新人教版九年级数学上册第25章概率初步教学设计
新人教版数学第二十五章概率初步全章教学设计
第二十五章概率初步课题:随机事件与概率教学目标:知识技能目标了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.【设计意图】通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【师生行为】教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.<活动三>【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.<活动四>【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.<活动五>【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.<活动六>【问题情境】归纳、小结布置作业设计一个摸球游戏,要求对甲乙公平.【师生行为】学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.【设计意图】课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.课题: 概率教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在图上标注出对应的点,完成统计图.表25-2n图律注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近. 这也与我们刚开始的猜想是一致的.我们就用这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多着名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识有没有发现频率还有其他作用学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高. 学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.课题: 用列举法求概率教学目标:知识与技能目标学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
人教版数学九年级上册25.1.2《概率》教学设计
人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。
本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。
通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。
在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。
但概率概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。
三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。
2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。
四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。
2.难点:概率公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。
2.合作学习法:分组讨论,培养学生团队合作精神。
3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。
六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。
2.教学工具:多媒体课件,黑板,粉笔。
3.学生活动:提前分组,准备进行合作学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。
2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。
同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。
九年级数学上册 第25章.概率初步教学案 人教新课标版
25.1.1 随机事件(第1课时)【学习目标】知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
情感态度与价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
学习重点:随机事件的特点学习难点:对生活中的随机事件作出准确判断。
【学习过程】一、学前准备1.自学课本125-126页,写下疑惑摘要:2.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)一元二次方程x2+2x+3=0无实数解。
3.引发思考我们把上面的事件(1)、(4)、(5)、(6)称为必然事件,把事件(2)、(3)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?二、自学、合作探究(一)自学——相信自己活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到纸签上的数字的情况从签筒中随机(任意)地取出一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(根据学生回答的具体情况,教师适当地加点拔和引导。
)活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(二)思索、交流(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?三、应用练习,巩固新知练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。
学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。
教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。
但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。
因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。
三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。
2.掌握概率的基本计算方法,能够计算简单事件的概率。
3.能够运用概率的知识解决实际问题。
四. 教学重难点1.随机事件的定义和分类。
2.概率的计算方法。
3.概率在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。
2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。
3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.分组讨论的准备。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。
2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。
3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。
4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。
5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。
新人教版初中数学九年级上册第25章 概率初步《25.1.2概率》教案
第二十五章概率初步25.1随机事件与概率25.1.2概率1.明天下雨的概率为95%,那么 下列说法错误的是( ) (A) 明天下雨的可能性较大(B) (B) 明天不下雨的可能性较小 (C) 明天有可能是晴天 (D) 明天不可能是晴天2、1袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ; P(摸到黄球)= 。
3、有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4.现将它们的背面朝上,从中任意摸到一张卡片,则:P (摸到1号卡片)= ; P (摸到2号卡片)= ; P (摸到奇数号卡片)= ; P (摸到偶数号卡片) =4、设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取1只,是二等品的概率为____。
5、一副扑克牌,从中任意抽出一张,求下列结果的概率: ① P(抽到红桃5)=____②P(抽到大王或小王)=____ ③P(抽到A)=____ ④P(抽到方块)=6、如图,能自由转动的转盘中, A 、B 、C 、D 四个扇形的圆心角的度数分别为180°、 30 °、 60 °、 90 °,转动转盘,当转盘停止时, 指针指向B 的概率是_____,指向C 或D 的概率是_____。
7.四张形状、大小、质地相同的卡片上分别画上圆、平行四边形、等边三角形、正方形,然后反扣在桌面上,洗匀后随机抽取一张,抽到轴对称图形的概率是( ), 抽到中心对称图形的概率是( )。
8、在分别写出1至20张小卡片中,随机抽出一张卡片,试求以下事件的概率.⑴该卡片上的数字是2的倍数,也是5的倍数 ⑵该卡片上的数字是4的倍数,但不是3的倍数 ⑶该卡片上的数不能写成一个整数的平方⑷该卡片上的数字除去1和自身外,至少还有3个约数.达标测评是为了加深对所学知识的理解运用,在问题的选择上以基础为主、疑难点突出,增加开放型、探究型问题,使学生思维得到拓展、能力得以提升.深化理解运用新知师生互动课堂小结 1.课堂总结:(1)你在本节课的学习中有哪些收获?有哪些进步? (2)学习本节课后,还存在哪些困惑? 2.布置作业:教材第134页习题25.1第3题.巩固、梳理所学知识.对学生进行鼓励,并进行思想教育.总结反思【知识网络】提纲挈领,重点突出【教学反思】 ①[授课流程反思]在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟出模型提取的思维机制,获取模型选取的经验.②[讲授效果反思]引导学生注意:(1)概率从数量上刻画了一个事件发生的可能性的大小.(2)计算有关面积问题的概率,首先应分析哪些事件的发生与哪部分面积有关,再根据面积的计算方法求有关的比值. ③[师生互动反思]从课堂表现和教学效果分析,学生通过举例说明,理解问题的解答过程,积极性高,理解透彻,能圆满完成课题学习任务. ④[习题反思]好题题号__________________________________________ 错题题号__________________________________________反思教学过程和教师表现,进一步提升操作流程和自身素质.。
九年级数学上册 第二十五章《概率初步(数学活动)》教学设计 (新版)新人教版
概率初步一、内容及内容解析1.内容用试验估计“豆子落在区域C”“每个同学抽到黑桃”的概率.2.内容解析活动1中“豆子落在区域C”的概率可以用几何概型求得.几何概型是另一种等可能概型,它与古典概型的区别在于试验结果是无限个.只要把半径为6的圆内部所有点作为试验的全部结果,区域C内的所有点作为事件W的结果,则根据公式P(W)=构成事件W的区域面积/试验的全部结果所构成的区域面积,可求得相应事件的概率.因此,“豆子落在区域C的概率”等于半径为2的圆的面积与半径为6的圆的面积的比,但学生没有学过此概率模型.活动2“每个同学抽到黑桃”试验,是想通过频率估计概率的方法,去验证现实生活中常用的抓阄的方法是否公平.其实,把3个人都抽完一次签作为一次试验,通过古典概型可计算每个同学抽到黑桃的概率是相等的,但这里列基本事件对学生来说有点难度.由于这两种试验发生的概率,以学生现有的知识不容易通过计算获得,因此只能通过用频率估计概率.通过这两个数学活动,可以帮助学生进一步理解概率的意义,拓宽对概率的认识,并且进一步体会到频率估计概率方法应用的广泛性以及概率在实际生活中的作用.基于以上分析,确定本课的教学重点是:估计活动1与活动2的概率,体会频率估计概率应用的广泛性以及在实际生活中的作用.二、目标和目标解析1.目标(1)通过试验,获得“豆子落在区域C”“每个同学抽到黑桃”的概率.(2)通过试验,体会频率估计概率应用的广泛性以及在实际生活中的作用.2.目标解析达成目标(1)的标志是:学生分组多次重复试验,统计每次试验落在A,B,C三个区域中豆子数的比,并分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法.学生通过分组进行多次重复试验,统计每次试验抽中的人,最终计算每个人抽中的频率,估计出“每个同学抽到黑桃”的概率.达成目标(2)的标志是:学生初步发现区域面积与概率的关系,并认识到用频率估计概率的方法的应用范围更广,更具有一般性,同时体会到用概率帮助解释如“抓阄是否公平”等生活实际中的疑问.三、教学问题诊断这两个活动都没有原始数据,需要学生自己首先从事收集数据的活动,然后对数据进行处理,最后运用统计知识进行分析数据,这样的活动都具有较强的实践性和综合性.因此,需要教师对如何试验,进行哪些操作给以帮助和指导.对于分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法,学生没有相关的知识与经验,此时需要教师设计问题予以启发.基于以上分析,确定本节课的教学重点是:通过试验获得“豆子落在区域C”“每个同学抽到黑桃”的概率.四、教学过程设计1.完成活动1的试验问题1 在如图所示的图形中随机撒一把豆子,计算落在A,B,C三个区域中豆子数的比.多次重复这个试验,你能否发现上述比与A,B,C三个区域的面积有何关系?师生活动:学生观察思考,教师先指导学生记录试验结果,然后教师组织学生分组进行试验.每组试验20次,并将各组的试验结果统计在一起.然后提问:(1)对照多次试验的结果,落在A,B,C三个区域中豆子数的比是否具有一定的稳定性?(2)上述比与A,B,C三个区域的面积有何关系?(3)这表明落在A,B,C三个区域中豆子数的多少与什么有关?设计意图:让学生亲自动手试验,获得真实数据,并对数据收集、整理、分析,发现落在A,B,C三个区域中豆子数的多少与每个区域的面积大小有关.体会随机事件的随机性与稳定性特征.问题2 如果将“豆子落在区域C”记作事件W,请估计事件W的概率.师生活动:教师提出问题,学生思考.根据频率估计概率,落在区域C中的豆子数与落在A,B,C三个区域中豆子总数之比,可以作为“豆子落在区域C”的概率.设计意图:通过频率估计几何概型试验中的概率,使学生体会频率估计概率是求概率的一般方法.2.完成活动2的试验问题3 3张扑克牌中只有1张黑桃,3为同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?如何得到这个概率?师生活动:教师出示问题,然后组织学生进行讨论,最后发现用列举法求比较困难,于是选择用频率估计概率的方法.教师组织学生分组试验,每组记录好试验的次数,以及每次试验抽中黑桃的人数,每组试验20次,计算20次试验中,每个人抽中黑桃的次数,并计算频率,最后教师将全班同学试验次数,每个人抽中黑桃的次数进行汇总,并计算随着试验次数增加时,每个人抽中黑桃的频率,最后全班共同分析,随着试验次数的增加,每个人的频率稳定在13左右.因此,每个人抽到黑桃的概率跟抽取的顺序无关.设计意图:使学生经历用频率估计概率的过程,感受在大量重复试验中,随着试验次数的增加,频率趋于稳定性.问题4 抓阄是实际生活中常见的一种进行选择的方法,有人说这种方法公平,也有人说这种方法不公平,通过上述摸牌试验,你觉得这种方法公平吗?为什么?师生活动:教师出示问题,学生思考、讨论.设计意图:学生受到摸牌试验的启发,不难发现摸牌与抓阄是同类试验,因此每个人抽中的概率是相同的,因此抓阄是公平的.让学生体会到数学方法可以解释生活中很多现象的原因.3.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课中两个试验的概率是通过怎样的方法得到的?(2)你觉得试验在求概率中有何作用?(3)你觉得概率在生活中对你有何帮助?设计意图:通过小结,总结本节课所学内容,体会试验在求概率中的作用,以及概率在生活实际中的作用.4.布置作业就“抓阄公平吗?”采访一下自己的父母或朋友,用你所学的数学知识和他们进行交流.五、目标检测设计1.如图,在正方形ABCD 中随机选取一点,你能设计一个试验,用频率估计概率的方法,求出此点恰在△ABO 内部的概率吗?设计意图:考查学生能否设计试验利用频率估计概率.2.4张扑克牌中只有1张黑桃,4位同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?设计意图:考查学生是否了解了这种游戏的公平性.A B D C O。
九年级数学上册 第25章 概率初步数学活动教案 新人教版
概率初步数学活动一、活动导入1.活动课题:在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在哪个区域的可能性最大?今天我们就来做试验估计豆子落在哪个区域的可能性最大.(板书课题)2.活动目标:(1)通过试验估计几何概率.(2)进一步感受偶然事件中蕴含确定的规律性.3.活动重、难点:重点:两个试验活动.难点:保证试验条件相同.二、活动过程活动1 用频率估计几何概率1.活动指导:(1)活动内容:教材第150页活动1.(2)活动时间:10分钟.(3)活动方法:完成活动参考提纲.(4)活动参考提纲:①活动1中的几何图形适用于我们做试验吗?图中各圆最合适的半径分别为多少?豆子可以改成什么?适用.2cm,4cm,6cm.豆子可以改成花生米.②如果把三个圆的半径分别定为20cm、 40cm、60cm,请重新制作圆盘,完成试验.③分别估计豆子落在A,B,C区域的概率.A :59B :13C :192.自学:学生参考活动指导进行活动性学习.3.助学:(1)师助生:①明了学情:了解学生是否能设计替代试验.②差异指导:指导学生设计替代试验.(2)生助生:同桌之间互相交流.4.强化:(1)一般地,如果在一次试验中,结果落在区域D 中每一点都是等可能的,用A 表示“试验结果落在区域D 中的一个小区域M 中”这个事件,那么事件A 发生的概率是()的面积的面积M P A D =. (2)设计替代试验应注意的事项.活动2 抽到黑桃的概率跟抽取的顺序的关系1.活动指导:(1)活动内容:教材第150页活动2.(2)活动时间:5分钟.(3)活动方法:完成活动参考提纲.(4)活动参考提纲:①全班同学3人一组,分别试验,如果扑克牌不足可选择其他替代试验,把各组的试验次数与第1位、第2位、第3位同学抽取黑桃的次数分别相加,并计算频率填入下表:②他们抽到黑桃的概率跟抽取的顺序有关系吗?无关③分别求出3位同学抽到黑桃的概率,跟试验的结果一致吗?一致2.自学:学生参考活动指导进行活动性学习.3.助学:(1)师助生:①明了学情:看学生是否能顺利完成试验,关注学生处理试验道具不足和试验次数不足的问题.②差异指导:指导学生分组试验以及试验数据的处理.(2)生助生:同桌之间互相交流.4.强化:抽到黑桃的概率跟抽取的顺序无关.三、评价1.学生的自我评价(围绕三维目标):这节课你有什么收获?有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生动手操作能力与参与活动的积极性等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课通过两个数学活动,让学生感受概率的真实性,活动一是一个几何问题,根据图形引导学生知道用落在相应区域的豆子数与整个区域的豆子数的比估计概率,进而与相应区域的面积对比,发现区域面积与豆子落在该区域的概率的关系.活动二是用频率估计概率的方法验证现实生活中的问题,了解一般情况下,抽取的签与抽签顺序无关这个事实.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是(B)A.落在菱形内B.落在圆内C.落在正六边形内D.一样大第1题图第2题图第3题图2.(10分)射击打靶训练时,靶子(如图)是由5个多轮的同心圆构成,那么可能性最小的是射中(C)A.第7环B.第6环C.第10环D.第9环3.(10分)如图所示的平面图是4×4方格,若向方格面掷飞镖,飞镖落在黑色区域的概率为14. 4.(10分)如图所示,一个大正方形地面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都落在大正方形地面上.求跳伞运动员一次跳伞落在草坪上的概率.解:因为正方形草坪S S =12,所以P (跳伞运动员一次跳伞落在草坪上)=12. 5.(20分)一个口袋中有6个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中60次摸到白球.根据上述数据,小明可估计口袋中的白球大约有多少个?解:设口袋中的白球大约有x 个,由题意可得x x =+606100.解得x =9. 所以小明估计口袋中的白球大约有9个.二、综合应用(20分)6.(20分)如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有150次是落在不规则图形内.(1)你能估计出掷中不规则图形的概率吗?(2)若该长方形的面积为150平方米,试估计不规则图形的面积.解:(1)掷中不规则图形的概率为12.(2)S =⨯=150********(平方米) 三、拓展延伸(20分)7.(20分)如图,某商标是由边长均为2的正三角形、正方形、正六边形金属薄片镶嵌而成的图案.(1)求这个镶嵌图案中一个正三角形的面积;(2)如果在这个镶嵌图案中随机确定一个点O ,那么点O落在镶嵌图案中的正方形区域的概率为多少?(结果保留两位小数)解:(1)正三角形S =⨯=122(2)正方形六边形S ,S =⨯===2246所以正方形总正三角形正六边形S S S S =++=+1011244所以P (点O 落在镶嵌图案中的正方形区域)=正方形总S .S =≈11054. 如有侵权请联系告知删除,感谢你们的配合!。
人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》教学设计
人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》教学设计一. 教材分析本节课的主题是“用列举法求概率”,这是人教版九年级数学上册第二十五章概率初步的内容。
教材通过实例引入概率的概念,让学生了解概率是反映事件发生可能性大小的量。
本节课的主要内容是用列举法求概率,通过列举所有可能的结果,再计算符合条件的结果数与总结果数之比,从而得到概率。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,了解了随机事件、必然事件和不可能事件。
他们已经能够理解事件发生的可能性,并能够用分数表示事件发生的概率。
但是,学生对于用列举法求概率的方法可能还不够熟悉,需要通过本节课的学习和实践来掌握。
三. 教学目标1.知识与技能:使学生掌握用列举法求概率的方法,能够通过列举所有可能的结果,计算符合条件的结果数与总结果数之比,得到概率。
2.过程与方法:培养学生运用概率知识解决实际问题的能力,提高学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生对概率学科的兴趣,培养学生积极的学习态度,使学生认识到数学在生活中的应用。
四. 教学重难点1.重点:掌握用列举法求概率的方法。
2.难点:如何引导学生列举出所有可能的结果,并计算出概率。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,激发学生的学习兴趣。
2.讲授法:讲解概率的定义和列举法求概率的方法。
3.实践操作法:让学生动手列举实例,求解概率,提高学生的实践能力。
4.讨论法:分组讨论,引导学生交流与合作,共同解决问题。
六. 教学准备1.教学课件:制作课件,展示概率的定义和列举法求概率的方法。
2.实例:准备一些生活实例,用于导入和巩固所学知识。
3.练习题:准备一些练习题,用于让学生动手实践,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币实验。
向学生展示硬币抛掷的结果,并引导学生思考:如何计算抛出正面的概率?2.呈现(10分钟)向学生讲解概率的定义,并用课件展示。
人教版九上第25章《概率初步》word教案
第45课时 25.1.1随机事件(第一课时)学习目标通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
一、板书课题,揭示目标太阳从西边下山这个事情会发生吗?那好,今天我们一起来学习(投影课题及目标).(见学习目标)二、指导自学认真看课本P125-P126练习前的内容:完成问题1、2,(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?5分钟后,比谁能正确地做出与例题类似的习题。
三、学生自学,教师巡视1、学生按照自学指导看书,教师巡视,确保人人学得紧张高效.2、检查自学效果完成课本练习.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;(2)刘翔再次打破110米栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球(8)物体在重力的作用下自由下落。
(9)抛掷一千枚硬币,全部正面朝上。
请几位同学板演,其余学生在座位上完成.四、更正、讨论、归纳、总结1.学生自由更正,或写出不同解法;2.讨论、归纳学生点评教师小结:五、课堂作业1、指出下列事件中,哪些是必然发生的,哪些是不可能发生的,哪些是随机事件:(每个1分)(1)某射击运动员射击一次,命中靶心.(2)通常温度降到0℃以下,纯净的水结冰。
(3)随意翻到一本书的某页,这页的页码是奇数。
(4)地面发射一枚导弹,未击中空中目标。
(5)测量某天的最低气温,结果为-150℃。
(6)汽车累积行驶1万千米,从未出现故障。
(7)买一张奖券,中奖。
六、教学反思第46课时 25.1.1随机事件(第二课时)学习目标通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计一. 教材分析本节课为人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时,主要内容包括随机事件的定义、必然事件、不可能事件以及概率的定义。
本节课的内容是学生对概率知识的一次初步认识,为后续学习更高级的概率知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于事件的分类和概率的概念有一定的理解。
但同时,学生对于概率这一概念的理解还需要通过具体的例子来进行引导。
三. 教学目标1.了解随机事件的定义、必然事件、不可能事件。
2.理解概率的定义,并能运用概率知识解决简单问题。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.重点:随机事件的定义、必然事件、不可能事件,概率的定义。
2.难点:概率的计算和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过具体的例子引导学生理解概率的概念,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.教学PPT。
2.教学案例和问题。
3.小组合作学习的任务单。
七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币时,正面朝上和反面朝上的可能性是否相等?从而引出随机事件的定义。
2.呈现(15分钟)呈现必然事件、不可能事件的例子,让学生通过观察和分析,理解必然事件和不可能事件的含义。
3.操练(10分钟)让学生通过PPT上的练习题,巩固对随机事件、必然事件、不可能事件的理解。
4.巩固(10分钟)学生分小组,根据任务单,探讨并计算一些简单的概率问题,如抛硬币、掷骰子等。
教师巡回指导,帮助学生解决遇到的问题。
5.拓展(10分钟)让学生思考并讨论:如何计算一个事件的概率?引导学生理解概率的计算方法。
6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确随机事件、必然事件、不可能事件的定义,以及概率的计算方法。
人教版数学九年级上册第25章-概率初步(教案)
1.理解概率的基本性质,如非负性、规范性、可加性等。
2.掌握互斥事件和独立事件的概率计算方法。
25.4概率的应用
1.能运用概率知识解决实际问题。
2.了解概率在生活中的应用,提高解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言描述随机现象,提高抽象概括能力。
2.培养学生运用概率知识进行问题分析,提升逻辑推理和数学思维能力。
此外,在教学过程中,我尝试采用小组讨论和实验操作的方式,让学生在实践中学习概率。从学生的反馈来看,这种教学方式取得了较好的效果,大家积极性很高,课堂氛围活跃。但同时,我也注意到,在小组讨论过程中,部分学生依赖性强,不够主动。因此,我需要在组织小组活动时,更加注重激发学生的主观能动性,引导他们积极参与讨论,提高合作能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率初步》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过不确定的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
在讲解概率的性质和应用时,我发现学生对于理论知识的应用还不够熟练。为了帮助学生更好地将所学知识运用到实际问题中,我计划在后续的教学中,增加一些与生活密切相关的综合题,让学生在解决问题的过程中,深化对概率性质的理解。
最后,我觉得在课堂教学过程中,要关注学生的个体差异。对于学习困难的学生,要给予更多的关心和指导,帮助他们克服难点,提高学习兴趣。同时,对于学有余力的学生,可以适当增加拓展性内容,激发他们的学习潜能。
2.教学难点
-理解随机事件的抽象概念:学生对随机事件的理解可能存在困难,需要通过具体实例和生活情境帮助学生理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版九年级数学上册第25章概率初步教学设计1.理解必然事件、不可能事件和随机事件的特点,并会判断.2.了解和体会随机事件发生的可能性是有大小的.02 预习反馈1.在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.2.在一定条件下,可能发生也可能不发生的事件,称为随机事件.3.下列事件:①打开电视正在播放电视剧;②投掷一枚普通的骰子,掷得的点数小于9;③射击运动员射击一次,命中10环;④在一个只装有红球的袋中摸出白球.其中必然事件有②,不可能事件有④,随机事件有①③.4.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性>摸到K的可能性.(填“<”“>”或“=”)03 新课讲授类型1 事件的分类例1 (教材P127问题1变式)五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个大小相同的签,每个签上面分别标有表示出场顺序的数字1,2,3,4,5,在看不到数字的情况下,小军先抽,他任意(随机)从盒中抽取一个签.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字大于0吗?是什么事件?(3)抽到的数字会是6吗?是什么事件?(4)抽到的数字会是3吗?是什么事件?【解答】 (1)1,2,3,4,5,共5种.(2)必然大于0;是必然事件.(3)不可能是6;是不可能事件.(4)可能是3,也可能不是3;是随机事件.思考:确定性事件和随机事件的特点各是什么呢?确定性事件:在发生之前可以预测结果.随机事件:事先不能预料事件是否发生,即事件的发生具有不确定性.【跟踪训练1】下列事件中,是必然事件的是(B)A.购买一张彩票,中奖B.通常温度降到0 ℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯【跟踪训练2】不透明的口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是(C)A.随机摸出1个球,是白球B.随机摸出2个球,都是黄球C.随机摸出1个球,是红球D.随机摸出1个球,是红球或黄球类型2 事件发生的可能性大小例2 (教材P129练习2变式)一只不透明的袋子中有2个红球,3个绿球和5个白球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.(1)会有哪些可能的结果?(2)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(3)能否通过改变某种颜色球的数量,使“摸到红球”和“摸到白球”的可能性大小相同?【解答】 (1)从袋子中任意摸出一个球,可能是红球,也可能是绿球或白球.(2)∵白球最多,红球最少,∴摸到白球的可能性最大,摸到红球的可能性最小.(3)拿出3个白球,或放入3个红球即可.思考:我们如何比较随机事件发生的可能性大小呢?事件发生的可能性大小往往是由发生事件的条件来决定的,因此我们可以通过比较各事件发生的条件及其对事件发生的影响来比较事件发生的可能性大小.【跟踪训练3】 (25.1.1练习)如图,一个任意转动的转盘被均匀分成六份,随意转动一次,停止后指针落在阴影部分的可能性比指针落在非阴影部分的可能性(A)A.大B.小C.相等D.不能确定04 巩固训练1.下列事件是必然事件的是(D) A.打开手机就有未接电话B.乘坐公共汽车恰好有空座C.明天会下雨D.将油滴入水中,油会浮在水面上 2.下列事件中,不可能事件是(C)A.两点确定一条直线B.五边形的内角和为540°C.实数的绝对值小于0D.如果a2=b2,那么a=b3.下列事件中,是随机事件的为(B)A.水涨船高 B.冬天下雪C.水中捞月 D.冬去春来4.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为随机事件(填“必然”“不可能”或“随机”).5.一个袋中装有10个红球,6个黄球,4个白球,每个球除颜色外都相同,搅匀后,任意摸出一个球,摸到红球的可能性最大.(1)事先不能预料事件是否发生,即事件的发生具有不确定性;(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同.25.1.2 概率01 教学目标1.理解有限等可能事件概率的意义,掌握其计算公式.2.利用概率公式求简单事件的概率.02 预习反馈1.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).2.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=mn.3.当A是必然事件时,P(A)=1;当A是不可能事件时,P(A)=0;当A是随机事件时,P(A)的取值范围是0<P(A)<1.4.对“某市明天下雨的概率是75%”这句话,理解正确的是(D)A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大5.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0,1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为(C)A.45B.35C.25D.1503 新课讲授类型1 简单概率的计算例1 (教材P131例1变式)掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为1;(2)点数为偶数;(3)点数大于3且小于6.【解答】掷一枚质地均匀的骰子时,向上一面的点数可能是1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为1有1种可能,因此P(点数为1)=16.(2)点数为偶数有3种可能,即点数为2,4,6,因此P(点数为偶数)=12.(3)点数大于3且小于6有2种可能,即点数为4,5,因此P(点数大于3且小于6)=13.思考:如何求简单随机事件的概率?(1)要清楚关注的是发生哪个或哪些结果;(2)要清楚所有等可能出现的结果;(3)上面两个结果个数之比就是关注的结果发生的概率,即P=事件发生的结果数所有等可能出现的结果数.【跟踪训练1】在一个不透明袋子中装有5个红球、3个绿球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,摸出红球的概率是(D)A.13B.35C.38D.58【跟踪训练2】把分别写有数字1,2,3,4,5的5张同样的小卡片放进不透明的盒子里,搅拌均匀后随机取出一张小卡片,则取出的卡片上的数字大于3的概率是25.类型2 几何概率的计算例2 (教材P132例2变式)如图是一个材质均匀的转盘,转盘分成8个全等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止(若指针指向两个扇形的交线时,当作指向右边的扇形),转动一次转盘:(1)求指针指向红色扇形的概率;(2)指针指向红色扇形的概率大,还是黄色扇形概率大?为什么?【解答】按颜色把8个扇形分别记为红1,红2,绿1,绿2,绿3,黄1,黄2,黄3,所有可能结果的总数为8,并且它们出现的可能性相等.(1)指针指向红色扇形(记为事件A)的结果有2种,即红1,红2,因此P(A)=28=14.(2)指针指向黄色扇形的概率大.理由:指针指向黄色扇形(记为事件B)的结果有3种,即黄1,黄2,黄3,因此P(B)=38.∵14<38,∴P(A)<P(B),即指针指向黄色扇形的概率大.归纳:几何概率的公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).【跟踪训练3】如图,一个正六边形转盘被分成6个全等的三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是(C)A.16B.14C.13D.12【跟踪训练4】一只小狗跳来跳去,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则小狗停留在黑色方格中的概率是13.04 巩固训练1.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、正六边形,现从中随机抽取一张,卡片上的图形是中心对称图形的概率是(C)A.14B.13C.34 D.12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是(B)A.14B.512C.13D.123.一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是12.4.某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准红色、黄色或绿色区域,顾客就可以分别获得玩具熊、童话书、水彩笔.小明和妈妈购买了125元的商品,请你分析计算:(1)小明获得奖品的概率是多少?(2)小明获得玩具熊、童话书、水彩笔的概率分别是多少?解:(1)∵转盘被平均分成16份,其中有颜色部分占6份,∴P(获得奖品)=616=38.(2)∵转盘被平均分成16份,其中红色、黄色、绿色部分分别占1份、2份、3份,∴P(获得玩具熊)=116,P(获得童话书)=216=18,P(获得水彩笔)=316.05 课堂小结1.当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0;当A为随机事件时,0<P(A)<1.2.事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.3.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=mn,即事件A发生的概率P(A)=事件A发生的结果数所有可能的结果总数.。