概率专题训练
六年级数学专题思维训练—概率(含答案及解析)
六年级数学专题思维训练—概率1.气象台预报“本市明天降水概率是80%,” 对此信息,下列说法中正确的是 。
(填序号) ①本市明天将有80%地区降水 ②本市明天将有80%时间降水 ③明天肯定下雨 ④明天降水的可能性比较大.2. 1~100这100个自然数中任意取出一个数,这个数是质数的可能性是 。
3. 有一个骰子(小正方体)的六个面上分别写有数字1、2、2、3、3、3, 当掷投这个骰子时,数字“2”朝上的可能性是 。
A.13 B.23 C.12 D. 164. 一辆肇事车辆撞人后逃离现场, 警察到现场调查取证,目击者只能记得车牌号是由1,4,6, 7,8五个数字组成,却把它们的排列顺序忘记了,如果在电脑中随机地输人一个由这五个数字构成的车牌号,那么,输人的车牌号正好是肇事车辆车牌号的可能性是 .(填分数)5. 一个小方木块的六个面上分别写有数字2,3,5,6,7,9,小光、小亮二人随意往桌面上扔放这个木块,规定:当小光扔时,如果朝上的一面写的是偶数,得 1分,当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次, 得分高的可能性最大。
6. 约翰与汤姆掷硬币,约翰掷两次,汤姆掷两次,约翰掷两次,……,这样轮流掷下去.若约翰连续两次掷得的结果相同,则记1分,否记记0分,若汤姆连续两次掷得的结果中至少有l次硬币的正面向上,则记1分 ,否则记0分,谁先记满10谁就赢,赢的可能佳较大(请填汤姆或约翰)。
7. 将编号依次为1,2,3,4的四个同样的小球放进一个不透明的袋子中.摇匀舌甲、乙二人做如下游戏:每人从袋子中各摸出一个个球,然后将这两个球上的数字相乘,若积为奇数,则甲获胜;若积为偶数,则乙获胜,请问:在这样的游戏规则下,乙获胜的概率为。
8. 小红、小兰和小明三人玩掷小正方体的游戏,每个小正方体的六个面都分别写着1、2、3、4、5、6.小红说:“将两个小正方体一起掷出看朝上两个数的和是多少。
小明说:“和是6,算小红胜;和是7,算小兰胜;和是8,算我胜。
中考数学复习《概率》专题训练--附带有参考答案
中考数学复习《概率》专题训练--附带有参考答案一、选择题1.下列事件是必然事件的是()A.任意两个正方形都相似B.三点确定一个圆C.抛掷一枚骰子,朝上面的点数小于6 D.相等的圆心角所对的弧相等2.一个透明的袋子里装有3个白球,2个黄球和1个红球,这些球除颜色不同外其它完全相同则从袋子中随机摸出一个球是白球的概率是()A.12B.13C.14D.163.按小王、小李、小马三位同学的顺序从一个不透明的盒子中随机抽取一张标注“主持人”和两张空白的纸条,确定一位同学主持班级“交通安全教有”主题班会.下列说法中正确的是()A.小王的可能性最大B.小李的可能性最大C.小马的可能性最大D.三人的可能性一样大4.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是()A.12B.13C.16D.195.一个不透明的袋子中装有四个小球,它们除了分别标有的数字1,2,3,6不同外,其他完全相同,任意从袋子中摸出一球后不放回,再任意摸出一球,则两次摸出的球所标数字之积为6的概率是()A.16B.15C.14D.136.用圆中两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.12B.14C.512D.7127.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外其他都相同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中.通过大量重复摸球试验发现,摸到黄球的频率是0.2,估计口袋中大约有红球()A.16个B.20个C.25个D.30个8.如图所示图案是我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为”赵爽弦图“.已知AE=4,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为()A.125B.116C.112D.19二、填空题9.九年级(1)班的教室里正在召开50人的座谈会,其中有8名教师,12名家长,30名学生,当校长走到教室门口时,听到里面有人在发言,那么发言人是家长的概率为.10.现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是.11.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现任意选取一个白色的小方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是.12.一个口袋中装有10个红球和若干个黄球,在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先把球摇匀,从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程200次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有个黄球.13.在-2,-1,0,1,2这五个数中任取两数m,n,则二次函数y=(x−m)2+n的顶点在坐标轴上的概率为.三、解答题14.在一个不透明的盒子中装有白色、黑色棋子共60个,这些棋子除颜色外其他完全相同,茜茜每次将棋子搅拌均匀后,任意摸出一个,记下颜色再放回盒子中,通过大量重复试验后发现,摸到黑色棋子的频率稳定在25%,请你估计盒子中黑色棋子的个数.15.宁波方特东方欲晓是一座以红色文化为主题的大型主题公园,公园精心策划了多个历史主题区域,其中最有特色的三个游玩项目如下表所示.A B C《圆明园》《致远致远》《䳸击长空》小慈和小溪两名同学去景区游玩,他们各自在这3个项目中任选一个进行游玩,每个项目被选择的可能性相同.(1)求小慈选择《致远致远》的概率是多少?(2)用画树状图或列表的方法,求小慈和小溪选择不同项目的概率.16.在一次数学兴趣小组活动中,小果和小华两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的若干部分,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动各自制作的转盘,转盘停止后,若圆形转盘针所指区规内数据为a,等边三角形转盘指针所指区规内数据为b,当数据使二次函数图象对称轴在y轴的左侧时,小果获胜;否则小华获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示所以数据的可能结果;(2)请计算小果获胜的概率,并判定这个游戏是否公平.17.一个不透明的口袋中有4个完全相同的小球,球上分别标有数字-2,0,1,4(1)若随机摸出一个小球记作m,然后放回,再随机摸出一个小球记作n,请用画树状图法或列表法,求方程mx2−2x+n=0是关于x的一元二次方程且此方程无解的概率;(2)若改为不放回抽样,随机摸出一个小球记作m,然后不放回,再随机摸出一个小球记作n,请用画树状图法或列表法,求在点(m,n)在反比例函数的图象y=−1的概率.x18.为了贯彻“减负增效”精神,某校掌握2022~2023学年度九年级600名学生每天的自主学习情况,某校学生会随机抽查了2022~2023学年度九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数有人;(2)图2中α是度,并将图1补充完整;(3)请估算该校2022~2023学年度九年级学生自主学习时间不少于1.5小时的有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)中随机选择两位进行学习经验交流,用列表法或画树状图的方法求出选中小亮的概率.参考答案1.A2.A3.D4.B5.D6.C7.A8.A9.62510.1611.51312.1513.2514.解:∵摸到黑色棋子的频率稳定在25%∴摸到黑色棋子的概率为25%∴盒子中黑色棋子的个数为:60×25%=15(个)答:估计盒子中黑色棋子有15个.15.(1)解:小慈选择《致远致远》的概率是13(2)解:列表如下:A B CA AA AB ACB BA BB BCC CA CB CC∴一共有9种等可能的结果,其中小慈和小溪选择不同项目的结果有6种∴小慈和小溪选择不同项目的概率P=69=2316.(1)解:根据题意画图如下:共有12种结果:(2)解:二次函数图象对称轴在y轴的左侧∴,即需要同号,小果胜;由(1)知,小果获胜的概率是,小华获胜的概率是∵小果和小华概率不相等∴游戏不公平17.(1)解:∵方程mx2−2x+n=0是关于x的一元二次方程且此方程无解∴{m≠0Δ=b2−4ac=4−4mn<0∴m≠0且mn>1画树状图如下:共有16种结果,其中满足m≠0且mn>1的结果有4种∴方程mx2−2x+n=0是关于x的一元二次方程且此方程无解的概率为416=14;(2)解:画树状图如下:共有12种等可能结果,其中,点在反比例函数的图象y=−1x的结果数为0∴点(m,n)在反比例函数的图象y=−1x的概率为0.18.(1)40(2)解:54;40×35%=14(人);补充图形如图:(3)330(4)解:画树状图得:∵共有12种等可能的结果,选中小亮A的有6种∴P(A)=612=.1 2。
中考数学总复习《概率初步》专项提升练习题(附答案)
中考数学总复习《概率初步》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列事件中,是必然事件的是( )A.明天太阳从东方升起B.打开电视机,正在播放体育新闻C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路灯,遇到红灯2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件3.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是( )A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球4.某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是( )A.12B.13C.14D.155.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )A. B. C. D.6.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) A.23 B.12 C.13 D.147.小杰想用6个除颜色外均相同的球设计一个游戏,下面是他设计的4个游戏方案.不成功的是( )A.摸到黄球的概率为12,红球的概率为12B.摸到黄、红、白球的概率都为13C.摸到黄球的概率为12,红球的概率为13,白球的概率为16D.摸到黄球的概率为23,摸到红球、白球的概率都是138.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )实验次数100200 300 500 800 1000 2000频率 0.365 0.328 0.330 0.334 0.336 0.332 0.333 A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率9.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上10.同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=-x2+3x上的概率为( )A.118B.112C.19D.16二、填空题11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是 .12.在分别写有-1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为________.13.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是________.14.游戏是否公平是指双方获胜的可能性是否相同,只有当双方获胜的可能性 (等可能事件发生的概率相同)时,游戏才公平,否则游戏不公平.15.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球个.16.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n) 50 100 150 200 250 300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50三、解答题17.一个袋中装有2个红球,3个白球,和5个黄球,每个球除了顔色外都相同,从中任意摸出一个球,分别求出摸到红球,白球,黄球的概率。
概率计算综合专项练习76题(有答案)
概率计算综合专项练习76题(有答案) ==============================题目一:-------某大学的足球队需要选拔出一名门将,共有10名参赛选手。
在选拔过程中,每名选手的成功率都是独立的。
已知参赛选手的平均成功率为0.7。
请回答以下问题:1. 这10名参赛选手中,成功率超过0.8的人数期望是多少?2. 这10名参赛选手中至少有3名成功率低于0.6的概率是多少?解答:1. 成功率超过0.8的人数期望可以用二项分布来计算。
设成功率超过0.8的人数为X,成功率超过0.8的选手概率为p=0.7。
根据二项分布的期望计算公式E(X) = np,其中n为试验次数,p为概率。
所以,成功率超过0.8的人数期望为E(X) = 10 * 0.7 = 7人。
2. 至少有3名成功率低于0.6的概率可以用二项分布的累积概率计算。
设至少有3名成功率低于0.6的人数为Y,成功率低于0.6的选手概率为p=0.3。
根据二项分布的累积概率计算公式P(Y≥3) =1 - P(Y<3)。
其中,P(Y<3)可以用二项分布的概率质量函数计算。
根据二项分布的概率质量函数计算公式P(Y=k) = C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)为组合数。
所以,P(Y<3) = P(Y=0) + P(Y=1) + P(Y=2) = C(10, 0) * 0.3^0 * (1-0.3)^(10-0) + C(10, 1) * 0.3^1 * (1-0.3)^(10-1) + C(10, 2) * 0.3^2 * (1-0.3)^(10-2)。
根据计算得到,P(Y<3) ≈ 0.0283。
因此,至少有3名成功率低于0.6的概率为P(Y≥3) = 1 - P(Y<3) ≈ 1 - 0.0283 ≈ 0.9717。
题目二:-------一家电子产品公司生产手机,其缺陷率为0.05。
[必刷题]2024高一数学下册概率论基础专项专题训练(含答案)
[必刷题]2024高一数学下册概率论基础专项专题训练(含答案)试题部分一、选择题:1. 下列哪个事件是随机事件?()A. 太阳从西边升起B. 抛掷一枚硬币,正面朝上C. 1+1=2D. 一个人的年龄不变2. 一个袋子里有5个红球,3个蓝球,2个绿球,从中随机取出一个球,取出红球的概率是多少?()A. 5/10B. 3/10C. 2/10D. 1/103. 下列哪个概率模型是离散型概率模型?()A. 正态分布B. 二项分布C. 均匀分布D. 指数分布4. 抛掷两枚质地均匀的骰子,求两个骰子点数之和为7的概率是多少?()B. 1/12C. 1/18D. 1/365. 某班有男生30人,女生20人,随机选取一名学生,选到女生的概率是多少?()A. 1/2B. 1/3C. 2/3D. 3/46. 从0到9这10个数字中随机选取一个数字,选到偶数的概率是多少?()A. 1/2B. 1/3C. 1/4D. 1/57. 下列关于互斥事件的说法,正确的是?()A. 互斥事件一定是对立事件B. 对立事件一定是互斥事件C. 互斥事件发生的概率之和为1D. 对立事件发生的概率之和为08. 若事件A的概率为0.3,事件B的概率为0.5,且A与B互斥,则P(A∪B)是多少?()A. 0.3C. 0.8D. 0.29. 下列关于独立事件的说法,错误的是?()A. 独立事件同时发生的概率等于各自发生的概率的乘积B. 独立事件不可能同时发生C. 独立事件中,一个事件的发生不影响另一个事件的发生D. 独立事件的概率乘积等于110. 从一副52张的扑克牌中随机抽取一张牌,求抽到红桃的概率是多少?()A. 1/4B. 1/2C. 1/13D. 1/26二、判断题:1. 互斥事件是指两个事件不可能同时发生,但可以同时不发生。
()2. 概率值介于0和1之间,包括0和1。
()3. 事件A的概率为0,意味着事件A一定不会发生。
()4. 在一次随机试验中,某事件发生的概率为1,则该事件必然发生。
初中数学统计与概率专题训练50题含答案
初中数学统计与概率专题训练50题含答案一、单选题1.小华同学某体育项目5次测试的成绩如下(单位:分):9,7,10,8,10,这组数据的众数为()A.7B.8C.9D.102.要调查扬中市中学生了解“河豚节”的情况,下列调查方式最合适的是().A.在某中学随机选取100名女生B.在某中学随机选取100名男生C.在某中学随机选取100名学生D.在全市随机选取100名学生3.从4台A型电脑和5台B型电脑中任选一台,则选中A型电脑的概率为()A.0B.12C.49D.14.一个不透明的口袋里装有大小、形状都相同的5块奶糖、3块酥心糖和2块水果糖,将这些糖搅拌均匀后,现从中任意取出1块糖,则取出的糖是酥心糖的概率是()A.15B.310C.25D.125.样本数据5,7,7,x的中位数与平均数相同,则x的值是()A.9B.5或9C.7或9D.56.下列事件中是必然事件的是()A.早晨的太阳一定从东方升起B.中秋节的晚上一定能看到月亮C.打开电视机,正在播少儿节目D.小红今年14岁,她一定是初中学生7.一个口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一个球得到白球”这个事件是()A.必然事件B.不可能事件C.不确定事件D.以上均有可能8.当前全国疫情防控已进入新常态,各行各业纷纷复工复产.下列调查中,不适合用抽样调查方式的是()A.调查全国餐饮企业员工的复工情况B.调查全国医用口罩日生产量C .调查和检测某学校七年级学生和老师的体温D .调查疫情期间广州地铁的客流量 9.某小组的组长统计组内7个人一天在课堂上发言的次数分别为2,2,4,3,0,2,1,则这组数据的方差为( )A .107B .2C .0D .1710.下列事件中是必然事件的是( )A .任意画一个正五边形,它是中心对称图形B .实数x 有意义,则实数x >3C .a ,b 均为实数,若a b ,则a >bD .5个数据是:6,6,3,2,1,则这组数据的中位数是311.有四张卡片,正面上分别标有数字﹣1,0,1,2,它们除所标数字不同外,其他都完全相同,现把这四张牌扣在桌面上,背面朝上,洗匀后随机抽取一张记下卡上数字后放回桌面洗匀,再随机抽取一张,记下卡上数字,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是( )A .16B .15C .14D .1312.一家鞋店在一段时间内各种尺码的某品牌男运动鞋的销售情况如下表:你认为鞋店更应该关注鞋子尺码的( )A .平均数B .众数C .中位数 D .方差13.下列命题:①四边形至少有一个角是钝角;①(1-a ①在直角坐标系中,点(,)A x y 与点(,)B y x 关于原点成中心对称;①已知数据1x 、2x 、3x 的方差为2s ,则数据12x +,22x +,32x +的方差为32s +,其中是真命题的个数是( ) A .0个 B .1个 C .2个 D .3个 14.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表则在这次活动中,该班同学捐款金额的众数是( )A .20元B .30元C .35元 D .100元 15.下列关于概率说法正确的是( )A .因为抛掷一枚图钉不是“钉尖着地”就是“钉尖不着地”(如图所示),所以“钉尖着地”发生的概率是0.5B .连续三次抛一枚均匀硬币均正面朝上,若第四次再抛,出现反面朝上的可能性大一些C .小明投篮投中的概率是60%,这表明小明平均每投篮10次,可能投中6次D .随机事件发生的频率就是该事件发生的概率16.先后随机抛掷一枚质地均匀的正方体骰子两次,第一次掷出的点数记为a ,第二次掷出的点数记为c ,则使关于x 的一元二次方程260ax x c ++=有实数解的概率为( )A .49B .1736C .12 D .193617.将分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上,放在桌面上,随机抽取一张(不放回),接着再随机抽取一张,恰好两张卡片上的数字相邻的概率为( )A .15B .14C .13D .1218.已知样本1x ,2x ,3x ,…,n x 的方差是1,则样本123x +,223x +,323x +,…,23n x +的方差是( )A .1B .2C .3D .419.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是( )A .14B .38 C .12 D .5820.某校学生来自甲、乙、丙三个社区,其人数比例为3:4:5,如图所示的扇形图表示上述分布情况,那么乙社区所表示的扇形的圆心角为( )A.100°B.110°C.120°D.135°二、填空题21.已知一个不透明的袋中,有5个红球,3个白球,2个黑球,除颜色外小球完全一样,小明从袋中取出一个小球,取出的小球颜色为红色的概率是_____.22.我们知道,人的血液是由血浆和血细胞构成的,血浆是血液中的液态部分,约占血液总量的55%,图中是血浆成分的示意图,如果一次献血200毫升,水约占_____毫升.23.某校共有师生1500人,绘制成如图所示的扇形统计图.则表示教师人数的扇形的圆心角度数为_____,学生有_____人.24.某中学师、生、员工共有1 800人,学生占总人数的85%,教师占总人数的12%,后勤占总人数的3%,则学生有_______人,教师有________人,选择条形统计图能清楚地表示师、生、员工的数量.25.“明天的降水概率为80%”的含义有以下四种不同的解释:①明天80%的地区会下雨;①80%的人认为明天会下雨;①明天下雨的可能性比较大;①在100次类似于明天的天气条件下,历史记录告诉我们,大约有80天会下雨.你认为其中合理的解释是_____.(写出序号即可)26.“一个有理数的绝对值是负数”是_____的.(填“必然发生”或“不可能发生”或“可能发生”)27.将某班女生的身高分成三组,情况如表所示,则表中a的值是________.28.有五张正面分别标有数字2-,1-,0,1,2的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,将该卡片放回洗匀后从中再任取一张,将该卡片上的数字记为b,则ab为非负数的概率为________.29.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷1000次啤酒瓶盖,凸面向上的次数为420次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到0.01)30.为了考察某种大麦穗长的分布情况,在一块试验田抽取了100个麦穗,量出它们的长度.在样本数据中,最大值是7.4cm,最小值是4.0cm.列频数分布表时,若取组距为0.3,则适合的组数是______.31.某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示:由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是______.32.对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的______,方差则反映一组数据在平均数左右的______,因此从平均数看或从方差看,各有长处.33.如图,Rt△ABC是一块草坪,其中①C=90°,AC=9m,AB=15m,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟随机落在这块草坪上,则小鸟落在阴影部分的概率为________.34.为了了解某中学八年级男生的身体发育情况,从该中学八年级男生中随机抽取40名男生的身高进行了测量,已知身高(单位:cm)在1.60~1.65这一小组的频数为6,则身高在1.60~1.65这一小组的频率是____.35.有一个1万人的小镇,随机调查3000人,其中450人看中央电视台的晚间新闻,在该镇随便问一人,他(她)看中央电视台晚间新闻的概率是_____.36.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____.37.从-1,0,1,2这四个数中任取一个数作为P的横坐标,再从剩下的三个数中任取一个作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为_____.x y的平均数为6,众数为5,则这组数据的方差为38.若一组数据4,,5,,7,9__________.三、解答题39.甲、乙、丙、丁四个人玩扑克牌游戏,他们先取出两张红桃和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色扑克牌的两个人为游戏搭档.(1)求甲抽取一张扑克牌刚好是红桃的概率;(2)若甲、乙两人各抽取了一张扑克牌,求两人恰好成为游戏搭档的概率.40.如图是芳芳自己设计的可以自由转动的转盘,转盘被等分成12个扇形,上面有12个有理数.求转出的数是:(1)正数的概率;(2)负数的概率;(3)绝对值小于6的数的概率;(4)相反数大于或等于8的数的概率.41.为了从甲、乙两名学生中选拔一人参加县级中学生数学竞赛,每个月对他们的学习水平进行一次测验,如图是两人赛前6次测验成绩的折线统计图.现对甲、乙的6次测验成绩的数据进行统计分析列表对比如下:(1)填空:a=;b=;c=;(2)求m的值;(3)如果从稳定性来看,选谁参赛较合适?如果从发展趋势来看,选谁参赛较合适?请结合所学统计知识说明理由.42.甲、乙、丙、丁四名同学进行一次羽毛球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是;(2)任选两名同学打第一场,请画树状图或列表求恰好选中甲、乙两位同学的概率.43.为响应市政府关于“垃圾不落地•市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有2000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.44.近年以来,雾霾天气让环保和健康问题成为焦点,某校为了调查学生对雾霾天气知识的了解程度,在全校范围内随机抽取部分学生进行问卷调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)求扇形统计图中,B部分扇形所对应的圆心角的度数;(4)若该校共有1200名学生,请你估计该校比较了解雾霾天气知识的学生的人数.45.某校为了选拔学生参加区里“五好小公民”演讲比赛,对八年级一班、二班提前选好的各10名学生进行预选(满分10分),绘制成如下两幅统计表:表(1):两班成绩表(2):两班成绩分析表(1)在表(2)中填空,a=________,b=________,c=________.(2)一班、二班都说自己的成绩好,你赞同谁的说法?请给出两条理由.46.水稻种植是嘉兴的传统农业.为了比较甲、乙两种水稻秧苗的长势,农技人员从两块试验田中分别随机抽取5株水稻秧苗,将测得的苗高数据绘制成如图所示的统计图.请你根据统计图所提供的数据,计算甲、乙两种水稻苗高的平均数和方差,并比较两种水稻的长势.47.元旦联欢会上,小明设计了一种翻牌游戏:先在9张大小相同的正方形纸牌上分别写上数字1,2,3,…,9;再在另一面写上奖品的名称,其中4张写的是“铅笔”,3张写的是“贺年卡”,2张写的是“笔记本”.如图,将9张纸牌贴在黑板上.(1)小丽第一个翻牌,请问她获得奖品“笔记本”的概率是多少?(2)若小丽翻到的是“贺年卡”,则第二个翻牌人小勇翻到“铅笔”的概率是多少?48.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?参考答案:1.D【分析】根据众数的定义求解即可.【详解】解:这组数据中数字10出现次数最多,有2次,所以这组数据的众数为10.故选:D.【点睛】本题主要考查了众数,一组数据中出现次数最多的数据叫做众数.2.D【分析】本题需要根据具体情况正确选择普查或抽样调查等方法,并理解有些调查是不适合使用普查方法的.要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【详解】解:要调查扬中市中学生了解“河豚节”的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在全市随机选取100名学生.故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.C【分析】选中A型电脑的概率等于A型电脑台数除以电脑总台数.【详解】解:从4台A型电脑和5台B型电脑共9台中任选一台,选中A型电脑的概率为44 459=+.故选:C.【点睛】本题考查的是概率公式.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率mP An=().4.B【分析】根据概率公式进行计算即可.【详解】解:从中任意取出1块糖,则取出的糖是酥心糖的概率是:33 53210=++,故B正确.故选:B.【点睛】本题主要考查了概率公式的应用,解题的关键是熟练掌握概率的计算公式.5.B【详解】试题分析:由题可知,从样本数据可观察到,中位数可能为7,也有可能是6.5或者6,(1)如果是7,则x=9,(2)如果是6.5,则x=7,不可能,舍去;(3)如果是6,则x=5,综上所诉,则有5或9 ,B正确.考点:统计相关数据点评:该题较为简单,但是容易考虑不全面,考查学生对平均数和中位数的理解和计算方法的掌握.6.A【分析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【详解】解:B、C、D选项为不确定事件,即随机事件.故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.故选A.【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.7.C【分析】根据不确定事件的概念即可判断.【详解】“从中任取一个球得到白球”,这是一个可能发生,也可能不发生的事件,因而是不确定事件,故选C.【点睛】解答本题的关键是熟练掌握不确定事件的概念:有些事情我们事先无法肯定它会不会发生,这些事件称为不确定事件.8.C【分析】根据全面调查和抽样调查的特点逐项判断即得答案.【详解】解:A、调查全国餐饮企业员工的复工情况,适合用抽样调查的方式,故本选项不符合题意;B、调查全国医用口罩日生产量,适合用抽样调查的方式,故本选项不符合题意;C、调查和检测某学校七年级学生和老师的体温,适合全面调查,不适合抽样调查,故本选项符合题意;D 、调查疫情期间广州地铁的客流量,适合用抽样调查的方式,故本选项不符合题意. 故选:C .【点睛】本题考查了普查和抽样调查,属于基本题型,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.A 【详解】这组数据的平均数为1(2243021)27⨯++++++=,则这组数据的方差为2222222110(22)(22)(42)(32)(02)(22)(12)77⎡⎤⨯-+-+-+-+-+-+-=⎣⎦. 10.D【分析】根据必然事件的定义,逐项判断即可求解.【详解】解:A .任意画一个正五边形,它是中心对称图形,是不可能事件,故本选项错误,不符合题意;B .实数x 有意义,则实数x >3,是随机事件,故本选项错误,不符合题意;C .a ,b 均为实数,若a b ,则a =2,b =2,所以a =b ,故a >b 是不可能事件,故本选项错误,不符合题意;D .5个数据是:6,6,3,2,1,则这组数据的中位数是3,是必然事件,故本选项正确,符合题意.故选D .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点落在第一象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:①共有16种等可能的结果,点落在第一象限的有4种情况,①点落在第一象限的概率是:416=14, 故选C .【点睛】此题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.12.B【分析】由题意根据平均数、中位数、众数、方差的意义分析判断即可得出鞋店老板最关心的数据.【详解】解:①众数体现数据的最集中的一点,这样可以确定进货的数量,①商家更应该关注鞋子尺码的众数.故选:B .【点睛】本题主要考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.13.A【分析】根据多边形内角和,二次根式的性质,中心对称,方差的意义分别进行判断.【详解】解:①四边形至少有一个角是钝角或直角,故为假命题;①(()11a a --= ①在直角坐标系中,点(,)A x y 与点(,)B x y --关于原点成中心对称,故为假命题; ①已知数据1x 、2x 、3x 的方差为2s ,则数据12x +,22x +,32x +的方差也为2s ,故为假命题;故选A .【点睛】本题考查了命题与定理,多边形内角和,二次根式的性质,中心对称,方差的意义,解题的关键是掌握相应知识,判断各语句的正确性.14.A【分析】根据众数是一组数据中出现次数最多的数据求解即可.【详解】观察表格可知:捐款金额为20元的学生最多,所以该班同学捐款金额的众数是20元,故选:A.【点睛】本题主要考查了众数的概念,一组数据中出现次数最多的数据叫做众数,在一组数据中,众数可能不止一个.15.C【分析】根据概率值只是反映了事件发生的机会的大小,不是会一定发生,故可依次判断.【详解】解:A.因为图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,不正确;B.连续三次抛一枚均匀硬币均正面朝上,若第四次再抛,出现正面朝上和反面朝上的可能性一样大,故说法不正确;C.小明投篮投中的概率是60%,这表明小明平均每投篮10次,可能会投中6次,故说法正确;D.根据定义,随机事件的频率只是概率的近似值,它并不等于概率,故不正确.故选:C.【点睛】本题解决的关键是理解概率的概念只是反映事件发生机会的大小;概率小的有可能发生,概率大的有可能不发生.16.B【分析】列表展示所有36种等可能的结果数,再根据判别式的意义得到①≥0,从而得到使得一元二次方程ax2-6x+c=0有相等实数解的结果数,然后根据概率公式求解.【详解】解:列表得:①一共有36种等可能情况,①b=6,当b 2-4ac≥0时,有实根,即36-4ac≥0有实根,①ac≤9,①方程有实数根的有17种情况,①方程有实数根的概率=1736, 故选:B .【点睛】本题考查列表法与树状图法求概率,一元二次方程实根的情况,是一个综合题,解题的关键是对于一元二次方程的解的情况的分析,解题时有一定难度.17.D【详解】根据题意画出树状图为:抽取不放回的等可能的结果有:12种可能,恰好两张卡片上的数字相邻的有6种,所以概率是 ,故选D . 点睛:此题主要考查了用树状图或列表法求概率,首先利用列举法可得抽取不放回的等可能的结果有:12种,相邻的有6种,然后利用概率公式求解即可求得答案.18.D【分析】设x 1,x 2,3x ,…,n x 的平均数为a ,根据已知数据的方差得到()()()()222212311n x a x a x a x a n ⎡⎤-+-+-+-=⎣⎦,再求出所求样本的平均数及方差即可. 【详解】解:设x 1,x 2,3x ,…,n x 的平均数为a ,①(x 1+x 2+3x +…+n x )=na ,①x 1,x 2,3x ,…,n x 的方差是1,①()()()()222212311n x a x a x a x a n ⎡⎤-+-+-+-=⎣⎦, ①123x +,223x +,323x +,…,23n x +的平均数为(123x ++223x ++323x ++…+23n x +)÷n =2a +3,①123x +,223x +,323x +,…,23n x +的方差为()()()()222212312323232323232323n x a x a x a x a n ⎡⎤+--++--++--++--=⎣⎦4, 故选:D .【点睛】此题考查了已知数据的方差求另一组数据的方差,正确掌握平均数的计算公式及方差的计算公式是解题的关键.19.B【分析】画树状图得出所有等可能结果,从找找到符合条件得结果数,在根据概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的有6种结果, 所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率为63=168. 故选B .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.C【分析】用360度乘以乙社区所占的比例即可得解.【详解】①甲、乙、丙三个社区的人数比例为3:4:5,①乙社区所表示的扇形的圆心角为:360°×4345++=120°, 故选C. 【点睛】本题考查了扇形统计图,正确理解题意,掌握扇形统计图中圆心角的求解方法是解题的关键.21.12##0.5【分析】直接利用概率公式求解即可.【详解】①口袋中有5个红球,3个白球,2个黑球,①随机取出一个小球,取出的小球的颜色是红色的概率为:51= 5322++.故答案为:12.【点睛】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.22.99【分析】先求出200毫升血液中所含血浆质量,进而得所含水的质量.【详解】解:水约占:200×55%×90%=99(毫升),故答案为:99.【点睛】本题考查了扇形统计图,得出200毫升血液中所含血浆质量是解答本题的关键.23.72°1200【分析】根据每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比,求圆心角的度数;学生人数=总人数×所占比例(80%).【详解】解:表示教师人数的扇形的圆心角度数为360°×20%=72°,学生人数为1500×80%=1200人,故答案为72°、1200.【点睛】本题考查的是扇形图的定义.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.24.1530;216.【详解】解析:学生人数占85%,总人数为1800,故学生人数为85%×1800=1530;同理教师人数为12%×1800=216.25.①①【分析】根据随机事件的定义可知“明天的降水概率为80%”的含义的解释为①①.【详解】根据随机事件的定义可知“明天的降水概率为80%”的含义的解释:①明天80%的地区会下雨,不符合题意;①80%的人认为明天会下雨,不符合题意;①明天下雨的可能性比较大,符合题意;。
概率加减法专项练习200题(有答案)
概率加减法专项练习200题(有答案)
以下是一系列概率加减法的练题,共计200道题目。
每道题都
附带了答案,供您核对。
希望这些题目能够帮助您提高对概率加减
法的理解和应用能力。
题目
1. 在一个筐中有8个红球和6个蓝球,从中随机抽出一个球。
求抽出的是红球的概率。
2. 一副扑克牌中有52张牌,包括4种花色的A、2、3、4、5、6、7、8、9、10、J、Q、K。
从中抽出一张牌,求抽出的是红心的
概率。
3. 在一个班级中,有20个男生和15个女生。
随机抽取一个学生,求抽取的是女生的概率。
4. 一家餐馆中午提供三种菜品供选择:红烧鸡、糖醋鱼和番茄
炒蛋。
如果一个顾客随机选择一道菜品,求他选择红烧鸡的概率。
5. 一家超市中有300个苹果,其中有20个有瑕疵。
从中随机
抽取一个苹果,求抽取的是有瑕疵的概率。
(更多题目略)
答案
1. 红球的概率为 8/14 或 4/7。
2. 红心的概率为 13/52 或 1/4。
3. 女生的概率为 15/35 或 3/7。
4. 选择红烧鸡的概率为 1/3。
5. 有瑕疵的概率为 20/300 或 1/15。
(更多答案略)
希望以上练习题和答案对您有所帮助。
如果您对概率加减法还有其他问题,我将尽力为您解答。
中考数学高频考点《统计与概率》专题训练-带答案
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
概率计算练习题
概率计算练习题一、基础练习题1. 某班级共有50名学生,其中35人会弹钢琴,25人会拉小提琴,15人既会弹钢琴也会拉小提琴。
现从该班级中随机选择一名学生,求该学生既不会弹钢琴也不会拉小提琴的概率。
2. 有一批产品,其中20%是次品。
从中随机抽取3个产品,求恰好有一个是次品的概率。
3. 一批产品中有30%的次品。
从中随机抽取5个产品,求至少有一个是次品的概率。
4. 一批产品中40%的产品是甲品质,30%是乙品质,30%是丙品质。
甲品质产品被使用后有4%的概率出现故障,乙品质产品故障的概率为7%,丙品质产品故障的概率为15%。
现从该批产品中随机选择一件,求其出现故障的概率。
5. 一批产品中有20%的次品。
从中抽取10个产品,求抽出的产品中次品数大于等于2的概率。
二、进阶练习题1. 某班级共有80名学生,其中40人学习钢琴,30人学习小提琴,20人学习吉他。
已知学习钢琴和学习小提琴的学生共有15人,学习小提琴和学习吉他的学生共有10人,学习钢琴和学习吉他的学生共有5人,共有3人同时学习钢琴、小提琴和吉他。
现从该班级中随机选择一名学生,求该学生学习吉他的概率。
2. 一批产品中有30%的次品,已知次品中有20%是甲类次品,60%是乙类次品,20%是丙类次品。
从该批产品中随机抽取一件,若抽到的是次品,请依次求此产品为甲类次品、乙类次品、丙类次品的概率。
3. 一家快餐店的产品销售情况统计如下:25%的顾客购买汉堡,30%的顾客购买薯条,40%的顾客购买汽水。
已知购买汉堡和薯条的顾客占总顾客数的20%,购买薯条和汽水的顾客占总顾客数的15%,购买汉堡和汽水的顾客占总顾客数的10%,同时购买汉堡、薯条和汽水的顾客占总顾客数的5%。
现在从该快餐店中随机选择一位顾客,求该顾客购买汽水的概率。
4. 一篮子中有红、蓝、绿三种颜色的球,比例为5:4:1。
从篮子中随机抽取5个球,求抽取的球中至少有两个是红球的概率。
5. 某城市每天发生车辆事故的概率为0.03。
初中数学统计与概率专题训练50题(含参考答案)
初中数学统计与概率专题训练50题含答案一、单选题1.已知五个数a b c d e 、、、、满足a b c d e <<<<,则下列四组数据中方差最大的一组是( ) A .a b c 、、B .b c d 、、C .c d e 、、D .a e 、c 、2.下列事件中是必然事件的是( ) A .某射击运动员射击一次,命中靶心 B .抛掷一枚硬币,落地后正面朝上 C .三角形内角和是360°D .当x 是实数时,x 2≥03.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是( )A .抽101次也可能没有抽到一等奖B .抽100次奖必有一次抽到一等奖C .抽一次也可能抽到一等奖D .抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.一个不透明的袋子中只装有4个黄球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A .摸到红球的概率是14B .摸到红球是不可能事件C .摸到红球是随机事件D .摸到红球是必然事件5.小明同学在某学期德智体美劳的各项评价得分依次为10分、9分、8分、9分、9分,则小明同学五项评价的平均得分为( ) A .7分B .8分C .9分D .10分6.下列说法中,正确的是( ) A .雨后见彩虹是随机事件B .为了检查飞机飞行前的各项设备,应选择抽样调查C .将一枚硬币抛掷20次,一定有10次正面朝上D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是乙城市 7.下列事件为必然事件的是( ) A .打开电视,正在播放广告 B .抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉8中,随意抽取一张纸片,上面写着最简二次根式的概率是()A.16B.13C.23D.129.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,20 10.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;16④的平方根是4±4=±;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个11.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰有一人直行,另一人左拐的概率为()A.19B.29C.13D.2312.下列调查中,调查方式选择正确的是()A.为了了解一批灯泡的使用寿命,选择抽样调查B.为了了解某公园全年的游客流量,选择全面调查C.为了了解某1000枚炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查13.下列事件是必然事件的是()A.若a是实数,则|a|≥0B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻14.下列事件中,是随机事件的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正方形都相似15.在某市2021年青少年航空航天模型锦标赛中,各年龄组的参赛人数情况如下表所示:若小明所在年龄组的参赛人数占全体参赛人数的38%,则小明所在的年龄组是()A.13岁B.14岁C.15岁D.16岁16.在某市举办的垂钓比赛上,6名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,6,10,8,10.则这组数据的中位数是()A.8B.7C.6D.1017.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()A.20元B.30元C.35元D.100元18.如果一组数据a1,a2,a3…,a n方差是9,那么一组新数据a1+1,a2+1,a3+1…,a n+1的方差是()A.3B.9C.10D.8119.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4B.极差是2C.平均数是9D.众数是920.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁二、填空题21.某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,所得成绩如下:70,82,98,60,91,54,78,85,这个问题中的总体是______,个体是______,样本容量是______.22.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过___________(填“抽样调查”或“普查”)得到的.23.为了了解某市4万多名初中毕业生的中考数学成绩,任意抽取1000名学生的中考数学成绩进行统计分析,这个问题中,样本容量是______.24.夏季已到,气温渐高.要反映我市某一周每天的最高气温的变化趋势,根据你所学知识宜采用______________统计图.25.如果数据x1,x2,x3的平均数是5,那么数据x1+2,x2+2,x3+2的平均数为____.26.某十字路口有一个交通信号灯,红灯亮60秒,绿灯亮35秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为____________.27.一组数据2,4,x,﹣1的平均数为3,则x的值是___.28.在某项考核中,最终考核成绩(百分制)由研究性学习成绩与卷面成绩组成,其中研究性学习成绩占60%,卷面成绩占40%,小明的这两项成绩依次是90分和85分,则小明的最终考核成绩是___________分.29.一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.30.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是__.31.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,卷面成绩占60%,小明的这两项成绩(百分制)依次是90分,85分,则小明这学期的数学成绩是_________.32.有两个盒子,第一个盒子中装有3 个红球和4 个白球,第二个盒子中装有4 个红球和3 个白球,这些球除颜色外都相同,分别从中摸出1 个球,从第______个盒子中摸到白球的可能性大.33.为了了解某市初中生的视力情况,有关部门进行了抽样调查,数据如下表:若该市共有初中生15万人,则全市视力不良的初中生约有__________万人.34.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差s2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.35.右图是各年龄段人群收视某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1400人,则其中50岁以上(含50岁)的观众约有__________人.36.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组~第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.37.一组数据:2,1,2,5,3,2的众数是___.38.某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计该防护林的树林量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65 100,63 200,64 600,64 700,67 400.那么根据以上的数据估算这一防护林总共约有_____棵树.39.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.40.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.计算这10天日最高气温的平均值为_____℃.三、解答题41.为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为65g的鸡蛋,现有两个厂家提供货源,它们的价格相同,鸡蛋的品质相近,质检员分别从两厂的产品中抽样调查了20只鸡蛋,并将它们按质量(单位:克)分成四组(:6770A x ≤<,B :6457x ≤<,C :6164x ≤<,D :58661≤<,它们的质量(单位:g )如下:整理数据:甲厂:66,64,64,66,63,66,66,67,68,64,66,60,66,66,63,60,67,69,68,61;乙厂:65,66,67,67,68,67,66,61,64,65,69,61,62,64,63,64,60,69,65,67.甲厂鸡蛋质量频数统计表分析上述数据,得到下表:请你根据图表中的信息完成下列问题: (1)a =______;b =______;c =______;(2)如果只考虑出口鸡蛋规格,请结合表中的某个统计量,为外贸公司选购鸡蛋提供参考建议;(3)某外贸公司从甲厂采购了18000只鸡蛋,并将质量(单位:g)在6167≤<的鸡蛋x加工成优等品进行盒装售卖,已知一盒有18颗鸡蛋,每颗鸡蛋进价为0.6元,若将优等品鸡蛋全部售出,试求一盒优等品鸡蛋定价多少才能使该外贸公司这一批优等品鸡蛋的利润达到6630元?42.阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯盖和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.43.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:(1)请你填写下表:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.44.为贯彻落实省教育厅提出的“三生教育”.在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= .(2)在扇形统计图中,B组所占圆心角的度数为.(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人.45.图℃、图℃反映是东方百货商场今年15~月份的商品销售额统计情况.来自商场财~月份的销售总额一共是370万元,观察图℃和图℃,解答下务部的报告表明,商场15面问题:(1)将图℃补充完整;(2)商场服装部5月份的销售额是多少万元?(3)李强观察图℃后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?46.某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?47.重庆演艺集团决定今年3月中旬在八中开展“高雅艺术进学校”的宣传活动,活动有A、唱歌,B、舞蹈,C、绘画,D、演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在某年级学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:a______,并将条形统计图补充完整;(1)本次抽查的学生共______人,(2)如果该年级学生有1000人,请估计该年级喜欢“唱歌”宣传方式的学生约有多少人?A B C D四项宣传方式中随机抽取两项进行展示,(3)学校采用抽签方式让每班在,,,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.48.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图.(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下;A 级成绩为优秀,B 级成绩为良好,C 级成绩为合格,D 级成绩为不合格)其中B 级成绩(单位:分)为:75,75,76,77,78,78,79,79,79,80,80,81,81,82,82,83,83,84,86,87,87,88,89 请你结合图中所给信息解答下列问题: (1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是______; (3)扇形统计图中A 级所在的扇形的圆心角度数是______; (4)九年级(1)班学生的体育测试成绩的中位数是______;(5)若该校九年级有500名学生,请你用此样本估计体育测试中达到良好及良好以上的学生人数约为多少人?49. “PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:15m<3030m<4545m<6060m<7575m<9090m<105根据图表中提供的信息解答下列问题:(1)统计表中的a= ,b= ,c= ;(2)在扇形统计图中,A类所对应的圆心角是度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?参考答案:1.D【分析】根据方差的性质判断即可.【详解】解:五个数a b c d e 、、、、满足a b c d e <<<<,由方差是反映一组数据的波动大小的一个量,方差越大、数据越不稳定可知,a c e ,,方差最大, 故选:D .【点睛】本题考查方差的性质.掌握方差越大、数据越不稳定是解答本题的关键. 2.D【分析】根据必然事件的概念的定义,即可求解.【详解】解:A 、某射击运动员射击一次,命中靶心,是随机事件,故本选项不符合题意;B 、抛掷一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;C 、三角形内角和是360°,是不可能事件,故本选项不符合题意;D 、当x 是实数时,x 2≥0,是必然事件,故本选项符合题意; 故选:D.【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键. 3.C【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖, 故选:C .【点睛】本题考查了概率的意义,理解概率的实际意义是本题的关键 4.B【分析】根据概率公式和必然事件、随机事件及不可能事件逐一判断即可得. 【详解】解:A .摸到红球的概率是0,此选项错误; B .摸到红球是不可能事件,此选项正确,C 、D 选项错误;【点睛】此题考查了概率的定义:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.C【分析】根据平均数的计算方法,五项总分除以5可得结果. 【详解】解:小明同学五项评价的平均得分为: 10989995++++=(分)故选:C .【点睛】本土题考查了求平均数;理解平均数的意义正确计算是解题的关键. 6.A【分析】根据必然事件、不可能事件、随机事件的概念,以及全面调查和抽样调查的区别,方差稳定性,判断即可.【详解】A .雨后见彩虹是随机事件,故本选项正确,符合题意B .为了检查飞机飞行前的各项设备,应选择全面调查,故本选项错误,不符合题意C .将一枚硬币抛掷20次,不一定有10次正面朝上,故本选项错误,不符合题意D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是甲城市,故本选项错误,不符合题意 故选A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,全面调查和抽样调查的区别,方差稳定性.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小越稳定. 7.D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可. 【详解】解:A 、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B 、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C 、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.8.B【分析】根据最简二次根式的定义先找出图片中的最简二次根式的个数,再根据概率公式进行计算,即可得出结论.【详解】解:==符合最简二次根式的定义,所以,随意抽取一张纸片,上面写着最简二次根式的概率是21 63 =,故选:B.【点睛】此题考查了概率的计算,掌握最简二次根式的定义是准确求出概率的关键.9.C【详解】解:由扇形统计图给出的数据可得销售20台的人数是:20×40%=8人,销售30台的人数是:20×15%=3人,销售12台的人数是:20×20%=4人,销售14台的人数是:20×25%=5人,所以这20位销售人员本月销售量的平均数是208+303+124+14520⨯⨯⨯⨯=18.4台;把这些数从小到大排列,最中间的数是第10、11个数的平均数,所以中位数是20;销售20台的人数最多,所以这组数据的众数是20.故选:C.【点睛】本题考查平均数;中位数;众数.10.B【详解】分析:根据无理数,平方根,众数,中位数,平均数的概念一一判断即可.详解:①“明天降雨的概率是50%”表示明天有50%的可能会下雨,故错误.②无理数无限不循环小数,故错误.③若a为实数,则0a<是不可能事件;正确.16④的平方根是4±,用式子表示是4=±;故错误.⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.正确.正确的有2个.故选B.点睛:考查无理数,平方根,众数,中位数,平均数的概念,熟记概念是解题的关键. 11.B【分析】画树状图展示所有9种等可能的结果数,找出恰有一人直行,另一人左拐的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中恰有一人直行,另一人左拐的结果数为2,所以恰有一人直行,另一人左拐的概率=29.故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法表示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.12.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】A.℃调查一批灯泡的使用寿命具有破坏性,℃选择抽样调查,正确;B.℃调查某公园全年的游客流量工作量大,℃选择抽样调查,故不正确;C.℃调查某1000枚炮弹的杀伤半径具有破坏性,℃选择抽样调查,故不正确;D.℃调查一批袋装食品是否有防腐剂具有破坏性,℃选择抽样调查,故不正确;故选A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.A【详解】试题分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意.考点:随机事件14.C【分析】根据随机事件,必然事件的定义一一判断即可.【详解】等边三角形,等腰直角三角形,正方形都相似,是必然事件,矩形相似是随机事件,故选:C.【点睛】本题考查相似多边形的性质,随机事件,必然事件等知识,解题的关键是掌握随机事件的定义,属于中考常考题型.15.B【分析】根据各年龄组的参赛人数情况表,算出总人数,再算出14岁年龄组人数所占的百分比,即可得到答案.【详解】解:根据各年龄组的参赛人数情况表可知:总参赛人数为:5+19+12+14=50,19÷50=38%,则小明所在的年龄组是14岁.故选:B.【点睛】本题考查了频数与频率,解决本题的关键是掌握频数与频率的关系,理清频数分布表的数据.16.B【分析】根据中位数的定义先把这组数据从小到大重新排列,找出最中间的数即可.【详解】把这数从小到大排列为:4,5,6,8,10,10,最中间的数是6,8则这组数据的中位数是6+8=72;故选B.【点睛】此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.17.A【分析】直接根据众数的概念求解可得.【详解】在这次活动中,该班同学捐款金额的众数是20元,故选:A.【点睛】本题主要考查众数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.18.B【详解】解:设一组数据a1,a2,a3…,an平均数为a,℃一组新数据a1+1,a2+1,a3+1…,an+1的平均数为a+1,℃一组数据a1,a2,a3…,an方差是9,℃1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9,℃1n[(a1+1-a-1)2+(a2+1-a-1)2+(a3+1-a-1)2+…(an+1-a-1)2)]=1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9故选B.19.A【详解】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.20.D【详解】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】℃==x x x x >乙丁甲丙,℃从乙和丁中选择一人参加比赛,℃22S S >乙丁,℃选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 21. 该班全体同学的数学成绩 该班每个学生的数学成绩; 8【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,在这个问题中,总体是该班全体同学的数学成绩;个体是该班每个学生的数学成绩;样本是该班的8名学生的数学成绩,样本容量是8.故答案为:该班全体同学的数学成绩,该班每个学生的数学成绩,8.【点睛】本题考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 22.抽样调查【详解】由于普查得到的调查结果比较准确,但所费人力物力和时间较多,而抽样调查得到的调查结果比较近似,在这个调查中,个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查. 23.1000【分析】根据样本容量的定义(样本中个体的数目称为样本容量)即可得. 【详解】解:这个问题中,样本容量是1000, 故答案为:1000.【点睛】本题考查了样本容量,熟记样本容量的定义是解题关键,样本容量只是一个数字,不带单位.。
【必刷题】2024高二数学下册概率与统计初步专项专题训练(含答案)
【必刷题】2024高二数学下册概率与统计初步专项专题训练(含答案)试题部分一、选择题:1. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. 9C. 3²D. 1/32. 下列哪个图形能够表示一个离散型随机变量X的概率分布()A. 直方图B. 折线图C. 散点图D. 条形图3. 抛掷一枚质地均匀的骰子两次,求至少有一次出现6点的概率是()A. 1/6B. 1/3C. 5/6D. 2/34. 已知随机变量X的分布列为:X=1,2,3,P(X=x)=1/4,1/2,1/4,则E(X)的值是()A. 1B. 2C. 3D. 2.55. 在一组数据中,众数为10,中位数为12,则这组数据的平均数可能是()A. 10B. 11C. 12D. 136. 一个袋子里有5个红球,3个蓝球,2个绿球,随机取出两个球,求取出的两个球颜色相同的概率是()A. 7/15B. 8/15C. 9/15D. 10/157. 已知随机变量X服从二项分布,且P(X=0)=0.16,P(X=1)=0.32,则P(X=2)的值是()A. 0.16B. 0.24C. 0.32D. 0.488. 下列关于正态分布的说法,错误的是()A. 正态分布是一种连续分布B. 正态分布的曲线关于x=0对称C. 正态分布的参数μ表示分布的均值D. 正态分布的参数σ越大,分布曲线越扁平9. 从一批产品中随机抽取10件,其中有3件次品,那么这批产品的次品率p的矩估计值是()A. 0.3B. 0.25C. 0.2D. 0.110. 已知一组数据的平均数为50,标准差为5,那么这组数据中至少有()个数据在45和55之间。
A. 50%B. 68%C. 95%D. 99%二、判断题:1. 随机变量X的期望值E(X)一定等于X的平均值。
()2. 在一个离散型随机变量的分布中,每个概率值都必须大于0。
()3. 二项分布的概率质量函数是单峰的。
初中数学统计与概率专题训练50题(含答案)
初中数学统计与概率专题训练50题含答案一、单选题1.下表是小明星期一至星期五每天下午练习投篮的命中率统计表,下列说法正确的一项是()A.可以看出每天投中的次数B.五天的命中率越来越高C.可以用扇形统计图统计表中的数据D.可以用折线统计图分析小明的投篮命中率2.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.3.下列采用的调查方式中,不合适的是()A.了解一批灯泡的使用寿命,采用普查B.了解黄河的水质,采用抽样调查C.了解河北省中学生睡眠时间,采用抽样调查D.了解某班同学的数学成绩,采用普查4.下列问题中,不适合用全面调查的是()A.了解全省七年级学生的平均身高B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全班同学每周体育锻炼的时间5.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分)规定笔试成绩占40%,面试成绩占60%,应聘者蕾蕾的笔试成绩和面试成绩分别是90分和85分,她最终得分是()A.87.5分B.87分C.88分D.88.5分6.在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.127.某班级有20个女同学,22个男同学,班上每个同学的名字都写在一张小纸条上放入一个盒子搅匀如果老师随机地从盒子中取出1张纸条,则下列命题中正确的是()A.抽到男同学名字的可能性是50%B.抽到女同学名字的可能性是50% C.抽到男同学名字的可能性小于抽到女同学名字的可能性D.抽到男同学名字的可能性大于抽到女同学名字的可能性8.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如右表所示:关于这组数据,下列说法正确的是()A.众数是2B.中位数是2C.极差是2D.方差是2 9.学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是()A.众数B.中位数C.平均数D.都可以10.布袋里有50个形状完全相同的小球,小红随机摸出一个球,记下颜色后放回摇匀,重复以上操作300次,发现摸到白色的球有61次,则布袋中白球的个数最有可能是()A.5个B.10个C.15个D.20个11.学生甲手中有4,6,8三张扑克牌,学生乙手中有3,5,10三张扑克牌,现每人从各自手中随机取出一张牌进行比较,数字大者胜,在该游戏中()A.甲获胜的概率大B.乙获胜的概率大C.两人获胜概率一样大D.不能确定12.某校男子篮球队20名队员的身高如表所示:则此男子排球队20名队员身高的中位数是()身高(cm)170176178182198人数(个)46532A .176cmB .177cmC .178cmD .180cm13.为了解本校学生周末玩手机所花时间的情况,七、八、九年级中各抽取50名学生(男女各25名)进行调查,此次调查所抽取的样本容量是( ) A .150B .75C .50D .2514.数据2,3,1,1,3的方差是:( ) A .1B .3C .2D .0.815.袋中有形状、大小、质地完全一样的3个红球和2个白球,下列说法正确的是( )A .从中随机抽出一个球,一定是红球B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率一样大C .从袋中随机抽出2个球,出现都是红球的概率为35D .从袋中抽出2个球,出现颜色不同的球的概率是3516.已知一组数据2,l ,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ). A .2B .2.5C .3D .517.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,则成绩最稳定的是( ).A .甲B .乙C .丙D .丁18.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a 可能是( ) A .2B .3C .4D .619.响应国家体育总局提出的“全民战疫居家健身”,学校组织了趣味横生的线上活动.某校组织了“一分钟跳绳”活动,根据10名学生上报的跳绳成绩,将数据整理制成如下统计表:则关于这组数据的结论正确的是( )A .平均数是144 B .众数是141C .中位数是144.5D .方差是5.4二、填空题20.一组数据3,4,5,4,6的中位数是________.21.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_________________.22.甲、乙人进行射击,每人10次射击成绩的平均数都是8.8环,方差分别为2s 甲=0.65, 2s 乙=0.52,则成绩比较稳定的是__.(填“甲”或“乙”) .23.某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.24.若一组数据12345x x x x x ,,,,的平均数是a ,另一组数据1234523521x x x x x ++--+,,,,的平均数是b ,则a ______b (填写“>”、“<”或“=”).25.数据0,-1,3,2,4的极差是__________________.26.已知一组数据3、a 、4、6的平均数为4,则这组数据的中位数是______. 27.某学校300名学生参加植树活动,要求每人植树2~5棵,活动结束后随机抽查了20名学生,调查他们每人的植树情况,并绘制成如图所示的折线统计图,则这20名学生每人平均植树________棵.28.某组数据分五组,第一、二组的频率之和为0.25,第三组的频率为0.35,第四、五组的频率相等,则第五组的频率是_______.29.数据1,2,x ,-1,-2的平均数是0,则这组数据的方差是____.30.为了帮助残疾人,某地举办“即开型"福利彩票销售活动,规定每10万张为一组,其中有10名一等奖,100名二等奖.1 000名三等奖,5 000名爱心奖,小明买了10张彩票,则他中奖的概率为__.31.某食堂午餐供应8元/盒、10元/盒、12元/盒三种价格的盒饭,如图为食堂某月销售午餐盒饭的统计图,由统计图可计算出该月食堂午餐盒饭的平均价格是__________元/盒.32.淮北到上海的431N次列车,沿途停靠宿州、滁州、南京、镇江、常州、无锡、苏州,需要准备_____________ 种不同的车票33.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是___34.数据80,82,85,89,100的标准差为__________(小数点后保留一位).35.有许多事情我们事先无法肯定它会不会发生,这些事情称为__,也称为__,一般地,不确定事件发生的可能性是有大有小的.36.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_____.37.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是___,众数是___,中位数是___.38.数据1,2,3,5,5的众数是___________.39.从小到大排列的一组数据:-2,0,4,4,x,6,6,9的中位数是5,那么这组数据的众数是_______.三、解答题40.为进一步加强学生对“垃圾分类知识”的重视程度,某中学初一、初二年级组织了“垃圾分类知识”比赛,现从初一、初二年级各抽取10名同学的成绩进行统计分析(成绩得分用x 表示,共分成四组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤),绘制了如下的图表,请根据图中的信息解答下列问题.初一年级10名学生的成绩是:69,78,96,77,68,95,86,100,85,86 初二年级10名学生的成绩在C 组中的数据是:86,87,87初一、初二年级抽取学生比赛成绩统计表(1)b c +的值为______.(2)根据以上数据,你认为该校初一、初二年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可)(3)若两个年级共有400人参加了此次比赛,估计参加此次比赛成绩优秀()90100x ≤≤的学生共有多少人?41.为了有效控制新型冠状病毒的传播,目前,国家正全面推进新冠疫苗的免费接种工作.某社区为了解其辖区内居民的接种情况,随机抽查了部分民进行问卷调查,把调查结果分为A (准备接种)、B (不接种)、C (已经接种)、D (观望中)四种类别.并绘制了两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)此次抽查的居民人数为______人;(2)请补全条形统计图,同时求出C 类别所在扇形的圆心角度数;(3)若该社区共有居民14000人,请你估计该社区已接种新冠疫苗的居民约有多少人? 42.为了让全校学生牢固树立爱国爱党的崇高信念,某校举行了一次党史知识竞赛(百分制).现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤,对成绩进行整理分析,得到了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩为:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.(1)a = ,b = ; (2)请补全条形统计图;(3)若初一有400名学生,请估计此次测试成绩初一达到90分及以上的学生有多少人?43.为了了解某小区今年6月份家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计表和统计图:根据以上信息,解答下列问题:(1)本次抽样调查的样本容量是,m的值为,n的值为;(2)若该小区共有500户家庭,请估计该月有多少户家庭用水量不超过...9.0吨?44.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?45.某校九年级共有400名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,将下面的过程补全.收集数据:调查小组选取40名学生的体质健康测试成绩作为样本,数据如下:77838064869075928381858688626586979682738684898692735777878291818671537290766878整理、描述数据:2018年九年级部分学生学生的体质健康测试成绩统计表分析数据:(1)写出表中的a、b的值;(2)分析上面的统计图、表,你认为学生的体重健康测试成绩是2017年还是2018年的好?说明你的理由.(至少写出两条).(3)体育老师根据2018年的统计数据,安排80分以下的学生进行体育锻炼,那么全年级大约有多少人参加?46.党的教育方针“培养德智体美劳全面发展的社会主义建设者和接班人”把劳动教育列入教育目标之一,学校更要重视开展劳动教育,某校为了解九年级学生一学期参加课外劳动时间(单位:h)的情况,从该校九年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.010t < 1020t < 2030t < 3040t <4050t <解答下列问题:(1)求频数分布表中a ,m 的值,并将频数分布直方图补充完整;(2)若九年级共有学生300人,试估计该校九年级学生一学期课外劳动时间不少于20h 的人数;(3)已知课外劳动时间在30h 40h t ≤<的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.47.为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.48.给你1枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现1、2、3、4、5、6向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测1枚骰子的质量.49.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.参考答案:1.D【分析】根据表格中给出的信息进行解答即可.【详解】解:根据折线统计图表示的是事物的变化情况,故小明星期一至星期五每天下午练习投篮的命中率可以用折线统计图分析小明的投篮命中率.故选:D.【点睛】本题主要考查了数据的整理和应用,解题的关键是理解题意,熟练掌握扇形统计图、折线统计图和条形统计图的特点.2.A【详解】试题分析:一共有4种等可能的结果:小明打扫社区卫生,小华打扫社区卫生;小明打扫社区卫生,小华参加社会调查;小明参加社会调查,小华打扫社区卫生;小明参加社会调查,小华参加社会调查.其中两人同时选择参加社会调查只有1种.所以两人同时选择参加社会调查的概率.故此题选A.考点:概率.3.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解一批灯泡的使用寿命,数量较多,应采用抽样调查,故此选项符合题意;B.了解黄河的水质,量较大,适宜用抽样调查,故此选项不合题意;C.了解河北省中学生睡眠时间,人数较多,适宜用抽样调查,故此选项不合题意;D.了解某班同学的数学成绩,适宜用全面调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.A【分析】由普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析即可.【详解】A 、了解全省七年级学生的平均身高,调查范围广,费时费力,适合抽样调查,不适合用全面调查,故该项符合题意;B 、旅客上飞机前的安检,涉及到安全问题,需要一一检查,适合全面调查,故该项不符合题意;C 、学校招聘教师,对应聘人员面试,需要依次进行面试,适合全面调查,故该项不符合题意;D 、了解全班同学每周体育锻炼的时间,好调查,适合全面调查,故该项不符合题意; 故选:A .【点睛】本题考查了全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小,理解全面调查与抽样调查的适用范围是解题的关键. 5.B【分析】根据加权平均数公式计算即可. 【详解】解:应聘者蕾蕾的最终得分是9040%8560%8740%60%⨯+⨯=+分,故选:B .【点睛】此题考查了加权平均数的计算,正确掌握加权平均数的计算公式是解题的关键. 6.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】解:设盒子中有白球x 个, 由题意可得:0.425x=, 解得:10x =, 故选C .【点睛】本题考查了利用频率估计概率.解题的关键在于明确大量试验得到的频率可以估计事件的概率. 7.D【分析】运用概率公式对各项进行逐一判断即可.【详解】解:A 、错误,抽到男同学名字的可能性是22÷(22+20)≈52%; B 、错误,抽到女同学名字的可能性是48%;C、错误,由于抽到男同学的概率大,所以抽到男同学名字的可能性大于抽到女同学名字的可能性;D、正确,由AB可知抽到男同学名字的可能性大于抽到女同学名字的可能性.故选:D.【点睛】本题考查概率的有关知识,需注意可能性的求法.8.B【分析】根据极差、方差、众数、中位数及平均数的算法,依次计算各选项即可作出判断.【详解】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3-0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,S2≠2,故D不符合题意.故选:B.【点睛】考查平均数、中位数、众数的意义和求法,掌握计算方法是解决问题的关键.9.B【详解】因为6位获奖者的分数肯定是13名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选B.10.B【分析】由共摸了300次球,发现有61次摸到白球,知摸到白球的概率为61300,设布袋中白球有x个,可得x6150300=,,解之即可.【详解】由共摸了300次球,发现有61次摸到白球,①摸到白球的概率为61 300,设布袋中白球有x个,可得x61 50300=,解得:x=1016,①布袋中白球的个数最有可能是10个故选B.【点睛】:此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.A【分析】列举出甲获胜的所有可能,求出甲获胜的概率,然后求出乙获胜的概率,比较大小即可得到结果.【详解】解:由题意知,甲取出4时,乙有3,5,10共三种可能,其中甲获胜有1种可能;甲取出6时,乙有3,5,10共三种可能,其中甲获胜有2种可能;甲取出8时,乙有3,5,10共三种可能,其中甲获胜有2种可能;①甲获胜的概率为122599++=,则乙获胜的概率为54199-=①54 99 >①甲获胜的概率大故选A.【点睛】本题考查了列举法求概率.解题的关键在于正确列举事件.12.B【分析】根据中位数的定义即可求解.【详解】表格中第10,11位队员的身高分别为176cm、178cm,故中位数为1761781772+=cm,故选B.【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义. 13.A【分析】根据样本容量的定义解答即可.【详解】①从七、八、九年级中各抽取50名学生进行调查,①一共抽了150名学生,①样本容量是150.故选A.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 14.D【详解】X =(2+3+1+1+3)÷5=2,S 2="1/5" [(2-2)2+(3-2)2+(1-2)2+(1-2)2+(3-2)2]=0.8 故选D . 15.D【分析】先求出随机事件所有情况数,再求出对应的事件发生的情况数,根据概率=所求情况数与总情况数之比进行依次解答.【详解】解:A .从中随机抽出一个球,不一定是红球,故此选项不合题意;B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率不相同,故此选项不合题意;C .从袋中随机抽出2个球,出现都是红球的概率为310,故此选项不合题意; D .从袋中抽出2个球,出现颜色不同的球的概率是35,故此选项符合题意;故选:D .【点睛】本题主要考查概率的定义,熟练掌握概念的定义和概率计算公式是解决本题的关键. 16.B【详解】数据2,1,x ,7,3,5,3,2的众数是2,说明2出现的次数最多,所以当x =2时,2出现3次,次数最多,是众数;再把这组数据从小到大排列:1,2,2,2,3,3,5,7,处于中间位置的数是2和3,所以中位数是:(2+3)÷2=2.5. 故选B. 17.D【详解】试题分析:直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.①2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,①2S 丁<2S 丙<2S 甲<2S 乙,①成绩最稳定的是丁.故选D .考点:方差;算术平均数. 18.A【分析】该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.【详解】①a 、b 、c 的中位数与众数都是5, ①a 、b 、c 三个数中有两个数是5, 设不是5的那个数为x , ①a 、b 、c 的平均数是4, ①5543x ++=⨯, 解得,2x =,即a 可能是2,也可能是5. 故选:A .【点睛】用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 19.B【分析】根据平均数、众数、中位数、方差的定义分别计算出结果,然后判断即可. 【详解】根据题目给出的数据,可得: 平均数为:14151442145114621435212x ⨯+⨯+⨯+⨯+++==,故A 选项错误;众数是:141,故B 选项正确;中位数是:141144142.52+=,故C 选项错误; 方差是:()()()()2222211411435144143214514311461432 4.40[]1s -⨯+-⨯+-⨯+-⨯==,故D 选项错误; 故选:B .【点睛】本题考查的是平均数,众数,中位数,方差的定义和计算,熟悉相关定义是解题的关键. 20.4【分析】根据中位数的定义求解可得.【详解】解:把这些数从小大排列为3,4,4,5,6,则中位数是4.故答案为:4.【点睛】本题主要考查了中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.21.3 10【分析】由题可知,第10次摸出的球的颜色与前9次的结果是无关的,求出球的总数和黄球的个数,利用概率的公式进行计算即可.【详解】①共有23510++=个小球,3个黄球,①第10次摸出黄球的概率是3 10.故答案为3 10.【点睛】本题是一道关于概率的题目,解答本题的关键是熟练掌握概率的计算公式.22.乙【分析】根据方差的性质可知,方差越小,数据波动越小,数据情况越趋于稳定,据此进行分析即可.【详解】解:由题干可得甲、乙的方差分别为2s甲=0.65,2s乙=0.52,有2s甲=0.65>2s乙=0.52,故乙的成绩比较稳定.【点睛】本题考查方差所反映的数据稳定情况,掌握方差越小,数据波动越小,数据情况越趋于稳定即可.23.8.【分析】根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、8、8、10、10,所以这组数据的中位数为882+=8.故答案为8.【点睛】本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.24.>【分析】根据12345x x x x x ,,,,的平均数是a ,可得123455x x x x x a ++++=,再根据1234523521x x x x x ++--+,,,,的平均数是b ,可得15a b -=进而即可得到解答. 【详解】解:①12345x x x x x ,,,,的平均数是a , ①123455x x x x x a ++++=,①12345235215x x x x x ++++-+-++12345155x x x x x ++++=-15a =-b =,①a b >, 故答案为:>.【点睛】本题考查了算术平均数的的定义(是指在一组数据中所有数据之和再除以数据的个数),灵活运用所学知识求解是解决本题的关键. 25.5【详解】试题解析:极差=4-(-1)=5. 考点:极差. 26.3.5【分析】先根据平均数的计算公式求出x 的值,再根据中位数的定义即可得出答案. 【详解】①数据3、a 、4、6的平均数是4, ①(3+a+4+6)÷4=4, ①x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5, 则中位数是3.5; 故答案为3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a 的值. 27.3.3【分析】根据折线统计图中的数据和算术平均数的求法,可以解答本题. 【详解】解:243846523.320⨯+⨯+⨯+⨯=(棵),故答案为:3.3.【点睛】本题考查折线统计图,平均数,熟练掌握平均数计算公式是解题的关键. 28.0.2.【详解】分析:根据各组的频率的和是1即可求解. 详解:第五组的频率是:12×(1﹣0.35﹣0.25)=0.2.故答案为0.2.点睛:本题考查了频率的意义,利用各组的频率的和为1分析是解题的关键. 29.2【分析】先根据平均数的公式求出x 的值,再根据方差公式即可得. 【详解】解:由题意得:()()121205x +++-+-=,解得0x =,则方差为()()()()()222221102000102025⎡⎤⨯-+-+-+--+--=⎣⎦, 故答案为:2.【点睛】本题考查了平均数和方差,熟记平均数和方差的计算公式是解题关键. 30.0.611【详解】买一张中奖的概率为:P =1010010005000100000+++=0.0611,则买10张中奖的概率为0.0611×10=0.611. 故答案为0.611.点睛:本题关键在于先算出买一张获奖的概率,再计算买10张获奖的概率. 31.10.2【分析】根据加权平均数公式计算即可. 【详解】解:815%1225%1060%10.215%25%60%⨯+⨯+⨯=++(元/盒),故答案为:10.2.【点睛】此题考查了求加权平均数,正确理解题意及加权平均数的计算公式是解题的关键. 32.36【分析】根据概率公式求解所有种类出现的情况即可. 【详解】共有9个车站,且属于单向车程。
初中数学统计与概率专题训练50题含参考答案
初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。
小学数学练习题小学概率练习
小学数学练习题小学概率练习小学数学练习题-小学概率练习在小学数学中,概率是一个重要的概念,它涉及到事件发生的可能性大小。
通过练习概率题,学生可以更好地理解和运用概率的知识。
下面将给出一些小学概率练习题,帮助学生加深对概率的理解。
1. 随机数生成在一组数字中,选取一个数字。
从1到20中,选取一个数字。
请计算选取偶数的概率。
2. 颜色抽样一个盒子里有5个红球,3个蓝球和2个黄球。
从盒子中随机抽取一个球,请计算抽取出蓝球的概率。
3. 选择食物一份午餐里有三种食物:意大利面,汉堡包和沙拉。
概率为1/3选意大利面,1/2选沙拉。
请计算选汉堡包的概率。
4. 抛硬币抛掷一枚硬币,请计算正面朝上的概率。
5. 概率计算从1到10中随机选择一个数字。
请计算选取奇数的概率。
6. 选择班级代表一位老师让学生中选出一个班级代表。
班级有25名男生和20名女生,学生成员共45人。
请计算选中女生为班级代表的概率。
7. 扔骰子扔一颗六面骰子,请计算点数为5的概率。
8. 选出数字从1到100中,随机选出一个数字。
请计算选出偶数的概率。
9. 飞镖游戏在一个飞镖游戏中,目标版上有5个黄色区域,3个蓝色区域和2个红色区域。
掷飞镖,请计算落在蓝色区域的概率。
10. 猜扑克牌从一副扑克牌中随机抽取一张牌,请计算抽取到红心牌的概率。
通过以上的练习题,学生可以巩固对概率计算的理解,并提高解决问题的能力。
概率是数学中的重要概念,在日常生活中也有广泛的应用。
通过解决这些练习题,学生能够更好地理解概率概念,并将其运用到实际问题中。
希望学生们能够多做练习,掌握概率的计算方法,提高数学水平。
高中数学必修二概率统计专题训练(经典必练题型)
高中数学必修二概率统计专题训练(经典必练题型)介绍本文档是针对高中数学必修二中的概率统计专题进行的训练,旨在帮助学生巩固和提高概率统计方面的知识和技能。
文档包含一系列经典必练题型,涵盖了该专题的重要内容。
题型一:排列组合1. 有5个不同的苹果和3个不同的橘子,从中任选3个水果,求共有几种选法。
2. 由字母A、B、C、D、E无重复组成的3位数共有多少种?题型二:事件与概率1. 一枚骰子被掷两次,求两次得到的点数之和为7的概率。
2. 从1至10的十个自然数中随机选择两个数,求两数之和为偶数的概率。
题型三:独立事件与复合事件1. 甲、乙、丙三个人独立地作一件事情成功的概率分别是1/2、1/3、1/4,求三人都成功的概率。
2. 一批零件共有100个,其中有5个次品。
从中连续取3个,求取出3个次品的概率。
题型四:条件概率1. 甲、乙两组各选一位同学参加足球比赛,甲组和乙组每组有5名同学,甲组中有两名女生和三名男生,乙组中有4名女生和一名男生。
从两组中各选出一位同学参加比赛,已知参赛者是女生,求该同学来自甲组的概率。
2. 甲、乙两个班级的数学成绩分别如下表所示,学生随机抽取一位,已知该学生是不及格的,求该学生来自乙班的概率。
题型五:概率分布1. 投掷一枚均匀硬币,正面向上为事件A,反面向上为事件B。
设事件A和事件B的概率分别为0.4和0.6,记为P(A)=0.4,P(B)=0.6。
求该硬币投掷一次出现事件A的概率。
2. 掷一个骰子,其点数的概率分布为:P(X=1)=1/6,P(X=2)=1/6,P(X=3)=1/6,P(X=4)=1/6,P(X=5)=1/6,P(X=6)=1/6。
求投掷一次出现点数为奇数的概率。
以上为高中数学必修二概率统计专题训练的经典必练题型,希望能够帮助学生加深对该专题的理解和应用。
中考数学专题训练:概率(附参考答案)
中考数学专题训练:概率(附参考答案)1.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A.58B.1350C.1332D.5162.在6,7,8,9四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是( )A.13B.12C.23D.143.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.14B.13C.12D.344.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,朝上一面的点数是偶数的概率是( )A.12B.14C.16D.15.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )A.12B.13C.14D.346.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A.59B.12C.13D.297.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A.14B.13C.12D.239.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12D.110.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在平面直角坐标系第二象限的概率是.11.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“·”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是______.12.一个不透明的口袋中装有标号为1,2,3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是______.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是______.14.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题.(1)参与此次抽样调查的学生人数是_______人,补全统计图1(要求在条形图上方注明人数);(2)图2中扇形C的圆心角度数为______度;(3)若参加成果展示活动的学生共有1 200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.15.在一个不透明的袋子中,装有五个分别标有数字-√3,√6,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为______.16.新高考“3+1+2”选科模式是指除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为______.17.在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是______.18.从2 021,2 022,2 023,2 024,2 025 这五个数中任意抽取3个数.抽到中位数是2 022的3个数的概率等于______.19.为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5·19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,对五一假期期间的游客去向进行了随机抽样调查,并绘制了不完整的统计图,请根据图1、图2中所给的信息,解答下列问题.(1)此次抽样调查的样本容量是_______;(2)将图1中的条形统计图补充完整;(3)根据抽样调查结果,五一假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客有多少万人;(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.20.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外其他都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球.若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.A 8.C 9.B10.1611.1412.5913.1414.(1)120 图略(2)90 (3)300人(4)11015.25 16.1617.2318.31019.(1)200 (2)B组的人数为60人,补全条形统计图略(3)估计前往青海湖景区的游客有6.65万人(4)1420.游戏对双方都公平。
高中概率基础练习题及讲解
高中概率基础练习题及讲解1. 题目:一个袋子里有5个红球和3个蓝球,随机抽取2个球,求至少有1个红球的概率。
解答:首先,我们可以计算出所有可能的抽取组合。
总共有8个球,抽取2个球的组合数为 C(8, 2) = 28。
接下来,我们找出没有红球的组合,即全部抽取蓝球的组合数,C(3, 2) = 3。
因此,至少有1个红球的概率为 1 - 抽取蓝球组合的概率,即 1 - 3/28 = 25/28。
2. 题目:一个班级有40名学生,其中20名男生和20名女生。
随机选择4名学生,求至少有1名女生的概率。
解答:我们首先计算所有可能的组合数,即 C(40, 4)。
然后,我们找出没有女生的组合,即全部选择男生的组合数,C(20, 4)。
至少有1名女生的概率为 1 - 没有女生的组合数除以总组合数,即 1 - C(20, 4) / C(40, 4)。
3. 题目:抛掷一枚均匀的硬币3次,求至少出现1次正面的概率。
解答:抛掷硬币3次,每次出现正面或反面的概率都是1/2。
我们先计算出没有出现正面的情况,即3次都是反面的概率,为 (1/2)^3 = 1/8。
至少出现1次正面的概率为 1 - 没有正面的概率,即 1 -1/8 = 7/8。
4. 题目:一个班级有30名学生,随机选择5名学生参加比赛,求至少有1名来自数学小组的学生被选中的概率,假设数学小组有10名学生。
解答:我们首先计算所有可能的组合数,即 C(30, 5)。
然后,我们找出没有数学小组学生被选中的组合数,即从20名非数学小组学生中选择5名学生的组合数,C(20, 5)。
至少有1名数学小组学生被选中的概率为 1 - 没有数学小组学生的组合数除以总组合数,即 1 -C(20, 5) / C(30, 5)。
5. 题目:一个盒子里有10个灯泡,其中3个是坏的,7个是好的。
随机抽取2个灯泡,求至少有1个是好的灯泡的概率。
解答:我们首先计算所有可能的抽取组合,即 C(10, 2)。
初中数学统计与概率专题训练50题(含答案)
初中数学统计与概率专题训练50题含参考答案一、单选题1.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为()A.92分B.92.4分C.90分D.94分2.一个足球队23名队员的年龄统计结果如下表所示,这个足球队队员年龄的众数,中位数分别是()A.14,15B.14,14C.15,13D.15,153.我校四名跳远运动员在前的10次跳远测试中成绩的平均数相同,方差s2如下表示数,如果要选出一名跳远成绩最稳定的选手参加抚顺市运动会,应选择的选手是()A.甲B.乙C.丙D.丁4.盒子中有白色乒乓球和黄色乒乓球若干个,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,由此估计摸白色乒乓球的概率为()A.14B.12C.13D.345.下列数据是2019年3月一天某时公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是()A.162和155B.169和155C .155和162D .102和1556.下列调查中,适合采用全面调查方式的是( ) A .对横锦水库水质情况的调查B .新冠疫情期间,对某高危县市居民的体温进行调查C .某厂生产出的口罩进行质量合格率的调查D .春节期间对某类烟花爆竹燃放安全情况的调查 7.以下调查中,适宜全面调查是( ) A .调查某种灯泡的使用寿命 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率D .调查我市居民日平均用水量8.一个不透明的箱子里装有红色小球和白色小球共4个,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量的重复实验后,发现摸到红色小球的频率稳定于0.75左右.请估计箱子里白色小球的个数是( ) A .1B .2C .3D .49.在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,若随机从袋子里摸出1个球,则摸出红球的概率是( )A .14B .13C .12D .3410.七个人并成一排照相,如果a 表示甲、乙两人相邻的可能性,b 表示甲、乙两人不相邻的可能性,则( ) A .a b >B .a b <C .a b =D .无法确定11.8名学生的鞋码(单位:原米)由小到大是21,22,22,22,23,23,24,25,则这组数据的众数和中位数是( ) A .23,22B .23,22.5C .22,22D .22,22.512.以下问题,不适合采用全面调查方式的是(). A .调查全班同学对“商合杭”高铁的了解程度 B .春运期间检查旅客的随身携带物品 C .学校竞选学生会干部,对报名学生面试D .了解全市中小学生对“2019年海军阅兵”的知晓程度13.若一组数据1,1,2,3,x 的平均数是2,则这组数据的众数是( ) A .1B .1和3C .1和2D .314.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )A .中位数是12.7%B .众数是15.3%C .平均数是15.98%D .方差是015.下列说法正确的是( )A .为了解一批电池的使用寿命,应采用全面调查的方式B .数据1x ,2x ,...,n x 的平均数是5,方差是0.2,则数据12x +,22x +,...,2n x +的平均数是7,方差是2.2C .通过对甲、乙两组学生数学成绩的跟踪调查,整理计算得到甲、乙两组数据的方差为20.3s =甲,20.5s =乙,则乙数据较为稳定D .为了解官渡区九年级8000多名学生的视力情况,从中随机选取500名学生的视力情况进行分析,则选取的样本容量为50016.下列结论中:①ABC 的内切圆半径为r ,ABC 的周长为L ,则ABC 的面积是12Lr ;①同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为12;①圆内接平行四边形是矩形;①无论p 取何值,方程()()2320x x p ---=总有两个不等的实数根.其中正确的结论有( ) A .4个B .3个C .2个D .1个17.将50个数据分成3组,第一组和第三组的频率之和为0.7,则第二小组的频数是( ) A .0.3B .0.7C .15D .3518.教练准备从甲、乙、丙、丁四个足球队员中选出一个队员去罚点球,四个队员平时训练罚点球的平均命中率x 及方差s 2如表所示:如果要选出一个成绩较好且状态较稳定的队员去执行罚球,那么应选的队员是( )A .甲B .乙C .丙D .丁19.有下列调查:①了解地里西瓜的成熟程度;①了解某班学生完成20道素质测评选择题的通过率;①了解一批导弹的杀伤范围;①了解成都市中学生睡眠情况.其中不适合普查而适合抽样调查的是( )A .①①B .①①①C .①①①D .①①①20.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( ) A .12B .13C .34D .1二、填空题21.为了调查全校学生对购买正版书籍,唱片和软件的支持率,用简单的随机抽样方法,在全校55个班级中抽取8个班级,调查这8个班级所有学生对购买正版书籍,唱片和软件的支持率.在这次调查中,总体是_____,样本是_____,样本容量是_____,抽样方法 _____(填“合理”或“不合理”).22.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择___________. 23.为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)(1)了解一批圆珠笔芯的使用寿命________. (2)了解全班同学周末时间是如何安排的________. (3)了解我国八年级学生的视力情况________. (4)了解中央电视台春节联欢晚会的收视率________. (5)了解集贸市场出售的蔬菜中农药的残留情况________.(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.24.我市11月份30天的最高气温变化情况如图所示,将1日-15日气温的方差记为21S ,15日-30日气温的方差记为22S .观察统计图,比较21S ,22S 的大小:21S ______22S (填“>、=、<”)25.小张手机月基本费用为18元,某月,他把手机费中各项费用的情况制成扇形统计图(如图),则他该月的基本话费为________元.26.某校为了解学生课外阅读情况,随机调查了50名学生,得到某一天各自课外阅读所用时间,结果如图.根据条形图估计这一天该校学生平均课外阅读时间为______小时.27.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S2=0.04,成绩比较稳定的是__(填“甲”或“乙”).乙28.某社区开展“节约每一滴水”活动,为了解开展活动的一个月以来节约用水的情况,从该小区的1000个家庭中选出20个家庭统计了解一个月的节水情况,见下表①请你估计这1000个家庭一个月节约用水的总量大约是________m3.29.某射击运动员在同一条件下的射击结果如下表:根据频率的稳定性,估计这名运动员射击一次时击中靶心的概率是______(结果保留小数点后两位).30.一组数据-3,-2,1,3,6,x的中位数是1,那么这组数据的众数是___________.31.袋中装有大小相同的2个红球和3个绿球,从袋中摸出1个球摸到绿球的概率为___________.32.甲乙两班举行一分钟跳绳比赛,参赛学生每分钟跳绳次数的统计结果如表:某同学分析如表后得到如下结论:①甲,乙两班学生平均成绩相同;①乙班优秀人数多于甲班优秀人数(每分钟跳绳≥110次为优秀);①甲班成绩的波动比乙班大,则正确结论的序号是____.33.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________ 34.一组数据为5,7,3,x,6,4. 若这组数据的众数是5,则该组数据的平均数是______.35.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.36.数据-5,3,4,0,1,8,2的极差为_______.37.从1-,23-,0,23,1这五个数字中,随机抽取一个数记为a,则使得关于x的方程213axx+=-的解为正数的概率是______.38.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则根据此估计步行上学的有________人.39.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.40.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,①两数在相对位置上的概率是________.三、解答题41.某中学举行“校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校比赛.两个队选出的五名选手的决赛成绩如图所示.(1)根据图示,填写下表:(2)结合两个队的成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较稳定.42.质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等;(1)请采用计算器模拟实验的方法,帮质量检查员抽取被检产品;(2)如果没有计算器,你能用什么方法抽取被检产品?43.某市在,,,,A B C D E五处客流中心存放共享单车,并陆续投放至城区.在D处客流中心存放了甲、乙、丙三种型号的单车,其中甲型号单车500辆.根据单车存放数量绘制了如图1的条形统计图和图2的扇形统计图.图1图2(1)补全条形统计图1,该市在五处客流中心存放共享单车共______辆,这五处客流中心单车存放量的中位数是________千辆;(2)在客流中心D处有_________辆乙型号单车;(3)张华和姐姐准备一起从所住小区每人骑一辆单车去书店.小区门口停放着甲型单车两辆,乙型和丙型单车各一辆,张华认为自己随机选中乙型单车,同时姐姐选中甲型单车的概率是13.张华的说法是否正确?请通过列树状图的方法说明理由.44.为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出),根据以上提供的信息,解答下列问题:(1)本次调查共抽取了名学生?(2)①请补全条形统计图;①扇形统计图中表示“及格”的扇形的圆心角度数为°(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?45.小明和小聪最近5次数学测验的成绩如下:小聪:76,84,80,87,73;小明:78,82,79,80,81.哪位同学的数学成绩比较稳定?46.在一个不透明的口袋中装有4个红球,3个白球,2个黄球,每个球除颜色外都相同.(1)请判断下列事件是不确定事件、不可能事件还是必然事件,填写在横线上.①从口袋中任意摸出1个球是白球;①从口袋中任意摸出4个球全是白球;①从口袋中任意摸出1个球是红球或黄球;①从口袋中任意摸出8个球,红、白、黄三种颜色的球都有;(2)请求出(1)中不确定事件的概率.47.佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下:(1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.48.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答年新型冠状病毒防治全国统一考试全国卷试卷满分100分,社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,根据他们的成绩数据绘制了如下的表格和统计图:根据上面提供的信息,回答下列问题: .a,b=,c=;(1)统计表中的=(2)请补全条形统计图;(3)根据抽样调查结果,请估计该小区答题成绩为“C级”的有多少人?49.在学校组织的迎接建党100周年知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相等级的得分依次记为100分,90分,80分,70分.学校将九年级一班和二班的成绩整理并绘制成统计图.(1)根据统计图,求出在此次竞赛中二班成绩为C的人数.(2)①请完成下面的表格:①结合以上统计量,请你从不同角度分析两个班级的成绩.50.某学校八年级举行“垃圾分类,人人有责”的知识测试活动,现从中随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理,得到条形统计图如下:(1)求抽取的学生测试成绩的平均数、众数和中位数;(2)该校八年级共有600名学生参加此次测试活动,试估计八年级参加此次测试的学生成绩合格的人数.参考答案:1.B【分析】根据加权平均数的定义列式计算即可.【详解】解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),故选:B.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.2.D【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【详解】解:这组数据中出现次数最多的是15,所以这组数据的众数是15,这组数据中第12个数据是15,所以这组数据的中位数是15,故选:D.【点睛】本题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.3.D【分析】根据方差的意义进行判断即可.【详解】解:由题意知:丁的方差最小,所以丁的成绩最稳定,应选择的选手是丁,故D 正确.故选:D.【点睛】本题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,利用概率公式解答即可.【详解】解:估计摸白色乒乓球的概率为901 3604,故选A.【点睛】此题考查利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例即白球的概率.5.A【分析】根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.【详解】解:由图可得出这组数据中155出现的次数最多,因此,这组数据的众数是155;把这一组数据按从小到大的数序排列,在中间的两个数字是155、169,因此,这组数据的中位数是1691551622+=.故选:A.【点睛】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.6.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对横锦水库水质情况的调查,适合抽样调查,故本选项不合题意;B、新冠疫情期间,对某高危县市居民的体温进行调查,适合全面调查,故本选项符合题意;C、某厂生产出的口罩进行质量合格率的调查,适合抽样调查,故本选项不合题意;D、春节期间对某类烟花爆竹燃放安全情况的调查,适合抽样调查,故本选项不合题意.故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、调查某种灯泡的使用寿命,适宜抽样调查,故本选项不符合题意;B、调查某班学生的身高情况,适宜全面调查,故本选项符合题意;C、调查春节联欢晚会的收视率,适宜抽样调查,故本选项不符合题意;D、调查我市居民日平均用水量,适宜抽样调查,故本选项不符合题意;故选:B【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.A【分析】用球的总个数乘以摸到白球的频率即可.【详解】解:估计箱子里白色小球的个数是4(10.75)⨯-=1(个),故选:A.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9.C【分析】由袋子中装有2个红球,1个黄球,1个黑球,随机从袋子中摸出1个球,这个球是黄球的情况有1种,根据概率公式即可求得答案.【详解】解:①袋子中装有2个红球,1个黄球,1个黑球共2+1+1=4个球,①摸到这个球是红球的概率是1÷2=12.故选:C.【点睛】本题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.B【分析】可分析特定情况下a,b的值,比较即可.【详解】若甲站在一排最左边的位置,那么第二个位置可有6个人选择,是乙的只有1种,故a<b.故选B.【点睛】易错点是得到特定情况下两人相邻的情况数和不相邻的情况数.11.D【分析】根据中位数和众数的概念求解即可.【详解】解:数据按从小到大的顺序排列为21,22,22,22,23,23,24,25,所以中位数是22232=22.5;数据22出现了3次,出现次数最多,所以众数是22.故选:D.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12.D【分析】根据全面调查和抽样调查的特点对每个选项进行判断即可.【详解】A、调查全班同学对“商合杭”高铁的了解程度,适合采用全面调查,故A项错误;B、春运期间检查旅客的随身携带物品,适合采用全面调查,故B项错误;C、学校竞选学生会干部,对报名学生面试,适合采用全面调查,故C项错误;D、了解全市中小学生对“2019年海军阅兵”的知晓程度,不适合采用全面调查,故D项正确;故选:D.【点睛】本题考查了全面调查和抽样调查的区别,掌握这两种调查方式的特点是解题关键.13.B【分析】先根据算术平均数的定义列出关于x的方程,解之求出x的值,从而还原这组数据,再利用众数的概念求解可得.【详解】解:①数据1,1,2,3,x的平均数是2,①1+1+2+3+x=5×2,解得x=3,则这组数据为1,1,2,3,3,①这组数据的众数为1和3,故选:B .【点睛】本题主要考查众数和算术平均数的求法,解题的关键是掌握算术平均数和众数的概念.14.B【详解】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A 、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B 、众数是15.3%,正确;C 、15(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C 错误; D 、①5个数据不完全相同,①方差不可能为零,故此选项错误.故选B .点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.15.D【分析】根据普查与抽样调查的区别判断A ,根据平均数的计算方法和方差的计算方法可得出B ,根据方差的意义可得出C ,最后根据样本容量的含义进行分析即可.【详解】为了解一批电池的使用寿命,应采用抽样调查,故A 错误; 由题可得125n x x x n+++=可得,125n x x x n +++=, 所以12+25+27n x x x n n n n n +++==; 因为()()()22212-5-5-50.2n x x x n+++=, 所以()()()22212+2-7+2-7+2-7n x x x n+++,()()()22212-5-5-5=0.2n x x x n +++=.故B 错误;根据方差的意义可知,方差越小越稳定,故C错误;题目中的500确实是样本容量,故D正确;故答案选D.【点睛】本题主要考查了平均数和方差的求解,准确的理解方差意义及样本容量的意义是解题的关键.16.B【分析】①如图1,连接圆心和切点,则可得到垂直关系,此时将图形分割成三个三角形,求三个三角形的面积和即为ABC的面积;①用列举法求此种情况的概率即可;①如图3,根据矩形的判定性质:对角线相等,且互相平分的四边形是矩形,判断其是否为矩形;①根据一元二次方程根的判别式性质判断该方程有几个实数根.【详解】①如图1,连接OE,OD,OF;OA,OB,OC;则OE①AB,OF①AC,OD①BC;①S△ABC=12AB·OE+12BC·OD+12AC·OF①OE=OF=OD=r,AB+BC+AC=l,①S△ABC=12AB·r+12BC·r+12AC·r=2r(AB+BC+AC)=12Lr,①①正确.①列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反,①满足硬币全部正面向上的概率=14,①①错误.①如图3,①平行四边形ABCD为圆内接平行四边形,①OA=OB=OC=OD,且圆心O是对角线的交点,①BD=2OB=2OC=AC ,①平行四边形ABCD 是矩形,①①正确.①①()()2320x x p ---=,即x 2-5x +6-p 2=0,①△=b 2﹣4ac =(-5)2-4(6-p 2),①△=25-24+4 p 2>0,①无论p 取何值,该方程总有两个不相等的实数根,①①正确,故选:B .【点睛】①本小问考查了三角形内切圆的性质,三角形的面积公式,解答本小问的关键是,充分利用已知条件,将问题转化为求几个三角形面积的和;①本小问考查了用列举法求概率,解答本题的关键是列举出所能产生的全部结果,然后再找出题目所要求的结果数量除以全部结果的数量;①本小问考查了圆的性质,矩形的判定,熟练掌握并运用对角线互相平分且相等的四边形是矩形是解题的关键;①本小问考查了一元二次方程根的判别式,熟练掌握并运用一元二次方程根的判别式是解题的关键(①>0时,有两个不同的实数根;①=0时,有两个相等的实数根;①<0时,无实数根).17.C【分析】根据频率的性质,即各组的频率和是1,求得第二组的频率;再根据频率=频数÷总数,进行计算【详解】根据频率的性质,得第二小组的频率是0.3,则第二小组的频数是50×0.3=15.故选C .【点睛】本题考查频率、频数的关系:频率=数据数据总数.注意:各组的频率和是1.18.C【分析】先比较平均数得到乙和丙成绩较好,然后比较方差得到丙的状态稳定,于是可决定选队员丙去参赛.【详解】解:①乙、丙的平均数比甲、丁大,①应从乙和丙中选,①丙的方差比乙的小,①丙的成绩较好且状态稳定,应选的队员是丙;故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.19.C【分析】根据普查适用的范围小,具有适用性,抽样调查具有代表性,机会均等的原则,不具破坏性的特点依次判断即可.【详解】①了解地里西瓜的成熟程度,不适合普查而适合抽样调查;①了解某班学生完成20道素质测评选择题的通过率,适合普查;①了解一批导弹的杀伤范围,不适合普查而适合抽样调查;①了解成都市中学生睡眠情况,不适合普查而适合抽样调查;故选:C.【点睛】此题考查普查与抽样调查的定义,正确理解两者的关系及各自的特点是解题的关键.20.C【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,。
[必刷题]2024高一数学下册概率统计专项专题训练(含答案)
[必刷题]2024高一数学下册概率统计专项专题训练(含答案)试题部分一、选择题:1. 在一个装有5个红球和4个蓝球的袋中,随机取出一个球,取出红球的概率是多少?2. 抛掷一枚均匀的硬币两次,恰好出现一次正面的概率是多少?3. 某班有50名学生,其中男生30名,女生20名。
随机选取一名学生,选到女生的概率是多少?A. P(A) = 0.5, P(B) = 0.3, P(A∩B) = 0.6B. P(A) = 0.4, P(B) = 0.5, P(A∪B) = 0.7C. P(A) = 0.6, P(B) = 0.7, P(A∩B) = 0.9D. P(A) = 0.2, P(B) = 0.8, P(A∪B) = 0.95. 下列哪个事件是必然事件?()A. 从一副52张的扑克牌中随机抽取一张,抽到红桃B. 抛掷一枚硬币,正面朝上C. 从1到100的整数中随机抽取一个数,抽到质数D. 抛掷一枚骰子,点数大于66. 一个袋子里有10个球,编号为1至10。
随机取出一个球,取到编号为偶数的概率是多少?8. 下列哪个事件的概率为0?()A. 抛掷一枚骰子,点数为7B. 从一副52张的扑克牌中随机抽取一张,抽到大小王C. 从1到100的整数中随机抽取一个数,抽到101D. 抛掷一枚硬币,正面和反面同时朝上9. 一个随机变量X的分布列为:P(X=1)=0.2, P(X=2)=0.3,P(X=3)=0.5。
求E(X)的值。
10. 两个相互独立的随机变量X和Y,其中E(X)=2, D(X)=3,E(Y)=4, D(Y)=5。
求E(X+Y)的值。
二、判断题:1. 抛掷一枚均匀的骰子,出现偶数点的概率大于出现奇数点的概率。
()2. 两个互斥事件一定相互独立。
()3. 概率分布列中,所有概率值的和必须等于1。
()4. 随机变量X的期望值E(X)一定等于其方差D(X)。
()5. 在一个样本空间中,每个样本点出现的概率都相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013曹村概率专题复习1. (2011年高考辽宁卷理科19)(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (I )假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望;(II )试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种? 附:样本数据x 1,x 2,…,x a 的样本方差()()()2222111n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中x 为样本平均数.即X 的分布列为()1818810123427035353570E X =⨯+⨯+⨯+⨯+⨯=2.(2011年高考安徽卷理科20)(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。
现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,,p p p 123,假设,,p p p 123互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。
若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,,q q q 123,其中,,q q q 123是,,p p p 123的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)EX ;(Ⅲ)假定p p p 1231>>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。
【解析】:(Ⅰ)无论怎样的顺序派出人员,任务不能被完成的概率都是()()()p p p 1231-⋅1-⋅1-,所以任务能被完成的概率为()()()p p p 1231-1-⋅1-⋅1-=p p p p p p p p p p p p 123121323123++---+(Ⅱ)当依次派出的三个人各自完成任务的概率分别为,,q q q 123时,所需派出人员数目X 的分布列为所需派出人员数目X 的均值(数字期望)EX 是()()()EX q q q q q q q q q 112121212=1⋅+2⋅1-⋅+3⋅1-⋅1-=3-2-+⋅()EX q q q q q 12121=3-++⋅-,若交换前两人的顺序,则变为()EX q q q q q 12122=3-++⋅-,由此可见,当q q 21>时,交换前两人的顺序可减少所需派出人员的数目的均值。
(ii )也可将(Ⅱ)中EX q q q q 1212=3-2-+⋅改写为()EX q q q 112=3-2-1-⋅,若交换后两人的顺序则变为()EX q q q 113=3-2-1-⋅,由此可见,保持第一个人不变,当q q 32>时,交换后两人的顺序可减少所需派出人员的数目的均值。
组合(i )(ii )可知,当(,,)(,,)q q q p p p 123123=时EX 达到最小,即优先派完成任务概率大的人,可减少所需派出人员的数目的均值,这一结论也合乎常理。
3. 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果: A 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生成的一件产品的利润y(单位:元)与其质量指标值t 的关系式为)102(10294()94(422≥<≤<⎪⎩⎪⎨⎧-=t t t y 从用B 配方生产的产品中任取一件,其利润记为X (单位:元),求X 的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)4某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,……,8,其中X ≥5为标准A ,X ≥为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 (I )已知甲厂产品的等级系数X 的概率分布列如下所示:且X 1的数字期望EX 1=6,求a ,b 的值;(II )为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 46 3 47 5 3 48 5 3 8 3 4 3 4 4 7 5 6 7 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望.(III )在(I )、(II )的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.解析:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。
解:(I )因为16,50.46780.16,67 3.2.EX a b a b =⨯+++⨯=+=所以即又由X 1的概率分布列得0.40.11,0.5.a b a b +++=+=即由67 3.2,0.3,0.5.0.2.a b a a b b +==⎧⎧⎨⎨+==⎩⎩解得(II )由已知得,样本的频率分布表如下:用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 的概率分布列如5.(理科)(本小题满分12分)第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。
将这30名志愿者的身高编成如右所示的茎叶图(单位:cm ):若身高在175cm 以上(包括175cm )定义为“高个子”, 身高在175cm 以下(不包括175cm )定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望。
【解析】(1)根据茎叶图,有“高个子”12人,“非高个子”18人用分层抽样的方法,每个人被抽中的概率是61305=,所以选中的“高个子”有26112=⨯人,“非高个子”有36118=⨯人.因此,ξ的分布列如下:15513551225528155140=⨯+⨯+⨯+⨯=ξ∴E .6【2012高考真题湖南理17】本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则 121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且.7.近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误额概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为c b a ,,其中a >0,c b a ++=600。
当数据c b a ,,的方差2s 最大时,写出c b a ,,的值(结论不要求证明),并求此时2s(注:])()()[(1222212x x x x x x ns n-++-+-= ,其中x 为数据n x x x ,,,21 的平均数).8.【2012高考真题四川理17】(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p 。
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望18.【2012高考真题安徽理17】(本小题满分12分)9某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束。
试题库中现共有n m +道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量。
(Ⅰ)求2X n =+的概率;(Ⅱ)设m n =,求X 的分布列和均值(数学期望)。
【解析】(I )2X n =+表示两次调题均为A 类型试题,概率为12n n m n m n +⨯+++(Ⅱ)m n =时,每次调用的是A 类型试题的概率为12p =,随机变量X 可取,1,2n n n ++21()(1)4P X n p ==-=,1(1)2(1)2P X n p p =+=-=,21(2)4P X n p =+==111(1)(2)1424EX n n n n =⨯++⨯++⨯=+。
10【2012高考真题新课标理18】(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售, 如果当天卖不完,剩下的玫瑰花作垃圾处理. (1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n(单位:枝,n N ∈)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率. (i )若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【答案】(1)当16n ≥时,16(105)80y =⨯-=当15n ≤时,55(16)1080y n n n =--=-得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i )X 可取60,70,80(60)0.1,(70)0.2,(80)0.7P X P X P X ======,160.160.240.744DX =⨯+⨯+⨯= (ii )购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4y =⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=76.476> 得:应购进17枝11.【2012高考真题天津理16】(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;⑶用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记Y X -=ξ,求随机变量ξ的分布列与数学期望ξE .。