐角,AB=10cm,BC=8cm。
求∠B和∠C的正弦、余弦、正切值。
解答一:首先,我们需要计算出∠B和∠C的度数。
根据三角形内角和定理可得∠B+∠C=180°-∠A=180°-x,其中x为∠A的度数。
由此可得∠B=∠C=90°-x/2。
接下来,我们可以根据三角比的定义来求解正弦、余弦、正切值。
1. 正弦值:sin(∠B)=sin(∠C)=BC/AB=8/10=0.82. 余弦值:cos(∠B)=cos(∠C)=AC/AB=√(AB²-BC²)/AB=√(10²-8²)/10=√(36)/10=0.63. 正切值:tan(∠B)=tan(∠C)=sin(∠B)/cos(∠B)=0.8/0.6=4/3练习题二:在锐角三角形ABC中,∠A=30°,AC=6cm。
求∠B和∠C的正弦、余弦、正切值。
解答二:首先,在这个题目中,我们已经知道了∠A的度数和AC的长度。
根据锐角三角形中的角度关系可得∠B=90°-∠A/2=90°-15°=75°,∠C=90°-∠A/2=90°-15°=75°。
接下来,我们可以应用三角比的定义来求解正弦、余弦、正切值。
1. 正弦值:sin(∠B)=sin(∠C)=BC/AC,其中BC为三角形BC边的长度。
由于题目中没有给出BC的值,所以无法求解。
2. 余弦值:cos(∠B)=cos(∠C)=AB/AC,其中AB为三角形AB边的长度。
由于题目中没有给出AB的值,所以无法求解。
锐角三角比经典练习题附带答案
练习一一、选择题(6×4/=24/)1.在ABC Rt ∆中,∠090=C ,2=AB ,1=AC ,则B sin 的值是( )(A )21; (B )22; (C )23; (D )2.2.如果ABC Rt ∆中各边的长度都扩大到原来的2倍,那么锐角∠A 的三角比的值( ) (A ) 都扩大到原来的2倍; (B ) 都缩小到原来的一半; (C ) 没有变化; (D ) 不能确定.3.等腰三角形的底边长10cm ,周长36cm ,则底角的余弦值为……( )(A )125; (B)512; (C)135; (D)1312. 4.在ABC Rt ∆中,∠︒=90C ,31sin =B ,则A tan 的值为……( )(A )113; (B )33; (C )22; (D )31010.5.在Rt △ABC 中,∠C=90°,∠A 的对边为a ,已知∠A 和边a ,求边c ,则下列关系中正确的是…………………………………………………………………( ) (A )A a c sin =; (B )A a c sin =; (C )a=b tan A ; (D )Aac cos =. 6.在△ABC 中,若22cos =A ,3tan =B,则这个三角形一定是……( )(A )锐角三角形; (B ) 直角三角形; (C )钝角三角形; (C )等腰三角形.二、填空题(12×4/ =48/)7.在Rt ΔABC 中,∠︒=90C , 若AB =5,BC =3,,则A sin = ,=A cos ,=A tan ,8.在ABC Rt ∆中,∠︒=90C ,∠A =30°,AC =3,则BC = .9. 在△ABC 中,∠C =90°,52sin =A ,则sinB 的值是________. 10.有一个坡角,坡度3:1=i ,则坡角=α 11.在ABC Rt ∆中,∠090=C ,21cos =A ,则∠=B . 12.已知P (2,3),OP 与x 轴所夹锐角为,则tan=_______ .13.如图,ABC 中,ACB =90,CD 是斜边上的高,若AC =8,AB =10,6m 15m 18题图tan BCD =___________.14.如图,若人在离塔BC 塔底B 的200米远的A 地测得塔顶B 的仰角是30,则塔高BC =___ ___(米精确到1.0,732.13≈)15.i=1:3的坡面向上前进了10m ,此时小球距离地面的高度为_________m.16.一个楼梯的面与地面所成的坡角是30,两层楼之间的层高3米,若在楼梯上铺地毯,地毯的长度是 米(3=,精确到0.1米).17.如图,已知正方形ABCD 的边长为1.如果将对角线BD 绕着点B 旋转后,点D 落在CB 的延长线上的D '点处,联结D A ',那么cot BAD /__________.18.矩形一边长为5,两对角线夹角为60°,则对角线长为 .三、解答题(3×10/ =30/)19.计算: ︒-︒︒+︒60tan 45cot 30cot 45tan .20.已知直线443y x =+交x 轴于A ,交y 轴于B ,求ABO 的正弦值.21.如图,将正方形ABCD 的边BC 延长到点E ,使CE=AC ,AE 与CD 相交于点F . 求∠E 的余切值._C _A 14题图B15题图13题图_D ' A D C B 17题图EFBCD A21题图四、解答题(4×12/=48/)22.某人要测河对岸的树高,在河边A 处测得树顶仰角是60,然后沿与河垂直的方向后退10米到B处,再测仰角是30,求河对岸的树高。
锐角三角比经典练习题附带问题详解(2套)
练习一一、选择题(6×4/=24/)1.在ABC Rt ∆中,∠090=C ,2=AB ,1=AC ,则B sin 的值是( )(A )21; (B )22; (C )23; (D )2.2.如果ABC Rt ∆中各边的长度都扩大到原来的2倍,那么锐角∠A 的三角比的值( ) (A ) 都扩大到原来的2倍; (B ) 都缩小到原来的一半; (C ) 没有变化; (D ) 不能确定.3.等腰三角形的底边长10cm ,周长36cm ,则底角的余弦值为……( )(A )125; (B)512; (C)135; (D)1312. 4.在ABC Rt ∆中,∠︒=90C ,31sin =B ,则A tan 的值为……( )(A )113; (B )33; (C )22; (D )31010.5.在Rt △ABC 中,∠C=90°,∠A 的对边为a ,已知∠A 和边a ,求边c ,则下列关系中正确的是…………………………………………………………………( ) (A )A a c sin =; (B )A a c sin =; (C )a=b ⋅tan A ; (D )Aac cos =. 6.在△ABC 中,若22cos =A ,3tan =B,则这个三角形一定是……( )(A )锐角三角形; (B ) 直角三角形; (C )钝角三角形; (C )等腰三角形.二、填空题(12×4/ =48/)7.在Rt ΔABC 中,∠︒=90C , 若AB =5,BC =3,,则A sin = ,=A cos ,=A tan ,8.在ABC Rt ∆中,∠︒=90C ,∠A =30°,AC =3,则BC = .9. 在△ABC 中,∠C =90°,52sin =A ,则sinB 的值是________. 10.有一个坡角,坡度3:1=i ,则坡角=α 11.在ABC Rt ∆中,∠090=C ,21cos =A ,则∠=B . 12.已知P (2,3),OP 与x 轴所夹锐角为α,则tan α=_______ .13.如图,∆ABC 中,∠ACB =90︒,CD 是斜边上的高,若AC =8,AB =10,tan ∠BCD =___________.18题图14.如图,若人在离塔BC 塔底B 的200米远的A 地测得塔顶B 的仰角是30︒,则塔高BC =___ ___(米精确到1.0,732.13≈)15.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m ,此时小球距离地面的高度为_________m.16.一个楼梯的面与地面所成的坡角是30︒,两层楼之间的层高3米,若在楼梯上铺地毯,地毯的长度是 米(3=1.732,精确到0.1米).17.如图,已知正方形ABCD 的边长为1.如果将对角线BD 绕着点B 旋转后,点D 落在CB 的延长线上的D '点处,联结D A ',那么cot ∠BAD /__________.18.矩形一边长为5,两对角线夹角为60°,则对角线长为 .三、解答题(3×10/ =30/)19.计算: ︒-︒︒+︒60tan 45cot 30cot 45tan .20.已知直线443y x =+交x 轴于A ,交y 轴于B ,求∠ABO 的正弦值.21.如图,将正方形ABCD 的边BC 延长到点E ,使CE=AC ,AE 与CD 相交于点F . 求∠E 的余切值.A_ C_14题图B15题图13题图_D ' A D C B 17题图FD A四、解答题(4×12/=48/)22.某人要测河对岸的树高,在河边A 处测得树顶仰角是60︒,然后沿与河垂直的方向后退10米到B处,再测仰角是30︒,求河对岸的树高。
沪教版(上海)九年级上册数学 第二十五章 锐角的三角比 单元测试卷(含答案)
第二十五章 锐角的三角比 单元测试卷一、选择题:1、等腰三角形底边长为10cm ,周长为36cm ,则底角的正弦值为( )。
A 、185 B 、165 C 、1513 D 、13122、在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( ) A 也扩大3倍 B 缩小为原来的31C 都不变D 有的扩大,有的缩小 3、以直角坐标系的原点O 为圆心,以1为半径作圆。
若点P 是该圆上第一象限内的一点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为 ( ) A (cosα,1) B (1,sinα) C (sinα,cosα) D (cosα,sinα)4.如图所示,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得∠BAD =30°,在C 点测 得∠BCD =60°,又测得AC =50米,那么小岛B 到公路l 的距离为( ).A .25米B .253米C .10033米 D .25253 5、已知a 为锐角,sina=cos500则a 等于( ) A 20° B 30° C 40° D 50°6、若tan(a+10°)=3,则锐角a 的度数是( )A 、20°B 、30°C 、35°D 、50°7、在△ABC 中,∠C=90°,则下列关系成立的是( )A. AC=ABsinAB. BC=ACsinBC. AC=ABsinBD. AC=BCtanA 8、已知sin α=23,且α为锐角,则α=( )。
A 、75° B 、60° C 、45° D 、30° 9、如图,△ABC 中AB=AC=4,∠C=72°,D 是AB 中点,点E 在AC 上,DE ⊥AB ,则cosA 的值为( )A .B .C .D .10、如果∠A 是等边三角形的一个内角,那么cosA 的值等于( )。
第二十五章 锐角的三角比数学九年级上册-单元测试卷-沪教版(含答案)
第二十五章锐角的三角比数学九年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、在中,,则下列结论正确的是()A. B. C. D.2、已知α为锐角,且sinα=,那么α的余弦值为()A. B. C. D.3、已知为锐角,且,则()A. B. C. D.4、如图所示,Rt△ABC∽Rt△DEF,则cosE的值等于()A. B. C. D.5、sin30°的值为()A. B. C. D.6、如图,A、B、C是小正方形的顶点,且每个小正方形的边长为l,则tan∠BAC为()A. B. C. D.17、如图,在平面直角坐标系中,点A,P分别在x轴、y轴上,点B的坐标为,是等边三角形,将线段绕点P顺时针旋转得到线段,则点C的坐标为()A. B. C. D.8、在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A.都不变B.都扩大5倍C.正弦扩大5倍、余弦缩小5倍D.不能确定9、如图,AB切⊙O于点B,OA=2 、,AB=3,弦BC∥OA,则劣弧BC的弧长为()A. B. C.π D.10、3月20日,深圳市民中心及周边楼宇为当日返回深圳的援鄂医疗队员亮灯,欢迎最美逆行者回家.小洪在欢迎英雄回家现场,如图,若他观测到英雄画像电子屏顶端A和底端C的仰角分别为∠α和∠β,小洪所站位置E到电子屏边缘AC垂直地面的B点距离为m 米,那么英雄画像电子屏高AC为()A. 米B. m•tan(α﹣β)米C. m(tanα﹣tanβ)米D. 米11、如图,是半径为1的半圆弧,△AOC为等边三角形,D是上的一动点,则△COD 的面积S的最大值是()A.s=B. s=C. s=D. s=12、已知sin = ,且是锐角,则等于()A.75°B.60°C.45°D.30°13、已知锐角满足关系式,则的值为()A. 或B.C.D.14、如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则DM的长为()A.3B.C.D.115、如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一一、选择题(6×4/=24/)1.在ABC Rt ∆中,∠090=C ,2=AB ,1=AC ,则B sin 的值是( )(A )21; (B )22; (C )23; (D )2.2.如果ABC Rt ∆中各边的长度都扩大到原来的2倍,那么锐角∠A 的三角比的值( ) (A ) 都扩大到原来的2倍; (B ) 都缩小到原来的一半; (C ) 没有变化; (D ) 不能确定.3.等腰三角形的底边长10cm ,周长36cm ,则底角的余弦值为……( )(A )125; (B )512; (C )135; (D )1312. 4.在ABC Rt ∆中,∠︒=90C ,31sin =B ,则A tan 的值为……( )(A )113; (B )33; (C )22; (D )31010.5.在Rt △ABC 中,∠C=90°,∠A 的对边为a ,已知∠A 和边a ,求边c ,则下列关系中正确的是…………………………………………………………………( ) (A )A a c sin =; (B )A a c sin =; (C )a=b ⋅tan A ; (D )Aac cos =. 6.在△ABC 中,若22cos =A ,3tan =B,则这个三角形一定是……( )(A )锐角三角形; (B ) 直角三角形; (C )钝角三角形; (C )等腰三角形.二、填空题(12×4/ =48/)7.在Rt ΔABC 中,∠︒=90C , 若AB =5,BC =3,,则A sin = ,=A cos ,=A tan ,8.在ABC Rt ∆中,∠︒=90C ,∠A =30°,AC =3,则BC = .9. 在△ABC 中,∠C =90°,52sin =A ,则sinB 的值是________. 10.有一个坡角,坡度3:1=i ,则坡角=α 11.在ABC Rt ∆中,∠090=C ,21cos =A ,则∠=B . 12.已知P (2,3),OP 与x 轴所夹锐角为α,则tan α=_______ . 13.如图,∆ABC 中,∠ACB =90︒,CD 是斜边上的高,若AC =8,AB =10,6m 15m 18题图tan ∠BCD =___________.14.如图,若人在离塔BC 塔底B 的200米远的A 地测得塔顶B 的仰角是30︒,则塔高BC =___ ___(米精确到1.0,732.13≈)15.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m ,此时小球距离地面的高度为_________m .16.一个楼梯的面与地面所成的坡角是30︒,两层楼之间的层高3米,若在楼梯上铺地毯,地毯的长度是 米(3=1.732,精确到0.1米).17.如图,已知正方形ABCD 的边长为1.如果将对角线BD 绕着点B 旋转后,点D 落在CB 的延长线上的D '点处,联结D A ',那么cot ∠BAD /__________.18.矩形一边长为5,两对角线夹角为60°,则对角线长为 .三、解答题(3×10/ =30/)19.计算: ︒-︒︒+︒60tan 45cot 30cot 45tan .20.已知直线443y x =+交x 轴于A ,交y 轴于B ,求∠ABO 的正弦值.21.如图,将正方形ABCD 的边BC 延长到点E ,使CE=AC ,AE 与CD 相交于点F . 求∠E 的余切值.CABD_ C_ A14题图B15题图13题图_D ' A D C B 17题图EFBCD A21题图四、解答题(4×12/=48/)22.某人要测河对岸的树高,在河边A 处测得树顶仰角是60︒,然后沿与河垂直的方向后退10米到B处,再测仰角是30︒,求河对岸的树高。
(精确到0.1米).23.如图所示,秋千链子的长度为3m ,静止时的秋千踏板(大小忽略不计)距地面0.5m .秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为︒53,则秋千踏板与地面的最大距离约为多少?(参考数据:≈0.8,≈0.6)24.某风景区内有一古塔AB ,当光线与水平面的夹角是30°时,线与地面的夹角是45°时,塔尖A 在地面上的影子E 与墙角C 有15米的距离(B 、E 、C 在一条直线上),求塔AB 的高度(结果保留根号).23题图A24题图25.如图,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若10,31tan =+=∠CE DC AEN .(1)求△ANE 的面积;(2)求sin ∠ENB 的值.锐角的三角比参考答案1. A ; 2. C ; 3. C ; 4. C ; 5. B ; 6. A . 7.35;45;34; 8.3; 9. 221 10.30°; 11.30︒; 12.32; 13.34; 14.115.5米; 1516.8.2; 17.2; 18.10或3310. 19.解:原式=…………………………………………4分=42+- ……………………………4分 =-2-3 …………………2分20. 解:令x =0 ,得y =4. 令y=0 ,得x = —3.则A (- 3,0),B (0,4)……………………………2分 ∴OA =3,OB =4.BCD AME 第25题图N∵∠AOB =90°.∴AB =5…………………………2分 ∴ sin ∠ABO =OAAB……………………………………4分 =35.………………………2分21.解: 设正方形边长为a ,则AB=BC= a ………………………………………1分∵四边形ABCD 是正方形 ∴∠B =90° ∴AC=a …………………4分∴CE=ACa …………………………………2分 ∴cot ∠E =BEAB+1 ………………………3分 22. 解:如图,由题意得∠CAD =60°,∠CBD =30°,AB =10米,设AD =x 米, ………2分 在Rt ΔACD 中CD=AD ·tan ∠CAD =3x …………………………………4分 在Rt ΔACD 中BD=CD·cot ∠CBD=3x …………………………………3分 ∴AB=2x =10∴x =5 ∴CD =3x =53≈8.7…………………………2分 答:河对岸的树高约为8.7米. …………………………1分23.解:过C作CD ⊥AB 于D则∠ADC =90°……………………………1分在Rt △ACD 中∵cos ∠DAC =ADAC…………………………………………4分 ∴AD =3·cos530≈1.8…………………………………2分 ∴BD=BA-AD =3-1.8=1.2…………………………………2分 ∴1.2+0.5=1.7(m) …………………………………………2分答:秋千踏板与地面的最大距离约为1.7米……………………………………1分24.解:过点D 作DF ⊥AB ,垂足为点F .…………………………………………1分∵AB ⊥BC ,CD ⊥BC ,∴四边形BCDF 是矩形,∴BC =DF ,CD =BF .……2分 设AB =x 米,在Rt △ABE 中,∠AEB =∠BAE =45°,∴BE =AB =x .……2分B在Rt △ADF 中,∠ADF =30°.AF =AB -BF =x -3, ∴DF =AF ·cot30°=3(x -3).……4分 ∵DF =BC =BE +EC ,∴3(x -3)=x +15, ∴x =12+93 ……………………………2分. 答:塔AB 的高度是(12+93)米.…1分25.解:∵31tan tan =∠=∠EAN AEN ----------------------1分 ∴ 设 BE=a ,AB=3a ,则CE=2a∵ DC+CE =10, 3a+2a =10,∴a =2. ----------------------2分∴BE =2,AB =6,CE =4. ∵10,102364=∴=+=AG AE .----------------------1分又310,31=∴=NG AG NG .----------------------1分 ∴ ()3103101022=⎪⎪⎭⎫ ⎝⎛+=AN ----------------------2分 ∴ 310231021=⨯⨯=∆ANE S ----------------------2分 sin .533102===∠NE EB ENB ----------------------3分练习二一、填空题(每小题4分,共40分) 1、已知:为锐角,,则____________度。
2、已知:为锐角,,则____________。
3、在Rt△ABC中,∠C=90°,BC=2,,则AC=____________。
4、在Rt△ABC中,∠C=90°,斜边AB是直角边BC的4倍,则____________。
5、计算____________。
6、计算____________。
7、等边三角形一边长为a,则这边上的高为____________;面积为____________。
8、如图,△ABC 中,∠C=90°,CD为斜边AB上的高,BD=4,CD=2,则____________。
9、为锐角,且关于的方程有两个相等的实数根,则为____________度。
10、在Rt△ABC 中,两条直角边之比为7∶24,则最小角的正弦值为____________。
二、选择题(每小题4分,共12分)1、已知:是锐角,,则等于()。
(A)30°;(B)45°;(C)60°;(D)90°2、在Rt△ABC 中,∠C=90°,∠A=30°,那么等于()。
(A)1;(B);(C);(D)。
3、已知:是△ABC的三边,并且关于的方程有两个相等实根,则△C形状是()。
(A)锐角三角形;(B)直角三角形;(C)钝角三角形;(D)不能确定。
三、(每小题8分,共24分)1、如图,△ABC中,∠B=45°,∠C=30°,BC=4+2,求边AB、AC长。
2、如图,△ABC中,∠C=90°,D是BC边上一点,且BD=DA=6,∠ADC =60°,求AB长。
3、如图,△ABC中,AB=AC,BD⊥AC,D为垂足,,(1)求的值;(2)如果△ABC周长18,求△ABC面积。