随机振动(振动频谱)计算(Random Vibration)
《随机振动基础》课件
随机振动是指具有随机特性的振动现象。本课件将介绍随机振动的基础知识, 包括其应用、分类、相关概念、数学模型、计算方法、统计特性等内容。
什么是随机振动
随机振动是在振动过程中存在不确定性的振动现象。它不仅包含确定性成分,还包含具有随机特性的成分。
随机振动的应用
随机振动在工程和科学研究领域中有着广泛的应用,包括结构动力学、地震工程、风振分析、机械系统设计等。
通过对随机振动信号的统计分析,计算平均值和 方差来描述其特性。
通过计算随机振动信号的自相关函数,了解其在 时间领域上的相关性。
通过计算随机振动信号的谱密度函数,了解其在 频率领域上的特性。
探讨随机振动信号的偏度、峭度等统计特性对振 动响应的影响。
介绍一些实际工程中的应用案例,展示随机振动 分析的重要性。
总结
• 随机振动在工程和科学领域中具有重要的应用价值。 • 随机振动的研究和发展将推动相关技术的创新和进步。 • 鼓励学习随机振动相关技术,为工程领域的发展做出贡献。
随机振动的分类
• 自由振动和强迫振动 • 线性振动和非线性振动 • 单自由度振动和多自由度振动 • 离散振动和连续振动
相关概念
ቤተ መጻሕፍቲ ባይዱ
1 随机过程
一组随机变量按照一定的时间或空间顺序排 列而形成的序列。
2 随机变量
在某个随机试验中可能的不同结果,用于描 述随机现象。
3 随机分布
随机变量的取值及其对应的概率值的分布函 数。
平稳随机过程
在统计意义下不随时 间变化的随机过程, 具有平均值和自相关 函数与时间无关。
正交展开
将随机过程分解成一 系列正交基函数的线 性组合,便于分析和 计算。
随机振动与谱分析
h
12
• 频率响应函数
频率响应函数是对线性结构系统动分析,振动控制以及故障诊断 等领域有着广泛的应用。
通过对其处理,可以获得系统的固有频率、 阻尼比以及各阶振型等相关参数。
h
13
h
9
• 用相关分析法分析复杂信号的频谱
利用相关分析法分析信号频谱的工作原理框图
根据测试系统的频谱定义
= ,可知,当改变送入到测试系统(这里就是
指互相关分析仪)的已知正弦信号X( )的频率(由低频到高频进行扫描)时,其相关函
数输出就表征了被分析信号所包含的频率成分及所对应的幅值大小,即获得了被
分析信号的频谱。
随机振动与谱分析
h
1
相关概念
•
n 谱分析
谱分析就是
物理量随频
系统的振动
率分布的分 析。
h
2
•
实质:把波形分解成一系列不同频率的正弦 波之和。从而可以进行频谱分析。
h
3
h
4
重要的函数
时间域 脉冲响应函数 自相关函数 互相关函数
频率域 频率响应函数 自功率谱密度 互功率谱密度
h
5
自相关函数和自功率谱密度
• 自相关函数的功能:
自相关函数用于检测混淆于随机过程中确定性数据的工具,从相关函 数的图形,通过计算可以判断信号的性质。
h
6
• 自功率谱密度函数
概念:每单位频带宽内的均方值,即相当于能量。 所以其表征着能量按频率的分布情况。 功能: (1)分析振动频率的成分和结构。 (2)其反应了载荷在各频率成分上的振动能量 与振幅,因为决定了载荷谱。 (3)对故障的判断与分析。
h
11
脉冲响应函数和频率响应函数
随机振动-试验人员必须了解的参数及设置
随机振动-试验人员必须了解的参数及设置江苏省电子信息产品质量监督检验研究院谢杰一.简述近年来,随机振动试验在我院所有振动试验中的比例越来越高,原因有三:1、科学进步,此类设备的软件大量普及,一般只需在原来的电磁振动台加上一套控制软件及配套设备就可实行。
2、企业随着国际标准的大量采用,许多振动试验都采用随机振动。
3、随机振动相对传统的正弦振动有着无法比拟的优点,它能模拟各种实际运输条件下可能遇到的振动情况,如模拟公路运输,模拟铁路运输,模拟海运运输等等。
本文主要介绍对于试验人员来说必须了解的随机振动参数及设置要求。
二.随机振动数据上图是某一随机振动试验后的试验数据,对于试验人员来说,必须了解其中的一些参数含义。
曲线中,横坐标是频率,纵坐标是PSD,一般简称为频谱曲线。
PSD:Power spectrum density 功率谱密度PSD单位有二种:g2/Hz,(m2/Hz)2/Hz,二者之间换算:1 g2/Hz=96(m2/Hz)2/Hz PSD是随机振动中的重要参数,可理解为每频率单位中所含振动能量的大小,其值越大,相对应的频率段振幅值会变大,在试验中提高最低频率的PSD 值可明显感觉到振幅增大。
频谱曲线的特点:1、它是对数坐标,主要是为了表述画线方便。
2、它有一条平线或多条平线及斜线组成,平线和斜线之间首尾相连组成。
3、试验条件中,PSD值不变的是平线,用+dB/oct表示向上的斜线,用- dB/oct 表示向下的斜线。
如-3 dB/oct 表示每增加一倍频率,PSD值下降一半。
频谱曲线中,中间一条是设定曲线,上面二条和下面二条是设备的保护及中断线,附加在中间设定值上的变化曲线是振动台实际控制曲线。
三.频率的选择频率是随机振动的另一个重要参数,其单位是Hz,频率的选择一般与实践使用范围有关。
例如:海运试验条件频率较低,一般从1~100Hz,而且低频PSD 值较大,随机振动的感觉像乘海轮,振幅大,频率低。
随机振动基础知识
随机振动基础知识目录一、内容描述 (2)1.1 定义与特点 (2)1.2 研究背景与意义 (3)1.3 振动基础知识的引入 (4)二、随机振动理论基础 (5)2.1 随机过程基本概念 (7)2.2 随机变量的统计特性 (8)2.3 随机信号的描述与分析 (9)三、随机振动信号分析 (10)3.1 随机振动信号的分类 (11)3.2 信号的频谱分析 (12)3.3 信号的时频分析 (13)四、随机振动系统的建模与特性分析 (15)4.1 系统建模方法 (16)4.2 系统传递函数与响应特性 (17)4.3 系统稳定性分析 (18)五、随机振动系统的分析与控制策略 (20)5.1 振动系统分析方法 (21)5.2 振动控制策略设计 (22)5.3 控制策略性能评估与优化 (23)六、随机振动实验与测试技术 (24)6.1 实验设计原则与方法 (26)6.2 振动测试技术介绍 (27)6.3 实验数据处理与分析方法 (28)七、随机振动在各个领域的应用实例分析 (29)7.1 机械工程领域应用实例 (31)7.2 土木工程领域应用实例分析 (32)一、内容描述随机振动是指在没有外力作用下,物体由于内部分子或原子的热运动而产生的振动。
这种振动具有随机性和无规律性,是自然界中普遍存在的现象。
随机振动的基本知识包括振动的概念、类型、周期、频率、振幅等基本概念和计算方法。
还涉及到随机振动的稳定性、能量传递、阻尼等现象及其影响因素。
本文档将详细介绍随机振动的基础理论,包括振动方程、波动方程、阻尼振动等内容,并通过实例分析来帮助读者更好地理解和掌握随机振动的基本原理。
1.1 定义与特点随机振动是一种振动模式,其振幅、频率和相位随时间变化,且没有规律性。
与确定性振动(如规则的正弦波或方波振动)不同,随机振动往往由多种频率成分组成,这些成分具有一定的概率分布。
在随机振动分析中,这一特性通常通过功率谱密度函数来描述。
随机振动的一个显著特点是它在时间域内的非周期性和随机性,以及在频率域内的频谱均匀分布。
机械可靠度试验(Vibration-drop-shock)+...
機械可靠度試驗簡介一、振动试验1.振动试验概要振动试验是评估产品在运输及使用过程中承受振动环境的适应能力,模拟产品可能遭遇的最严酷环境,为产品的设计验证,品质验证提供失效机理分析,失效统计,保证产品具有更高的可靠性水平。
振动试验要求越来越多,其背景具体体现如下:1.1 新材料,新工艺的应用。
1.2 整机小型化使元器件密集度更高,更容易受到外部振动影响。
1.3 便携式、车载、机载、航天、经济全球化的物流环境,产品使用环境已变得更加苛刻和无法估计。
2.振动试验的分类。
振动是物体围绕平衡位置,作往复运动的一种运动形式。
通常用一些物理量(如位移、速度、加速度、频率等)随时间变化的函数式来表示振动时间历程。
2.1名詞述語:载具——承载产品用的运输工具或平台。
振动试验是一种以模拟载具的试验形式,所以不同的载具表现出的振动特性各不相同,各种载具的振动环境如下:註:振动试验不会因为产品之不同而有不同的振动试验规则,而是因为载具不同而有不同的振动试验规则。
2.1.1车载——5---500Hz汽车运输主要的振动来源于路况,发动机的转速,行驶系统的激振力,这几个方面振动频宽在5——500Hz之间,但由于充气轮胎本身具有较强的减震能力,是一个较好的高频减震器,所以对产品作用能量大多在5——200Hz之间,而200-500Hz之间部分频宽存在的能量随着频率增加而衰减。
如图一表示;3.1.3空运——20---2000Hz空运振动源来自于飞机周围的空气扰流、喷射气体、气流、音爆、次音速,上述振动源通过机身结构或其他传递界质,传递到机载之产品上,频宽通常在20----2000Hz。
如图三表示;b)对数扫频(log)1oct/min---表B对数扫频变化的特点是在指定频宽内扫频时,有低频较慢/高频较快,以对数方式变化,也就是停留在每个倍频的时间都一样,如:10-80Hzlog swept ,10-20Hz,20-40Hz,40-80Hz每个倍频用的时间都为1Min(倍频是指:终止频率是起始频率的两倍,如:5--10Hz就是一个倍频,即1 octave, 5-10Hz需用1min去完成扫频,就是1oct/min)计算公式:n= {3.332*log (f2/f1)}/T“低频共振破坏力最大,所以一般的电子产品都采用对数扫频方式,使产品在低频时,多停留时间,以筛选出有潜在缺陷的部品,扫频速率选定,尽可能慢,以便于试件有足够的时间来响应,IEC规程中一般要求Swept rate ≤1 octave/min.(4) 扫描时间:即单次扫频的持续时间:正弦振动一般应用在研发过程中搜寻共振频率上,通过共振频率的搜寻,来改善产品的结构和减振措施,反过来改变产品的共振频率.其目的是掌握产品的可靠性水平评估,为产品的标准化探讨试验及可靠性保证试验作前期的数据收集,以便于更好监控工艺流程。
振动方面的专业英语及词汇
振动方面的专业英语及词汇振动方面的专业英语及词汇参见《工程振动名词术语》1、振动信号的时域、频域描述振动过程 (Vibration Process)简谐振动 (Harmonic Vibration)周期振动 (Periodic Vibration)准周期振动 (Ouasi-periodic Vibration)瞬态过程 (Transient Process)随机振动过程 (Random Vibration Process) 各态历经过程 (Ergodic Process)确定性过程 (Deterministic Process)振幅 (Amplitude)相位 (Phase)初相位 (Initial Phase)频率 (Frequency)角频率 (Angular Frequency)周期 (Period)复数振动 (Complex Vibration)复数振幅 (Complex Amplitude)峰值 (Peak-value)平均绝对值 (Average Absolute Value)有效值 (Effective Value,RMS Value)均值 (Mean Value,Average Value)傅里叶级数 (FS,Fourier Series)傅里叶变换 (FT,Fourier Transform)傅里叶逆变换 (IFT,Inverse Fourier Transform) 离散谱 (Discrete Spectrum)连续谱 (Continuous Spectrum)傅里叶谱 (Fourier Spectrum)线性谱 (Linear Spectrum)幅值谱 (Amplitude Spectrum)相位谱 (Phase Spectrum)均方值 (Mean Square Value)方差 (Variance)协方差 (Covariance)自协方差函数 (Auto-covariance Function)互协方差函数 (Cross-covariance Function)自相关函数 (Auto-correlation Function)互相关函数 (Cross-correlation Function)标准偏差 (Standard Deviation)相对标准偏差 (Relative Standard Deviation)概率 (Probability)概率分布 (Probability Distribution)高斯概率分布 (Gaussian Probability Distribution) 概率密度 (Probability Density)集合平均 (Ensemble Average)时间平均 (Time Average)功率谱密度 (PSD,Power Spectrum Density)自功率谱密度 (Auto-spectral Density)互功率谱密度 (Cross-spectral Density)均方根谱密度 (RMS Spectral Density)能量谱密度 (ESD,Energy Spectrum Density)相干函数 (Coherence Function)帕斯瓦尔定理 (Parseval''''s Theorem)维纳,辛钦公式 (Wiener-Khinchin Formula2、振动系统的固有特性、激励与响应振动系统 (Vibration System)激励 (Excitation)响应 (Response)单自由度系统 (Single Degree-Of-Freedom System) 多自由度系统 (Multi-Degree-Of- Freedom System) 离散化系统 (Discrete System)连续体系统 (Continuous System)刚度系数 (Stiffness Coefficient)自由振动 (Free Vibration)自由响应 (Free Response)强迫振动 (Forced Vibration)强迫响应 (Forced Response)初始条件 (Initial Condition)固有频率 (Natural Frequency)阻尼比 (Damping Ratio)衰减指数 (Damping Exponent)阻尼固有频率 (Damped Natural Frequency)对数减幅系数 (Logarithmic Decrement)主频率 (Principal Frequency)无阻尼模态频率 (Undamped Modal Frequency)模态 (Mode)主振动 (Principal Vibration)振型 (Mode Shape)振型矢量 (Vector Of Mode Shape)模态矢量 (Modal Vector)正交性 (Orthogonality)展开定理 (Expansion Theorem)主质量 (Principal Mass)模态质量 (Modal Mass)主刚度 (Principal Stiffness)模态刚度 (Modal Stiffness)正则化 (Normalization)振型矩阵 (Matrix Of Modal Shape)模态矩阵 (Modal Matrix)主坐标 (Principal Coordinates)模态坐标 (Modal Coordinates)模态分析 (Modal Analysis)模态阻尼比 (Modal Damping Ratio)频响函数 (Frequency Response Function)幅频特性 (Amplitude-frequency Characteristics)相频特性 (Phase frequency Characteristics)共振 (Resonance)半功率点 (Half power Points)波德图(Bodé Plot)动力放大系数 (Dynamical Magnification Factor)单位脉冲 (Unit Impulse)冲激响应函数 (Impulse Response Function)杜哈美积分(Duhamel’s Integral)卷积积分 (Convolution Integral)卷积定理 (Convolution Theorem)特征矩阵 (Characteristic Matrix)阻抗矩阵 (Impedance Matrix)频响函数矩阵 (Matrix Of Frequency Response Function) 导纳矩阵 (Mobility Matrix)冲击响应谱 (Shock Response Spectrum)冲击激励 (Shock Excitation)冲击响应 (Shock Response)冲击初始响应谱 (Initial Shock Response Spectrum)冲击剩余响应谱 (Residual Shock Response Spectrum) 冲击最大响应谱 (Maximum Shock Response Spectrum) 冲击响应谱分析 (Shock Response Spectrum Analysis)3 、模态试验分析模态试验 (Modal Testing)机械阻抗 (Mechanical Impedance)位移阻抗 (Displacement Impedance)速度阻抗 (Velocity Impedance)加速度阻抗 (Acceleration Impedance)机械导纳 (Mechanical Mobility)位移导纳 (Displacement Mobility)速度导纳 (Velocity Mobility)加速度导纳 (Acceleration Mobility)驱动点导纳 (Driving Point Mobility)跨点导纳 (Cross Mobility)传递函数 (Transfer Function)拉普拉斯变换 (Laplace Transform)传递函数矩阵 (Matrix Of Transfer Function)频响函数 (FRF,Frequency Response Function)频响函数矩阵 (Matrix Of FRF)实模态 (Normal Mode)复模态 (Complex Mode)模态参数 (Modal Parameter)模态频率 (Modal Frequency)模态阻尼比 (Modal Damping Ratio)模态振型 (Modal Shape)模态质量 (Modal Mass)模态刚度 (Modal Stiffness)模态阻力系数 (Modal Damping Coefficient)模态阻抗 (Modal Impedance)模态导纳 (Modal Mobility)模态损耗因子 (Modal Loss Factor)比例粘性阻尼 (Proportional Viscous Damping)非比例粘性阻尼 (Non-proportional Viscous Damping) 结构阻尼 (Structural Damping,Hysteretic Damping) 复频率 (Complex Frequency)复振型 (Complex Modal Shape)留数 (Residue)极点 (Pole)零点 (Zero)复留数 (Complex Residue)随机激励 (Random Excitation)伪随机激励 (Pseudo Random Excitation)猝发随机激励 (Burst Random Excitation)稳态正弦激励 (Steady State Sine Excitation)正弦扫描激励 (Sweeping Sine Excitation)锤击激励 (Impact Excitation)频响函数的H1 估计 (FRF Estimate by H1)频响函数的H2 估计 (FRF Estimate by H2)频响函数的H3 估计 (FRF Estimate by H3)单模态曲线拟合法 (Single-mode Curve Fitting Method) 多模态曲线拟合法 (Multi-mode Curve Fitting Method) 模态圆 (Mode Circle)剩余模态 (Residual Mode)幅频峰值法 (Peak Value Method)实频-虚频峰值法 (Peak Real/Imaginary Method)圆拟合法 (Circle Fitting Method)加权最小二乘拟合法 (Weighting Least Squares Fitting method) 复指数拟合法 (Complex Exponential Fitting method)4、振动测试的名词术语1 )传感器测量系统传感器测量系统 (Transducer Measuring System)传感器 (Transducer)振动传感器 (Vibration Transducer)机械接收 (Mechanical Reception)机电变换 (Electro-mechanical Conversion)测量电路 (Measuring Circuit)惯性式传感器 (Inertial Transducer,Seismic Transducer)相对式传感器 (Relative Transducer)电感式传感器 (Inductive Transducer)应变式传感器 (Strain Gauge Transducer)电动力传感器 (Electro-dynamic Transducer)压电式传感器 (Piezoelectric Transducer)压阻式传感器 (Piezoresistive Transducer)电涡流式传感器 (Eddy Current Transducer)伺服式传感器 (Servo Transducer)灵敏度 (Sensitivity)复数灵敏度 (Complex Sensitivity)分辨率 (Resolution)频率范围 (Frequency Range)线性范围 (Linear Range)频率上限 (Upper Limit Frequency)频率下限 (Lower Limit Frequency)静态响应 (Static Response)零频率响应 (Zero Frequency Response)动态范围 (Dynamic Range)幅值上限 Upper Limit Amplitude)幅值下限 (Lower Limit Amplitude)最大可测振级 (Max.Detectable Vibration Level)最小可测振级 (Min.Detectable Vibration Level)信噪比 (S/N Ratio)振动诺模图 (Vibration Nomogram)相移 (Phase Shift)波形畸变 (Wave-shape Distortion)比例相移 (Proportional Phase Shift)惯性传感器的稳态响应(Steady Response Of Inertial Transducer)惯性传感器的稳击响应 (Shock Response Of Inertial Transducer) 位移计型的频响特性(Frequency Response Characteristics Vibrometer)加速度计型的频响特性(Frequency Response Characteristics Accelerometer)幅频特性曲线 (Amplitude-frequency Curve)相频特性曲线 (Phase-frequency Curve)固定安装共振频率 (Mounted Resonance Frequency)安装刚度 (Mounted Stiffness)有限高频效应 (Effect Of Limited High Frequency)有限低频效应 (Effect Of Limited Low Frequency)电动式变换 (Electro-dynamic Conversion)磁感应强度 (Magnetic Induction, Magnetic Flux Density)磁通 (Magnetic Flux)磁隙 (Magnetic Gap)电磁力 (Electro-magnetic Force)相对式速度传 (Relative Velocity Transducer)惯性式速度传感器 (Inertial Velocity Transducer)速度灵敏度 (Velocity Sensitivity)电涡流阻尼 (Eddy-current Damping)无源微(积)分电路 (Passive Differential (Integrate) Circuit) 有源微(积)分电路 (Active Differential (Integrate) Circuit)运算放大器 (Operational Amplifier)时间常数 (Time Constant)比例运算 (Scaling)积分运算 (Integration)微分运算 (Differentiation)高通滤波电路 (High-pass Filter Circuit)低通滤波电路 (Low-pass Filter Circuit)截止频率 (Cut-off Frequency)压电效应 (Piezoelectric Effect)压电陶瓷 (Piezoelectric Ceramic)压电常数 (Piezoelectric Constant)极化 (Polarization)压电式加速度传感器 (Piezoelectric Acceleration Transducer) 中心压缩式 (Center Compression Accelerometer)三角剪切式 (Delta Shear Accelerometer)压电方程 (Piezoelectric Equation)压电石英 (Piezoelectric Quartz)电荷等效电路 (Charge Equivalent Circuit)电压等效电路 (Voltage Equivalent Circuit)电荷灵敏度 (Charge Sensitivity)电压灵敏度 (Voltage Sensitivity)电荷放大器 (Charge Amplifier)适调放大环节 (Conditional Amplifier Section)归一化 (Uniformization)电荷放大器增益 (Gain Of Charge Amplifier)测量系统灵敏度 (Sensitivity Of Measuring System)底部应变灵敏度 (Base Strain Sensitivity)横向灵敏度 (Transverse Sensitivity)地回路 (Ground Loop)力传感器 (Force Transducer)力传感器灵敏度 (Sensitivity Of Force Transducer)电涡流 (Eddy Current)前置器 (Proximitor)间隙-电压曲线 (Voltage vs Gap Curve)间隙-电压灵敏度 (Voltage vs Gap Sensitivity)压阻效应 (Piezoresistive Effect)轴向压阻系数 (Axial Piezoresistive Coefficient)横向压阻系数 (Transverse Piezoresistive Coefficient)压阻常数 (Piezoresistive Constant)单晶硅 (Monocrystalline Silicon)应变灵敏度 (Strain Sensitivity)固态压阻式加速度传感器(Solid State Piezoresistive Accelerometer)体型压阻式加速度传感器(Bulk Type Piezoresistive Accelerometer)力平衡式传感器 (Force Balance Transducer)电动力常数 (Electro-dynamic Constant)机电耦合系统 (Electro-mechanical Coupling System)2)检测仪表、激励设备及校准装置时间基准信号 (Time Base Signal)李萨茹图 (Lissojous Curve)数字频率计 (Digital Frequency Meter)便携式测振表 (Portable Vibrometer)有效值电压表 (RMS Value Voltmeter)峰值电压表 (Peak-value Voltmeter)平均绝对值检波电路 (Average Absolute Value Detector) 峰值检波电路 (Peak-value Detector)准有效值检波电路 (Quasi RMS Value Detector)真有效值检波电路 (True RMS Value Detector)直流数字电压表 (DVM,DC Digital Voltmeter)数字式测振表 (Digital Vibrometer)A/D 转换器 (A/D Converter)D/A 转换器 (D/A Converter)相位计 (Phase Meter)电子记录仪 (Lever Recorder)光线示波器 (Oscillograph)振子 (Galvonometer)磁带记录仪 (Magnetic Tape Recorder)DR 方式(直接记录式) (Direct Recorder)FM 方式(频率调制式) (Frequency Modulation)失真度 (Distortion)机械式激振器 (Mechanical Exciter)机械式振动台 (Mechanical Shaker)离心式激振器 (Centrifugal Exciter)电动力式振动台 (Electro-dynamic Shaker)电动力式激振器 (Electro-dynamic Exciter)液压式振动台 (Hydraulic Shaker)液压式激振器 (Hydraulic Exciter)电液放大器 (Electro-hydraulic Amplifier)磁吸式激振器 (Magnetic Pulling Exciter)涡流式激振器 (Eddy Current Exciter)压电激振片 (Piezoelectric Exciting Elements)冲击力锤 (Impact Hammer)冲击试验台 (Shock Testing Machine)激振控制技术 (Excitation Control Technique)波形再现 (Wave Reproduction)压缩技术 (Compression Technique)均衡技术 (Equalization Technique)交越频率 (Crossover Frequency)综合技术 (Synthesis Technique)校准 (Calibration)分部校准 (Calibration for Components in system)系统校准 (Calibration for Over-all System)模拟传感器 (Simulated Transducer)静态校准 (Static Calibration)简谐激励校准 (Harmonic Excitation Calibration)绝对校准 (Absolute Calibration)相对校准 (Relative Calibration)比较校准 (Comparison Calibration)标准振动台 (Standard Vibration Exciter)读数显微镜法 (Microscope-streak Method)光栅板法 (Ronchi Ruling Method)光学干涉条纹计数法 (Optical Interferometer Fringe Counting Method)光学干涉条纹消失法(Optical Interferometer Fringe Disappearance Method)背靠背安装 (Back-to-back Mounting)互易校准法 (Reciprocity Calibration)共振梁 (Resonant Bar)冲击校准 (Impact Exciting Calibration)摆锤冲击校准 (Ballistic Pendulum Calibration)落锤冲击校准 (Drop Test Calibration)振动和冲击标准 (Vibration and Shock Standard)迈克尔逊干涉仪 (Michelson Interferometer)摩尔干涉图象 (Moire Fringe)参考传感器 (Reference Transducer)3 )频率分析及数字信号处理带通滤波器 (Band-pass Filter)半功率带宽 (Half-power Bandwidth)3 dB 带宽 (3 dB Bandwidth)等效噪声带宽 (Effective Noise Bandwidth)恒带宽 (Constant Bandwidth)恒百分比带宽 (Constant Percentage Bandwidth)1/N 倍频程滤波器 (1/N Octave Filter)形状因子 (Shape Factor)截止频率 (Cut-off Frequency)中心频率 (Centre Frequency)模拟滤波器 (Analog Filter)数字滤波器 (Digital Filter)跟踪滤波器 (Tracking Filter)外差式频率分析仪 (Heterodyne Frequency Analyzer) 逐级式频率分析仪 (Stepped Frequency Analyzer)扫描式频率分析仪 (Sweeping Filter Analyzer)混频器 (Mixer)RC 平均 (RC Averaging)平均时间 (Averaging Time)扫描速度 (Sweeping Speed)滤波器响应时间 (Filter Response Time)离散傅里叶变换 (DFT,Discrete Fourier Transform) 快速傅里叶变换 (FFT,Fast Fourier Transform)抽样频率 (Sampling Frequency)抽样间隔 (Sampling Interval)抽样定理 (Sampling Theorem)抗混滤波 (Anti-aliasing Filter)泄漏 (Leakage)加窗 (Windowing)窗函数 (Window Function)截断 (Truncation)频率混淆 (Frequency Aliasing)乃奎斯特频率 (Nyquist Frequency)矩形窗 (Rectangular Window)汉宁窗 (Hanning Window)凯塞-贝塞尔窗 (Kaiser-Bessel Window)平顶窗 (Flat-top Window)平均 (Averaging)线性平均 (Linear Averaging)指数平均 (Exponential Averaging)峰值保持平均 (Peak-hold Averaging)时域平均 (Time-domain Averaging)谱平均 (Spectrum Averaging)重叠平均 (Overlap Averaging)栅栏效应 (Picket Fence Effect)吉卜斯效应 (Gibbs Effect)基带频谱分析 (Base-band Spectral Analysis)选带频谱分析 (Band Selectable Sp4ctralAnalysis)细化 (Zoom)数字移频 (Digital Frequency Shift)抽样率缩减 (Sampling Rate Reduction)功率谱估计 (Power Spectrum Estimate)相关函数估计 (Correlation Estimate)频响函数估计 (Frequency Response Function Estimate) 相干函数估计 (Coherence Function Estimate)冲激响应函数估计 (Impulse Response Function Estimate) 倒频谱 (Cepstrum)功率倒频谱 (Power Cepstrum)幅值倒频谱 (Amplitude Cepstrum)倒频率 (Quefrency)4 旋转机械的振动测试及状态监测状态监测 (Condition Monitoring)故障诊断 (Fault Diagnosis)转子 (Rotor)转手支承系统 (Rotor-Support System)振动故障 (Vibration Fault)轴振动 (Shaft Vibration)径向振动 (Radial Vibration)基频振动 (Fundamental Frequency Vibration)基频检测 (Fundamental Frequency Component Detecting) 键相信号 (Key-phase Signal)正峰相位 ( Peak Phase)高点 (High Spot)光电传感器 (Optical Transducer)同相分量 (In-phase Component)正交分量 (Quadrature Component)跟踪滤波 (Tracking Filter)波德图 (Bode Plot)极坐标图 (Polar Plot)临界转速 (Critical Speed)不平衡响应 (Unbalance Response)残余振幅 (Residual Amplitude)方位角 (Attitude Angle)轴心轨迹 (Shaft Centerline Orbit)正进动 (Forward Precession)同步正进动 (Synchronous Forward Precession) 反进动 (Backward Precession)正向涡动 (Forward Whirl)反向涡动 (Backward Whirl)油膜涡动 (Oil Whirl)油膜振荡 (Oil Whip)轴心平均位置 (Average Shaft Centerline Position) 复合探头 (Dual Probe)振摆信号 (Runout Signal)电学振摆 (Electrical Runout)机械振摆 (Mechanical Runout)慢滚动向量 (Slow Roll Vector)振摆补偿 (Runout Compensation)故障频率特征 (Frequency Characteristics Of Fault) 重力临界 (Gravity Critical)对中 (Alignment)双刚度转子 (Dual Stiffness Rotor)啮合频率 (Gear-mesh Frequency)间入简谐分量 (Interharmonic Component)边带振动 (Side-band Vibration)三维频谱图 (Three Dimensional Spectral Plot)瀑布图 (Waterfall Plot)级联图 (Cascade Plot)阶次跟踪 (Order Tracking)阶次跟踪倍乘器 (Order Tracking Multiplier)监测系统 (Monitoring System)适调放大器 (Conditional Amplifier)趋势分析 (Trend Analysis)倒频谱分析 (Cepstrum Analysis)直方图 (Histogram)确认矩阵 (Confirmation Matrix) 通频幅值 (Over-all Amplitude) 幅值谱 (Amplitude Spectrum) 相位谱 (Phase Spectrum)报警限 (Alarm Level)来源网络,侵删。
随机振动平均频率
随机振动平均频率
随机振动平均频率是指在一个系统中,发生随机振动的平均频率。
这是一种非常重要的物理概念,广泛应用于许多领域,尤其是在工程
设计、物理学和生物学等领域。
在传统的物理学中,我们通常只考虑系统内由单一的振动引起的
频率,例如钟表的频率、电路中的谐振频率等。
但是,许多真实世界
中的系统实际上可能同时受到许多种不同频率的振动作用,这些振动
都是随机的。
因此,研究随机振动平均频率就非常必要了。
在工程设计中,随机振动平均频率往往用于评估结构物对于自然
灾害(例如地震、风暴等)的抗性能力。
如何准确地估算结构物的随
机振动平均频率,对于确保建筑物的稳定性和可靠性至关重要。
此外,在振动系统中,我们还需要使用随机振动平均频率来精确测量系统的
动态响应,以及预测设备的寿命等重要参数。
除了工程设计领域外,随机振动平均频率在物理学和生物学研究
中也有广泛应用。
例如,在物理学中,我们经常用它来研究宏观物体
的热膨胀、材料的弹性和塑性变形等问题;而在生物学领域,它被用
于分析随机变量对于生物体建模的复杂性。
总的来说,随机振动平均频率是一种至关重要的物理概念,对于
许多领域中的科学家和工程师来说都是十分重要的。
不仅它是工程设
计中评估结构物安全的基础,同时也是科学研究中解决许多难题的关
键。
希望今后随机振动平均频率的研究和应用能够得到更加广泛的认嘉和应用。
振动分析中常用的计算公式
振动台在使用中经常运用的公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2)V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz )V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“”中同义D —位移(mm 0-p )单峰值A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为:A=D f ⨯2502式中:A 和D 与“”中同义,但A 的单位为g1g=s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式f A-V =VA28.6 ………………………………………公式(5)式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。
速度与位移平滑交越点频率的计算公式DV f DV 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。
加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。
根据“”,公式(7)亦可简化为:f A-D ≈5×DAA 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 线性扫描比较简单:S 1=11V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min )f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s )对数扫频: 倍频程的计算公式n=2Lg f f LgLH ……………………………………公式(9)式中:n —倍频程(oct )f H —上限频率(Hz ) f L —下限频率(Hz )扫描速率计算公式R=TLg f f LgLH2/ ……………………………公式(10)式中:R —扫描速率(oct/min 或)f H —上限频率(Hz ) f L —下限频率(Hz ) T —扫描时间 扫描时间计算公式T=n/R ……………………………………………公式(11)式中:T —扫描时间(min 或s )n —倍频程(oct )R —扫描速率(oct/min 或oct/s )5、随机振动试验常用的计算公式 频率分辨力计算公式:△f=Nf max……………………………………公式(12) 式中:△f —频率分辨力(Hz )f max —最高控制频率 N —谱线数(线数) f max 是△f 的整倍数随机振动加速度总均方根值的计算(1)利用升谱和降谱以及平直谱计算公式 PSD (g 2/Hz)功率谱密度曲线图(a )A 2=W ·△f=W ×(f 1-f b ) …………………………………平直谱计算公式A 1=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+=+⎰111)(m b a b f f ff m fw df f w b ba……………………升谱计算公式 A 1=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=-⎰121112111)(m f f f f m f w df f w ……………………降谱计算公式 式中:m=N/3 N 为谱线的斜率(dB/octive ) 若N=3则n=1时,必须采用以下降谱计算公式A3= lg12f f 加速度总均方根值:g mis=321A A A ++ (g )…………………………公式(13-1)设:w=w b =w 1=Hz f a =10Hz f b =20Hz f 1=1000Hz f 2=2000Hz w a →w b 谱斜率为3dB ,w 1→w 2谱斜率为-6dB利用升谱公式计算得:A 1=5.12010111202.011111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+++m b a b b f f m f w 利用平直谱公式计算得:A 2=w ×(f 1-f b )=×(1000-20)=196利用降谱公式计算得:A 3 =1002000100011210002.0111212111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯-⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛----m f f m f w 度总均方根值公式计算得:g mis=321A A A ++=1001965.1++=利用加速(2) 利用平直谱计算公式:计算加速度总均方根值PSD (g 2/Hz)功率谱密度曲线图(b )为了简便起见,往往将功率谱密度曲线图划分成若干矩形和三角形,并利用上升斜率(如3dB/oct )和下降斜率(如-6dB/oct )分别算出w a 和w 2,然后求各个几何形状的面积与面积和,再开方求出加速度总均方根值g rms =53241A A A A A ++++ (g)……公式(13-2)注意:第二种计算方法的结果往往比用升降谱计算结果要大,作为大概估算可用,但要精确计算就不能用。
随机振动名词解释
impulse response function;"脉冲响应函数" 英文对照1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k -ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源2、 Y εi,jtt+s 作为时间间隔s 的一个函数,度量了在其他变量不变的情况下Yi,t+s 对Yj,t 的一个脉冲的反应,因此称为脉冲响应函数 文献来源"脉冲响应函数" 在学术文献中的解释 frequency response function;"频率响应函数" 英文对照1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源3、y (t )=A0eiωty (t )=iωA0eiωt (6)将(6)代入(3)得A0eiωt (RCiω+1)=Ajeiωt (7)和A0Aj =1RCiω+1=U (iω)(8)U (iω)称为频率响应函数文献来源"频率响应函数" 在学术文献中的解释transfer function of; transfer function; transfer function - noise;"传递函数" 英文对照1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源"传递函数" 在学术文献中的解释3、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波文献来源4、线性时不变系统(LinearTimeInvariantSystem简称为LT.I系统)的传递函数可以定义为:在零初始条件下输出量的拉普拉斯变换式与输入量的拉普拉斯变换式之比文献来源5、一s),这万关系一般称为传递函数.传递函数一般以实验或现场实测资料为基础提出简化的表达式或直接利用实测曲线形式.当实测的传递函数形式复杂时,则需利用平衡条件和协调原则,通过反复试算以求桩身轴向力和桩侧摩阻力(即位移协调法)文献来源6、一对傅氏变换,即H(ejω)=F[h(n)]=∑∞n=-∞h(n)e-jωn(5a)h(n)=12π∫π-πH(ejω)·eωndω(5b)在线性系统理论中,将零初始状态下系统的输出和输入的Fourier变换的比值定义为系统的频响函数(Laplace变换的比值称为“传递函数”)文献来源7、(3)传递函数的定义是在、条件下,、系统输出拉氏变换与.拉氏变换之比.(4)提高系统的开环增益可以降低、,但是这样会降低系统的文献来源8、当初始条件为零时,其传递函数定义是.该系统总的开环传递函数以)二Gl ()*.()·输出的拉氏变换_._、_._._文献来源9、其传递函数定义为:.f_、李一i…n、乙)=山Cjzi=0s(t一门=591盯一详妙))J 式中sgn(.)代表一个限幅器,f(.)是由信道传递函数,噪声分布以及均衡器阶数共同决定的最优决策函数文献来源10、传递函数是指对一个线性非时变系统系统零状态响应的拉氏变换与激励的拉氏变换之比.由于电路简单只需简单调节频率范围及灵敏度即可工作调节方法及过程不再赘述文献来源11、f(·)称为传递函数.每个节点的传递函数f(x)是没有定式的,通常是在(0,1)或(-1,1)内连续取值的单调可微分的函数,常用指数或正切等一类S状曲线(sigmoid)来表示12、单位阶跃响应的拉氏变换称为传递函数.文献来源13、9)单位阶跃响应的拉氏变换称为传递函数.10)系统的极点分布对系统的稳定性是有比较大的影响的.11)直流信号的傅立叶频谱是冲击函数文献来源14、(:)则传递函数可定义为:、.户J一、.了Z口吸、一z…、G(s)=据此定义以两相四拍混合式步进电机为例两相同时励磁情况如图3一4所示转子稳定平衡位置处于“一合处文献来源15、f()称为传递函数.神经元网络是由大量的神经元广泛互连而成的网络.根据连接方式的不同,神经网络可分为两大类:没有反馈的前向网络和相互结合型网络文献来源16、这些非线性弹簧的应力-应变关系,即表示桩侧阻力qs(或桩端阻力qp)与位移s的关系,一般称为传递函数.文献来源17、_厂(-)称为传递函数.1-2BP学习算法及其修正设输入学习样本为P个,即x‟,jf2,.,r,其对应的教师为,l,产,.,广,将实际输出文献来源18、这些非线性弹簧的应力-应变关系,即表示桩侧阻力qs(或桩端阻力qp)与位移s的关系,一般称为传递函数.第2类模型是由毛细管束排列模型化,通常称为毛细管或网络模型[36]文献来源19、)称为传递函数.3傅立叶变换及脉冲响应方法传递函数在脉冲响应分析中具有重要作用.利用以下三个公式可以确定图像上每个像素代表的实际大小,Rs 即是最终求得的值[4,5]文献来源20、f(ui)——单调上升的有限值函数,称为传递函数.f(ui)通常取如下非线函数的形式:f(ui)=11+eui(2)式中,为非线性因子文献来源21、5),这一关系一般就称为传递函数.利用已知的桩侧和桩底荷载的传递函数,求解传传递函数的基本微分方程窘=丧出,如0一A口Ep…、…‟~…式中,u为桩截面周长22、…,n)是从其它细胞传来的输入信号,iθ为阈值,wji 表示从细胞j 到细胞i 的连接权值,f(·)称为传递函数.在进行普通高校大学生身体素质测试评估中,设y 为学生评估成绩,x=[x1,x2 文献来源23、厂一——称为传递函数.对每一频率分量人将式(1-5)对甲进行积分JP 人)一]入(人,叨印一厂(人)1S..p+ct(t=l,2,.,nip>0)(l)式(1)称为p 阶自回归模型,记为AR(p) 文献来源vibration; oscillation; vibrating;振动" 英文对照1、房中家所谓女子“八动”之一。
机械振动随机振动简介讲解学习
返回首页
平均绝对值:
随机振动简介
随机振动的幅值
偏差值:随机变量x(ti)与随机变量的集合平均值E[x]之差 (x(ti)- E[x])表示随机变量x(ti)在集合平均值E[x] 附近分散或 偏离的程度。
Theory of Vibration with Applications
返回首页
随机振动简介
Theory of Vibration with Applications
返回首页
随机振动简介
随机振动的功率谱分析法
(a)表示周期振动的离散谱,振动能量都集中在各简谐振动的频 率上; (b)为平直谱,表示功率谱密度在整个频率域上是常数,这种谱 在通信和自动控制系统中称为白噪声谱;
Theory of Vibration with Applications
Theory of Vibration with Applications
返回首页
随机振动简介
随机振动简介
随机过程的描述和采样
Theory of Vibration with Applications
返回首页
随机振动简介
随机过程的描述和采样
我们在同一条公路上,对行驶的汽车进行若干次实验,若 全部实验条件保持不变,则每次试验所获得振动量(如位移、速 度、加速度、应力、裁荷、舒适度…)绝不可能一模一样。也就 是说,任何一次观察只代表许多可能产生的结果之一,这样的 过程为随机过程,对于这类问题,单次实验记录就不如所有可 能发生的一组记录的统计值来得有意义。
随机振动简介随机过程的描述和采样返回首页theoryofvibrationwithapplications随机振动简介随机过程的描述和采样随机过程又可以分为平稳与非平稳两种如果振动过程的统计特性不随自变量的变化而改变例如在时间随机过程又可以分为平稳与非平稳两种如果振动过程的统计特性不随自变量的变化而改变例如在时间t1到t2这一段随机振动的统计信息与这一段随机振动的统计信息与t1到t2这一段的统计信息差别不大即可以把随机振动的一些值在时间上在后推移这一段的统计信息差别不大即可以把随机振动的一些值在时间上在后推移它们的统计信息并不改变
Random_Vibration
随机振动分析(PSD分析)随机振动分析Training ManualWor 主题:定义的rkbench •定义和目的•WorkBench 分析功能概述h-Simul •分析步骤lation D D ynamic c sA.定义和目的Training ManualWor 什么是随机振动分析(PSD——Power Spectrum Density 功率谱密度)?rkbench –功率谱密度谱是基于概率统计学的一个谱分析技术,是对随机变量均方值的度量一般用于随机振动分析。
连续瞬态响应只能通过概率分布函数进行描述h-Simul ,,即出现某水平响应所对应的概率。
功率谱密度是结构在随机动态载荷激励下响应的统计结果是一条功率谱密lation D –功率谱密度是结构在随机动态载荷激励下响应的统计结果,是条功率谱密度值——频率值的关系曲线,功率谱密度可以位移、速度、加速度、力功率谱密度形式。
Dynamic –例如火箭在每次发射中由载荷(例如加速度载荷等)产生的不同时间历程cs… 定义和目的Training ManualWor 什么PSD?激励响应的均值频率的关系此条功率谱密rkbench •PSD记录了激励和响应的均方值同频率的关系,因此PSD 是一条功率谱密度值-频率值的关系曲线–PSD曲线下的面积就是方差,即响应标准偏差的平方值h-Simul 曲线下的面积就是方差即响应标准偏差的平方值–PSD 的单位是mean square/Hz (如加速度PSD 单位G 2/Hz )–PSD 可以是位移、速度、加速度、力或者压力lation D D ynamic c s…定义和目的Training ManualWor •典型的应用包括:飞机电子封装rkbench ––大气载荷作用下的飞机部件–爆破导流片h-Simul –激光制导系统–光学望远镜平台lation D –大型结构的地震载荷Dynamic c s…定义和目的Training ManualWor •由于时间历程不是确定的,所以瞬态分析不是可选的。
随机振动(振动频谱)计算(RandomVibration)
随机振动(振动频谱)计算(RandomVibration)Random Vibration1. 定义1.1 功率谱密度当波的频谱密度乘以⼀个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)。
功率谱密度谱是⼀种概率统计⽅法,是对随机变量均⽅值的量度。
1.2 均⽅根均⽅根(RMS)是指将N项的平⽅和除于N后,开平⽅的结果。
均⽅根值也是有效值,如对于220交流电,⽰波器显⽰的有效值或均⽅根值为220V。
2. 加速度功率谱密度2.1 单位加速度单位:m/s^2或g加速度功率谱密度单位:(m/s^2)^2/Hz或g^2/HzHz单位为:1/s,所以加速度功率谱密度单位也可写为:m^2/s^32.2功率谱密度函数功率谱密度函数曲线的纵坐标是(g2/Hz)。
功率谱曲线下的⾯积就是随机加速度的总⽅差(g2):σ2= ∫Φ(f)df其中:Φ(f)........功率谱密度函数σ ............. 均⽅根加速度3. 计算⽰例随机振动100-2000HZ,功率谱密度为0.01g^2/Hz,则其加速度峰值计算如下:σ2=0.01*(2000-100)=19σ=4.36g峰值加速度不⼤于3倍均⽅根加速度:13.08g4、SAE J 1455 随机振动要求4.1功率谱图4.1.1 Vertical axis4.1.2 Transverse axis4.1.3 Longitudinal axis4.2 Vertical axis加速度计算功率谱曲线下的⾯积:σ2=(40-5)0.016+0.5*(500-40)*0.016=4.24σ=2.06g 峰值加速度不⼤于3倍均⽅根加速度:6.18g5. FGE随机振动要求5.1功率谱图5.2 要求在⼯作状态,振动频率范围:10Hz-1000Hz,振动⽅向:X 、Y 、Z 三轴,试验时间:每轴各8h ,加速度均⽅根为33.9m/s2(3.46g)。
振动常用英语词汇
振动方面的专业英语及词汇参见《工程振动名词术语》1 振动信号的时域、频域描述振动过程(Vibration Process)简谐振动(Harmonic Vibration)周期振动(Periodic Vibration)准周期振动(Quasi-periodic Vibration)瞬态过程(Transient Process)随机振动过程(Random Vibration Process)各态历经过程(Ergodic Process)确定性过程(Deterministic Process)振幅(Amplitude)相位(Phase)初相位(Initial Phase)频率(Frequency)角频率(Angular Frequency)周期(Period)复数振动(Complex Vibration)复数振幅(Complex Amplitude)峰值(Peak-value)平均绝对值(Average Absolute Value)有效值(Effective Value,RMS Value)均值(Mean Value,Average Value)傅里叶级数(FS,Fourier Series)傅里叶变换(FT,Fourier Transform)傅里叶逆变换(IFT,Inverse Fourier Transform)离散谱(Discrete Spectrum)连续谱(Continuous Spectrum)傅里叶谱(Fourier Spectrum)线性谱(Linear Spectrum)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)均方值(Mean Square Value)方差(Variance)协方差(Covariance)自协方差函数(Auto-covariance Function)互协方差函数(Cross-covariance Function)自相关函数(Auto-correlation Function)互相关函数(Cross-correlation Function)标准偏差(Standard Deviation)相对标准偏差(Relative Standard Deviation)概率(Probability)概率分布(Probability Distribution)高斯概率分布(Gaussian Probability Distribution)概率密度(Probability Density)集合平均(Ensemble Average)时间平均(Time Average)功率谱密度(PSD,Power Spectrum Density)自功率谱密度(Auto-spectral Density)互功率谱密度(Cross-spectral Density)均方根谱密度(RMS Spectral Density)能量谱密度(ESD,Energy Spectrum Density)相干函数(Coherence Function)帕斯瓦尔定理(Parseval''''s Theorem)维纳,辛钦公式(Wiener-Khinchin Formula2 振动系统的固有特性、激励与响应振动系统(Vibration System)激励(Excitation)响应(Response)单自由度系统(Single Degree-Of-Freedom System) 多自由度系统(Multi-Degree-Of- Freedom System) 离散化系统(Discrete System)连续体系统(Continuous System)刚度系数(Stiffness Coefficient)自由振动(Free Vibration)自由响应(Free Response)强迫振动(Forced Vibration)强迫响应(Forced Response)初始条件(Initial Condition)固有频率(Natural Frequency)阻尼比(Damping Ratio) 衰减指数(Damping Exponent)阻尼固有频率(Damped Natural Frequency)对数减幅系数(Logarithmic Decrement)主频率(Principal Frequency)无阻尼模态频率(Undamped Modal Frequency)模态(Mode)主振动(Principal Vibration)振型(Mode Shape)振型矢量(Vector Of Mode Shape)模态矢量(Modal Vector)正交性(Orthogonality)展开定理(Expansion Theorem)主质量(Principal Mass)模态质量(Modal Mass)主刚度(Principal Stiffness)模态刚度(Modal Stiffness)正则化(Normalization)振型矩阵(Matrix Of Modal Shape)模态矩阵(Modal Matrix)主坐标(Principal Coordinates)模态坐标(Modal Coordinates)模态分析(Modal Analysis)模态阻尼比(Modal Damping Ratio)频响函数(Frequency Response Function)幅频特性(Amplitude-frequency Characteristics)相频特性(Phase frequency Characteristics)共振(Resonance)半功率点(Half power Points)波德图(Bodé Plot)动力放大系数(Dynamical Magnification Factor)单位脉冲(Unit Impulse)冲激响应函数(Impulse Response Function)杜哈美积分(Duhamel’s Integral)卷积积分(Convolution Integral)卷积定理(Convolution Theorem)特征矩阵(Characteristic Matrix)阻抗矩阵(Impedance Matrix)频响函数矩阵(Matrix Of Frequency Response Function)导纳矩阵(Mobility Matrix)冲击响应谱(Shock Response Spectrum)冲击激励(Shock Excitation)冲击响应(Shock Response)冲击初始响应谱(Initial Shock Response Spectrum)冲击剩余响应谱(Residual Shock Response Spectrum) 冲击最大响应谱(Maximum Shock Response Spectrum)冲击响应谱分析(Shock Response Spectrum Analysis 3 模态试验分析模态试验(Modal Testing)机械阻抗(Mechanical Impedance)位移阻抗(Displacement Impedance)速度阻抗(Velocity Impedance)加速度阻抗(Acceleration Impedance)机械导纳(Mechanical Mobility)位移导纳(Displacement Mobility)速度导纳(Velocity Mobility)加速度导纳(Acceleration Mobility)驱动点导纳(Driving Point Mobility)跨点导纳(Cross Mobility)传递函数(Transfer Function)拉普拉斯变换(Laplace Transform)传递函数矩阵(Matrix Of Transfer Function)频响函数(FRF,Frequency Response Function)频响函数矩阵(Matrix Of FRF)实模态(Normal Mode)复模态(Complex Mode)模态参数(Modal Parameter)模态频率(Modal Frequency)模态阻尼比(Modal Damping Ratio)模态振型(Modal Shape)模态质量(Modal Mass)模态刚度(Modal Stiffness)模态阻力系数(Modal Damping Coefficient)模态阻抗(Modal Impedance)模态导纳(Modal Mobility)模态损耗因子(Modal Loss Factor)比例粘性阻尼(Proportional Viscous Damping)非比例粘性阻尼(Non-proportional Viscous Damping) 结构阻尼(Structural Damping,Hysteretic Damping) 复频率(Complex Frequency)复振型(Complex Modal Shape)留数(Residue)极点(Pole)零点(Zero)复留数(Complex Residue)随机激励(Random Excitation)伪随机激励(Pseudo Random Excitation)猝发随机激励(Burst Random Excitation)稳态正弦激励(Steady State Sine Excitation)正弦扫描激励(Sweeping Sine Excitation)锤击激励(Impact Excitation)频响函数的H1 估计(FRF Estimate by H1)频响函数的H2 估计(FRF Estimate by H2)频响函数的H3 估计(FRF Estimate by H3)单模态曲线拟合法(Single-mode Curve Fitting Method) 多模态曲线拟合法(Multi-mode Curve Fitting Method) 模态圆(Mode Circle)剩余模态(Residual Mode)幅频峰值法(Peak Value Method)实频-虚频峰值法(Peak Real/Imaginary Method)圆拟合法(Circle Fitting Method)加权最小二乘拟合法(Weighting Least Squares Fitting method)复指数拟合法(Complex Exponential Fitting method) 1.2 振动测试的名词术语1 传感器测量系统传感器测量系统(Transducer Measuring System)传感器(Transducer)振动传感器(Vibration Transducer)机械接收(Mechanical Reception)机电变换(Electro-mechanical Conversion)测量电路(Measuring Circuit)惯性式传感器(Inertial Transducer,Seismic (地震?)Transducer)相对式传感器(Relative Transducer)电感式传感器(Inductive Transducer)应变式传感器(Strain Gauge Transducer)电动力传感器(Electro-dynamic Transducer)压电式传感器(Piezoelectric Transducer)压阻式传感器(Piezoresistive Transducer)电涡流式传感器(Eddy Current Transducer)伺服式传感器(Servo Transducer)灵敏度(Sensitivity)复数灵敏度(Complex Sensitivity)分辨率(Resolution)频率范围(Frequency Range)线性范围(Linear Range)频率上限(Upper Limit Frequency)频率下限(Lower Limit Frequency)静态响应(Static Response)零频率响应(Zero Frequency Response)动态范围(Dynamic Range)幅值上限(Upper Limit Amplitude)幅值下限(Lower Limit Amplitude)最大可测振级(Max.Detectable Vibration Level)最小可测振级(Min.Detectable Vibration Level)信噪比(S/N Ratio)振动诺模图(Vibration Nomogram)相移(Phase Shift)波形畸变(Wave-shape Distortion) 比例相移(Proportional Phase Shift)惯性传感器的稳态响应(Steady Response Of Inertial Transducer)惯性传感器的稳击响应(Shock Response Of Inertial Transducer)位移计型的频响特性(Frequency Response Characteristics Vibrometer)加速度计型的频响特性(Frequency Response Characteristics Accelerometer)幅频特性曲线(Amplitude-frequency Curve)相频特性曲线(Phase-frequency Curve)固定安装共振频率(Mounted Resonance Frequency) 安装刚度(Mounted Stiffness)有限高频效应(Effect Of Limited High Frequency)有限低频效应(Effect Of Limited Low Frequency)电动式变换(Electro-dynamic Conversion)磁感应强度(Magnetic Induction,Magnetic Flux Density)磁通(Magnetic Flux)磁隙(Magnetic Gap)电磁力(Electro-magnetic Force)相对式速度传感器(Relative Velocity Transducer)惯性式速度传感器(Inertial Velocity Transducer)速度灵敏度(Velocity Sensitivity)电涡流阻尼(Eddy-current Damping)无源微(积)分电路(Passive Differential (Integrate) Circuit)有源微(积)分电路(Active Differential (Integrate) Circuit)运算放大器(Operational Amplifier)时间常数(Time Constant)比例运算(Scaling)积分运算(Integration)微分运算(Differentiation)高通滤波电路(High-pass Filter Circuit)低通滤波电路(Low-pass Filter Circuit)截止频率(Cut-off Frequency)压电效应(Piezoelectric Effect)压电陶瓷(Piezoelectric Ceramic)压电常数(Piezoelectric Constant)极化(Polarization)压电式加速度传感器(Piezoelectric Acceleration Transducer)中心压缩式(Center Compression Accelerometer)三角剪切式(Delta Shear Accelerometer)压电方程(Piezoelectric Equation)压电石英(Piezoelectric Quartz)电荷等效电路(Charge Equivalent Circuit)电压等效电路(Voltage Equivalent Circuit)电荷灵敏度(Charge Sensitivity)电压灵敏度(Voltage Sensitivity)电荷放大器(Charge Amplifier)适调放大环节(Conditional Amplifier Section)归一化(Uniformization)电荷放大器增益(Gain Of Charge Amplifier)测量系统灵敏度(Sensitivity Of Measuring System) 底部应变灵敏度(Base Strain Sensitivity)横向灵敏度(Transverse Sensitivity)地回路(Ground Loop)力传感器(Force Transducer)力传感器灵敏度(Sensitivity Of Force Transducer)电涡流(Eddy Current)前置器(Proximitor)间隙-电压曲线(Voltage vs Gap Curve)间隙-电压灵敏度(Voltage vs Gap Sensitivity)压阻效应(Piezoresistive Effect)轴向压阻系数(Axial Piezoresistive Coefficient)横向压阻系数(Transverse Piezoresistive Coefficient) 压阻常数(Piezoresistive Constant)单晶硅(Monocrystalline Silicon)应变灵敏度(Strain Sensitivity)固态压阻式加速度传感器(Solid State PiezoresistiveAccelerometer)体型压阻式加速度传感器(Bulk Type Piezoresistive Accelerometer)力平衡式传感器(Force Balance Transducer)电动力常数(Electro-dynamic Constant)机电耦合系统(Electro-mechanical Coupling System) 2 检测仪表、激励设备及校准装置时间基准信号(Time Base Signal)李萨茹图(Lissojous Curve)数字频率计(Digital Frequency Meter)便携式测振表(Portable Vibrometer)有效值电压表(RMS Value Voltmeter)峰值电压表(Peak-value Voltmeter)平均绝对值检波电路(Average Absolute Value Detector) 峰值检波电路(Peak-value Detector)准有效值检波电路(Quasi RMS Value Detector)真有效值检波电路(True RMS Value Detector)直流数字电压表(DVM,DC Digital Voltmeter)数字式测振表(Digital Vibrometer)A/D 转换器(A/D Converter)D/A 转换器(D/A Converter)相位计(Phase Meter)电子记录仪(Lever Recorder)光线示波器(Oscillograph)振子(Galvonometer)磁带记录仪(Magnetic Tape Recorder)DR 方式(直接记录式) (Direct Recorder)FM 方式(频率调制式) (Frequency Modulation)失真度(Distortion)机械式激振器(Mechanical Exciter)机械式振动台(Mechanical Shaker)离心式激振器(Centrifugal Exciter)电动力式振动台(Electro-dynamic Shaker)电动力式激振器(Electro-dynamic Exciter)液压式振动台(Hydraulic Shaker)液压式激振器(Hydraulic Exciter)电液放大器(Electro-hydraulic Amplifier)磁吸式激振器(Magnetic Pulling Exciter)涡流式激振器(Eddy Current Exciter)压电激振片(Piezoelectric Exciting Elements)冲击力锤(Impact Hammer)冲击试验台(Shock Testing Machine)激振控制技术(Excitation Control Technique)波形再现(Wave Reproduction)压缩技术(Compression Technique)均衡技术(Equalization Technique)交越频率(Crossover Frequency)综合技术(Synthesis Technique)校准(Calibration)分部校准(Calibration for Components in system)系统校准(Calibration for Over-all System)模拟传感器(Simulated Transducer)静态校准(Static Calibration)简谐激励校准(Harmonic Excitation Calibration)绝对校准(Absolute Calibration)相对校准(Relative Calibration)比较校准(Comparison Calibration)标准振动台(Standard Vibration Exciter)读数显微镜法(Microscope-streak Method)?光栅板法(Ronchi Ruling Method)光学干涉条纹计数法(Optical Interferometer Fringe Counting Method)光学干涉条纹消失法(Optical Interferometer Fringe Disappearance Method)背靠背安装(Back-to-back Mounting)互易校准法(Reciprocity Calibration)共振梁(Resonant Bar)冲击校准(Impact Exciting Calibration)摆锤冲击校准(Ballistic Pendulum Calibration)落锤冲击校准(Drop Test Calibration)振动和冲击标准(Vibration and Shock Standard) 迈克尔逊干涉仪(Michelson Interferometer)摩尔干涉图象(Moire Fringe)参考传感器(Reference Transducer)3 频率分析及数字信号处理带通滤波器(Band-pass Filter)半功率带宽(Half-power Bandwidth)3 dB 带宽(3 dB Bandwidth)等效噪声带宽(Effective Noise Bandwidth)恒带宽(Constant Bandwidth)恒百分比带宽(Constant Percentage Bandwidth)1/N 倍频程滤波器(1/N Octave Filter)形状因子(Shape Factor)截止频率(Cut-off Frequency)中心频率(Centre Frequency)模拟滤波器(Analog Filter)数字滤波器(Digital Filter)跟踪滤波器(Tracking Filter)外差式频率分析仪(Heterodyne Frequency Analyzer) 逐级式频率分析仪(Stepped Frequency Analyzer)扫描式频率分析仪(Sweeping Filter Analyzer)混频器(Mixer)RC 平均(RC Averaging)平均时间(Averaging Time)扫描速度(Sweeping Speed)滤波器响应时间(Filter Response Time)离散傅里叶变换(DFT,Discrete Fourier Transform) 快速傅里叶变换(FFT,Fast Fourier Transform)抽样频率(Sampling Frequency)抽样间隔(Sampling Interval)抽样定理(Sampling Theorem)抗混滤波(Anti-aliasing Filter)泄漏(Leakage)加窗(Windowing)窗函数(Window Function)截断(Truncation)频率混淆(Frequency Aliasing)乃奎斯特频率(Nyquist Frequency)矩形窗(Rectangular Window)汉宁窗(Hanning Window)凯塞-贝塞尔窗(Kaiser-Bessel Window)平顶窗(Flat-top Window)平均(Averaging)线性平均(Linear Averaging)指数平均(Exponential Averaging)峰值保持平均(Peak-hold Averaging)时域平均(Time-domain Averaging)谱平均(Spectrum Averaging)重叠平均(Overlap Averaging)栅栏效应(Picket Fence Effect)吉卜斯效应(Gibbs Effect)基带频谱分析(Base-band Spectral Analysis)选带频谱分析(Band Selectable Spectral Analysis) 细化(Zoom)数字移频(Digital Frequency Shift)抽样率缩减(Sampling Rate Reduction)功率谱估计(Power Spectrum Estimate)相关函数估计(Correlation Estimate)频响函数估计(Frequency Response Function Estimate)相干函数估计(Coherence Function Estimate)冲激响应函数估计(Impulse Response Function Estimate)倒频谱(Cepstrum)功率倒频谱(Power Cepstrum)幅值倒频谱(Amplitude Cepstrum)倒频率(Quefrency)4 旋转机械的振动测试及状态监测状态监测(Condition Monitoring)故障诊断(Fault Diagnosis)转子(Rotor)转手支承系统(Rotor-Support System)振动故障(Vibration Fault)轴振动(Shaft Vibration)径向振动(Radial Vibration)基频振动(Fundamental Frequency Vibration)基频检测(Fundamental Frequency Component Detecting)键相信号(Key-phase Signal)正峰相位(+Peak Phase)高点(High Spot)光电传感器(Optical Transducer)同相分量(In-phase Component)正交分量(Quadrature Component)跟踪滤波(Tracking Filter)波德图(Bode Plot)极坐标图(Polar Plot)临界转速(Critical Speed)不平衡响应(Unbalance Response)残余振幅(Residual Amplitude)方位角(Attitude Angle)轴心轨迹(Shaft Centerline Orbit)正进动(Forward Precession)同步正进动(Synchronous Forward Precession)反进动(Backward Precession)正向涡动(Forward Whirl)反向涡动(Backward Whirl)油膜涡动(Oil Whirl)油膜振荡(Oil Whip)轴心平均位置(Average Shaft Centerline Position) 复合探头(Dual Probe)振摆信号(Runout Signal)电学振摆(Electrical Runout)机械振摆(Mechanical Runout)慢滚动向量(Slow Roll Vector)振摆补偿(Runout Compensation)故障频率特征(Frequency Characteristics Of Fault) 重力临界(Gravity Critical)对中(Alignment)双刚度转子(Dual Stiffness Rotor)啮合频率(Gear-mesh Frequency)间入简谐分量(Interharmonic Component)边带振动(Side-band Vibration)三维频谱图(Three Dimensional Spectral Plot)瀑布图(Waterfall Plot)级联图(Cascade Plot)阶次跟踪(Order Tracking)阶次跟踪倍乘器(Order Tracking Multiplier)监测系统(Monitoring System)适调放大器(Conditional Amplifier)趋势分析(Trend Analysis)倒频谱分析(Cepstrum Analysis)直方图(Histogram)确认矩阵(Confirmation Matrix)通频幅值(Over-all Amplitude)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)报警限(Alarm Level)往复式制冷压缩机(Reciprocating refrigeration compressor)润滑系统(lubrication system)离心油泵(centrifugal oil pump)。
随机振动加速度估值公式
随机振动加速度估值公式
随机振动加速度估值公式是描述振动加速度的数学表达式,用于计算物体在随机振动过程中的加速度变化。
这个公式在工程领域中广泛应用,特别是在振动控制和结构动力学方面。
它可以帮助工程师们更好地理解和预测振动的特性,以便设计出更安全和稳定的结构。
随机振动加速度估值公式可以分为两个部分:一是描述振动源的特性,二是计算振动传递路径上的加速度。
对于振动源的特性,通常可以使用功率谱密度函数来描述。
这个函数反映了振动信号在不同频率上的能量分布情况。
通过对振动源的功率谱密度函数进行傅里叶变换,可以得到振动信号的频域表达式。
在计算振动传递路径上的加速度时,可以使用传递函数来描述振动信号在不同频率上的传递特性。
传递函数是振动信号在结构中传递的过程中发生的变化关系,可以用来计算振动信号从振动源到接收点的传递函数值。
通过将振动源的功率谱密度函数与传递函数相乘,可以得到传递路径上的振动加速度的估值。
需要注意的是,随机振动加速度估值公式只是对振动加速度的一种估计,实际情况可能存在误差。
因此,在实际工程中,需要根据具体情况进行实测和分析,以得到更准确的振动加速度数值。
随机振动加速度估值公式是工程领域中用于计算振动加速度的数学表达式。
它可以帮助工程师们更好地理解和预测振动的特性,以便
设计出更安全和稳定的结构。
但需要注意的是,公式只是对振动加速度的一种估计,实际情况可能存在误差,因此需要根据具体情况进行实测和分析。
通过合理应用这个公式,可以提高工程结构的振动控制和设计质量,保障人们的生命财产安全。
振动测试规范(中英文)
振动测试规范Vibration Test Procedure1.0 PURPOSE(目的):1.1All Products must pass the vibration tests. The purpose of the vibration test is to determine the resistance of the product to vibration stress that the unit may under go during shipment and handling.1.1所有产品须经振动测试合格,振动测试的目的是用来求得产品在运送中对振动的扺抗力。
2.0 SCOPE (范围):2.1This procedure can be used for all products independent of the type, the nature of the product. There are two types of vibration tests. 2.1这个程序可用于所有产品,有2种型式的振动试验。
2.2SINE-WAVE VIBRATION2.2 SINE-WAVE振动试验:2.2.1In this vibration test, the unit under test is NOT Power ON, and is NOT connected to any other equipment.2.2.1振动试验中样品不须加电源,且不用连接至任何设备。
2.3 RANDOM VIBRATION (NON-OPERATIONAL)2.3 随机振动试验:2.3.1In this vibration test, the unit under test is NOT Powered ON, and is NOT connected to any other equipment. This test is a more severe stresstest than the SINE-WAVE vibration test.2.3.1振动试验中样品不须加电源,且不用连接至任何设备,这是比SINE-WAVR 较为严格的试验。
手机测试标准0014-随机振动random vibration test TS-P–R–0014
Preparation of samples (see TS-P–R–0080): The results of this test may be influenced by the presence of adhesive: NO. The results of this test may be influenced by the presence of a coating: NO. (coating = paint, varnish, metal finish, film in mold, film insert molding, stamped printing, pad printing, hot stamping, etc.). 样品的准备(参照TS-P–R–0080): 此实验的结果可能受粘合剂的影响:否 此实验的结果可能受涂层的影响:否 (涂层包括:油漆、清漆、金属漆、模层、印刷层等。)
编号 : TS-P-R-0014
版本 : 1.0
页数 : 2/2
1. GENERAL RULES 通用规则
See the following specifications:
“General rules for the performance of mechanical qualification tests” ref. TS-P–R–0080. 参考以下规范:TS-P–R–0080“机械性能实验的通用规则”
Do not perform checking on network simulators. 不用在网络仿真器上进行检查。
To fill in the heading of the sanction sheet ("Test Description" paragraph): • "Total number of test": enter “1”. • "Unit": enter "vibrations". 填写判定文件的表头(“实验描述”部分): • “实验总次数”:输入“1”; • “单位”:输入“振动”。
21563-2018 轨道交通 机车车辆设备 冲击和振动试验
GB/T 21563-2018前言本标准按照GB/T1.1一2009给出的规则起草。
本标准代替GB/T21563-2008《轨道交通机车车辆设备冲击和振动试验》,与GB/T21563—2008相比,主要技术变化如下:一修改了常用的3种模拟长寿命振动试验方法的释义,删除了现场信息内容,适用范围增加了多轴试验、主结构的释义等(见第1章,2008年版的第1章);增加了引用标准GB/T2423.57-2008(见第2章);—增加了术语,如随机振动、正态分布、加速度谱密度、组件和柜体等(见第3章);一修改了在功能振动试验前制造商和用户的协议内容(见第4章,2008年版的第4章);修改了试验顺序的相关内容,使其更加明确(见第5章,2008年版的第5章);增加了夹具测试要求的内容,使试验方法更为合理(见6.2);一修改了被试设备固定点的相关内容(见6.3.1,2008年版的6.2.1);修改了“固定点”的定义(见6.3.2,2008年版的6.2.1);一修改了控制点的定义,将“控制点”改为“检测点”,以便符合通用术语(见6.3.3、6.3.4,2008年版6.2.2、6.2.3);一修改了“1类B级车体安装功能振动试验的r.m.s.值”(见表1、表A.3,2008年版的表1、表A.3);一修改了被试设备的安装轴向未知时的试验处理方法,以便试验更加合理(见8.1、9.1、10.1,2008年版的8.1、9.1、10.1);一修改了“模拟长寿命振动试验条件”,制造商和用户可根据实际情况对本标准进行裁剪使用(见第9章,2008年版的第9章);一增加了采用冲击响应谱方法完成冲击试验的内容,以便制造商和用户可根据实际情况对本标准进行裁剪使用(见10.1);一增加了在试验台能力不足的情况下重型设备冲击试验处理方法的内容(见10.5中表3,注2);一修改了1、2、3类模拟长寿命振动试验频谱,因标准中引入了两种不同的加速度比例系数计算方法,从而得到两种不同的振动试验频谱(见图2~图5,2008年版的图1~图4);一修正了1类B级模拟长寿命振动试验的r.m.s.值,因ASD谱的频率范围由5Hz~150Hz变更为2Hz~150Hz且1类B级功能振动试验的r.m.s.值发生了变化(见9.1中表2、图3、A.6中表A.3,2008年版的9.1中表2、图2、A.5中表A.3);一增加了加速度比例系数计算方法,使制造商和用户可根据实际情况对本标准进行裁剪使用(见A.5.1);一增加了典型疲劳强度曲线,以便明晰加速度比例系数计算方法IⅡ的推导过程(见图A.3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Random Vibration
1. 定义
1.1 功率谱密度
当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)。
功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。
1.2 均方根
均方根(RMS)是指将N项的平方和除于N后,开平方的结果。
均方根值也是有效值,如对于220交流电,示波器显示的有效值或均方根值为220V。
2. 加速度功率谱密度
2.1 单位
加速度单位:m/s^2或g
加速度功率谱密度单位:(m/s^2)^2/Hz或g^2/Hz
Hz单位为:1/s,
所以加速度功率谱密度单位也可写为:m^2/s^3
2.2功率谱密度函数
功率谱密度函数曲线的纵坐标是(g²/Hz)。
功率谱曲线下的面积就是随机加速度的总方差(g²):
σ²= ∫Φ(f)df
其中:Φ(f)........功率谱密度函数
σ ............. 均方根加速度
3. 计算示例
随机振动100-2000HZ,功率谱密度为0.01g^2/Hz,则其加速度峰值计算如下:
σ²=0.01*(2000-100)=19
σ=4.36g
峰值加速度不大于3倍均方根加速度:13.08g
4、SAE J 1455 随机振动要求
4.1功率谱图
4.1.1 Vertical axis
4.1.2 Transverse axis
4.1.3 Longitudinal axis
4.2 Vertical axis加速度计算
功率谱曲线下的面积:σ²=(40-5)0.016+0.5*(500-40)*0.016=4.24σ=2.06g
峰值加速度不大于3倍均方根加速度:6.18g
5. FGE随机振动要求
5.1功率谱图
5.2 要求
在工作状态,振动频率范围:10Hz-1000Hz,振动方向:X、Y、Z三轴,试验时间:每轴各8h,加速度均方根为33.9 m/s²(3.46g)。
(实际计算为34.78 m/s²,3.55G—191024陈)。