毕业设计外文文献格式
毕业论文(设计)外文文献翻译及原文
金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。
一、引言各个国家的企业在显著不同的金融体制下运行。
金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。
然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。
这项研究结果解释表明企业投资受限于外部资金的可得性。
很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。
因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。
中英文论文参考文献标准格式 超详细
超详细中英文论文参考文献标准格式1、参考文献和注释。
按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。
图表或数据必须注明来源和出处。
(参考文献是期刊时,书写格式为:[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。
参考文献是图书时,书写格式为:[编号]、作者、书名、出版单位、年份、版次、页码。
)2、附录。
包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅助性数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。
参考文献(即引文出处)的类型以单字母方式标识,具体如下:[M]--专著,著作[C]--论文集(一般指会议发表的论文续集,及一些专题论文集,如《***大学研究生学术论文集》[N]-- 报纸文章[J]--期刊文章:发表在期刊上的论文,尽管有时我们看到的是从网上下载的(如知网),但它也是发表在期刊上的,你看到的电子期刊仅是其电子版[D]--学位论文:不区分硕士还是博士论文[R]--报告:一般在标题中会有"关于****的报告"字样[S]-- 标准[P]--专利[A]--文章:很少用,主要是不属于以上类型的文章[Z]--对于不属于上述的文献类型,可用字母"Z"标识,但这种情况非常少见常用的电子文献及载体类型标识:[DB/OL] --联机网上数据(database online)[DB/MT] --磁带数据库(database on magnetic tape)[M/CD] --光盘图书(monograph on CDROM)[CP/DK] --磁盘软件(computer program on disk)[J/OL] --网上期刊(serial online)[EB/OL] --网上电子公告(electronic bulletin board online)很显然,标识的就是该资源的英文缩写,/前面表示类型,/后面表示资源的载体,如OL表示在线资源二、参考文献的格式及举例1.期刊类【格式】[序号]作者.篇名[J].刊名,出版年份,卷号(期号)起止页码.【举例】[1] 周融,任志国,杨尚雷,厉星星.对新形势下毕业设计管理工作的思考与实践[J].电气电子教学学报,2003(6):107-109.[2] 夏鲁惠.高等学校毕业设计(论文)教学情况调研报告[J].高等理科教育,2004(1):46-52.[3] Heider, E.R.& D.C.Oliver. The structure of color space in naming and memory of two languages [J]. Foreign Language Teaching and Research, 1999, (3): 62 67.2.专著类【格式】[序号]作者.书名[M].出版地:出版社,出版年份:起止页码.【举例】[4] 刘国钧,王连成.图书馆史研究[M].北京:高等教育出版社,1979:15-18,31.[5] Gill, R. Mastering English Literature [M]. London: Macmillan, 1985: 42-45.3.报纸类【格式】[序号]作者.篇名[N].报纸名,出版日期(版次).【举例】[6] 李大伦.经济全球化的重要性[N]. 光明日报,1998-12-27(3).[7] French, W. Between Silences: A Voice from China[N]. Atlantic Weekly, 1987-8-15(33). 4.论文集【格式】[序号]作者.篇名[C].出版地:出版者,出版年份:起始页码.【举例】[8] 伍蠡甫.西方文论选[C]. 上海:上海译文出版社,1979:12-17.[9] Spivak,G. "Can the Subaltern Speak?"[A]. In C.Nelson & L. Grossberg(eds.). Victory in Limbo: Imigism [C]. Urbana: University of Illinois Press, 1988, pp.271-313.[10] Almarza, G.G. Student foreign language teacher's knowledge growth [A]. In D.Freeman and J.C.Richards (eds.). Teacher Learning in Language Teaching [C]. New York: Cambridge University Press. 1996. pp.50-78.5.学位论文【格式】[序号]作者.篇名[D].出版地:保存者,出版年份:起始页码.【举例】[11] 张筑生.微分半动力系统的不变集[D].北京:北京大学数学系数学研究所, 1983:1-7. 6.研究报告【格式】[序号]作者. 篇名[R].出版地:出版者,出版年份:起始页码.【举例】[12] 冯西桥.核反应堆压力管道与压力容器的LBB分析[R].北京:清华大学核能技术设计研究院, 1997:9-10.7.专利【格式】[序号]专利所有者.题名[P].国别:专利号,发布日期.【举例】[13] 姜锡洲.一种温热外敷药制备方案[P].中国专利:881056073, 1989 07 26.8.标准【格式】[序号]标准编号,标准名称[S].【举例】[14] GB/T 16159-1996, 汉语拼音正词法基本规则[S].9.条例【格式】[序号]颁布单位.条例名称.发布日期【举例】[15] 中华人民共和国科学技术委员会.科学技术期刊管理办法[Z].1991-06-0510.电子文献【格式】[序号]主要责任者.电子文献题名.电子文献出处[电子文献及载体类型标识].或可获得地址,发表或更新日期/引用日期.【举例】[16] 王明亮.关于中国学术期刊标准化数据库系统工程的进展[EB/OL].http:///pub/wml.txt/980810 2.html, 1998 08 16/1998 10 04.[17] 万锦.中国大学学报论文文摘(1983 1993).英文版[DB/CD]. 北京: 中国大百科全书出版社, 1996.11.各种未定义类型的文献【格式】[序号] 主要责任者.文献题名[Z].出版地:出版者, 出版年.特别说明:凡出现在"参考文献"项中的标点符号都失去了其原有意义,且其中所有标点必须是半角,如果你的输入法中有半角/全解转换,则换到半角状态就可以了,如果你的输入法中没有这一转换功能,直接关闭中文输入法,在英文输入状态下输入即可.其实,很多输入法(如目前比较流行的搜狐输入法)都提供了四种组合:(1)中文标点+ 全角:这时输入的标点是这样的,:【1】-(而这时,我没有找到哪个键可以输入/ 符号)也就是说,这些符号是一定不能出现在"参考文献"中的;(2)中文标点+半角:这时输入的标点是这样的,:【1】-(这时,我还是没有找到哪个键可以输入/ 符号)也就是说,这些符号也不能出现在"参考文献"中的;上面列出的符号,中间没有任何的空格,你能看出它们有什么区别吗?我看只是-的宽度有一点点不同,其它都一样(3)英文标点+全角:这时输入的标点是这样的,.:[1]-/(4)英文标点+半角:这时输入的标点是这样的,.:[1]-/从这两项可以明显的看出,半角和全角其实最大的差别是所占的宽度不一样,这一点对于数字来说最为明显,而英文标点明显要比中文标点细小很多(也许因为英文中,标点的功能没有中文那么复杂,就是说英文中标点符号的能力没有中文那么强大)所以,很多人在写"参考文献" 时,总是觉得用英文标点+半角很不清楚,间距也太小,其实这点完全不用担心如果你觉得真的太小不好看,就用英文标点+全角吧而在[1] 之后,一般也都有一个空格更为详细的内容,大家可以从附件中下载国家标准《文后参考文献著录规则GB/T 7714-2005》查看,不过,很长很烦,拿出点耐心看吧对于英文参考文献,还应注意以下两点:①作者姓名采用"姓在前名在后"原则,具体格式是:姓,名字的首字母. 如:Malcolm Richard Cowley 应为:Cowley, M.R.,如果有两位作者,第一位作者方式不变,&之后第二位作者名字的首字母放在前面,姓放在后面,如:Frank Norris 与Irving Gordon应为:Norris, F. &I.Gordon.②书名、报刊名使用斜体字,如:Mastering English Literature,English Weekly.三、注释注释是对论文正文中某一特定内容的进一步解释或补充说明注释应置于本页页脚,前面用圈码①、②、③等标识。
本科毕业设计外文翻译需要注意的问题
外文翻译需要注意的问题,
1 外文文献的出处不要翻译成中文,且写在中文译文的右上角(不是放在页眉处);会议要求:名称、地点、年份、卷(期),等
2 作者姓名以及作者的工作单位也不用必须翻译;
3 abstract翻译成“摘要”,不要翻译成“文章摘要”等其他词语;
4 Key words翻译成“关键词”
5 introduction 翻译成“引言”(不是导言)
6 各节的标号I、II等可以直接使用,不要再翻译成“第一部分”“第二部分”,等。
7 注意排版格式,都是单排版,行距1.25,字号小4号,等(按照格式要求)
8 里面的图可以拷贝粘贴,但要将图标、横纵指标的英文标注翻译成中文
9里面的公式、表不可以拷贝粘贴,要自己重新录入、重新画表格
大家翻译时,可以将太长的句子用两句或多句描述。
本科毕业设计(论文)外文翻译基本规范
本科毕业设计(论文)外文翻译基本规范一、要求1、与毕业论文分开单独成文。
2、两篇文献。
二、基本格式1、文献应以英、美等国家公开发表的文献为主(Journals from English speaking countries)。
2、毕业论文翻译是相对独立的,其中应该包括题目、作者(可以不翻译)、译文的出处(杂志的名称)(5号宋体、写在文稿左上角)、关键词、摘要、前言、正文、总结等几个部分。
3、文献翻译的字体、字号、序号等应与毕业论文格式要求完全一致。
4、文中所有的图表、致谢及参考文献均可以略去,但在文献翻译的末页标注:图表、致谢及参考文献已略去(见原文)。
(空一行,字体同正文)5、原文中出现的专用名词及人名、地名、参考文献可不翻译,并同原文一样在正文中标明出处。
二、毕业论文(设计)外文翻译(一)毕业论文(设计)外文翻译的内容要求外文翻译内容必须与所选课题相关,外文原文不少于6000个印刷符号。
译文末尾要用外文注明外文原文出处。
原文出处:期刊类文献书写方法:[序号]作者(不超过3人,多者用等或et al表示).题(篇)名[J].刊名(版本),出版年,卷次(期次):起止页次.原文出处:图书类文献书写方法:[序号]作者.书名[M].版本.出版地:出版者,出版年.起止页次.原文出处:论文集类文献书写方法:[序号]作者.篇名[A].编著者.论文集名[C]. 出版地:出版者,出版年.起止页次。
要求有外文原文复印件。
(二)毕业论文(设计)外文翻译的撰写与装订的格式规范第一部分:封面1.封面格式:见“毕业论文(设计)外文翻译封面”。
普通A4纸打印即可。
第二部分:外文翻译主题1.标题一级标题,三号字,宋体,顶格,加粗二级标题,四号字,宋体,顶格,加粗三级标题,小四号字,宋体,顶格,加粗2.正文小四号字,宋体。
第三部分:版面要求论文开本大小:210mm×297mm(A4纸)版芯要求:左边距:25mm,右边距:25mm,上边距:30mm,下边距:25mm,页眉边距:23mm,页脚边距:18mm字符间距:标准行距:1.25倍页眉页角:页眉的奇数页书写—浙江师范大学学士学位论文外文翻译。
毕业设计外文文献格式
本科毕业论文外文文献及译文Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China文献来源:期刊发表日期:2009.5.17学院:资源与冶金学院专业:冶金工程班级:冶金121姓名:孔博文学号:1206300131指导教师:梁铎强翻译日期:2016.6.23外文文献:Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China abstractA survey of the key issues associated with the development in the Chinese iron and steel industry and current situations of energy consumption are described in this paper. The apparent production of crude steel in China expanded to 418.78 million tonnes in 2006, which was about 34% share of the world steel production. The iron and steel industry in China is still one of the major high energy consumption and high pollution industries, which accounts for the consumption of about 15.2% of the national total energy, and generation of 14% of the national total waste water and waste gas and 6% of the total solid waste materials. The average energy consumption per unit of steel is about 20% higher than that of other advanced countries due to its low energy utilization efficiency. However, the energy efficiency of the iron and steel industry in China has made significant improvement in the past few years and significant energy savings will be achieved in the future by optimizing end-use energy utilization. Finally, some measures for the industry in terms of the economic policy of China’s 11th five-year plan are also presented.1.IntroductionThe steel industry has for long played an important role in the development of China’s economy. Over the past decades, China’s steel industry has grown rapidly, overtaken Japan, and become the world’s largest steel producer in 1996. In 2006, China’s production of crude steel amounted to 418.78 million tonnes (Mt) [1] and, continued to remain first in rank. The share of output of crude steel of about 335.17 Mt of the key producers accounted for 80% of the aggregate national production and 83.61 Mt of local producers for 20% [2]. In this paper, these key producers are the main subjects of our study.Despite these achievements, China remains a steel producer whose energy efficiency is the lowest among the major steel-producing countries, although the overall technical level of its industry has been greatly improved in line with the developments in science and technology. One typical example is the rapid adop-tion of continuous casting technology. The share of continuous casting output has increased from about 30% of all steel produced in 1992 to 95.8% in 2004. In the meantime, many large firms replaced aging blast furnaces, open-hearth furnaces, and ingot casters with large-scale, modern blast furnaces, and casting and rolling facilities. Iron making may take place either through the blast furnace process or by direct reduction and the subsequent transformation of iron into steel may be carried out either in an oxygen-blown converter or in an electric arc furnace.With improvement of the overall technical level in the steel industry, the production of iron and steel has greatly expanded in the past decade, as shown in Fig. 1 [1–4]. The apparent production of crude steel in China grew from 95 million tonnes in 1995 to 418.78 million tonnes in 2006, which is about 4.5 times that in 1995 and more than three times that in 2000 [3]. As a result, China’s share of world steel production leaped from 13% in 1995 to 34% in 2006. This growth is expected to be sustained over the next few years due to the continued growth in domestic demand.As is well known, the iron and steel industry is the industry with the largest energy consumption in the world. Having become the world’s largest steel producer since 1996 China’s steel industry has grown rapidly following huge growth in domestic demand. This increase is consistent with the trend in the increase in its energy consumption.Iron and steel production consumes large quantities of energy, especially in developing countries and countries with economies in transition where outdated and inefficient technologies are often still used. Steel production in developing countries has grown at an average annual rate of 6.6% in recent years [5] and is expected to continue to grow at similar levels due to the current low per capita steel consumption levels in these countries. In industrialized countries, steel consumption averages over 425 kg/capita, whereas even key steel-producing developing countries have extremely low average per capita consumption levels of 80 kg/capita (in 1995).Fig. 1. Crude steel production of China and share of the world from 1995 to 2006.Most of China’s steel industry developed through a system of state-owned ‘enterprises’, in which an entire community was devoted to the production of steel. As a result, the data collected relating to the energy consumed to produce steel in China also contain energy used at the enterprise level for a variety of other functional departments, both directly and indirectly related to the production of steel. In addition, part of China’s steel is produced by small steel mills that do not report energy consumption data to government statistical sources. It is important to differentiate these data so that the consumption values of China’s energy can be fairly evaluated, especially when we compare the energy consumption and energy intensity of the Chinese steel industry to those of other countries or to particular ‘best practice’examples. We note that even with these adjustments, it is possible that the data still include inaccuracies due to the issues of statistical reports.The objective of this paper is to present a survey of some of the key issues associated withthe development in the Chinese steel industry, and describes the status of its energy consumption. The differences in steel consumption in major processes and China’s role in the scene of the international steel industry are analyzed, and the outlook and the measures to be instituted for China’s iron and steel industry are also presented in the paper. It is important for the world to better understand China’s energy consumption and the use of raw materials and for China to better understand the approaches that have been developed or are being developed in other countries for more efficient use of energy and raw materials. The authors hope this paper contributes to the improved under-standing of these aspects of the industry.2.Energy consumption structure of the iron and steel industry in ChinaIt is well known that electricity production in China mainly depends on coal, and coal is also the most important fuel used in China’s iron and steel industry. In 2004, the energy consumption mix of the Chinese steel industry consisted of 69.90% coal, 26.40% electricity, 3.2% fuel oil, and 0.5% natural gas, as shown in Fig. 2 [4]. Coal is not only the most widely used fuel but is also as necessary as raw material in the iron and steel industry as most of the rest is electricity. Such a fuel structure raises the energy consumption per unit of production and is unlikely to change greatly in the near future.Fig. 2. Energy consumption mix of the steel industry of China in 2004.3. Energy consumption situation in the steel industryThe key iron and steel producers in China play an important role in its manufacture of steel and in the consumption of energy. In 2003, China’s 10 largest steel firms produced more than a third of China’s steel output, with the top four firms producing more than 20% [6]. This implies that many advanced technologies have earlier existed in China’s steel industry, but the current industry’s concentration limits the application of these technologies lowering energy efficiency in general [7]. Therefore, the iron and steel industry remains one of the highest energy consumersand pollu-tion producers accounting for about 15.2% of the national total energy consumption, 14% of the national total waste water and waste gas, and 6% of the total solid waste materials generated.Fig. 3 shows the variations in energy consumption of the key enterprises in China from 1995 to 2006 [3,8–10]. The total energy consumption of the iron and steel industry rose rapidly along with rising steel production in the past decades. In the year 2004, the total steel production of China was 274.7 Mt, rising by 107.7% compared to 2000 and by 184.2% compared to 1995 [10]. The total energy consumption of the key enterprises in China soared from 96.30 Mtce in 2000 to 197.79 Mtce in 2006, which was over twice that for 2000. However, the rising trend in energy consumption weakened in 2006, when it was 8.8% lower than that of the year before.With the application of many new technologies and equipment, the index of energy consumption per tonne of steel decreased remarkably in the past decades. The overall energy consumption for China’s large and medium producers in 2005 was 741 kgce per tonne of steel, which was 20.3% lower than that in 2000 of 930 kgce per tonne. In 2006, the overall energy consumption per tonne of steel continued to decrease to 645 kgce per tonne of steel. The comparable energy consumption also took on a decreasing trend.Fig. 3. Variation of energy consumption of the key enterprises in China from 1995 to 2006.Fig. 4. Fresh water consumption per tonne of steel from 2000 to 2005.The variations in fresh water consumption per tonne of steel from 2000 to 2006 are shown in Fig. 4 [3,10]. The total quantity of fresh water used per tonne of steel in 2006 was 6.56 m3, which is 14.9% lower than that in 2005. Other data comparing energy saving, water saving, and environmental protection between 2000 and 2005 are presented in Table 1 [10]. It can be seen that the energy efficiency of China’s iron and steel industry has made significant improvement in the past few years.4.Energy consumption situation of several main processes in the steel industryFig. 5 shows the variations in energy consumption of several major processes in the steel industry from 1995 to 2005 [3,10]. The energy consumption of the blast furnace, electric furnace and steel rolling processes has decreased remarkably since 1995, and the corresponding values for the coking, sintering, and converter furnaces have also shown minor decreases. In contrast to the years before 2001, the current energy consumption of the blast furnace process presents an increasing trend that is attributed to cost increases since 2001 in raw materials for iron making, such as coke and coal.Fig. 5. Variation of energy consumption of several main processes in the steel industry in1995–2005.Among several major processes, the energy consumption of the iron making process is markedly higher than that of other processes. Taking the example of 2004 as shown in Fig. 6, the total energy consumption of the iron making system accounted for about 70% of the total process energy consumption, including 39% for the blast furnace, 11.9% for coking, 3.51% for balling and 5.55% for sin-tering. The remaining processes accounted for a small part of about 30%, which is comprised of 12.5% for power, 7.77% for rolling steel, 17.5% for the electric furnace, and 2.22% for the converter furnace. This means that the iron making system is a key part of any energy conservation effort in the steel industry.parisons of energy consumption of the steel industry in China with international levelsEnergy consumption per tonne of steel in China is higher than that of most advanced countries. One of the reasons for this is that the energy utilization efficiency in China is low. The average energy consumption per unit of steel is about 20% higher than that of other advanced countries. Compared with Japan, for example, energy consumption for China’s large and medium firms in 2004 was 705 kgce per tonne of steel, 7.5% higher than that in Japan, which was 656 kgce per tonne. However, the energy consumption level of the small production units in Chinawas as high as 1045 kgce per tonne of steel.Fig. 6. Energy consumption structure of several main processes in the steel industry in 2004.Z.C. Guo, Z.X. Fu / Energy 35 (2010) 4356–4360The general energy efficiency of China’s steel industry is still relatively low. One of the important reasons is the existence of these small units. Table 2 shows that there is a vast difference in energy consumption between the advanced and small plants [8]. Only a few large-scale steel-makers have attained or have even exceeded the international levels. Since the output of these advanced plants cannot achieve market dominance, the average energy consumption level of China’s iron and steel industry is still embarrassing.The second reason is the existence of small-scale and decen-tralized industry in China. There are 18 plants with production capacities exceeding 5 Mt of crude steel, which accounted for 46.36% of the total national crude steel production in 2005. In Japan, the crude steel production of four largest plants accounted for 73.22% of the total national crude steel production in 2004, three of which accounted for 61.09%. Except for a few of the large-scale steel plants, China’s steel industry lags behind in technology, equipment, energy saving, environmental protection, etc. The third reason is that the low recovery and recycling efficiency of the secondary energy resources results in higher energy consumption.6.Measures and policy recommendations for the iron and steel industries of China6.1. To expand coke dry quenching technologyTraditionally, the sensible heat of hot coke, pushed from the coking chamber at the temperature of 950–1050 C, is almost equal to 35%–40% of the total amount of heat consumed in the coking process. Adopting coke dry quenching technology can enable recovery of about 80% of the sensible heat from hot coke. Besides, during dry quenching 1 tonne of hot coke can generate 0.45–0.60 tonne of steam at a pressure of about 3.9 MPa. The coke dry quenching process belongs to a technology that is energy saving, environmentally protective, and pollution-free. By using coke dry quenching, it is estimated that the rotary drum strength (M40) of coke increases by 3%–8% and the coke strength after CO2 reaction by 3%–4%. In addition, the quantity of weak binding coal input can be increased by 10% saving about 0.38 tonne of water for every tonne of coke.At the end of 2005, the proportion of coke dry quenching technology usage in China’s iron and steel industry was less than 30%. At the end of 2007, with the spread of this technology rein-forced by an independent innovation in the past two years, the proportion of usage rose to 45%. Now 34 sets of the coke dry quenching unit are under construction and the output share of coke of about 101.58 Mt produced by the coke dry quenching technology accounts for one-third of the total national production.6.2. To expand top gas pressure recovery turbine (TRT) technologyPower can be generated with the energy of pressure from the top of a blast furnace using a turbine generator group. Theoretically,the power generated from TRT equipment is equal to the power energy consumed when the coal gas pressure at the top of the blast furnace is 80 kPa. Economic returns may be obtained when the pressure of the coal gas reaches 100 kPa and even higher economic returns can be achieved, especially, if the coal gas pressure is greater than 120 kPa. In steel production by the blast furnace route, increasing the pressure at the top of the blast furnace is advanta-geous as it leads to recovery of energy resources. The amount of power generated increases by 30% if dry dust is removed at the coal gas purification stage and theturbine capacity by about 3% if the temperature of coal gas is raised by 10 C. If TRT equipment is adopted, it is estimated that 30% of energy can be recovered from the air blast for the furnace and the energy consumption in the steel making processes reduced by l l kgce/t.At the end of 2007, the blast furnaces of capacity greater than 2000 m3 in China that were equipped with TRT technology numbered 49. In future, the use of TRT technology large-scale blast furnaces in China will be widespread and vigorous.6.3. To expand the technology of pulverized coal injection for the blast furnaceUse of pulverized coal injection for blast furnaces is an impor-tant innovation for optimizing steel making systems using the blast furnace route. In addition, it is a powerful incentive to prompt the iron–steel industry to progress in many aspects such as optimizing energy structure, energy saving, reducing consumption of mate-rials, cost reduction, etc. Replacing coke by coal can ease the problem of coking coal shortage caused by energy saving measures. Besides, it can reduce environmental pollution from the coking process while also producing considerable economic returns resulting from the price difference between coal and coke.In 2007, the average quantity of pulverized coal injection employed for the blast furnace route by China’s large and medium producers was 137 kg per tonne of iron, which in 2000 was 118 kg per tonne of iron. The average quantity of injection has exceeded 200 kg per tonne of iron in some large-scale blast furnaces of China. The 4350 m3 capacity blast furnace in Bao-steel is an example. It is estimated that in 2010 the average pulverized coal injection quantity realized in China’s blast furnaces iron will be 160 kg per tonne.6.4. To eliminate low-level equipment and introduce and develop new technologyOver the past few years, the government of China made a strong effort to eliminate low-level equipment. The energy consumption of China’s small iron and steel units was 1.5 times higher than that of the large and medium producers. When China implemented its 11th five-year plan’s policy of energy saving and reducing discharge of pollutants the steel industry was restructured, its equipment capacities enhanced, and pace of modernization accelerated all ofwhich produced an enormous effect.In 2007, the number of blast furnaces with a capacity of 2000 m3 in China was 63, 17 more than that in 2005, and production capacity increased by 35%. The number of converters with a capacity of 100 tonnes was 98 in 2007, eight more than that in 2005, and production capacity increased by 8%. In 2007, the overall energy consumption, the fresh water consumption, the total emission of SO2, the total soot emission, and the total mill dust emission per tonne of steel declined by about 8%, 24%, 4.5%, 3% and 4.5%, respectively, when compared with that in 2005.In addition, China’s iron and steel industries introduced and developed actively new technologies, such as COREX and C300 melted-deoxidize technology.6.5. To create the recycling economy chain within the iron–steel industryIt is believed that three recycling economy chains could be developed in the iron–steel production process aiming at zero emission. First is recycling flue gas, which means that not only coal or coke but also flue gas will be recycled from blast furnaces, converters, or coke ovens to realize zero flue gas emission. The second is recycling industrial waste water, which means that the consumption of fresh water will be minimized and industrial waste water will be recycled using some treating equipment. The third is recycling solid waste materials. It is a comprehensive reuse process for some raw materials such as iron ores left over from the production process.China’s traditional development pattern such as large invest-ment, regardless of serious pollution and lower value-added products resulted in China’s location at the low end of the value chain of the worldwide industrial structure. It is the most impor-tant reason for China’s high consumption of energy. Compared with developed countries, China’s use of poorer quality equipment and ineffective use of process energy led to lower energy utilization efficiency.7.ProspectsWith the improvement of the overall technical level in the steel industry, the production of iron and steel has greatly expanded in the past decade. However, the iron and steel industry is still one of the major high energy consumption and high polluting industries in China. Although the energy efficiency of the iron and steel industry in China has made significant improvement in the past few years, the average energy consumption per unit of steel is about 20% higher than that of other advanced countries owing to low energy utilization efficiency, the existence of somesmall-scale and decentralized industries and low recovery and recycling efficiency of the secondary energy resources. During 2006–2010, the period of China’s 11th five-year plan, based on existing policies, measures and standards, China will promulgate and implement some new policies with more ambitious objectives of sustainable develop-ment and restructuring in the steel industry. One objective of this plan is to build a society committed to energy conservation and a pollution-free environment and to develop the recycling economy chain in the iron and steel industry. Successful implementation of current sustainable development policies and measures will result in considerable energy saving.According to this plan, China’s energy consumption per GDP in ‘China’s 11th five-year plan’will decrease by 20%, the water consumption per unit of industrial added value will decrease by 30% and the total emission of main pollutants will decrease by 10%. Some major tasks will be undertaken for some high energy consumption industries such as the iron and steel industry, nonferrous metal industry, coal industry, power sector, and chemical industry. Therefore, a new industrial path leading to the use of technology-intensive products, optimal economic efficien-cies, lower resource consumption, and less environmental pollu-tion should be forged. There will be significant energy savings by optimizing end-use energy utilization.References[1]Xie QH. The operational aspects of iron and steel industry of China in 2006 and the prospects in 2007. China Steel 2007;2:6–11 (in Chinese).[2]/cyfz/hxfx/t20070126_113627.htm[3]/economic/txt/2007-02/22/content_7852832.htm[4]Wang K, Wang C, Lu XD, Chen JN. Scenario analysis on CO2 emissions reduction potential in China’s iron and steel industry. Energy Policy 2007;35: 2320–35.[5]The Editorial Board of China steel yearbook China steel yearbook. Beijing: China Statistical Publishing House; 2004.[6]Heane A, Heste S, Gurney A, Fairhead L, Beare S, Me´lanie S, et al. New energy technologies: measuring potential impacts in APEC. APEC Energy Working Group, Report no. APEC#205–RE–01.1. Published by ABARE as Research Report 05.1, Canberra. /apec/publications/free_downloads/2005.Medialib Download.v1.html?url=/et c/medialib/apec_media_library/ downloads/workinggroups/ewg/pubs/2005.Par.0001.File.v1.1. [7]Weng YQ. Current status and prospect of energy saving and environment protection of Chinese steel industry. China Metallurgy 2003;11:1–6 (in Chinese).[8]/Info_Show.aspx?Mess_Id¼1659[9]Wang WX. Iron and steel enterprises’process energy consumption and energy saving potential. Metallurgy Management 2005;6:32–4 (in Chinese).[10]Cai JJ, He JH, Lu ZW, Li GT, Wang WX, Kong LH. Analysis of energy saving and energy consumption in Chinese steel industry for last 20 years and next 5 years. Iron and Steel 2002;37:68–73 (in Chinese).中文译文:我国钢铁工业能源消耗现状及节能对策摘要本文介绍了我国钢铁工业发展中的关键问题和能源消耗现状。
毕业设计参考文献格式
毕业设计参考文献格式篇一:毕业论文参考文献规范格式一、参考文献的类型参考文献(即引文出处)的类型以单字母方式标识,具体如下:M——专著C——论文集 N——报纸文章J——期刊文章D——学位论文 R——报告对于不属于上述的文献类型,采用字母―Z‖标识。
对于英文参考文献,还应注意以下两点:①作者姓名采用―姓在前名在后‖原则,具体格式是:姓,名字的首字母. 如: Malcolm Richard Cowley 应为:Cowley, M.R.,如果有两位作者,第一位作者方式不变,&之后第二位作者名字的首字母放在前面,姓放在后面,如:Frank Norris 与Irving Gordon应为:Norris, F. &I.Gordon.;②书名、报刊名使用斜体字,如:Mastering English Literature,English Weekly。
二、参考文献的格式及举例1.期刊类【格式】[序号]作者.篇名[J].刊名,出版年份,卷号(期号):起止页码.【举例】[1] 王海粟.浅议会计信息披露模式[J].财政研究,20XX,21:56-58.[2] 夏鲁惠.高等学校毕业论文教学情况调研报告[J].高等理科教育,20XX:46-52.[3] Heider, E.R.& D.C.Oliver. The structure of color space in naming and memory of two languages [J]. Foreign Language Teaching and Research, 1999, : 62 –67.2.专著类【格式】[序号]作者.书名[M].出版地:出版社,出版年份:起止页码.【举例】[4] 葛家澍,林志军.现代西方财务会计理论[M].厦门:厦门大学出版社,20XX:42.[5] Gill, R. Mastering English Literature [M]. London: Macmillan, 1985: 42-45.3.报纸类【格式】[序号]作者.篇名[N].报纸名,出版日期(版次).【举例】[6] 李大伦.经济全球化的重要性[N]. 光明日报,1998-12-27.[7] French, W. Between Silences: A Voice from China[N]. Atlantic Weekly, 1987-8-15.4.论文集【格式】[序号]作者.篇名[C].出版地:出版者,出版年份:起始页码.【举例】[8] 伍蠡甫.西方文论选[C]. 上海:上海译文出版社,1979:12-17.[9] Spivak,G. ―Can the Subaltern Speak?‖[A]. InC.Nelson & L.Grossberg. Victory in Limbo: Imigism [C]. Urbana: University of Illinois Press, 1988, pp.271-313.[10] Almarza, G.G. Student foreign language teacher’s knowledge growth [A]. In D.Freeman and J.C.Richards . Teacher Learning in Language Teaching [C]. New York: Cambridge University Press. 1996. pp.50-78.5.学位论文【格式】[序号]作者.篇名[D].出版地:保存者,出版年份:起始页码.【举例】[11] 张筑生.微分半动力系统的不变集[D].北京:北京大学数学系数学研究所, 1983:1-7.6.研究报告【格式】[序号]作者.篇名[R].出版地:出版者,出版年份:起始页码.【举例】[12] 冯西桥.核反应堆压力管道与压力容器的LBB分析[R].北京:清华大学核能技术设计研究院, 1997:9-10.7.条例【格式】[序号]颁布单位.条例名称.发布日期【举例】[15] 中华人民共和国科学技术委员会.科学技术期刊管理办法[Z].1991—06—058.译著【格式】[序号]原著作者. 书名[M].译者,译.出版地:出版社,出版年份:起止页码.三、注释注释是对论文正文中某一特定内容的进一步解释或补充说明。
(英语)毕业设计(论文)内容及格式要求
广东岭南职业技术学院毕业设计(论文)内容及格式要求各二级学院:为了统一规范毕业论文的撰写、编辑、装订,便于论文处理、储存、检索、利用、交流、传播,特对毕业论文的格式提出如下统一要求:一、毕业论文内容要求毕业论文应用汉语撰写(外语相关专业除外),文科专业毕业论文字数一般3000字以上,理工科毕业设计字数5000字以上。
毕业论文(设计)内容应层次分明,数据可靠,文字简练,分析透彻,推理严谨,立论正确。
论文内容一般应由四个主要部分组成,依次为:(一)卷首部分(封面和封底、题目、中文摘要、关键词、目录),(二)主体部分(绪论(前言)、正文、结论或建议、尾注、参考文献表),(三)附录,(四)结尾。
各部分的具体要求如下:(一)卷首部分包括内容如下:1.封面和封底:由教务部统一制定(A3),学生自行打印装订,封面栏目要求打印。
2.题目:应在25字以内,能简明、具体、确切地表达毕业论文(设计)的特定内容。
3.中文摘要:在300字以内。
摘要是对毕业论文内容不加注释和评论的简述。
它应使人不阅读毕业论文全文即可获得全文的主要信息和结论,是一篇完整的短文,可以独立使用。
论文摘要应说明研究工作的目的、方法、成果和结论。
要突出本文的新见解和研究工作的创新点。
4.关键词:论文关键词一般3至8个,应采用能覆盖论文主要内容的通用标准词条(参照相应的技术术语标准),按词条的外延层次从大到上排列,并以显著的字符另起一行,排在摘要左下方。
5.目录:由论文的章节以及附录、参考文献等序号、题名和页码组成。
6. 段落编码 .编码按三级编写,理工科(1……、1.1……、1.1.1……),文科类(一......、(一)......、1.....、(1).......)要求层次清晰。
(二)主体部分主体部分包括:绪论(概述)、正文、结论或建议、尾注、参考文献表。
1.绪论(概述):是该研究内容所涉及的研究领域研究进展的综述。
主要说明研究工作的目的、涉及范围、相关领域的前人研究成果、研究设想、研究方法和实际的概述、理论意义和实际价值。
毕业设计论文外文文献翻译
毕业设计(论文)外文文献翻译院系:财务与会计学院年级专业:201*级财务管理姓名:学号:132148***附件: 财务风险管理【Abstract】Although financial risk has increased significantly in recent years risk and risk management are not contemporary issues。
The result of increasingly global markets is that risk may originate with events thousands of miles away that have nothing to do with the domestic market。
Information is available instantaneously which means that change and subsequent market reactions occur very quickly。
The economic climate and markets can be affected very quickly by changes in exchange rates interest rates and commodity prices。
Counterparties can rapidly become problematic。
As a result it is important to ensure financial risks are identified and managed appropriately. Preparation is a key component of risk management。
【Key Words】Financial risk,Risk management,YieldsI. Financial risks arising1.1What Is Risk1.1.1The concept of riskRisk provides the basis for opportunity. The terms risk and exposure have subtle differences in their meaning. Risk refers to the probability of loss while exposure is the possibility of loss although they are often used interchangeably。
毕业设计外文文献翻译范文
毕业设计外文文献翻译专业学生姓名班级学号指导教师优集学院外文资料名称:Knowledge-Based Engineeri--ng Design Methodology外文资料出处:Int.J.Engng Ed.Vol.16.No.1附件: 1.外文资料翻译译文2.外文原文基于知识工程(KBE)设计方法D. E. CALKINS1.背景复杂系统的发展需要很多工程和管理方面的知识、决策,它要满足很多竞争性的要求。
设计被认为是决定产品最终形态、成本、可靠性、市场接受程度的首要因素。
高级别的工程设计和分析过程(概念设计阶段)特别重要,因为大多数的生命周期成本和整体系统的质量都在这个阶段。
产品成本的压缩最可能发生在产品设计的最初阶段。
整个生命周期阶段大约百分之七十的成本花费在概念设计阶段结束时,缩短设计周期的关键是缩短概念设计阶段,这样同时也减少了工程的重新设计工作量。
工程权衡过程中采用良好的估计和非正式的启发进行概念设计。
传统CAD工具对概念设计阶段的支持非常有限。
有必要,进行涉及多个学科的交流合作来快速进行设计分析(包括性能,成本,可靠性等)。
最后,必须能够管理大量的特定领域的知识。
解决方案是在概念设计阶段包含进更过资源,通过消除重新设计来缩短整个产品的时间。
所有这些因素都主张采取综合设计工具和环境,以在早期的综合设计阶段提供帮助。
这种集成设计工具能够使由不同学科的工程师、设计者在面对复杂的需求和约束时能够对设计意图达成共识。
那个设计工具可以让设计团队研究在更高级别上的更多配置细节。
问题就是架构一个设计工具,以满足所有这些要求。
2.虚拟(数字)原型模型现在需要是一种代表产品设计为得到一将允许一产品的早发展和评价的真实事实上原型的过程的方式。
虚拟样机将取代传统的物理样机,并允许设计工程师,研究“假设”的情况,同时反复更新他们的设计。
真正的虚拟原型,不仅代表形状和形式,即几何形状,它也代表如重量,材料,性能和制造工艺的非几何属性。
毕业设计参考文献格式(要求与范例)
参考文献是指为撰写毕业设计而引用已经发表的有关文献,它不仅是毕业设计写作中不可缺少的重要组成部分。
更是评价论文质量和水平、起点和深度的重要尺标。
本文以毕业设计参考文献格式要求、写作范例为角度,为大家深入解析关于"毕业设计参考文献"的那些事。
一、参考文献的类型和标识代码参考文献目前共有16个文献类型和标识代码:普通图书M,会议录C,汇编G,报纸N,期刊J,学位论文D,报告R,标准S,专利P,数据库DB,计算机程序CP,电子公告EB,档案A,舆图CM,数据集DS,其他Z.凡无法归属于前15个类型的文献,均可以用Z来标志。
二、毕业设计参考文献格式要求参考文献的类型多样,自然书写格式也各有不同,下面我们就列举一些常用的参考文献的书写格式:1、期刊[序号]主要作者。
文献题名[J].刊名,出版年份,卷号(期号):起止页码。
例如:[1]袁庆龙,候文义。
Ni-P合金镀层组织形貌及显微硬度研究[J].太原理工大学学报,2001,32(1):51-53.2、专着[序号]着者。
书名[M].出版地:出版者,出版年:起止页码。
例如:[2]刘国钧,王连成。
图书馆史研究[M].北京:高等教育出版社,1979:15-18,31.3、论文集[序号]着者。
文献题名[C].编者。
论文集名。
出版地:出版者,出版年:起止页码。
例如:[3]孙品一。
高校学报编辑工作现代化特征[C].中国高等学校自然科学学报研究会。
科技编辑学论文集(2)。
北京:北京师范大学出版社,1998:10-22.4、学位论文[序号]作者。
题名[D].保存地:保存单位,年份。
如:[4]张和生。
地质力学系统理论[D].太原:太原理工大学,1998.5、报告[序号]作者。
文献题名[R].报告地:报告会主办单位,年份。
例如:[5]冯西桥。
核反应堆压力容器的LBB分析[R].北京:清华大学核能技术设计研究院,1997.6、专利文献[序号]专利所有者。
专利题名[P].专利国别:专利号,发布日期。
毕业设计文献综述要求及格式
文献综述格式要求文献综述是在收集某一专题的大量文献资料,经过阅读、分析、综合而撰写出来的一种论文。
一. 文献查阅基本要求(1)查阅与课题有关的文献,尤其是近3~6年的文献,其中含有使用计算机检索;(2)应尽量选用有质量、有代表性的文献,包括一定数量的英文文献(总文献大于30篇,英文文献不小于10篇)。
二. 文献综述正文格式和要求综述的结构一般包括前言、正文、结论。
前言的基本内容包括毕业设计课题研究的主要方向,历史渊源,目前现状,存在问题及展望等。
主体部分是综述主要内容的叙述部分。
一般要叙述所选研究题目的国内外研究现状;本研究至目前的主要他人研究成果;比较各种学术观点,阐明本研究的发展趋势;目前存在的问题。
对当前工作的现状,今后的发展趋势应作重点、详尽而具体地叙述。
结论部分一般除研究所得的结论外,还概括指出研究意见,存在的不同意见和待解决的问题等。
撰写文献综述,应注意公允综述,但应有本人观点、见解和想法;综述要以科学事实为依据,它的原材料不能挂一漏万,尤其各种具有代表性观点的文献不能遗漏;要用最简洁的文字高度浓缩式叙述。
文献综述格式与论文结构基本相同,含封面(学校有统一的封面)、目录(目录使用两端对齐)、题目、前言、正文、结论、参考文献(英文文献不少于10篇)。
三.字体等格式要求1.使用word文档制作2.论文题目:三号、加粗、居中正文大标题:小四、加粗、顶格3.作者:XXX 五号、居中,专业:XXX4.摘要、关键词:五号、加粗、顶格5.正文、参考文献:五号、1.25倍行距6.页脚:插入页码,居中,奇偶页均同样例:第1 页(共4页),小五号7.页边距设置:默认上、下:2.54cm;左、右:3.17cm8.基本格式:(1)标题的层次一级标题用“一、二、……”来标识,二级标题用“(一)(二)……”来标识,三级标题用“1. 2. …”来标识、四级标题用“(1)(2)…”来标识。
(2)插图和表格●插图的图续、图题应放在插图的下方,居中排印。
毕业设计外文参考文献
[1] 王起江,洪杰.超超临界电站锅炉用新型管材的研制[J].宝钢技术,2008(5):44-53.[2] 王起江,邹凤鸣.T91高压锅炉管的研制与应用[J].发电设备,2005 (1):43-47.[3] Fujio Abe.Bainitic and martensitic creep-resistant steels[J].Solid State andMaterials Science,2004,8:305-311.[4] 马明编译.美国新的超临界机组考虑使用T/P92的原因[J].电力建设,2006,27(11):79-80.[5] 戴平.国产P91钢管道存在的问题及其解决[J].广东电力,2008,21(8):67-69.[6] 田党.关于难变形钢和合金管坯的二辊斜轧穿孔问题[J].钢铁,1998,33(1):33-36.[7] P J Ennis,A Czyrska-Filemonowicz.Recent advances in creep-resistant steelsfor power plant applications [J].Sādhanā,2003,28:709–730.[8] 刘立民,朱洪,刘志国.法国T91、P91钢管性能评定[J].电站系统工程,2002,18(1):63-64.[9] 彭孙鸿.T91钢管在我国的应用前景[J].宝钢技术,1997,6:48-50.[10] H.C. Furtado,L.H. de Almeida,I. Le May.Precipitation in 9Cr–1Mo steel aftercreep deformation[J].Materials Characterization,2007,58:72–77.[11] 蒯春光,彭志方.T/P91钢在450-1200℃区间各相元素的分配特征及相稳定性[J].金属学报,2008,44(8):897-900.[12] 孙智,董小文,张绪平,等.奥氏体化温度对9Cr-1Mo-V-Nb钢组织与性能的影响[J].金属热处理,2001,26(8):12-14.[13] 刘靖,周立新,傅晨光,等.电站锅炉用T91钢热穿孔性能的研究[J].钢管,2002,31(5):9-11.[14] 彭孙鸿,尤夙志,姜明娟,等.热穿孔温度对T91持久强度的影响[J].特殊钢,2001,22(2):10-12.[15] 崔光珠,朱伏先,高德福,等.T91钢高温变形特性研究[J].塑性工程学报,1999,6(2):13-16.[16] 余勇,周晓岚,赵志毅,等.T91变形抗力模型建立及理论轧制压力计算[J].宝钢技术,2006(3):31-34.[17] Polcik P,Sailer T,Blum W,et al.On the microstructural development of thetempered martensitic Cr-steel P91 during long-term creep[J].Materials Science and Engineering,1999,260:252-259.[18] Orlová A,Buršík J,Kucharová K,et al.Microstructural development duringhigh temperature creep of 9% Cr steel[J].Materials Science and Engineering,1998,254:39-48.[19] Sasaki,Terufumi,Kobayashi,et al.Production and properties of seamlessmodified 9Cr-1Mo steel boiler tubes[R].Kaw asaki Steel Technical Report,1991,25(4):78-87.[20] Bendick W,Vaillant JC,Vandenberghe B,et al.Properties and workability ofnew creep strength enhanced steels as known grades 23, 24, 911 and 92[J].International Journal of Pressure Vessels and Piping,2004,476:25-29.[21] 刘江南,王正品,束国刚,等.P91钢的形变强化行为[J].金属热处理,2009,34(1):28-32.[22] Tőkei Z S,Viefhaus H,Grabke H J.Initial stages of oxidation of a9CrMoV-steel: role of segregation and martensite laths[J].Applied Surface Science,2000,165:23-33.[23] Rajendran P S,Sankar P,Khatak H S.Cyclic oxidation of P91 at 1073, 1123 and1173K[J].High Temperature Materials and Processes,2004,23(3):195-204.[24] Ahmed Shibli,Fred Starr.Some aspects of plant and research experience in theuse of new high strength martensitic steel P91[J].International Journal of Pressure Vessels and Piping,2007,84:114-122.[25] J.C. Vaillant,B. Vandenberghe,B. Hahn,et al.T/P23, 24, 911 and 92: Newgrades for advanced coal-fired power plants—Properties and experience [J].International Journal of Pressure Vessels and Piping,2008,85:38-46.[26] Brett SJ.The creep strength of weak thick section modified 9Crforgings[C].Proceedings of Baltica,2001,1:39-45.[27] U.Gampe,P.Seliger.Creep crack growth testing of P91 and P22bends[J].International Journal of Pressure Vessels and Piping,2001,78:859-864.[28] L.Kunz,P.Lukáš.High temperature fatigure and cyclic creep of P91steel[J].European Structural Integrity Society,2002,29:37-44.[29] B.Fournier,M.Sauzay,C.Caës,et al.Creep-fatigue-oxidation interactions ina 9Cr-1Mo martensitic steel[J].International Journal of Pressure Vessels andPiping,2008,85:478-485.[30] 刘洪杰.电站锅炉用P91钢蠕变/疲劳交互作用的试验研究[J].动力工程,2007,27(6):990-995.[31] LIU Jiang-nan,JIE Wang-qi.Application of improved vacuum degassingtechnique to refinement of heat resistant steel P91[J].Trans. Nonferrous Met.Soc. China,2005,15:291-294.[32] 苏俊,张铮,李进.P91高压锅炉管的开发[J].钢管,2008,37(4):33-37.[33] 郭元蓉,吴红.P91无缝钢管国产化研究进展[J].钢管,2008,37(1):22-27.[34] 王起江,邹凤鸣,张瑞,等.宝钢T91高压锅炉管性能试验与研究[J].宝钢技术,2003,(4):46-50.[35] Miyata K,Sawaragi Y.Effect of Mo and W on the phase stability of precipitatesin low Cr heat resistant steels[J].ISIJ,2001,41:281-289.[36] Wachter O,Ennis PJ.Investigation of the properties of the 9% Cr steel of thetype 9Cr-0.5Mo-1.8W-V-Nb with respect to its application as a pipework and boiler steel operation at elevated temperatures[D].Germany,1995.[37] Hättestrand M,Andrén H O.Evaluation of particle size distribution in a 9% Crsteel using EFTEM[J].Micron,2001,32:789-797.[38] Sklenicka V,Kucharova K,Svoboda M,et al.Long-term creep behavior of9-12%Cr power plant steels [J].Mater. Character,2003,51:35-48.[39] Strang A,Foldyna V,Lenert J,et al.Prediction of the long-term creep ruptureproperties of 9-12Cr power plant steels [C].Proceedings of the 6th International Charles Parsons Turbine Conference,Dublin,2003,427-441.[40] Kimura K,Kushima H,Sawaka K.Long-term creep strength prediction of highCr ferritic creep resistant steels based on degradation mechanisms[C].Proceedings of the 6th International Charles Parsons Turbine Conference,Dublin,2003,444-456.[41] 高巍,刘江南,王正品,等.P92钢塑性变形行为[J].西安工业大学学报,2008,28(4):356-359.[42] 田党,张根良,卜玉钦.二辊斜轧穿孔时高合金钢的变形分布和分层缺陷形成机制[J].钢铁,1995,30(1):40-45.[43] 刘新生,赵定国,崔成业.冷轧薄板中分层现象的研究[J].钢铁,2008,43(5):40-43.[44] 崔风平,赵乾,唐愈.铸坯内部缺陷对钢板分层形成的影响[J].中国冶金,2008,18(2):14-18.[45] 唐生斌.板材分层缺陷产生原因分析[J].连铸,2003,4:32-34.[46] 洪小玲,肖荣仁,李端来.GH3030合金锻坯裂纹分析[J].钢铁研究,2002,128(5):11-12.[47] S.A.Sharadzenidze,E.A.Svetlitskii.High Quality Seamless Tubes[J]. Metallurg,1968,11:38-39.[48] 王建文.27SiMn钢管表面龟裂原因分析[J].湖南冶金,2000,5:25-26.[49] 任建国,祁晓英,马学军,等.低合金钢热轧缺陷分析[J].沈阳工业学院学报,1996,15(3):35-37.[50] 卢居桂,安自亮,刘钰.夹杂物引起的石油套管缺陷分析[J].天津冶金,2002,106(1):27-29.[51] 田党.关于锥形辊穿孔机轧辊转速对毛管分层缺陷影响的讨论[J].钢管,2006,35(4):12-16.[52] 王永吉,陈大国,王世英,等.二辊斜轧穿孔轧辊转速对高合金钢毛管质量的影响[J].钢铁,1985,20(2):25-30.[53] 严智.高温合金穿孔工艺的研究[J].特钢技术,1994,2:27-31.[54] 田党.高温合金无缝管材的研制与生产[J].钢管,2002,31(3):1-6.[55] 田党.关于毛管分层缺陷的试验研究[J].轧钢,1997,6:7-10.[56] 田党.高温合金管坯在二辊斜轧穿孔机上的穿孔实践[J].天津冶金,1996,4:25-28.[57] 田党.毛管分层缺陷形成过程的观察和分析[J].天津冶金,1996,1:24-26.[58] 田党.高温合金毛管分层缺陷形成的过程[J].钢管,1992,1:19-22.[59] 卢于逑,王先进.二辊斜轧穿孔中心金属断裂机理和穿孔变形工艺实质[J].钢铁,1980,6:7-15.[60] 卢于逑,王先进.二辊斜轧穿孔圆坯断面的变形分布[J].金属学报,1980,4:470-479.[61] 田党,张根良,卜玉钦.二辊斜轧穿孔时高温合金钢圆坯的变形分布及分层形成机制[J].钢铁,1995,30(1):40-46.[62] 田党,李群.关于锥形辊穿孔机的穿孔原理及应用问题的讨论[J].钢管,2003,32(6):1-4.[63] 赵咏秋,吴秀丽,陈菊芳.0Cr18Ni9Ti热轧荒管分层内裂原因分析[J].物理测试,1999,2:33-35.[64] 张存信,冯晓庭,项炳和,等.不锈钢无缝管加工过程中断裂原因简析[J].钢管,2008,37(3):38-42.[65] 袁桂林,苏殿荣.GCr15钢管环状层裂在二辊斜轧穿孔过程中的发生和发展[J].钢管,1983,3:15-18.[66] 张世文,刘仓理,李庆忠,等.初始应力状态对材料层裂破坏特性影响研究[J].力学学报,2008,40(4):535-542.[67] 侯凤桐.日本住友金属公司新开发的菌式穿孔机[J].钢管技术,1985,2:57-59.[68] Chihiro HAYASHI,Tomio YAMAKAWA.Influences of Feed and Cross Angleon Inside Bore and Lamination Defects in Rotary Piercing for Materials with Poor Hot Workability [J].ISIJ International,1997,37(2):153-160.[69] 嵇国金,彭颖红,阮雪榆.有关金属体积成形中的韧性断裂准则[J].金属成形工艺,1998,16(4):36-37.[70] 郭达人编译.金属材料的断裂及其断口分析[J].国外金属热处理,1996,17(4):25-31.[71] 黄建科,董湘怀.金属成形中韧性断裂准则的细观损伤力学研究进展[J].上海交通大学学报,2006,40(10):1748-1753.[72] Oyane M,Sota T,Okintoto K,et al.Criteria for ductile fractures and theirapplications[J].J Mech Work Tech,1980,4:65-81.[73] 郑长卿,张克实,周利.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995,28-32.[74] Venugopal Rao A,Ramakrishnan N,Krishna Kumar R.A comparativeevaluation of the theoretical failure criteria for workability in cold forging[J].Journal of Materials Processing Technology,2003,142(1):29-42.[75] Komori Kazutake.Effect of ductile fracture criteria on chevron crack formationand evolution in drawing[J].International Journal of Mechanical Sciences,2003,45(1):141-160.[76] Ozturk Fahrettin,Lee Daeyong.Analysis of forming limits using ductile fracturecriteria[J].Journal of Materials Processing Technology,2004,147(3):397-404.[77] Jeong Kim,Sung-Jong Kang,Beom-Soo Kang.A prediction of bursting failurein tube hydroforming processes based on ductile fracture criterion[J].Int J Adv Manuf Technol,2003,22:357-362.[78] 虞松,陈军,阮雪榆.韧性断裂准则的试验与理论研究[J].中国机械工程,2006,17(19):2049-2052.[79] 胡庆安,程侠,邰卫华.金属材料断裂预测损伤破坏准则的应用[J].长安大学学报,2007,27(4):100-102.[80] 俞树荣,严志刚,曹睿,等.有限元软件模拟裂纹扩展的方法探讨[J].甘肃科学学报,2003,15(4):15-21.[81] 陈乃超,田冠玉,郑博.12Cr1MoV短期高温冲击断裂韧性及其参数的研究[J].上海电力学院学报,2008,24(2):178-181.[82] Ken-ichiro Mori,Hidenori Yoshimura,Kozo Osakada.Simplified three-dimensional simulation of rotary piercing of seamless pipe by rigid-plastic finite-element method[J].Journal of Materials Processing Technology,1998,80-81:700-706.[83] Y van Chastel,Aliou Diop,Silvio Fanini,et al.Finite Element Modeling ofTube Piercing and Creation of a Crack[J].Int J Mater Form,2008,Suppl 1:355-358.[84] Hyoung Wook Lee,Geun An Lee,Eung Kim,et al.Prediction of plug tipposition in rotary tube piercing mill using simulation and experiment[J].International Journal of Modern Physics B,2008,22(31-32):5787-5792.[85] S Fanini,A Ghiotti,S Bruschi.Evaluation of Fracture Initiation in theMannesmann Piercing Process[C].The 10th ESAFORM Conference on Material Forming,2007,709-714.[86] Saurabh Dwivedi,Samuel H,Huang Jun Shi,et al.Yield prediction for seamlesstubing processes: a computational intelligence approach[J].Int Adv Manuf Technol,2008,37:314-322.[87] Elisabetta Ceretti,Claudio Glaudio,Aldo Attanasio.3D Simulation andValidation of Tube Piercing Process[C].NUMIFORM 07 Materials and Design: Modling, Simulation and Applications,2007,413-418.[88] Kazutake Komori.Simulation of Mannesmann piercing process by thethree-dimensional rigid-plastic finite-element method[J].International Journal of Mechanical Sciences,2005,47:1838-1853.[89] Hayashi C,Yamakawa T.Influence of feed and cross angle on rotary forgingeffects and redundant shear deformation in rotary piercing process[J].ISIJ International,1997,37:146-152.[90] 曾幼宗.斜轧穿孔工艺的有限元分析[J].钢管,2004,33(3):51-53.[91] 双远华,赖明道,张中元.斜轧穿孔过程金属流动的有限元模拟[J].机械工程学报,2004,40(3):140-144.[92] 双远华,赖明道,张中元.钢管斜轧过程应力应变与温度耦合模拟分析[J].锻压技术,2003(6):36-40.[93] 李胜衹,陈大宏,孙中建,等.二辊斜轧穿孔时圆管坯的变形与应力分布及其发展[J].钢铁研究学报,2000,12(5):26-30.[94] A Ghiotti,S Fanini,S Bruschi,et al.Modeling of the Mannesmanneffect[J].CIRP Annals-Manufacturing Technology,2009,58:255-258.[95] E.I. Panov.Shear Stresses and Their Dependence on Different ProcessParameters in The Helical Rolling of Solid Semifinished Products[J].Metallurgist,2005,49(7-8):280-292.[96] E.I. Panov.Certain Aspects of The Stress-Strain State of Semifinished Productsin Helical Rolling[J].Metallurgist,2003,47(11-12):499-505.[97] E.I. Panov.Effect of thrust and tension on the radial stresses in helical rolling[J].Metallurg,2004,4:50-57.[98] Z. Pater,J. Kazanecki,J. Bartnicki.Three dimensional thermo-mechanicalsimulation of the tube forming process in Diescher’s mill [J].Journal of Materials Processing Technology,2006,177:167-170.[99] 双远华,陈惠琴,赖明道.斜轧管材生产中内部组织有限元模拟和预测[J].中国有色金属学报,2001,11(2):238-242.[100] 双远华,张中元,赖明道.热轧穿孔内部组织控轧的工业性试验研究[J].钢铁,2002,37(6):42-47.[101] J C Prince,R Maroño,F León.Thermomechanical analysis of a piercing mandrel for the production of seamless steel tubes[J].J. Process Mechanical Engineering,2003,217:337-344.[102] W.A.Khudheyer,D.C.Barton,T.Z.Blazynski.A comparison between macroshear redundancy and loading effects in 2- and 3-roll rotary tube cone piercers[J].Journal of Materials Processing Technology,1997,65:191-202.[103] A.N.Nikulin,V.V. Streletskii.Deformation of continuous cast metal during rotary rolling[J].Metallurgist,2005,49(3-4):97-101.[104] Kazutake Komori,Kouta Mizuno.Study on plastic deformation in cone-type rotary piercing process using model piercing mill for modeling clay[J].Journal of Materials Processing Technology,2009,209:4994-5001.[105] 李连诗.钢管塑性变形原理(上册)[M],北京:冶金工业出版社,1985:178-185.[106] 卢于逑.斜轧穿孔过程中应力和变形的分布和中心金属断裂机构的某些特点分析[D].北京:北京钢铁学院,1963.[107] 卢于逑,王先进.二辊斜轧穿孔时圆坯断面的变形分布和发展[J].金属学报,1980,16(4):470-479.[108] 严泽生.现代热轧无缝钢管生产[M].北京:冶金工业出版社,2009:175-195.[109] Takuda H,Mori K,Hatta N.The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals[J].J Mater Process Technol,1999,95:116-121.[110] Takuda H,Mori K,Fujimoto H,et al.Prediction of the forming limit in bore-expanding of sheet metals using ductile fracture criteria[J].J Mater Process Technol,1999,92-93:433-438.[111] Mori K,Takuda H.Prediction of forming limit in deep drawing of finite element simulation and criterion for ductile fracture[J].Transaction of NAMRI/SME XXIV,1996,143-148.[112] Takuda H,Mori K,Takakura N,et al.Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture[J].Int J Mech Sci,2000,42:785-798.。
2024年外文参考文献格式要求
D.专著中析出的文献
〔序号〕 析出责任者.析出题名.见(英文用In):专著责任者.书名.出版地:出版者,出版年:起止页码.
〔12〕罗云.安全科学理论体系的`发展及趋势探讨.见:白春华,何学秋,吴宗之.21世纪安全科学与技术的发展趋势.北京:科学出版社,2000:1-5.
2024年外文参考文献格式要求
外文参考文献格式要求 篇1
单一作者著作的书籍:
姓,名字首字母.(年). 书名(斜体). 出版社所在城市:出版社.
Sheril, R. D. (1956). The terrifying future: Contemplating color television. San Diego: Halstead.
②磁带数据库[DB/MT]
③光盘图书[M/CD]
④磁盘软件[CP/DK]
⑤网上期刊[J/OL]
⑥网上电子公告[EB/OL]
期刊论文
[1]周庆荣,张泽廷,朱美文,等.固体溶质在含夹带剂超临界流体中的.溶解度[J].化工学报,1995,46(3):317 323
[2]Dobbs J M, Wong J M. Modification of supercritical fluid phasebehavior using polor coselvent[J]. Ind Eng Chem Res, 1987,26:56
B.专著
〔序号〕 主要责任者.文献题名〔M〕.出版地:出版者,出版年:页码.
〔3〕 刘国钧,郑如斯.中国书的故事〔M〕.北京:中国青年出版社,1979:115.
外文翻译格式及规范
嘉兴学院毕业论文(设计)外文翻译撰写格式规范一、外文翻译形式要求1、要求本科生毕业论文(设计)外文翻译部分的外文字符不少于1.5万字, 每篇外文文献翻译的中文字数要求达到2000字以上,一般以2000~3000字左右为宜。
2、翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并作为外文参考文献列入毕业论文(设计)的参考文献。
3、外文翻译应包括外文文献原文和译文,译文要符合外文格式规范和翻译习惯。
二、打印格式嘉兴学院毕业论文(设计)外文翻译打印纸张统一用A4复印纸,页面设置:上:2.8;下:2.6;左:3.0;右:2.6;页眉:1.5;页脚:1.75。
段落格式为:1.5倍行距,段前、段后均为0磅。
页脚设置为:插入页码,居中。
具体格式见下页温馨提示:正式提交“嘉兴学院毕业论文(设计)外文翻译”时请删除本文本中说明性的文字部分(红字部分)。
嘉兴学院本科毕业论文(设计)外文翻译题目:(指毕业论文题目)学院名称:服装与艺术设计学院专业班级:楷体小四学生姓名:楷体小四一、外文原文见附件(文件名:12位学号+学生姓名+3外文原文.文件扩展名)。
二、翻译文章翻译文章题目(黑体小三号,1.5倍行距,居中)作者(用原文,不需翻译,Times New Roman五号,加粗,1.5倍行距,居中)工作单位(用原文,不需翻译,Times New Roman五号,1.5倍行距,居中)摘要:由于消费者的需求和汽车市场竞争力的提高,汽车检测标准越来越高。
现在车辆生产必须长于之前的时间并允许更高的价格进行连续转售……。
(内容采用宋体五号,1.5倍行距)关键词:汽车产业纺织品,测试,控制,标准,材料的耐用性1 导言(一级标题,黑体五号,1.5倍行距,顶格)缩进两个字符,文本主体内容采用宋体(五号),1.5倍行距参考文献(一级标题,黑体五号, 1.5倍行距,顶格)略(参考文献不需翻译,可省略)资料来源:AUTEX Research Journal, V ol. 5, No3, September 2008*****译****校(另起一页)三、指导教师评语***同学是否能按时完成外文翻译工作。
【最新文档】外文参考文献标准格式-word范文模板 (5页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==外文参考文献标准格式在书写文章时需要写外文的参考文献,那么外文的参考文献和中文的参考文献有什么不同呢?格式是怎样的呢?下面是小编分享给大家的外文参考文献标准格式,希望对大家有帮助。
外文参考文献标准格式一、参考文献的类型参考文献(即引文出处)的类型以单字母方式标识,具体如下:[M]--专著,著作[C]--论文集(一般指会议发表的论文续集,及一些专题论文集,如《***大学研究生学术论文集》[N]-- 报纸文章[J]--期刊文章:发表在期刊上的论文,尽管有时我们看到的是从网上下载的(如知网),但它也是发表在期刊上的,你看到的电子期刊仅是其电子版[D]--学位论文:不区分硕士还是博士论文[R]--报告:一般在标题中会有"关于****的报告"字样[S]-- 标准[P]--专利[A]--文章:很少用,主要是不属于以上类型的文章[Z]--对于不属于上述的文献类型,可用字母"Z"标识,但这种情况非常少见常用的电子文献及载体类型标识:[DB/OL] --联机网上数据(database online)[DB/MT] --磁带数据库(database on magnetic tape)[M/CD] --光盘图书(monograph on CDROM)[CP/DK] --磁盘软件(computer program on disk)[J/OL] --网上期刊(serial online)[EB/OL] --网上电子公告(electronic bulletin board online)很显然,标识的就是该资源的英文缩写,/前面表示类型,/后面表示资源的载体,如OL表示在线资源二、参考文献的格式及举例1.期刊类【格式】[序号]作者.篇名[J].刊名,出版年份,卷号(期号)起止页码.【举例】[1] 周融,任志国,杨尚雷,厉星星.对新形势下毕业设计管理工作的思考与实践[J].电气电子教学学报,201X(6):107-109.[2] 夏鲁惠.高等学校毕业设计(论文)教学情况调研报告 [J].高等理科教育,201X(1):46-52.[3] Heider, E.R.& D.C.Oliver. The structure of color space in naming and memory of two languages [J]. Foreign Language Teaching and Research, 1999, (3): 62 67.2.专著类【格式】[序号]作者.书名[M].出版地:出版社,出版年份:起止页码.【举例】[4] 刘国钧,王连成.图书馆史研究[M].北京:高等教育出版社,1979:15-18,31.[5] Gill, R. Mastering English Literature [M]. London: Macmillan, 1985: 42-45.3.报纸类【格式】[序号]作者.篇名[N].报纸名,出版日期(版次).[6] 李大伦.经济全球化的重要性[N]. 光明日报,1998-12-27(3).[7] French, W. Between Silences: A Voice from China[N]. Atlantic Weekly, 1987-8-15(33).4.论文集【格式】[序号]作者.篇名 [C].出版地:出版者,出版年份:起始页码.【举例】[8] 伍蠡甫.西方文论选[C]. 上海:上海译文出版社,1979:12-17.[9] Spivak,G. "Can the Subaltern Speak?"[A]. In C.Nelson & L. Grossberg(eds.). Victory in Limbo: Imigism [C]. Urbana: University of Illinois Press, 1988, pp.271-313.[10] Almarza, G.G. Student foreign language teacher's knowledge growth [A]. In D.Freeman and J.C.Richards (eds.). Teacher Learning in Language Teaching [C]. New York: Cambridge University Press. 1996. pp.50-78.5.学位论文【格式】[序号]作者.篇名[D].出版地:保存者,出版年份:起始页码.【举例】[11] 张筑生.微分半动力系统的不变集[D].北京:北京大学数学系数学研究所, 1983:1-7.6.研究报告【格式】[序号]作者. 篇名[R].出版地:出版者,出版年份:起始页码.【举例】[12] 冯西桥.核反应堆压力管道与压力容器的LBB分析[R].北京:清华大学核能技术设计研究院, 1997:9-10.7.专利【格式】[序号]专利所有者.题名[P].国别:专利号,发布日期.[13] 姜锡洲.一种温热外敷药制备方案[P].中国专利:881056073, 1989 07 26.8.标准【格式】[序号]标准编号,标准名称[S].【举例】[14] GB/T 16159-1996, 汉语拼音正词法基本规则 [S].9.条例【格式】[序号]颁布单位.条例名称.发布日期【举例】[15] 中华人民共和国科学技术委员会.科学技术期刊管理办法[Z].1991-06-0510.电子文献【格式】[序号]主要责任者.电子文献题名.电子文献出处[电子文献及载体类型标识].或可获得地址,发表或更新日期/引用日期.【举例】[16] 王明亮.关于中国学术期刊标准化数据库系统工程的进展[EB/OL].http: ///pub/wml.txt/980810 2.html, 1998 08 16/1998 10 04.[17] 万锦.中国大学学报论文文摘(1983 1993).英文版 [DB/CD]. 北京: 中国大百科全书出版社, 1996.11.各种未定义类型的文献【格式】[序号] 主要责任者.文献题名[Z].出版地:出版者, 出版年.特别说明:凡出现在"参考文献"项中的标点符号都失去了其原有意义,且其中所有标点必须是半角,如果你的输入法中有半角/全解转换,则换到半角状态就可以了,如果你的输入法中没有这一转换功能,直接关闭中文输入法,在英文输入状态下输入即可.其实,很多输入法(如目前比较流行的搜狐输入法)都提供了四种组合:(1)中文标点+ 全角:这时输入的标点是这样的,:【1】-(而这时,我没有找到哪个键可以输入 / 符号)也就是说,这些符号是一定不能出现在"参考文献"中的;(2)中文标点+半角:这时输入的标点是这样的,:【1】-(这时,我还是没有找到哪个键可以输入 / 符号)也就是说,这些符号也不能出现在"参考文献"中的;上面列出的符号,中间没有任何的空格,你能看出它们有什么区别吗?我看只是-的宽度有一点点不同,其它都一样(3)英文标点+全角:这时输入的标点是这样的,.:[1]-/(4)英文标点+半角:这时输入的标点是这样的,.:[1]-/从这两项可以明显的看出,半角和全角其实最大的差别是所占的宽度不一样,这一点对于数字来说最为明显,而英文标点明显要比中文标点细小很多(也许因为英文中,标点的功能没有中文那么复杂,就是说英文中标点符号的能力没有中文那么强大)所以,很多人在写"参考文献" 时,总是觉得用英文标点+半角很不清楚,间距也太小,其实这点完全不用担心如果你觉得真的太小不好看,就用英文标点+全角吧而在[1] 之后,一般也都有一个空格更为详细的内容,大家可以从附件中下载国家标准《文后参考文献著录规则GB/T 7714-201X》查看,不过,很长很烦,拿出点耐心看吧对于英文参考文献,还应注意以下两点:①作者姓名采用"姓在前名在后"原则,具体格式是:姓,名字的首字母. 如:Malcolm Richard Cowley 应为:Cowley, M.R.,如果有两位作者,第一位作者方式不变,&之后第二位作者名字的首字母放在前面,姓放在后面,如:Frank Norris 与Irving Gordon应为:Norris, F. & I.Gordon.②书名、报刊名使用斜体字,如:Mastering EnglishLiterature,English Weekly.三、注释注释是对论文正文中某一特定内容的进一步解释或补充说明注释应置于本页页脚,前面用圈码①、②、③等标识以下文字仅用于测试排版效果, 请使用时删除!冬是清寒的。
毕业设计(论文)外文文献翻译要求
毕业设计(论文)外文文献翻译要求
根据《普通高等学校本科毕业设计(论文)指导》的内容,特对外文文献翻译提出以下要求:
一、翻译的外文文献一般为1~2篇,外文字符要求不少于1。
5万(或翻译成中文后至少在3000字以上)。
二、翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并作为外文参考文献列入毕业论文(设计)的参考文献.并在每篇中文译文首页用“脚注"形式注明原文作者及出处,中文译文后应附外文原文。
三、中文译文的基本撰写格式为题目采用小三号黑体字居中打印,正文采用宋体小四号字,行间距一般为固定值20磅,标准字符间距.页边距为左3cm,右2。
5cm,上下各2.5cm,页面统一采用A4纸。
四、封面格式由学校统一制作(注:封面上的“翻译题目”指中文译文的题目,附件1为一篇外文翻译的封面格式,附件二为两篇外文翻译的封面格式),若有两篇外文文献,请按“封面、译文一、外文原文一、译文二、外文原文二"的顺序统一装订。
教务处
2006年2月27日杭州电子科技大学
毕业设计(论文)外文文献翻译
毕业设计(论文)题目
翻译题目
学院
专业
姓名
班级
学号
指导教师
杭州电子科技大学
毕业设计(论文)外文文献翻译毕业设计(论文)题目
翻译(1)题目
翻译(2)题目
学院
专业姓名班级学号指导教师。
本科毕业设计外文文献及译文1
本科毕业设计外文文献及译文文献、资料题目:Transit Route Network Design Problem:Review文献、资料来源:网络文献、资料发表(出版)日期:2007.1院(部):xxx专业:xxx班级:xxx姓名:xxx学号:xxx指导教师:xxx翻译日期:xxx外文文献:Transit Route Network Design Problem:Review Abstract:Efficient design of public transportation networks has attracted much interest in the transport literature and practice,with manymodels and approaches for formulating the associated transit route network design problem _TRNDP_having been developed.The presentpaper systematically presents and reviews research on the TRNDP based on the three distinctive parts of the TRNDP setup:designobjectives,operating environment parameters and solution approach.IntroductionPublic transportation is largely considered as a viable option for sustainable transportation in urban areas,offering advantages such as mobility enhancement,traffic congestion and air pollution reduction,and energy conservation while still preserving social equity considerations. Nevertheless,in the past decades,factors such as socioeconomic growth,the need for personalized mobility,the increase in private vehicle ownership and urban sprawl have led to a shift towards private vehicles and a decrease in public transportation’s share in daily commuting (Sinha2003;TRB2001;EMTA2004;ECMT2002;Pucher et al.2007).Efforts for encouraging public transportation use focuses on improving provided services such as line capacity,service frequency,coverage,reliability,comfort and service quality which are among the most important parameters for an efficient public transportation system(Sinha2003;Vuchic2004.) In this context,planning and designing a cost and service efficientpublic transportation network is necessary for improving its competitiveness and market share. The problem that formally describes the design of such a public transportation network is referred to as the transit route network design problem(TRNDP);it focuses on the optimization of a number of objectives representing the efficiency of public transportation networks under operational and resource constraints such as the number and length of public transportation routes, allowable service frequencies,and number of available buses(Chakroborty2003;Fan and Machemehl2006a,b).The practical importance of designing public transportation networks has attractedconsiderable interest in the research community which has developed a variety of approaches and modelsfor the TRNDP including different levels of design detail and complexity as well as interesting algorithmic innovations.In thispaper we offer a structured review of approaches for the TRNDP;researchers will obtain a basis for evaluating existing research and identifying future research paths for further improving TRNDP models.Moreover,practitioners will acquire a detailed presentation of both the process and potential tools for automating the design of public transportation networks,their characteristics,capabilities,and strengths.Design of Public Transportation NetworksNetwork design is an important part of the public transportation operational planning process_Ceder2001_.It includes the design of route layouts and the determination of associated operational characteristics such as frequencies,rolling stock types,and so on As noted by Ceder and Wilson_1986_,network design elements are part of the overall operational planning process for public transportation networks;the process includes five steps:_1_design of routes;_2_ setting frequencies;_3_developing timetables;_4_scheduling buses;and_5_scheduling drivers. Route layout design is guided by passenger flows:routes are established to provide direct or indirect connection between locations and areas that generate and attract demand for transit travel, such as residential and activity related centers_Levinson1992_.For example,passenger flows between a central business district_CBD_and suburbs dictate the design of radial routes while demand for trips between different neighborhoods may lead to the selection of a circular route connecting them.Anticipated service coverage,transfers,desirable route shapes,and available resources usually determine the structure of the route network.Route shapes areusually constrained by their length and directness_route directness implies that route shapes are as straight as possible between connected points_,the usage of given roads,and the overlapping with other transit routes.The desirable outcome is a set of routesconnecting locations within a service area,conforming to given design criteria.For each route, frequencies and bus types are the operational characteristics typically determined through design. Calculations are based on expected passenger volumes along routes that are estimated empirically or by applying transit assignmenttechniques,under frequency requirement constraints_minimum and maximum allowedfrequencies guaranteeing safety and tolerable waiting times,respectively_,desired load factors, fleet size,and availability.These steps as well as the overall design.process have been largely based upon practical guidelines,the expert judgment of transit planners,and operators experience_Baaj and Mahmassani1991_.Two handbooks by Black _1995_and Vuchic_2004_outline frameworks to be followed by planners when designing a public transportation network that include:_1_establishing the objectives for the network;_2_ defining the operational environment of the network_road structure,demand patterns,and characteristics_;_3_developing;and_4_evaluating alternative public transportation networks.Despite the extensive use of practical guidelines and experience for designing transit networks,researchers have argued that empirical rules may not be sufficient for designing an efficient transit network and improvements may lead to better quality and more efficient services. For example,Fan and Machemehl_2004_noted that researchers and practitioners have been realizing that systematic and integrated approaches are essential for designing economically and operationally efficient transit networks.A systematic design process implies clear and consistent steps and associated techniques for designing a public transportation network,which is the scope of the TRNDP.TRNDP:OverviewResearch has extensively examined the TRNDP since the late1960s.In1979,Newell discussed previous research on the optimal design of bus routes and Hasselström_1981_ analyzed relevant studies and identified the major features of the TRNDP as demand characteristics,objective functions,constraints,passengerbehavior,solution techniques,and computational time for solving the problem.An extensive review of existing work on transit network design was provided by Chua_1984_who reported five types of transit system planning:_1_manual;_2_marketanalysis;_3_systems analysis;_4_systems analysis with interactive graphics;and_5_ mathematical optimization approach.Axhausemm and Smith_1984_analyzed existing heuristic algorithms for formulating the TRNDP in Europe,tested them,anddiscussed their potential implementation in the United States.Ceder and Wilson_1986_reportedprior work on the TRNDP and distinguished studies into those that deal with idealized networks and to those that focus on actual routes,suggesting that the main features of the TRNDP include demand characteristics,objectivesand constraints,and solution methods.At the same period,Van Nes et al._1988_grouped TRNDP models into six categories:_1_ analytical models for relating parameters of the public transportation system;_2_models determining the links to be used for public transportation route construction;_3_models determining routes only;_4_models assigning frequencies to a set of routes;_5_two-stage models for constructing routes and then assigning frequencies;and_6_models for simultaneously determining routes and frequencies.Spacovic et al._1994_and Spacovic and Schonfeld_1994_proposed a matrix organization and classified each study according to design parameters examined,objectives anticipated,network geometry,and demand characteristics. Ceder and Israeli_1997_suggested broad categorizations for TRNDP models into passenger flow simulation and mathematical programming models.Russo_1998_adopted the same categorization and noted that mathematical programming models guarantee optimal transit network design but sacrifice the level of detail in passenger representation and design parameters, while simulation models address passenger behavior but use heuristic procedures obtaining a TRNDP solution.Ceder_2001_enhanced his earlier categorization by classifying TRNDP models into simulation,ideal network,and mathematical programming models.Finally,in a recent series of studies,Fan and Machemehl_2004,2006a,b_divided TRNDP approaches into practical approaches,analytical optimization models for idealized conditions,and metaheuristic procedures for practical problems.The TRNDP is an optimization problem where objectives are defined,its constraints are determined,and a methodology is selected and validated for obtaining an optimal solution.The TRNDP is described by the objectives of the public transportation network service to be achieved, the operational characteristics and environment under which the network will operate,and the methodological approach for obtaining the optimal network design.Based on this description of the TRNDP,we propose a three-layer structure for organizing TRNDP approaches_Objectives, Parameters,and Methodology_.Each layer includes one or more items that characterize each study.The“Objectives”layer incorporates the goals set when designing a public transportation system such as the minimization of the costs of the system or the maximization of the quality of services provided.The“Parameters”layer describes the operating environment and includes both the design variables expected to be derived for the transit network_route layouts,frequencies_as well as environmental and operational parameters affecting and constraining that network_for example,allowable frequencies,desired load factors,fleet availability,demand characteristics and patterns,and so on_.Finally,the“Methodology”layer covers the logical–mathematical framework and algorithmic tools necessary to formulate and solve the TRNDP.The proposed structure follows the basic concepts toward setting up a TRNDP:deciding upon the objectives, selecting the transit network items and characteristics to be designed,setting the necessary constraints for the operating environment,and formulating and solving the problem. TRNDP:ObjectivesPublic transportation serves a very important social role while attempting to do this at the lowest possible operating cost.Objectives for designing daily operations of a public transportation system should encompass both angles.The literature suggests that most studies actually focus on both the service and economic efficiency when designing such a system. Practical goals for the TRNDP can be briefly summarized as follows_Fielding1987;van Oudheudsen et al.1987;Black1995_:_1_user benefit maximization;_2_operator cost minimization;_3_total welfare maximization;_4_capacity maximization;_5_energy conservation—protection of the environment;and_6_individual parameter optimization.Mandl_1980_indicated that public transportation systems have different objectives to meet. He commented,“even a single objective problem is difficult to attack”_p.401_.Often,these objectives are controversial since cutbacks in operating costs may require reductions in the quality of services.Van Nes and Bovy_2000_pointed out that selected objectives influence the attractiveness and performance of a public transportation network.According to Ceder and Wilson_1986_,minimization of generalized cost or time or maximization of consumer surplus were the most common objectives selected when developing transit network design models. Berechman_1993_agreed that maximization of total welfare is the most suitable objective for designing a public transportation system while Van Nes and Bovy_2000_argued that the minimization of total user and system costs seem the most suit able and less complicatedobjective_compared to total welfare_,while profit maximization leads to nonattractive public transportation networks.As can be seen in Table1,most studies seek to optimize total welfare,which incorporates benefits to the user and to the er benefits may include travel,access and waiting cost minimization,minimization of transfers,and maximization of coverage,while benefits for the system are maximum utilization and quality of service,minimization of operating costs, maximization of profits,and minimization of the fleet size used.Most commonly,total welfare is represented by the minimization of user and system costs.Some studies address specific objectives from the user,theoperator,or the environmental perspective.Passenger convenience,the number of transfers, profit and capacity maximization,travel time minimization,and fuel consumption minimization are such objectives.These studies either attempt to simplify the complex objective functions needed to setup the TRNDP_Newell1979;Baaj and Mahmassani1991;Chakroborty and Dwivedi2002_,or investigate specific aspects of the problem,such as objectives_Delle Site and Fillipi2001_,and the solution methodology_Zhao and Zeng2006;Yu and Yang2006_.Total welfare is,in a sense,a compromise between objectives.Moreover,as reported by some researchers such as Baaj and Mahmassani_1991_,Bielli et al._2002_,Chackroborty and Dwivedi_2002_,and Chakroborty_2003_,transit network design is inherently a multiobjective problem.Multiobjective models for solving the TRNDP have been based on the calculation of indicators representing different objectives for the problem at hand,both from the user and operator perspectives,such as travel and waiting times_user_,and capacity and operating costs _operator_.In their multiobjective model for the TRNDP,Baaj and Majmassani_1991_relied on the planner’s judgment and experience for selecting the optimal public transportation network,based on a set of indicators.In contrast,Bielli et al._2002_and Chakroborty and Dwivedi_2002_,combined indicators into an overall,weighted sum value, which served as the criterion for determining the optimaltransit network.TRNDP:ParametersThere are multiple characteristics and design attributes to consider for a realistic representation of a public transportation network.These form the parameters for the TRNDP.Part of these parameters is the problem set of decision variables that define its layout and operational characteristics_frequencies,vehicle size,etc._.Another set of design parameters represent the operating environment_network structure,demand characters,and patterns_, operational strategies and rules,and available resources for the public transportation network. These form the constraints needed to formulate the TRNDP and are,a-priori fixed,decided upon or assumed.Decision VariablesMost common decision variables for the TRNDP are the routes and frequencies of the public transportation network_Table1_.Simplified early studies derived optimal route spacing between predetermined parallel or radial routes,along with optimal frequencies per route_Holroyd1967; Byrne and Vuchic1972;Byrne1975,1976;Kocur and Hendrickson1982;Vaughan1986_,while later models dealt with the development of optimal route layouts and frequency determination. Other studies,additionally,considered fares_Kocur and Hendrickson1982;Morlok and Viton 1984;Chang and Schonfeld1991;Chien and Spacovic2001_,zones_Tsao and Schonfeld1983; Chang and Schonfeld1993a_,stop locations_Black1979;Spacovic and Schonfeld1994; Spacovic et al.1994;Van Nes2003;Yu and Yang2006_and bus types_Delle Site and Filippi 2001_.Network StructureSome early studies focused on the design of systems in simplified radial_Byrne1975;Black 1979;Vaughan1986_,or rectangular grid road networks_Hurdle1973;Byrne and Vuchic1972; Tsao and Schonfeld1984_.However,most approaches since the1980s were either applied to realistic,irregular grid networks or the network structure was of no importance for the proposed model and therefore not specified at all.Demand PatternsDemand patterns describe the nature of the flows of passengers expected to be accommodated by the public transportation network and therefore dictate its structure.For example,transit trips from a number of origins_for example,stops in a neighborhood_to a single destination_such as a bus terminal in the CBD of a city_and vice-versa,are characterized as many-to-one_or one-tomany_transit demand patterns.These patterns are typically encountered in public transportation systems connecting CBDs with suburbs and imply a structure of radial orparallel routes ending at a single point;models for patterns of that type have been proposed by Byrne and Vuchic_1972_,Salzborn_1972_,Byrne_1975,1976_,Kocur and Hendrickson _1982_,Morlok and Viton_1984_,Chang and Schonfeld_1991,1993a_,Spacovic and Schonfeld_1994_,Spacovic et al._1994_,Van Nes_2003_,and Chien et al._2003_.On the other hand,many-to-many demand patterns correspond to flows between multiple origins and destinations within an urban area,suggesting that the public transportation network is expected to connect various points in an area.Demand CharacteristicsDemand can be characterized either as“fixed”_or“inelastic”_or“elastic”;the later meaning that demand is affected by the performance and services provided by the public transportation network.Lee and Vuchic_2005_distinguished between two types of elastic demand:_1_demand per mode affected by transportation services,with total demand for travel kept constant;and_2_total demand for travel varying as a result of the performance of the transportation system and its modes.Fan and Machemehl_2006b_noted that the complexity of the TRNDP has led researchers intoassuming fixed demand,despite its inherent elastic nature.However,since the early1980s, studies included aspects of elastic demand in modeling the TRNDP_Hasselstrom1981;Kocur and Hendrickson1982_.Van Nes et al._1988_applied a simultaneous distribution-modal split model based on transit deterrence for estimatingdemand for public transportation.In a series of studies,Chang and Schonfeld_1991,1993a,b_ and Spacovic et al._1994_estimated demand as a direct function of travel times and fares with respect to their elasticities,while Chien and Spacovic2001_,followed the same approach assuming that demand is additionally affected by headways,route spacing and fares.Finally, studies by Leblanc_1988_,Imam_1998_,Cipriani et al._2005_,Lee and Vuchic_2005_;and Fan and Machemehl_2006a_based demand estimation on mode choice models for estimating transit demand as a function of total demand for travel.中文译文:公交路线网络设计问题:回顾摘要:公共交通网络的有效设计让交通理论与实践成为众人关注的焦点,随之发展出了很多规划相关公交路线网络设计问题(TRNDP)的模型与方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附件3:
(本科毕业论文)文献、资料题目:
院(部)
专
班
姓名:张三
学号:2001888888
指导教师:张九光
翻译日期:2005.6.30
山东建筑大学毕业设计(或毕业论文,二选一)外文文献及译文
,the National Institute of Standards and Technology (NIST) has been working to develop a new encryption standard to keep government information secure .The organization is in the final stages of an open process of selecting one or more algorithms ,or data-scrambling formulas ,for the new Advanced Encryption Standard (AES) and plans to make adecision by late summer or early fall .The standard is slated to go into effect next year .
AES is intended to be a stronger ,more efficient successor to Triple Data Encryption Standard (3DES),which replaced the aging DES ,which was cracked in less than three days in July 1998.
“Until we have the AES ,3DES will still offer protection for years to come .So there is no need to immediately switch over ,”says Edward Roback , acting chief of the computer security division at NIST and chairman of the AES selection committee .“What AES will offer is a more efficient algorithm .It will be a federal standard ,but it will be widely implemented in the IT community .”
According to Roback ,efficiency of the proposed algorithms is measured by how fast they can encrypt and decrypt information ,how fast they can present an encryption key and how much information they can encrypt .
The AES review committee is also looking at how much space the algorithm takes up on a chip and how much memory it requires .Roback says the selection of a more efficient AES will also result in cost savings and better use of resources .
“DES was designed for hardware implementations ,and we are now living in a world of much more efficient software ,and we have learned an awful lot about the design of algorithms ,”says Roback .“When you start multiplying this with the billions of impl ementations done daily ,the saving on overhead on the networks will be enormous .”
……
山东建筑大学毕业设计(或毕业论文,二选一)外文文献及译文
- 2 -
以确保政府的信息安全。
该组织目前正处于为新的先进加密标准(
AES )选择一个或几个算法或数据打乱公式的开放过程的最后阶段,并计划在夏末或秋初作出决定。
此标准内定明年实施。
AES 预定为比三层数据加密标准(3DES)更强、更高效的后续标准,3DES 替代了老化的DES 加密标准,DES 在1998年7月在不到三天的时间内就被破译了。
NIST 计算机安全部的代理主管兼AES 选择委员会主席Edward Roback 说:“在我们拥有AES 之前,3DES 还将在今后几年提供保护。
所以没有必要马上转换。
AES 所提供的是一种更有效的算法。
它将是一项联邦标准,但它将在IT 界广泛实施。
”
据Roback 称,提议中的算法的效率是通过对信息加密和解密有多快、给出加密密钥有多快以及能对多少信息加密等几个方面进行测量的。
AES 评价委员会也要看算法占据芯片上多少空间和需要多少内存。
Roback 说,选择一个更高效的AES 也会带来成本的节省和资源的更好利用。
Roback 说:“DES 是为硬件实现而设计的,而我们现在处于软件更高效的世界,我们对算法的设计有极多的了解。
当我们开始大规模使用此算法,每天实现几十亿次的加密时,(算法带来的)网络开销的节省将是巨大的。
”
……。