炉内喷钙脱硫工艺流程图
3×75t炉内喷钙方案
邹城宏矿热电有限公司3×75t/h锅炉炉内喷钙干法脱硫技术方案山东飞洋环境工程有限公司2016年2月目录1.概况 (3)2.厂区条件 (3)2.1厂址. (3)2.2环境条件 (3)3.燃煤资料 (3)4.脱硫剂 (4)5.设计依据 (4)6.主要技术参数 (4)7.干法脱硫系统简介 (5)(1)反应原理 (5)(2)工艺流程 (5)(3)主要性能保证 (7)(4)主要技术指标 (7)8.设备清单 (8)1.概况邹城宏矿热电有限公司(以下简称公司)位于邹城经济开发区三兴路东段,已有三台75t/h循环流化床锅炉并配套建设氨法烟气脱硫装置。
为达到环保要求的超低排放标准,拟建设炉内喷钙干法烟气脱硫系统。
2.厂区条件2.1 厂址邹城经济开发区三兴路东段2.2 环境条件年平均气压:101.53kPa年平均汽温:12.3℃极端最高汽温:41.9℃极端最低汽温:-23.3℃平均年降雨量:594.4mm最大年降雨量:1442mm瞬时最大风速(地面上10m):40m/s最大积雪深度:150mm最大冻土深度:600mm常年风向:SSE最大冻土深度-0.5m抗震设防烈度为7度。
根据国标《建筑抗震设计规范》和《火力发电厂土建专业技术设计规定》的规定,脱硫装置按7度进行抗震构造措施设防。
3.燃煤资料锅炉型号:型号:3台1.锅炉蒸发量75t/h2.风量(工况)170000m³/h4.脱硫剂石灰石目数在250以上,活性达到我方工艺设计要求。
纯度在90%以上。
5.设计依据本方案保证对系统功能设计、结构、性能、制造、建筑、供货、安装、调试、试运行等符合相关的中国法律、法规、规范、以及最新版的ISO和IEC标准。
对于标准的采用按下述原则执行:首先应符合中国国家标准、部颁标准及行业规程规定;上述标准中不包含的部分,采用技术来源国标准或国际通用标准。
标准由本方案提供,业主确认;如上述标准均不适用,由业主和本方案讨论并确定;上述标准有矛盾时,按较高标准执行。
炉内喷钙脱硫工艺石灰石粉输送系统技术方案
130t/h循环流化床锅炉炉内喷钙脱硫工艺石灰石粉输送系统技术方案编制单位:编制日期:目录1工程概况 12炉内喷钙脱硫技术 33、输送系统技术要求及技术保证 54规程和标准 135质量保证及考核试验 146设计界限及接口 157、包装、运输和储存 188技术服务和设计联络 199、运行费用及效益分析 2010、工程投资估算 2111、系统工艺流程图(附图) 231工程概况1.1概述业主方现有1台130t/h循环流化床锅炉,锅炉采用向炉内添加石灰石粉脱硫工艺。
本方案设计的石灰石粉输送系统,是指将石灰石粉由炉前日用石灰石粉仓输送至锅炉炉膛石灰石粉接口的输送系统,单台炉为一个单元,设一个日用石灰石粉仓,输送气源由罗茨风机提供。
本技术方案适用于1×130t/h循环流化床锅炉所配套的石灰石粉输送系统工程。
该系统的功能、设计、结构、性能、安装和调试等方面说明满足相应的技术要求。
1.2设备运行环境气象特征与环境条件1.3 石灰石粉成份(煅烧前)石灰石成份分析如下:1.4 炉内喷钙脱硫系统设计指标(按常规130t循环流化床锅炉计算)2炉内喷钙脱硫技术2.1概述干法烟气脱硫技术是指脱硫吸收和产物处理均在干燥状态下进行的烟气脱硫技术,目前,发展了多种工艺,包括吸收剂喷射技术、电法干式脱硫技术及干式催化脱硫技术,炉内喷钙是其中一种应用较广泛的吸收剂喷射技术。
炉内喷钙是把干的吸收剂(石灰石粉、消石灰或白云石等)直接喷到锅炉炉膛的气流中去,炉膛内的热量将吸收剂煅烧成具有活性的CaO粒子,这些粒子与烟气中的SO2反应生成硫酸钙(CaSO4)和亚硫酸钙(CaSO3),这些反应产物和飞灰一起被除尘设备所捕获。
2.2工艺原理将石灰石粉磨至150目左右,用压缩空气喷射到炉内最佳温度区,并使脱硫剂石灰石与烟气有良好的接触和反应时间,石灰石受热分解成氧化钙和二氧化碳,再与烟气中二氧化硫,反应生成亚硫酸钙和硫酸钙,最终被氧化成硫酸钙。
脱硫技术_干法
五、喷雾干燥法技术特点
脱硫效率较高,75~85%
投资和运行费用较少、占地较小
反应产物为干的,便于处理 没有废水二次污染
主要应用问题
容器湿壁,管道堵塞
喷雾器的磨损和破裂
烟道和除尘器腐蚀
对除尘器的性能有影响
喷雾干燥塔湿壁情况
喷雾干燥塔湿壁情况
山东黄岛电厂半干法脱硫系统
和SO2作用而脱硫。
CaO H 2O Ca(OH ) 2
Ca(OH ) 2 SO2 H 2O CaSO3 2 H 2O 1 Ca(OH ) 2 SO2 H 2O O2 CaSO4 2 H 2O 2
三、影响参数
1、炉内参数的影响 (1)、温度的影响 最佳的温度为850~1100℃。
H /D 3~5 H / D 0.5 ~ 1
吸收塔下部锥角≤600,塔内烟气停留时间10~12s。 3. 除尘设备 一般采用袋式除尘器和电除尘器。袋式除尘器中的
脱硫效率可达总效率的15~30%,电除尘器中的脱
硫效率可达总效率的10~15%。 4. 运行控制系统 浆液调节系统 联锁保护系统
反应产物以干态脱硫渣形式排出。
喷雾干燥法
烟气循环流化床
NID技术
3-6-1 喷雾干燥法
工艺原理
工艺流程 影响脱硫效率的因素 主要工艺系统
主要特点
应用实例
一、工艺原理
1、化学过程:
生石灰制浆: CaO H 2O Ca(OH ) 2 SO2被液滴吸收:
SO2 H 2O H 2 SO3
* *
H 2 SO4 nH2O* ( H 2 SO4 nH2O)*
影响SO2吸附的因素 废气中含有足够的氧和水蒸气(化学吸附需要) 吸附温度:吸附温度下降,吸附效率增加。 气流速度:气流速度增加,吸附效率下降。 对吸附剂进行处理:利用对SO2氧化起催化作用 的金属盐对活性炭进行处理,以提高活性炭的 吸附能力,如Cu、Fe、Ni、Mn、Cr和Ce等。 吸附剂的种类:各种活性炭由于其制造、原料 的不同,其吸附能力不同。
炉内喷钙脱硫技术方案
炉内喷钙脱硫技术方案1. 引言在煤炭、电力、冶金等工业领域中,烟气中的二氧化硫(SO2)是一种常见的大气污染物。
高浓度的二氧化硫排放不仅对环境造成严重影响,也对人体健康构成威胁。
因此,发展高效、低成本的脱硫技术对于减少二氧化硫排放和保护环境具有重要意义。
炉内喷钙脱硫技术利用炉内的高温和燃烧炉的炉排气温度来进行脱硫。
本文将介绍炉内喷钙脱硫技术的原理、工艺流程以及该技术的优点和应用前景。
2. 原理炉内喷钙脱硫技术利用炉内高温下,钙的氧化物与燃烧产生的二氧化硫进行反应,生成硫酸钙,并最终形成石膏。
该反应可以在较低温度下进行,从而减少了能耗和设备成本。
喷钙脱硫的关键是选择适当的喷钙方式和喷钙剂。
常用的喷钙方式包括干式喷钙和湿式喷钙,喷钙剂则可选择氧化钙、氢氧化钙等。
3. 工艺流程炉内喷钙脱硫技术主要由以下几个步骤组成:3.1 炉内喷钙设备安装首先,需要在燃烧炉的炉腔内设置喷钙设备。
喷钙设备通常由喷钙器、输送管道和喷钙气流控制装置组成。
喷钙器的位置要使其能够充分覆盖燃烧产生的烟气,确保喷钙效果。
3.2 炉内喷钙过程在燃烧过程中,喷钙剂通过喷钙器喷入炉腔内,并与烟气中的二氧化硫发生反应。
喷钙剂与二氧化硫反应生成的硫酸钙会在炉腔内冷却下来,并形成石膏。
3.3 石膏收集与处理石膏是炉内喷钙脱硫技术中的副产物,需要进行收集和处理。
一种常见的处理方法是将石膏进行脱水和干燥,然后用作建材工业的原料。
4. 优点炉内喷钙脱硫技术相比其他脱硫技术具有以下优点:•节能高效:利用炉内高温进行脱硫,减少了能耗和设备成本。
•低成本:喷钙剂的成本相对较低,且喷钙剂可以选择多种低成本材料。
•适应性强:炉内喷钙脱硫技术适用于各种类型的燃烧炉,包括煤炭燃烧炉和重油燃烧炉等。
•副产物可利用:石膏是炉内喷钙脱硫的副产物,可用作建材工业的原料,具有较高的价值。
5. 应用前景炉内喷钙脱硫技术在煤炭、电力、冶金等工业领域广泛应用,对减少二氧化硫排放和保护环境具有重要意义。
锅炉炉内喷钙尾部增湿活化脱硫系统操作规程-鸡西19资料
一、总则为保证该脱硫系统的长期、稳定、安全、经济运行,确保排放烟气中SO2浓度低于国家《火电厂大气污染物排放标准》(GB 13223-2011),请操作人员严格遵守本标准中的各项操作要求。
二、执行标准及部分名词解释(一)执行标准1、国家标准《火电厂大气污染物排放标准》(GB 13223-2011)2、各项污染物具体浓度要求及系统要求:(1)烟气含尘浓度:≤30mg/Nm3;(2)SO2浓度:≤200mg/Nm3;(3)系统脱硫率: ≥80%;(二)名词解释喷钙脱硫尾部增湿活化技术:主要由炉内喷钙、炉后增湿活化和尘灰再循环三阶段组成,在炉膛烟温800~1200℃区域内喷入石灰石粉,CaCO3受热分解生成高活性CaO与CO2,炉内脱硫率一般为25%~35%;炉内尚未反应的CaO随烟气流至尾部增湿塔,与喷入的水雾接触,生成Ca(OH)2,并进一步与烟气中剩余的SO2反应生成CaSO4,可将系统脱硫率提高到75%以上。
由于后段烟尘再循环过程的活化作用,整体脱硫效率可达到85%喷钙脱硫成套技术具有初投资低,运行成本低,系统简单,操作容易等优点,在中国被认为有广阔发展前景的脱硫技术。
脱硫剂:喷入温度区域内与SO2进行反应的药剂,本工程使用CaCO3为脱硫剂;温度区:还原剂喷入窑炉中发生的温度范围(800~1200℃),一般在工程建设前已确定;钙硫比(CaO/S):喷射到锅炉内的Ca与锅炉燃烧产生的Sox气体的摩尔比;干灰:除尘器捕捉收集到的烟气中的烟尘,包含煤燃烧产物,未反应的CaO、Ca (OH)2、及Al2O3、SiO2等活性物质;干灰再循环比:将除尘器收集的干灰循环至活化塔的部分占到总收集的干灰量的百分比;雾化细度:向活化塔内喷射的水,经雾化喷头雾化后的液滴直径。
三、炉内喷钙尾部增湿脱硫工艺及流程(一)工艺流程图(二)工艺说明1、第一阶段为炉内喷钙,磨细的石灰石细粉用气力喷射到炉膛上部温度为800~1200℃的温度范围内,CaCO3迅速分解为CaO和CO2,CaO与烟气中的部分SO2和几乎全部SO3发生反应生成CaSO4,然后未反应的CaO,随烟气进入锅炉烟气系统后段。
循环流化床锅炉炉内脱硫与炉外脱硫比较分析
能 造 成 未 反 应 的 石 灰 石粉 太 多 。床温 或者 石灰 石粒 径 偏离 最佳
系统 工 艺
值均会导 致脱硫效率 下降 . 成石灰石 的浪费 。 造
实 际 运 行 结 果 : 钙 硫 比 为 23的 情 况 下 , 加 石 灰 石 在 _ 添 量 为 25 th 脱 硫 效 率 为 5 % , 减 S 4 k / , 气 S 2 .2/ , 3 削 O 3 6 gh 烟 0, 排 放 浓 度 为 19 mgm3 虑 到 煤 燃 烧 过 程 中硫 的 转 化 率 及 0 5 / 考
供应系统工 艺见 图 1
如 图 1所示 . 每套 石灰石 粉供应 系统 配有 2台罗茨鼓 风 机 ( 1台运行 , 台备用 ) l ,石灰石 粉从 料仓下 经旋 转给料 阀
环 流化 床锅炉燃烧 温度较低 . 氮氧化 物产生量 只有其 它锅炉
的 13 所 以循 环 流 化 床 锅 炉 是 一 种 较 清 洁 的燃 烧 设 备 。 但 /。 在循环 流化床锅 炉采用掺烧 石灰石进行脱 硫的实 际运行 中 .
脱硫 效率较 低 .达不 到设计值 的 8 5%,只 能达 到 5 0% 左
膛。
1 循 环流 化床 锅炉 炉 内脱 硫
11循 环 流 化床 锅 炉 脱 硫 现 状 .
循 环 流化床 锅炉具 有很 多优点 . 烧劣 质煤 . 可 可采用 掺 烧石灰 石( 炉内喷钙 ) 实现脱硫 。相对湿法 烟气脱 硫 , 占 来 其 地面积 小 . 脱 硫 方 法在 工 程 及 设 备 上 的 投 资 基 本 相 当 , 采 用 炉 外 脱 硫 的 效 果 较 好 、 行 成 本 较 低 , 但 运 因此 炉 外 脱 硫 应 是 目前 循 环 流
锅炉炉内喷钙尾部增湿活化脱硫系统操作规程-鸡西1.9
一、总则为保证该脱硫系统的长期、稳定、安全、经济运行,确保排放烟气中SO2浓度低于国家《火电厂大气污染物排放标准》(GB 13223-2011),请操作人员严格遵守本标准中的各项操作要求。
二、执行标准及部分名词解释(一)执行标准1、国家标准《火电厂大气污染物排放标准》(GB 13223-2011)2、各项污染物具体浓度要求及系统要求:(1)烟气含尘浓度:≤30mg/Nm3;(2)SO2浓度:≤200mg/Nm3;(3)系统脱硫率: ≥80%;(二)名词解释喷钙脱硫尾部增湿活化技术:主要由炉内喷钙、炉后增湿活化和尘灰再循环三阶段组成,在炉膛烟温800~1200℃区域内喷入石灰石粉,CaCO3受热分解生成高活性CaO与CO2,炉内脱硫率一般为25%~35%;炉内尚未反应的CaO随烟气流至尾部增湿塔,与喷入的水雾接触,生成Ca(OH)2,并进一步与烟气中剩余的SO2反应生成CaSO4,可将系统脱硫率提高到75%以上。
由于后段烟尘再循环过程的活化作用,整体脱硫效率可达到85%喷钙脱硫成套技术具有初投资低,运行成本低,系统简单,操作容易等优点,在中国被认为有广阔发展前景的脱硫技术。
脱硫剂:喷入温度区域内与SO2进行反应的药剂,本工程使用CaCO3为脱硫剂;温度区:还原剂喷入窑炉中发生的温度范围(800~1200℃),一般在工程建设前已确定;钙硫比(CaO/S):喷射到锅炉内的Ca与锅炉燃烧产生的Sox气体的摩尔比;干灰:除尘器捕捉收集到的烟气中的烟尘,包含煤燃烧产物,未反应的CaO、Ca(OH)2、及Al2O3、SiO2等活性物质;干灰再循环比:将除尘器收集的干灰循环至活化塔的部分占到总收集的干灰量的百分比;雾化细度:向活化塔内喷射的水,经雾化喷头雾化后的液滴直径。
三、炉内喷钙尾部增湿脱硫工艺及流程(一)工艺流程图(二)工艺说明1、第一阶段为炉内喷钙,磨细的石灰石细粉用气力喷射到炉膛上部温度为800~1200℃的温度范围内,CaCO3迅速分解为CaO和CO2,CaO与烟气中的部分SO2和几乎全部SO3发生反应生成CaSO4,然后未反应的CaO,随烟气进入锅炉烟气系统后段。
干法喷钙脱硫工艺
干法喷钙脱硫工艺炉内喷钙炉后活化(LimestoneInjectionintotheFurnaceandActivationofCalciumOxi de,LIFAC)脱硫工艺是在传统的炉内喷钙工艺的基础上发展起来的石灰石喷射脱硫工艺。
传统的炉内喷钙工艺脱硫效率很低,仅为20%~30%,LIFAC工艺在除尘器前加装了一个活化反应器,喷水增湿,使未反应的石灰转化成氢氧化钙。
因此,加快了脱硫反应速度,使烟气的脱硫效率提高到70%~80%.LIFAC工艺相对简单,基建投资费用一般比湿法烟气脱硫工艺低50%;由于其吸收剂价格低廉、储量丰富,又降低了使用寿命期间的运行费用。
LIFAC工艺是一种较成熟的干法烟气脱硫工艺,在欧美都有商用业绩。
芬兰Inkoo电厂4号机组(250MW)于1990年投运,美国Richmond 电厂2号机组(60MW)于1992年投运,加拿大PoplarRiver电厂1号机组(300MW)于1990年投运,加拿大Shand电厂发电机组(300MW)于1992年投运。
LIFAC工艺需要在锅炉与电除尘器之间设置活化塔在工艺的第1步,磨细的石灰石粉通过气力方式喷人锅炉炉膛中温度为900~1250℃的区域在炉内发生的化学反应包括石灰石的分解和煅烧,SO2和SO3与生成的CaO之间的反应。
颗粒状的反应产物与飞灰的混合物被烟气流带人活化塔中;在工艺的第2步,剩余的CaO与水反应,在活化塔内生成Ca(OH)2,而Ca(OH)2很快与SO2反应生成CaSO3,其中部分CaSO3被氧化成CaSO4;脱硫产物呈干粉状,大部分与飞灰一起被电除尘器收集下来,其余的从活化塔底部分离出来从电除尘器和活化塔底部收集到的部分飞灰通过再循环返回活化塔中。
LIFAC工艺的脱硫灰有多种用途,包括用于筑路、土地回填、废矿回填或作为制砖的原材料。
该工艺不但不产生废水,还可在增湿活化塔中消耗电厂部分废水。
该工艺优点:一是没有废水产生,不会造成二次污染;二是可以利用原有的除尘装置,投资较低,占地面积较少。
循环流化床锅炉炉内喷钙工艺介绍4(07.09.17)
循环流化床锅炉炉内喷CaO尾部增湿脱硫工艺介绍一、工艺概述循环流化床燃烧技术是一种新型有效的燃烧方式,它具有和煤粉炉相当的燃烧效率,并且其燃烧特点十分适用于炉内喷钙脱硫,原因如下:1.燃烧温度低(850℃~900℃),正处于炉内脱硫的最佳温度段,因而在不需要增加设备和较低的运行费用下就能较清洁地利用高硫煤。
2.烟气分离再循环技术的应用,相当于提高了脱硫剂在床内的停留时间,也提高了炉内脱硫剂的浓度,同时床料间,床料与床壁间的磨损、撞击使脱硫剂表面产物层变薄或使脱硫剂分裂,有效地增加了脱硫剂的反应比表面积,使脱硫剂的利用率得到了相应的提高。
理论上一般认为,在850℃~900℃的炉膛温度,Ca/S摩尔比为1.5~2.5,石灰石的粒度小于2mm(通常为0.1~0.3mm)时,炉内脱硫效率可达85~90%。
但是循环流化床锅炉实际运行中,还存在着一些问题,使得脱硫效率达不到理论脱硫效率,具体原因主要有以下四点:1.国外的循环流化床锅炉循环倍率一般为50~80,而国内一般低于30,低循环倍率下达到高脱硫效率是不现实的。
2.为了降低飞灰的含碳量,提高燃烧效率及热效率,实际运行时往往适当提高锅炉的燃烧温度,燃烧温度提高使得炉内脱离了最佳的脱硫温度范围,使炉内脱硫效率降低。
3.目前国内循环流化床锅炉的脱硫方法,大部分是采用煤直接掺混石灰石的做法,掺混不均匀使石灰石无法完全发挥功效。
4.在炉内硫酸盐化过程中,由于石灰颗粒孔隙的堵塞,阻碍了脱硫剂与二氧化硫接触。
以上原因使得国内循环流化床锅炉炉内喷钙脱硫效率仅为50%左右。
由于循环流化床锅炉炉内喷钙的高钙硫比和低脱硫效率,使得飞灰中含有大量的未被利用的氧化钙,直接排放造成脱硫剂的巨大浪费,使运行成本增高。
鉴于以上因素,为了进一步提高循环流化床锅炉炉内喷钙的脱硫效率和脱硫剂利用率,可以采取四个措施。
1.以生石灰粉(CaO)代替石灰石粉(CaCO)喷入炉内。
3是否有必要?可以产生多大的功效?增加运行成本?目前,炉内喷钙的脱硫剂大多采用石灰石微粒,石灰石微粒在炉内煅烧的过程中,其中所含的杂质包裹在生成的CaO表面,阻碍CaO与SO2的接触,即使炉内存在着较强的物料碰撞磨损,也无法有效地清除杂质,对脱硫效率和脱硫剂的利用率有较大的负面影响。
生石灰脱硫工艺流程图
生石灰脱硫工艺流程图
生石灰脱硫是一种常用的污染治理方法,主要用于燃煤电厂、钢铁厂等工业领域的烟气脱硫。
下面是一个简化的生石灰脱硫工艺流程图。
生石灰脱硫工艺流程图
1. 原料处理:石灰石经过破碎、研磨等处理,得到细颗粒的生石灰。
2. 石灰浆制备:将生石灰与水混合,制成石灰浆。
常用的比例为1:3。
3. 石灰浆搅拌:将石灰浆通过搅拌设备进行搅拌,以保持悬浮状态。
4. 烟气进入石灰浆吸收塔:烟气通过吸收塔进入系统,与石灰浆进行接触和反应。
5. SO2吸收:烟气中的SO2与石灰浆中的氢氧根(OH)发生反应,生成硫酸根离子(HSO3−)和硫酸氢根离子
(HSO4−)。
6. 氧化:加入氧化剂(常用的有空气、过氧化氢等),使硫酸根离子进一步氧化生成硫酸离子(SO4^2-)。
7. 石灰浆再生:根据反应终点,将脱除硫酸根离子和硫酸氢根
离子的石灰浆进行再生,去除其中的硫酸盐。
8. 石灰浆与烟气分离:将石灰浆中的固体颗粒与污染物分离,得到干净的烟气。
9. 石灰浆回收:分离后的石灰浆经过固液分离设备,将固体颗粒回收,用于再生和循环利用。
10. 生成石膏:将分离后的固体颗粒进行脱水处理,得到石膏产品。
11. 石膏处理:对石膏进行综合利用,可以用于建筑材料、水泥制造等。
12. 净化烟气排放:将经过脱硫处理后的烟气经过进一步净化处理,达到排放标准后排放到大气中。
这是一个简化的生石灰脱硫工艺流程图。
实际脱硫工艺中还会有一些辅助设备和控制策略,并根据具体的工艺参数和污染物排放标准进行调整和优化。
《喷钙脱硫成套技术》课件
目录
• 喷钙脱硫技术概述 • 喷钙脱硫工艺流程 • 关键设备与操作要点 • 喷钙脱硫技术应用案例 • 技术发展前景与展望
01
喷钙脱硫技术概述
定义与原理
01
02
定义
原理
喷钙脱硫技术是一种烟气脱硫技术,通过向烟气中喷入钙基吸收剂, 与烟气中的二氧化硫反应,生成硫酸钙,从而达到脱硫的目的。
操作要点:定期检查脱水器和除尘器 的运行状况,确保脱硫产物得到有效 处理;根据废水排放标准,调整废水 处理设施的运行参数。
常见的产物处理设备包括脱水器、除 尘器、废水处理设施等。
操作要点与注意事项
• 在操作过程中,要密切关注工艺参数的变化,及时调 整设备运行参数,确保工艺稳定运行;同时要加强对 设备的维护和保养,防止设备故障的发生。
04
喷钙脱硫技术应用案例
燃煤电厂脱硫
总结词
广泛使用、成熟稳定
详细描述
喷钙脱硫技术在燃煤电厂中得到了广泛应用,技术成熟且稳定,能够有效降低 烟气中的硫氧化物含量,满足环保要求。
工业锅炉脱硫
总结词
适用性强、高效低成本
详细描述
喷钙脱硫技术适用于各种类型的工业锅炉,具有高效、低成本的优势,能够满足工业生 产过程中的脱硫需求。
产物处理
要点一
副产物分离
将反应生成的副产物与未反应的吸收剂进行分离,提高脱 硫效率。
要点二
产物处理方式
根据副产物的性质,选择合适的处理方式,如回收利用、 焚烧处理等。
03
关键设备与操作要点
吸收剂制备设备
01
吸收剂制备设备是喷钙脱硫工艺中的重要组成部分,主要负责 吸收剂的制备和储存。
02
CFB锅炉炉内喷钙脱硫系统工艺优化word精品文档5页
CFB锅炉炉内喷钙脱硫系统工艺优化循环流化床燃烧是一种在炉内使高温运动的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程;在炉外分离设备将绝大部分高温固体颗粒同步捕集,并将它们送回炉膛继续参与燃烧。
该燃烧技术具有分级燃烧有效降低NOx排放、低成本脱硫、煤种适应性强、灰渣易于综合利用、负荷调节范围大、燃烧稳定等特点。
炉内喷钙脱硫与煤粉燃烧锅炉尾部烟气脱硫技术相比,在脱硫经济性、脱硫能力上占有优势。
1 循环流化床锅炉脱硫机理循环流化床锅炉通过向炉内添加石灰石控制SO2排放。
其在炉内的脱硫反应过程一般分为两步:第一步,CaCO3的煅烧反应,即石灰石在高温下分解生成CaO和CO2。
化学方程式:CaCO3→CaO + CO2 (煅烧反应)第二步,煅烧生成的多孔状CaO在氧化性气氛中遇到SO2就会发生化合反应生成CaSO4。
化学反应方程式:CaO+ SO2+1/2O2→ CaSO4(化合反应)石灰石煅烧及化合反应过程中微观结构发生改变,如图1所示。
2 循环流化床锅炉炉内脱硫的影响因素2.1 燃料和石灰石粒径的影响循环流化床锅炉对燃料和石灰石粒度及粒径分布有严格要求。
燃料平均颗粒度过大,会造成锅炉床料大颗粒积聚,床料分层,流化变差,排渣设备堵塞,严重时导致炉膛结焦停炉。
石灰石平均粒度过大,脱硫气固反应表面积减小,扩散阻力增加,石灰石利用不充分。
但是,燃料和石灰石粒度太小时,会增大其飞灰形式的逃逸量,旋风分离器捕捉不到,使脱硫效率下降,飞灰含炭量升高。
故一般采用0~2 mm,平均100~500 μm的石灰石粒度。
2.2 Ca/S摩尔比的影响CaCO3摩尔体积为CaO的1.79倍,CaCO3煅烧过程中自然孔隙扩大,形成的多孔隙结构有利于CaO与SO2反应。
理论上,硫的盐化反应中CaO 与SO2按照等摩尔比进行。
但是实际反应中由于脱硫产物CaSO4的摩尔体积是CaO的2.43倍,CaO的表面生成一层致密的CaSO4薄膜,这层膜减缓SO2与CaO颗粒反应速率,致使短时间内石灰石颗粒内部CaO无法充分反应。
炉内喷钙脱硫工艺石灰石粉输送系统技术方案教材
炉内喷钙脱硫工艺石灰石粉输送系统技术方案教材130t/h循环流化床锅炉炉内喷钙脱硫工艺石灰石粉输送系统技术方案编制单位:编制日期:目录1工程概况 (2)2炉内喷钙脱硫技术 (3)3、输送系统技术要求及技术保证 (5)4规程和标准 (14)5质量保证及考核试验 (14)6设计界限及接口 (15)7、包装、运输和储存 (19)8技术服务和设计联络 (20)9、运行费用及效益分析 (20)10、工程投资估算 (21)11、系统工艺流程图(附图) (23)1工程概况1.1概述业主方现有1台130t/h循环流化床锅炉,锅炉采用向炉内添加石灰石粉脱硫工艺。
本方案设计的石灰石粉输送系统,是指将石灰石粉由炉前日用石灰石粉仓输送至锅炉炉膛石灰石粉接口的输送系统,单台炉为一个单元,设一个日用石灰石粉仓,输送气源由罗茨风机提供。
本技术方案适用于1×130t/h循环流化床锅炉所配套的石灰石粉输送系统工程。
该系统的功能、设计、结构、性能、安装和调试等方面说明满足相应的技术要求。
1.2设备运行环境气象特征与环境条件(煅烧前)石灰石成份分析如下:1.4 炉内喷钙脱硫系统设计指标(按常规130t循环流化床锅炉计算)2炉内喷钙脱硫技术2.1概述干法烟气脱硫技术是指脱硫吸收和产物处理均在干燥状态下进行的烟气脱硫技术,目前,发展了多种工艺,包括吸收剂喷射技术、电法干式脱硫技术及干式催化脱硫技术,炉内喷钙是其中一种应用较广泛的吸收剂喷射技术。
炉内喷钙是把干的吸收剂(石灰石粉、消石灰或白云石等)直接喷到锅炉炉膛的气流中去,炉膛内的热量将吸收剂煅烧成具有活性的CaO粒子,这些粒子与烟气中的SO2反应生成硫酸钙(CaSO4)和亚硫酸钙(CaSO3),这些反应产物和飞灰一起被除尘设备所捕获。
2.2工艺原理将石灰石粉磨至150目左右,用压缩空气喷射到炉内最佳温度区,并使脱硫剂石灰石与烟气有良好的接触和反应时间,石灰石受热分解成氧化钙和二氧化碳,再与烟气中二氧化硫,反应生成亚硫酸钙和硫酸钙,最终被氧化成硫酸钙。
锅炉炉内喷钙尾部增湿活化脱硫系统操作规程-鸡西1.9
一、总则为保证该脱硫系统的长期、稳定、安全、经济运行,确保排放烟气中SO2浓度低于国家《火电厂大气污染物排放标准》(GB 13223-2011),请操作人员严格遵守本标准中的各项操作要求。
二、执行标准及部分名词解释(一)执行标准1、国家标准《火电厂大气污染物排放标准》(GB 13223-2011)2、各项污染物具体浓度要求及系统要求:(1)烟气含尘浓度:≤30mg/Nm3;(2)SO2浓度:≤200mg/Nm3;(3)系统脱硫率: ≥80%;(二)名词解释喷钙脱硫尾部增湿活化技术:主要由炉内喷钙、炉后增湿活化和尘灰再循环三阶段组成,在炉膛烟温800~1200℃区域内喷入石灰石粉,CaCO3受热分解生成高活性CaO与CO2,炉内脱硫率一般为25%~35%;炉内尚未反应的CaO随烟气流至尾部增湿塔,与喷入的水雾接触,生成Ca(OH)2,并进一步与烟气中剩余的SO2反应生成CaSO4,可将系统脱硫率提高到75%以上。
由于后段烟尘再循环过程的活化作用,整体脱硫效率可达到85%喷钙脱硫成套技术具有初投资低,运行成本低,系统简单,操作容易等优点,在中国被认为有广阔发展前景的脱硫技术。
脱硫剂:喷入温度区域内与SO2进行反应的药剂,本工程使用CaCO3为脱硫剂;温度区:还原剂喷入窑炉中发生的温度范围(800~1200℃),一般在工程建设前已确定;钙硫比(CaO/S):喷射到锅炉内的Ca与锅炉燃烧产生的Sox气体的摩尔比;干灰:除尘器捕捉收集到的烟气中的烟尘,包含煤燃烧产物,未反应的CaO、Ca(OH)2、及Al2O3、SiO2等活性物质;干灰再循环比:将除尘器收集的干灰循环至活化塔的部分占到总收集的干灰量的百分比;雾化细度:向活化塔内喷射的水,经雾化喷头雾化后的液滴直径。
三、炉内喷钙尾部增湿脱硫工艺及流程(一)工艺流程图(二)工艺说明1、第一阶段为炉内喷钙,磨细的石灰石细粉用气力喷射到炉膛上部温度为800~1200℃的温度范围内,CaCO3迅速分解为CaO和CO2,CaO与烟气中的部分SO2和几乎全部SO3发生反应生成CaSO4,然后未反应的CaO,随烟气进入锅炉烟气系统后段。
炉内喷钙脱硫技术
炉内喷钙脱硫技术青岛绿洲思源环保科技有限公司在学习吸收多家环保公司炉内喷钙脱硫技术的基础上,对燃煤循环流化床锅炉在燃用低硫煤,煤的含硫率为0.5~1.5,钙硫摩尔比为2.0~2.5时,其锅炉烟气SO2削减率达到70~80(经烟气含氧量校正)。
在内蒙神话准能公司8台锅炉使用已经过环保局工程验收。
下面是燃煤锅炉炉内喷钙干法催化脱硫技术介绍:一、本脱硫技术属于干法脱硫,是炉内喷钙催化脱硫技术。
传统的炉内喷钙可以脱除烟气中20~30的SO2,国内外的深入研究表明,在炉内喷钙处于最优状态下,炉内脱硫率一般只能达到30~40。
其原因是受到客观因素的制约,如吸收剂的粒度、比表面积、加入量、加入方式、烟气温度、烟气与吸收剂的混合程度、接触反应时间、温度等等。
在炉内喷钙技术中要进一步提高脱硫率的方法之一是在锅炉后部喷水增湿,使炉内未与SO2反应的CaO被水硝化成为Ca(OH)2,低温下可再次与SO2反应生成CaSO3以提高SO2削减率和吸收剂利用率。
该工艺技术要增加增湿活化塔及其附属设备和控制系统,可以将脱硫率提高到约90,但增加了投资和占地面积,也提高了运行成本。
在炉内喷钙的基础上提高脱硫率另一方法是改进吸收剂的性能来提高吸收剂对SO2的吸收率,以提高脱硫率。
可燃硫燃烧后生成的SOx、在过剩空气系数α=2,烟气温度为1100℃时,绝大部分为SO2,只有1~2为SO3,SO3随过氧系数、烟气烟气温度Tk加大而增加。
如果用CaO来吸收SO2时,吸收率是非常低的。
生成的CaSO3在过剩空气系数=2~3时,也只有小部分CaSO3被氧化成稳定的CaSO4,而在温度较高的条件下大部分又被分解为CaO和SO2。
但CaO吸收SO3的效果要好得多,其吸收率取决于CaO的活性(比表面及活化能)。
在CaO中加入一定的助剂进行活化处理,CaO对SO3的吸收率就大大提高了。
同时选择一种将SO2转化SO3的催化剂和延缓CaSO4热解的稳定剂。