Path Integral for the Dirac Equation

合集下载

复旦量子力学讲义qmchapter-精品

复旦量子力学讲义qmchapter-精品

§4.2 Path integral
➢How to calculate K(b, a)
2020/5/29
§4.2 Path integral
➢Key: the variable in the integration is a function This is a functional integral
Classical limit: S/h >> 1 Quickly oscillate
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics
S depends on xa, xb considerably
2020/5/29
✓ The contribution of the phase from each path is proportional to S/h, where S is the action of the corresponding path
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics
Linear oscillator
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics

解二维LAPLACE方程DIRICHLET问题直接边界积分方程的GALERKIN..

解二维LAPLACE方程DIRICHLET问题直接边界积分方程的GALERKIN..

摘要Laplace方程是最典型,最简单但应用广泛的椭圆型偏微分方程。

用边界元法解边值问题,由不同的边界归化方法可以得到不同的边界积分方程,数值求解边界积分方程也有好几种方法。

本文考虑用Green公式和基本解推导得出直接边界积分方程来求解二维Laplace方程的Dirichlet问题,该直接边界积分方程是第一类Fredholm积分方程。

对二维问题,一般的带对数积分核第一类Fredholm积分方程并不总是唯一可解的,特别是对外边值问题,解在无穷远处的形态有很大的影响。

人们在用直接边界元方法进行计算时,并不刻意去考虑积分方程的可解性,但可解性的问题是不能回避的,这涉及到原问题的解与边界积分方程的解的等价性问题。

事实上,对内边值问题,第一类Fredholm直接边界积分方程的可解性条件是自然得到满足的,本文对此做了验证。

对外边值问题,考虑到二维Dirichlet 问题的解应当在无穷远处有界,故解的边界积分表达式要做修正,对积分方程的解要有约束,这样去解边界积分方程得出的解才等同于原问题的解。

一般来说,直接边界积分方程可以很方便的用配点法求解,还未见有实际用Galerkin边界元来解的报道。

本文采用Galerkin边界元方法求解直接边界积分方程,是为了验证这两种方法的效率和精度,且Galerkin法易于进行收敛性分析。

Galerkin 边界元方法是把积分方程转化为等价的边界变分方程,经用边界元离散后,通过求解线性代数方程组和计算解的离散的积分表达式求得原问题的数值解,该方法需要在边界上计算重积分。

本文推出了第一重积分的解析计算公式,对外层积分则采用高斯数值积分。

对外边值问题,第一类Fredholm积分方程的解要附加在边界上积分为零的条件,本文采用Lagrange乘子放松这个约束,求解扩展的变分方程时,可同时得出解在无穷远的值。

本文采用常单元和线性元这两种离散方式,分别用Fortran90编写了计算程序,对误差与边界元的数量的关系做了数值实验。

物理专业英语词汇

物理专业英语词汇

物理专业英语词汇摘要:物理学是一门研究自然界最基本的规律和现象的科学,它涉及到许多专业的英语词汇。

本文根据物理学的不同分支,整理了一些常用的物理专业英语词汇,并用表格的形式展示了它们的中英文对照。

本文旨在帮助物理专业的学习者和爱好者掌握一些基本的物理术语,以便于阅读和交流。

1. 基础物理词汇基础物理词汇是指一些在物理学中普遍使用的概念和量,它们是物理学的基本语言。

以下是一些基础物理词汇的中英文对照表:中文英文物理physics物质matter能量energy力force重力gravity摩擦力friction拉力traction质量mass惯性inertia加速度acceleration力矩torque静止at rest相对relative动能kinetic energy势能potential energy功work动量momentum角动量angular momentum能量守恒energy conservation保守力conserved force振动vibration振幅amplitude波wave驻波standing wave震荡oscillation相干波coherent wave干涉interference衍射diffraction轨道orbit速度velocity速率speed大小magnitude方向direction水平horizontal竖直vertical相互垂直perpendicular坐标coordinate直角坐标系Cartesian coordinate system极坐标系polar coordinate system2. 电学和磁学词汇电学和磁学是研究电荷、电流、电场、磁场等现象和规律的物理学分支,它们与光学、热学、原子物理等有着密切的联系。

以下是一些电学和磁学词汇的中英文对照表:中文英文电子electron电荷charge电流current电场electric field电通量electric flux电势electric potential导体conductor电介质dielectric绝缘体insulator电阻resistor电阻率resistivity电容capacitor3. 物理专业英语词汇物理专业英语词汇是指在物理学的学习和研究中经常使用的一些专业术语,它们涵盖了物理学的各个分支和领域,如力学、电磁学、光学、热学、量子力学等。

dirac方程最简

dirac方程最简

dirac方程最简The Dirac equation, in its simplest form, represents a fundamental equation in physics that describes the behavior of relativistic electrons. Derived by Paul Dirac in 1928, it combines the principles of quantum mechanics and special relativity, offering a unified framework for understanding the dynamics of elementary particles. The equation is formulated in terms of wave functions, mathematical objects that encode the probability distributions of particles' positions and momenta.在最简形式下,狄拉克方程是物理学中的一个基本方程,用于描述相对论电子的行为。

该方程由保罗·狄拉克于1928年推导得出,结合了量子力学和特殊相对论的原理,为理解基本粒子的动力学提供了一个统一的框架。

这个方程是用波函数来表示的,波函数是数学对象,用于编码粒子位置和动量的概率分布。

The Dirac equation is remarkable for its predictive power. It not only accounts for the energy levels of electrons in atoms, but also predicts the existence of antimatter particles, such as positrons, which are the antiparticles of electrons. This antimatter prediction was a groundbreaking revelation at the time of its discovery, and it has since been experimentally verified.狄拉克方程的预测能力非常显著。

A-Zee量子场论笔记完全版

A-Zee量子场论笔记完全版
Lecture Notes of Quantum Field Theory
Prof. Anthony Zee. (recorded by Gao Ping) June 27, 2012
Lecture 1
1.1 Introduction
At first, I will introduce a cube of physics shown below, where the horizontal axis is about the speed of motion in a physical system, leftside for slow and rightside for fast, and where the vertical axis is about the scale of a physcical system, upside for small and downside for big. Considering this property, we can fill the cube with dominant theories in physics, namely left-downside for classical physics, right-downside for special relativity, left-upside for quantum mechanics and finally right-upside for quantum field theory(QFT), a marrigae of special relativity and quantum mechanics. However, with all above, we can just fill up a planar table but not a cube, which must have the other dimension behind. And thus it is gravity theory, such as general relavity. It is challenging to build a quantum theoretical gravity today. Roughly, we can say Einstein has two daughters, special relativity and general relativity, among which one has married with quantum but the other has not. small big Quantum Mechanics Classical Physics slow Quantum Field Theory Special Relativity fast

chapter 4 路径积分

chapter 4 路径积分
第二十六页,共四十三页。
4.4 Feynman路径积分理论(lǐlùn)与 Schrodinger方程的等价性
• Schrodinger波动力学方程,以波函数描述粒子的 量子态,不计及历史
• Feynman路径积分理论引入传播(chuánbō)子,其直接 给予更细致信息
• 两者关系:
第二十七页,共四十三页。
第九页,共四十三页。
传播(chuánbō)子的物理意义
●考察(kǎochá)一个特例
第十页,共四十三页。
传播子的物理(wùlǐ)意义
●在能量 表象中 (néngliàng)
第十一页,共四十三页。
传播 子计算的例子 (chuánbō)
●自由(zìyóu)粒子
第十二页,共四十三页。
传播子计算(jì 的例子 suàn)
衍射
§3.3 路径 积分的计算方 (lùjìng) 法
2009年10月
第二十一页,共四十三页。
第二十二页,共四十三页。
Polygonal paths
第二十三页,共四十三页。
Polygonal paths
第二十四页,共四十三页。
Polygonal paths
第二十五页,共四十三页。
Polygonal paths
p1
B
r
S
p2
第四十页,共四十三页。
磁AB效应(xiàoyìng)
• 如上图,两条路径(p1和p2)同时贡献与r点。 • 同时路径积分中L的ν·A项使得每条路径上的波函数
出现一个额外(é wài)因子。
第四十一页,共四十三页。
分析(fēnxī)
• 矢势A的物理意义? • 磁通Ф满足qФ/hc=n时,干涉(gānshè)与平常

一维奇型Dirac算式自伴域的刻画

一维奇型Dirac算式自伴域的刻画

一维奇型Dirac算式自伴域的刻画王平心【摘要】Dirac方程是量子力学的基本方程,讨论Dirac算式的自伴域在数学物理中有广泛的应用,文中根据Dirac算式的最大定义域、最小定义域和Dirac算式在区间[0,b]上的自伴域的结果,利用自伴延拓的Calkin描述通过对b取极限的讨论推导出Dirac算式在区间[0,+∞)上的自伴域D(T(L))={f∈D(L)|f1(0)cos α+f2(0)sin α},并证明了当势函数q1(x),q2(x)为区间[0,+∞)上的实值连续函数,则L必是极限点.【期刊名称】《江苏科技大学学报(自然科学版)》【年(卷),期】2009(023)005【总页数】4页(P460-463)【关键词】奇型Dirac算式;自伴延拓;极限点【作者】王平心【作者单位】江苏科技大学,数理学院,江苏,镇江,212003【正文语种】中文【中图分类】O175.3微分算式的自伴域是微分算子研究的主要问题之一,关于正则Dirac算式的自伴域在文献[1-2]中已有了一些结果,在文献[3]中利用辛几何的方法给出正则Dirac算式的自伴域的刻画.本文将讨论区间[0,∞)上奇型Dirac算式的自伴域,对于其他的区间(-∞,b],[a,b),(a,b]情形可类似讨论.1 预备知识记一维Dirac算式为其中,为区间[0,+∞)上的实连续函数,设φ(x,λ),ϑ(x,λ)分别是下列Cauchy问题的解(1)下面说明φ(x,λ),ϑ(x,λ)是线性无关的;事实上,记为Wronskian行列式,则(2)即φ(x,λ),ϑ(x,λ)是线性无关的,故方程Ly=λy的解除φ(x,λ)外都能表达成ϑ(x,λ)+lφ(x,λ)的形式.考虑问题Ly=λy在点b∈[0,+∞)处满足边值y1(b)cosβ+y2(b)sinβ=0 (0≤β<π)的解,即[ϑ1(x,λ)+lφ1(x,λ)]cosβ+[ϑ2(x,λ)+lφ2(x,λ)]sinβ=0则l(λ)满足若λ是l(λ)的极点,则φ(x,λ)满足所以λ是T(L)|[0,b]的自伴延拓的特征值,因此λ是实数,故只要Im λ≠0,l(λ)就有意义,而且由于φ(x,λ),ϑ(x,λ)都是λ的整函数,则l(λ)是λ的亚纯函数,且令A=ϑ1(b,λ),B=ϑ2(b,λ),C=φ1(b,λ),D=φ2(b,λ),则由于{ϑ,φ}=-1,所以是一个分式线性变换,它把z平面和圆变成l平面上的直线和圆.当β从0~π变化时,z=cot β跑变了实轴.定理1 若Imλ≠0,则实轴在分式线性变换下的像l是平面下的圆Cb:1) Cb的方程ϑ2) Cb的圆心3) Cb的半径4) l在Cb内的充要条件是ϑ证明同Sturm-Liouville算子[1].定理2 如果b′>b,则Cb′⊂Cb,所以{Cb|b>0}组成l平面里的圆套.证明若l在Cb上,则有ϑ而b′>b,故ϑ由定理1,l在Cb内.所以Cb′⊂Cb.这样,{Cb|b>0}组成l平面里的圆套,半径rb是严格下降函数,当b→+∞时,半径rb趋于一个非负的极限,这样就产生了2种情形:1) 极限值大于零,圆套收缩成一个圆C∞;2) 极限值等于零,圆套收缩成一个点l∞.在情形1) 中,即所以故φ∈L2[0,+∞).如果取是C∞上的一个点,则对任意的b>0,由在Cb内,因而ϑ(x,λ)+,故ϑ(x,λ)+φ(x,λ)∈L2[0,+∞),这样Ly=λy的一切解均平方可积.在情形2)中,则+∞,即φ∉L2[0,+∞),由于l∞属于所有的圆C∞,则ϑ(x,λ)+l∞φ(x,λ)∈L2[0,+∞),于是Ly=λy的两个线性无关解中有一个属于L2[0,+∞),而另一个不属于L2[0,+∞).定理3 如果对某个λ0,方程对Ly=λ0y的一切解属于L2[0,+∞),则对于任何λ∈C,Ly=λy的一切解均平方可积.定义1 若对某个λ0,方程对Ly=λ0y的一切解属于L2[0,+∞),则称L在∞是极限圆的,否则称L在∞是极限点的.2 主要结果下面考虑奇型Dirac算子的自伴域,设上的实连续函数,设D(T1(L)),D(T0(L))分别是Dirac算式的最大定义域和最小定义域,其定义见文献[2],定义算子T(L)T(L)f=Lf, f∈D(T(L)),显然T0(L)⊂⊂T1(L),因而T*(L)⊂T0(L)*=T1(L).定理4 D(T*(L))={f∈D(T1(L))|f1(0)cos α+f2(0)sin α=0}证明由共轭算子的定义,要使z(x)∈D(T*(L)),则存在z*(x)∈L2[0,+∞),使得对任意的y(x)∈D(T(L))都有(Ly,z)=(y,z*)成立,此时T*(L)(z(x))=z*(x),由于T*(L)⊂T1(L),则D(T*(L))⊂D(T1(L))且T*(L)f=T1(L)f,f∈D(T*(L)),因而(Ly,z)=(y,z*)可写成上式左端分部积分将上式变为因而要使上式对任意的y(x)∈D(T(L))成立,则只需且仅需即可,由于y(x)∈D(T(L))有紧支集,故故只需z(x)满足由y(x)∈D(T(L))满足y1(0)cosα+y2(0)sinα=0,故z(x)只需满足因而D(T*(L))={f∈D(T1(L))|f1(0)cosα+f2(0)sinα=0}定理是自伴算子.证明通过简单的验证可得T(L)是对称的,因而⊂下证⊂为此只需证是对称的,任取则因而存在{an}⊂[0,+∞),且an→∞(n→∞),使得因而有故(y,T*(L)z)=(T*(L)y,z),即是自伴算子.定理6 设其中为区间[0,+∞)上的实值连续函数,则L必是极限点的.证明任取α∈R,定义T(L)T(L)f=Lf f∈D(T(L))由的自伴性可知在L2[0,+∞)中无解.故L必是极限点的.定理7 T是T0(L)的自伴延拓的充要条件是存在实数α∈R使得D(T(L))={f∈D(T1(L))|f1(0)cosα+f2(0)sinα=0}证明充分性显然,下证必要性.设T是T0(L)的自伴延拓,由于L是极限点的,则T0(L)的亏指数是1,由自伴延拓的Calkin描述可知D(T)={f∈D(T1(L))|<f,fj>=0,j=1,2}其中fj是D(T1(L))中模D(T0(L))线性无关且<f,fj>=0的函数,若取a>0,h1,h2为实无穷次可微的向量函数Supp hi⊂[0,a]且满足则h1,h2模D(T0(L))线性无关.令f1=ωh1+δh2,只要ω,δ不全为零,f1便是模D(T0(L))线性无关的函数,由于<f1,f1>=所以,当取ω,δ满足时,f1满足<f1,f1>=0,如果令ω=a+ib,δ=c+id,其中a,b,c,d为实数,则所以存在c∈R,使得ω=cδ,从而存在α∈R,使得ωcosα+δsinα=0,而<f,f1>=这样条件<f,f1>=0就变为f1(0)cosα+f2(0)sinα=0故D(T(L))={f∈D(T1(L))|f1(0)cosα+f2(0)sinα=0}.参考文献[1] Levtian B M,Sargsjan I S. Sturm-liouville and Dirac operators[M].Soviet Union:Kluwer Academic Publishers,1991.[2] 王平心,黄振友.一维正则Dirac算子自伴域的古典刻划[J].周口师范学院学报,2006,23(2):22-24.Wang Pingxin, Huang Zhenyou.Self-adjoint domain of Dirac operator with classical method [J]. Journal of Zhoukou Normal University, 2006,23(2):22-24.(in Chinese)[3] 王平心,黄振友. Dirac算子自伴域的刻划[J].江苏科技大学学报:自然科学版,2006,20(2):37-41.Wang Pingxin, Huang Zhenyou.Self-adjoint domain of Dirac operator with symplectic geometry method [J]. Journal of Jiangsu University of Science and Technology:Natural Sciences Edition, 2006,20(2):37-41.(in Chinese) [4] Goldberg S. Unbound linear operators theory and applications [M].New York:McGraw-Hill,1966.[5] Reed M, Simon B. Methods of modern mathematical physics[M]. New York:Academic Press,1975.[6] Weidmann J. Linear operators in hilbert space[M].Berlin:Springer-Verlag,1980.[7] 胡晓燕.Dirac算子特征值的迹公式[J].郑州大学学报:理学版, 2003,35(1):16-19. Hu Xiaoyan.Dirac operator eigenvalues trace identity[J]. Journal of Zhengzhou University: Natural Science Edition, 2003,35(1):16-19.(in Chinese)[8] 朱俊逸.常型Dirac算子的谱分解[J],郑州大学学报: 理学版,2003,35(1):11-15. Zhu Junyi.The spectral resolution of constant Dirac opeator[J]. Journal of Zhengzhou University: Natural Science Edition, 2003,35(1):11-15.(in Chinese)。

物理专业英语词汇F汇总

物理专业英语词汇F汇总

物理专业英语词汇(F) f band f 带f center f 心f center laser f 心激光器f center maser f心微波激射器f layer f 层f value振子强度f/d ratio f/d 比face centered crystal 面心晶体face centered cubic lattice 面心立方晶格face centered cubic structure 面心立方结构face centered lattice 面心点阵factor因子factor group 剩余群facula光斑faddeev equation法捷耶夫方程faddeev popov ghost法捷耶夫波波夫鬼态fading衰退;褪色fahrenheit scale 华氏温标fahrenheit temperature scale 华氏温标fahrenheit thermometer 华氏温度计fall降低fall of potential 电压降fall time下降时间falling sphere viscometer 落球粘度计fallout放射性沉降物false image 鬼象family 族family of asteroids 小行星族family of comets 彗星族fano factor 法诺因子far field pattern 远场图样far infrared远红外区far infrared laser远红外激光器far infrared radiation 远红外卜辐射far infrared rays 远红外卜线far point 远点far ultraviolet 远紫外区far ultraviolet laser 远紫外激光器far ultraviolet radiation 紫外线辐射far ultraviolet rays 远紫夕卜线farad 法faraday法拉第faraday cage法拉第笼faraday cell 法拉第盒faraday constant 法拉第常数faraday cup法拉第笼faraday dark space 法拉第暗区faraday effect 磁致旋光faraday rotation 磁致旋光faraday tube法拉第管faraday,s law法拉第定律farvitron线振质谱仪fast迅速的fast breeder reactor 快增殖堆fast fission快中子裂变fast fission effect快中子裂变效应fast fourier transform快速傅里叶变换fast neutron 快中子fast neutron reactor 快中子堆fast nova快新星fast reactor 快中子堆fatigue 疲劳fatigue limit疲劳极限fatigue strength 疲劳强度fcc structure面心立方结构feedback 反馈feedback amplifier 反馈放大器feedback circuit 反馈电路feedback control 反馈控制feedback factor 反馈系数feedback ratio 反馈比feeder馈电线femto 飞femtometer 费密femtosecond 飞秒femtosecond region 飞秒区域fermat,s principle 费马原理fermi费密fermi acceleration 费密加速fermi age费密年龄fermi dirac statistics 费密统计法fermi distribution 费密分布fermi energy 费密能fermi gas费密气体fermi glass费密玻璃fermi hole费密空穴fermi interaction 费密相互酌fermi level费密能级fermi liquid费密液体fermi particle 费密子fermi pasta ulam problem费密巴斯德乌拉姆问题fermi resonance 费密共振fermi selection rule 费密选择定则fermi statistics费密统计法fermi surface 费密面fermi temperature 费密温度fermi transition 费密跃迁fermi's golden rule费密黄金定律fermiology费密面学fermion费密子fermionic dark matter 费密子暗物质fermium 镄ferrielectricity 亚电性ferrimagnetic resonance 亚铁磁共振ferrimagnetism铁氧体磁性ferrite铁氧体ferrite magnetostrictive vibrator 铁氧体磁致伸缩振子ferro resonance 铁磁共振ferroelastic phase transition 铁弹性相变ferroelasticity 铁弹性ferroelectric 铁电的ferroelectric domain 铁电畴ferroelectric mode 铁电模ferroelectric phase transition 铁电相变ferroelectric semiconductor 铁电半导体ferroelectric substance 铁电性材料ferroelectricity 铁电性ferrofluid 铁磁铃ferromagnet 铁磁体ferromagnetic 铁磁的ferromagnetic dielectrics 铁磁电介质ferromagnetic fluid 铁磁铃ferromagnetic material 铁磁性材料ferromagnetic resonance 铁磁共振ferromagnetic substance 铁磁性材料ferromagnetic superconductor 铁磁超导体ferromagnetic thin film 铁磁薄膜ferromagnetism 铁磁性feynman diagram 费因曼图feynman path integral费因曼的路径积分feynman spectrum 费因曼谱ffag synchrotron固定场交变梯度回旋加速器fiber纤维fiber bundle 纤维丛fiber electrometer 悬丝静电计fiber laser纤维激光器fiber optics纤维光学fiber structure 纤维结构fibonacci semiconductor superlattice 菲博纳奇半导体超晶格fibril小纤维fibril structure 纤维结构fick,s law斐克定律fictitious spin quantum number 假想自旋量子数fictitious year 假年field场;体field adsorption 场吸附field current 励磁电流field density 场密度field desorption 场致退吸field distortion 场畸变field distribution 场的分布field effect transistor 场效应晶体管field electron emission 场致电子发射field emission 场致发射field emission microscope场致发射显微镜;自动电子显微镜field emitted electron 场致发射电子field equation 场方程field intensity 场强field ion microscope场致离子显微镜field lens 场镜field magnet 场磁铁field of forces 力场field of gravity 重力场field of view 视场field of vision 视场field operator 场算符field particle 场粒子field quantum 场量子field stop 场栏field strength 场强field structure 场结构field theory 场论fifth force第五种力fifth fundamental force 第五种基本力figure图形figure of merit 优值figure of noise 噪声指数file文件filled band 满带filled level满带能级filled shell 满壳层film软片film badge胶片剂量计film boiling膜态沸腾film dosimeter胶片剂量计film type condensation 膜状凝结filter滤器滤光器滤波器filtration 过滤final product最终产物final state interaction 终态相互酌final vacuum极限真空finder取景器finding telescope 寻星镜fine particle 微粒子fine structure 精细结构fine structure constant 精细结构常数fine structure splitting 精细结构劈裂finesse 锐度finite difference method 差分法finite element method 有限元法finite group 有限群finite universe 有限宇宙fireball 火球fireball model 火球模型first harmonics 基波first integral 初积分first law of thermodynamics 热力学第一定律first order phase transition 一级相转变first point of aries 春分点first quarter 上弦first resonance 一次共振first sound第一次声波fish finder鱼群探测器fissible可裂变的fissile可裂变的fissile nucleus可分裂的核fissility可分变性fission 分裂fission chain reaction 裂变链式反应fission chamber 裂变室fission counter 裂变计数器fission energy 裂变能量fission event裂变事件fission fragment 裂变碎片fission neutron 裂变中子fission yield裂变产额fissionable可裂变的fissionable nucleus 可裂变核 fissioning isomer 裂变同质异能素 fit适合five minute oscillations 五分钟振动 fixation 定影fixed capacitor固定电容器fixed point 定点fixed resistor固定电阻器fixed star 恒星fixing定影fixing solution 定影液fizeau fringe 菲佐条纹fizeau interferometer 菲佐干涉仪flame火焰flame photometer 火焰光度计flame photometry火焰光度法flame spectrum 火焰光谱flare太阳耀斑flare star 耀星flash闪光flash of light 闪光flash photolysis 闪烁光解flash spectrum 闪光光谱flat surface 平面flatness problem平坦性问题flattening 扁率flavor 味flexibility 挠性flexible polymer挠性聚合体flexural rigidity 弯曲刚度flexural strength 抗挠强度flexure 挠曲flexure vibration 弯曲振动flicker 闪烁flicker effect 闪烁效应flicker noise闪变噪声flicker photometer 闪烁光度计flight path飞越距离flight time飞越时间flint glass火石玻璃flip flop触发器flip flop circuit双稳态触发电路floating body 浮体floating point representation 浮点表示floating zone melting method 浮区熔炼法flocculation 凝聚flood and ebb 潮汐flooding 溢流floppy disk 软磁盘flow 流flow birefringence 怜双折射flow counter柳式计数管flow dichroism 怜二色性flow equation 怜方程flow parameter 怜参数flow pattern 镣flow proportional counter 怜正比计数器flow rate 量flow visualization 辽视化flowmeter 量计fluctuating force 涨落力fluctuation 起伏fluctuation dissipation theorem 涨落耗散定理fluctuon起伏量子fluent变数fluid 铃fluid dynamics 铃动力学fluid elasticity 水弹性fluid model 铃模型fluidal 铃的fluidic 铃的fluidity 怜性fluorescence 荧光fluorescence center 荧光中心fluorescence dosimeter 荧光剂量计fluorescence spectrophotometer 荧光分光光度计fluorescence spectrum 荧光光谱fluorescence yield 荧光产额fluorescent 萤光的fluorescent indicator tube 荧光指示管fluorescent lamp 荧光灯fluorescent material 萤光材料fluorescent radiation 特狰射fluorescent scattering 荧光散射fluorescent screen 荧光屏fluorescent x rays 荧光 x 射线fluorimeter 荧光计fluorine 氟fluorite structure 萤石型结构fluorography荧光照相法fluorometer 荧光计fluorometric analysis 荧光分析fluoroscope 荧光镜fluoroscopy荧光检查法fluorspar structure 萤石型结构flux通量flux creep磁通量蠕变flux density通量密度flux flow磁通量流flux jump磁通量跃变flux method 熔剂法flux motion 磁通量运动flux of energy 能通量flux of light 光通量flux of radiation 辐射通量flux pinning 通量锁住flux pump 通量泵flux quantization 磁通量量子化flux quantum磁通量子fluxmeter磁通计fluxoid磁通量子fluxon磁通量子fly苍蝇座flying spot electron microscope 扫描电子显微镜fm receiver档接受器focal distance 焦星巨focal length 焦星巨focal line 焦线focal plane 焦面focal point 焦点focal power 光焦度focal surface 焦曲面fock representation 福克表示fock space福克空间focometer焦距计focon聚焦锥focus焦点focused ion beam聚焦离子束focusing 倒focusing camera 倒照相机focusing coil聚焦线圈focusing cone 聚焦锥focusing lens 聚焦透镜focusing quadrupole magnet 聚焦四极磁铁focuson聚焦子foil 箔fokker planck equation 福克普朗克方程follow up control 随动控制foot pound second system 英尺磅秒单位制forbidden禁戒的forbidden band 禁带forbidden decay 禁戒衰变forbidden line 禁线forbidden lines in astrophysics 天体物理学中的禁线forbidden reflection 禁戒反射forbidden transition 禁戒跃迁forbiddenness 禁戒force 力force function 力函数force of attraction 弓|力force of gravity 重力force of inertia 惯性力force of repulsion 斥力force of rolling friction 滚动摩擦力force of sliding friction 滑动摩擦力force polygon力的多边形force triangle力的三角形forced circulation 强制循环forced convection 强制对流forced emission 强迫发射forced oscillations 受迫振荡forced vibration 受迫振荡forced vortex 强迫涡流fore vacuum 前级真空forecast 预报forecast of solar activity 太阳活动预告foreign atom 杂质原子forepump预备真空泵fork mounting 叉式装置form drag 型阻form factor形状因子formant共振峰formation of order 秩序形成formula 公式formulation 公式化fornax天炉座fortran程序语言forward scattering 前方散射foucault currents 涡电流foucault knife edge test 傅科刀口检验foucault's pendulum 傅科摆fountain effect 喷水效应four current 四维电流four dimensional space 四维空间four dimensional structure of the universe 宇宙四维结构four dimensionality 四维性four factor formula 四因子公式four force四维力four momentum 四维动量four potential 四维势four terminal network 四端网络four vector 四维矢four velocity四维速度four wave mixing 四波混合fourier component 谐波分量fourier integral傅里叶积分fourier number 傅里叶数fourier series傅里叶级数fourier spectroscopy 傅里叶光谱学fourier transform hologram傅里叶变换全息图fourier transform spectrometer 傅里叶光谱仪fourier transformation 傅里叶变换fourth sound第四次声波fractal 分形fractal dimension 分形维数fractional charge 分数电荷fractional crystallization 分级结晶fractional quantum hall effect 分数量子霍尔效应fracton分形子fracture 破裂fracture mechanics 断裂力学fragility 脆性frame antenna环形天线frame of reference 参考系francium 钫franck condon principle 富兰克康登原理franck hertz,s experiment 富兰克赫兹实验 frank read source弗朗克里德源franklin富兰克林fraunhofer diffraction 夫琅和费衍射fraunhofer hologram夫琅和费全息图fraunhofer line夫琅和费谱线fre量子free自由的free charge自由电荷free convection自由对流自然对流free electron自由电子free electron laser自由电子激光器free energy 自由能free energy of activation 激活的自由能free field自由场free free transition 自由自由跃迁free group自由群free gyroscope自由陀螺仪free motion自由运动free neutron自由中子free oscillation 自由振动free path自由程free pendulum 自由摆free rotation自由旋转free space自由空间free state自由态free surface 自由面free system 自由系free vibration 自由振动free volume自由体积free volume theory自由体积理论freedom 自由freezing 凝固freezing mixture 冷冻剂freezing point 凝固点frenkel defect夫伦克尔缺陷frenkel exciton 夫伦克尔激子frequency 频率frequency analysis 频率分析frequency band 频带frequency characteristic 频率特性frequency converter 变频器frequency converter tube 变频管frequency counter 频率计数器frequency divider 分频器frequency domain 频域frequency factor 频率因子frequency meter 频率计frequency modulation 档frequency multiplier倍频器频率倍增器frequency range 频率范围frequency response 频率响应frequency response method 频率特性法frequency shift 移频frequency spectrum 频谱frequency stability 频率稳定度frequency stabilized laser 稳频激光器frequency transfer function 频率传递函数fresnel diffraction 菲涅耳衍射fresnel half period zones 菲涅耳半周期带fresnel hologram菲涅耳全息图fresnel lens菲涅耳透镜fresnel prism 菲涅耳棱镜fresnel rhomb菲涅耳斜方系fresnel zone 菲涅耳带fresnel,s biprism菲涅耳双棱镜fresnel's dragging coefficient 菲涅耳曳引系数fresnel,s zone plate 菲涅耳波带片friction 摩擦friction coefficient 摩擦系数friction cone 摩擦锥friction layer 摩擦层friction loss摩擦损失friction of fluid lubrication 液体润滑摩擦frictional drag 摩擦阻力frictional electricity 摩擦电frictional force 摩擦力frictional oscillation 摩擦振动frictional resistance 摩擦阻力 friedel sum rule弗里德尔的求和定则 friedmann equation 弗里德曼方程friedmann universe弗里德曼宇宙frigorimeter 深冷温度计fringes with white light 白光干涉条纹froude number 弗劳德数frozen in magnetic field 冻结磁场frustrated total internal reflection 衰减全内反射frustration 抑止ft value ft 值fuel assembly燃料组件fuel cell燃料电池fuel cycle燃料循环fuel regeneration 燃料再生fuel reprocessing 燃料再生fuel rod燃料元件棒fugacity挥发性fulcrum 支点full load 满载full moon 望月full wave rectification 全波整流full width at half maximum 半宽度fullerene球壳状碳分子function 函数functional 泛函functional analysis 泛函分析functional ceramics 机能陶瓷functional derivative 泛函微分fundamental absorption 基本吸收fundamental catalog 基本星表fundamental constants 基本常数fundamental doublet 基本双重线fundamental frequency 基频率fundamental interaction 基本相互酌fundamental law 基本定律fundamental magnitude 基本量fundamental mode 关Bfundamental particle 基础粒子fundamental research 基础研究fundamental series 伯格曼系fundamental star 基本星fundamental theorem 基本定理fundamental tone 基音fundamental unit 基本单位furnace 炉furry,s theorem 弗里定理fuse熔断器保险丝fused quartz 熔融石英fusible alloy易熔合金fusing point 熔点fusion熔化fusion fission hybrid reactor核聚变裂变混合反应堆fusion point 熔点fusion reaction 聚变反应fusion reactor 热核堆fusion temperature 聚变温度。

狄拉克Dirac(英文版)

狄拉克Dirac(英文版)

ห้องสมุดไป่ตู้ublications
1. Principles of Quantum Mechanics (1930) 《量子力学原理》 2. Lectures on Quantum Mechanics (1966) 《量子力学讲义》
3. Lectures on Quantum Field Theory (1966)《量子场论讲义》
Family
• • • • • • Father: Charles Adrien Ladislas Dirac Mother: Florence Hannah Dirac Brother: Felix (Reginald Charles Félix ) Sister: Betty ( Béatrice Isabelle Marguerite) Wife: Margit Children: Judith and Gabriel, Mary Elizabeth and Florence Monica
The personal life of Dirac
Personal Life
• Born on 8 August, 1902 • In 1918: Studied in the University of Bristol’s engineering faculty. • In 1923: Graduated and studied in the St. John’s College, Cambridge as a postgraduate. • In 1925: Started to research Quantum Mechanics. • In 1927: Attended the Fifth Salvay Conference
Personal Life

Why there is something rather than nothing (out of everything)

Why there is something rather than nothing (out of everything)
of quantum fields and their vacuum (Casimir) energy,
L(a, a′) = −aa′2 − a + H2a3 + B a′2 − a′4 + 1 . (3) a 6a 2a
F (η) is the free energy of their quasi-equilibrium excita-
sical Eucidean action, and the integration runs over pe-
riodic fields on the Euclidean spacetime with a compactified time τ (of S1 × S3 topology).
For free matter fields φ(x) conformally coupled to gravity (which are assumed to be dominating in the sys-
tions with the temperature given by the inverse of the conformal time η = dτ N/a. This is a typical boson or fermion sum F (η) = ± ω ln 1 ∓ e−ωη over field oscillators with energies ω on a unit 3-sphere. We work in units of mP = (3π/4G)1/2, and B is the constant determined by the coefficient of the Gauss-Bonnet term in the overall conformal anomaly of all fields φ(x).

最伟大的物理学家Top10(国外英文资料)

最伟大的物理学家Top10(国外英文资料)

Top 10 Greatest Physicists of All Time (Based on Foreign English Resources)1. Albert EinsteinWithout a doubt, Albert Einstein tops the list of the greatest physicists of all time. His theory of relativity revolutionized our understanding of space, time, and gravity. Einstein's famous equation, E=mc², demonstrated the relationship between energy and mass, opening up new possibilities in the field of physics.2. Isaac NewtonSir Isaac Newton is another physicist who has left an indelible mark on the scientific world. His laws of motion and universal gravitation laid the foundation for classical mechanics. Newton's work in optics and the development of the reflecting telescope also contributed significantly to the advancement of physics.3. Niels BohrNiels Bohr, a Danish physicist, played a crucial role in the development of quantum mechanics. His model of the atom, which incorporated the concept of quantized energy levels, helped to explain the behavior of electrons and the stability of atoms.4. James Clerk MaxwellScottish physicist James Clerk Maxwell is renowned forhis formulation of the classical theory of electromagnetic radiation. His set of equations, known as Maxwell's equations, unified the understanding of electricity, magnetism, andlight.5. Richard FeynmanRichard Feynman was an American theoretical physicist who made significant contributions to quantum mechanics andparticle physics. His development of the path integral formulation of quantum mechanics and his work on the theoryof quantum electrodynamics earned him a Nobel Prize in Physics.6. Max PlanckGerman physicist Max Planck is considered the father of quantum theory. His discovery of Planck's constant and his proposal that energy is radiated in discrete packets, or quanta, marked the beginning of quantum physics.7. Werner HeisenbergWerner Heisenberg, another prominent figure in quantum mechanics, formulated the uncertainty principle, which states that it is impossible to simultaneously know the exactposition and momentum of a particle.8. Galileo GalileiGalileo Galilei, often referred to as the "Father of Modern Science," made significant contributions to physics, astronomy, and the scientific method. His work on inertia, falling objects, and the laws of motion laid the groundwork for Newton's theories.9. Stephen Hawking10. Marie CurieMarie Curie, a Polishborn physicist and chemist, was the first woman to win a Nobel Prize and remains the only person to win Nobel Prizes in two different sciences (Physics and Chemistry). Her work on radioactivity opened up new avenues in medical research and laid the foundation for the field of atomic physics.Continuing the exploration of the most influential physicists in history, let's delve into the lives and achievements of these extraordinary individuals who have shaped our understanding of the universe.11. Paul DiracPaul Dirac, an English theoretical physicist, is often celebrated for his prediction of the existence of antimatter, a discovery that was later confirmed the experimental work of Carl Anderson. Dirac's formulation of quantum mechanics, particularly the Dirac equation, was pivotal in the development of quantum field theory.12. Michael FaradayMichael Faraday was a British scientist who contributed immensely to the study of electromagnetism. His experiments led to the discovery of electromagnetic induction, the laws of electrolysis, and the invention of the Faraday cage. Faraday's work laid the groundwork for the future development of electric motors and generators.13. Ludwig BoltzmannAustrian physicist Ludwig Boltzmann was a key figure in the development of statistical mechanics and thermodynamics. His insight into the behavior of molecules and his formulation of the Boltzmann equation helped to explain the concepts of entropy and the statistical nature of physical laws.14. Ernest RutherfordErnest Rutherford, a New Zealandborn British physicist, is known as the father of nuclear physics. His groundbreaking gold foil experiment led to the discovery of the atomic nucleus and the understanding that most of an atom's mass is concentrated in a tiny, central nucleus.15. Murray GellMann16. J.J. ThomsonSir Joseph John Thomson, an English physicist, discovered the electron in 1897, demonstrating that atoms are notindivisible and consist of smaller particles. His work on cathode rays and the discovery of the masstocharge ratio of electrons was fundamental in the development of atomic physics.17. Enrico FermiEnrico Fermi, an Italian physicist, was pivotal in the development of nuclear technology. His work on nuclear reactions led to the construction of the first nuclear reactor and the first controlled nuclear chain reaction. Fermi's contributions to quantum theory and particle physics are also noteworthy.18. Lise MeitnerLise Meitner, an AustrianSwedish physicist, was involved in the discovery of nuclear fission. Despite facing discrimination as a woman in science, Meitner's work was crucial in understanding the process which heavy nuclei can split into lighter nuclei, releasing a significant amount of energy.19. Roger PenroseBritish mathematician and physicist Roger Penrose has made significant contributions to the understanding of general relativity and cosmology. His work on black holes, particularly the Penrose process and the Penrose singularitytheorem, has deepened our knowledge of the most extreme phenomena in the universe.20. Kip ThorneKip Thorne, an American theoretical physicist, has been at the forefront of gravitational physics and astrophysics. His work on the detection of gravitational waves, as part of the LIGO collaboration, confirmed a key prediction of Einstein's theory of general relativity and opened a new window into the cosmos.Each of these physicists has left an indelible mark on the field, pushing the boundaries of human knowledge and challenging our understanding of the natural world. Their legacies continue to inspire and guide the next generation of scientists in their quest to uncover the secrets of the universe.As we further unravel the rich tapestry of scientific achievement, let's continue to honor the contributions of more extraordinary physicists whose insights have transformed our understanding of the cosmos and the fundamental forces that govern it.21. Andrei SakharovAndrei Sakharov, a Soviet nuclear physicist, played a crucial role in the development of the Soviet hydrogen bomb. However, he is perhaps best known for his advocacy of civilliberties and human rights in the Soviet Union. His work on the concept of "metric elasticity" also contributed to the field of general relativity.22. ChenNing YangChenNing Yang, a ChineseAmerican physicist, made significant contributions to theoretical physics,particularly in the area of parity nonconservation in weak interactions. His work with TsungDao Lee led to a Nobel Prize in Physics, demonstrating that certain processes are not mirrorsymmetric.23. TsungDao LeeTsungDao Lee, a ChineseAmerican physicist, collaborated with ChenNing Yang to challenge the symmetry principles in physics. Their proposal that weak interactions do not conserve parity was a groundbreaking discovery that revolutionized particle physics.24. Sheldon GlashowSheldon Glashow, an American theoretical physicist, is known for his work on the electroweak theory, which unified the weak nuclear force and electromagnetism. Hiscontributions to particle physics, including the prediction of the W and Z bosons, were recognized with a Nobel Prize in Physics.25. Abdus SalamAbdus Salam, a Pakistani theoretical physicist, sharedthe Nobel Prize in Physics with Sheldon Glashow and Steven Weinberg for their work on the electroweak unification. Salam was instrumental in developing the mathematical frameworkthat described the weak and electromagnetic forces asdifferent aspects of the same force.26. Edward WittenEdward Witten, an American theoretical physicist and mathematician, is often regarded as one of the leadingfigures in string theory. His work has deepened our understanding of the mathematical underpinnings of theuniverse and has earned him numerous accolades, including the Fields Medal.27. Julian Schwinger28. SinItiro Tomonaga29. George GamowGeorge Gamow, a RussianAmerican physicist and cosmologist, made significant contributions to the fields of nuclearphysics and cosmology. He was one of the first to propose the Big Bang theory as the origin of the universe and also made important contributions to the understanding of stellar nucleosynthesis.30. Freeman DysonFreeman Dyson, a BritishAmerican theoretical physicist and mathematician, has made numerous contributions to quantum electrodynamics and solidstate physics. His work on the unification of the electromagnetic and gravitational forces, as well as his speculations on Dyson spheres, have been influential in theoretical physics.These physicists, through their relentless pursuit of knowledge, have not only advanced the frontiers of science but have also inspired a sense of wonder and curiosity in generations of scholars and laypeople alike. Their work continues to be a testament to the power of human intellect and the boundless potential of scientific inquiry.。

Unit 1 等离子体_动力学方程

Unit 1 等离子体_动力学方程

第第一一章章等等离离子子体体动动力力学学方方程程§1.1 引言在单粒子理论中,认为等离子体是由一些无相互作用的带电粒子组成的,而且带电粒子仅在外电磁场作用下发生运动。

但是,我们知道:等离子体与通常的中性气体的最大差别在于带电粒子的运动能够产生电磁场,反过来这种电磁场又要影响带电粒子的运动,这种电磁场称为自恰电磁场。

因此,带电粒子的运动不仅受外电磁场的作用,而且还要受自洽场的影响。

由于这种原因,用单粒子理论来描述等离子体的行为有很大的局限性,有必要用一种能够反映出带电粒子相互作用的理论来描述等离子体的状态,这就是等离子体动力学理论。

基本上有两种方法来描述等离子体动力学过程。

一种是BBGKY (Bogoliubov,Born,Green,Kirkwood 及Yvon)的方程链方法。

我们已经在《非平衡态统计力学》课程中对该方法进行了较详细地介绍,它是从系统的正则运动方程出发,通过引入系综分布函数及约化分布函数,可以得到一系列关于约化分布函数的方程链,即BBGKY方程链。

该方程链是不封闭的,为了得到动力学方程,必须对该方程链进行截断。

另一种方法是由前苏联科学家Klimontovich引入的矩方法。

在该方法中,同样可以得到一系列关于各阶矩函数的不封闭的方程链。

用这种方法描述一些较复杂的等离子体系统,例如有外电磁场存在,是非常有用的。

该方法自60年代被提出后,一直在不断的发展。

本章将利用后一种方法描述等离子体的动力学过程。

可以说,等离子体动力学是把等离子体的微观状态描述引入宏观状态描述的一个桥梁。

等离子体的微观状态可用正则运动方程来描述。

如果系统有N个粒子组成,则有6N个运动方程。

如此多的方程是难以进行求解的,而且包含的微观信息太多。

但是我们知道等离子体的宏观状态只需要为数不多的状态参量来描述,如温度、密度、流速及电磁场等。

如何把等离子体的微观状态描述向宏观状态描述过渡,这正是等离子体动力学的任务。

路径积分方法计算聚合物溶液热力学性质

路径积分方法计算聚合物溶液热力学性质

Q
<
其中 f i 是第 i 个链段的同溶济分子接触的自由能 修正项. 在 nN 很大时 , 上式可以改写成以下的路 径积分形式 ( 11b) F 12 =
< ) d<
K
Qf d l
0 l
nN
( 19b)
由式( 6) 及 ( 11b) , 得聚合物溶液的总的无热熵浓 度S 为 ST S C S < < = + = ln + <ln( z - 1) k k k N N + 113 ln( 1 Q
有相 对于链段的可加性 , 在引入了/ 有效浓度0 的概念后 可以用路径 积分方法 计算 . 当采用体积 分数代替 有效 浓度时 , 就回到了李晓毅和赵得禄的溶液理论 . 还利用本理论研究了不同分子量聚苯乙烯 - 环己 烷体系的 相分 离曲线 , 同 Flory - Huggins( FH) 理论相比 , 大大提高了同 实验数据的符合程度 . 关键词 路径积分 , 有效浓度 , 聚合物溶液 , 相分离
[ 22]
. Scholte 利用光散射
[ 23, 24]
和扩散平衡 法
[ 25]
,
测量了这个体系的 FH 相互作 用参数的浓度、 温 度及 链 长 依 赖 性, 以 及 体 系 的 相 分 离 曲 线. Koningsveld 和 Kleintjens 利用临界可溶法测量了聚 苯乙烯 - 环己烷体系在聚苯乙烯不同分子量下的 临界点 , 在不同理论的基础上计算 了 FH 相互作 用参数以及相分离曲线
[ 26~ 28]
上 世纪 40 年代 提出的 Flory -Huggins
. Painter 引入链间屏
[29, 30]
格子模型 $F = < ln <+ ( 1 - <) ln( 1 - <) + V<( 1- <) kT N ( 1)

Solution of the Dirac Equation using the Lanczos Algorithm

Solution of the Dirac Equation using the Lanczos Algorithm

|eλ n
|Eλ ,
Performing the diagonalizations in equation 4 reduces to finding the roots of the following characteristic polynomial ˆn − x · ˆ det(H 1) := (−1)n w1 . . . wn pn+1 (x) after each iteration step. The generated sequence of eigenpairs (eλ n , |eλ n ) possess the following convergence properties [14] eλ n −→ n→∞ −→ n→∞ Eλ , λ = 1, 2 , 3 , . . . , (11) (10)
arXiv:0706.2236v1 [math-ph] 15 Jun 2007
Department of Information Management, WuFeng Institute of Technology, Minsyung, Jiayee 621-53, Taiwan
Abstract
Covergent eigensolutions of the Dirac Equation for a relativistic electron in an external Coulomb potential are obtained using the Lanczos Algorithm. A tri-diagonal matrix representation of the Dirac Hamiltonian operator is constructed iteratively and diagonalized after each iteration step to form a sequence of convergent eigenvalue solutions. Any spurious solutions which arise from the presence of continuum states can easily be identified. PACS 03.65.Ge, 02.60.Lj

主要学术贡献

主要学术贡献

主要学术贡献主要从事非线性偏微分方程的研究,着重探讨流体动力学等领域中的数学理论及其应用。

多次应邀到美国、香港和新加坡等地学术访问或演讲。

主持或参加了多个科研项目,在国内外学术刊物发表论文60余篇。

主讲高等数学,数学物理方程,偏微分方程泛函方法,流体动力学的数学理论,非线性偏微分方程的某些理论。

指导博士研究生11人,其中9人已经毕业并获得博士学位。

指导硕士研究生26人,其中20人已经毕业并获得硕士学位。

合作编写教材《数学物理方程》一部,已由高等教育出版社出版。

获奖励情况(1) 1999年获得教育部科学技术进步一等奖;(2) 2000年获得教育部首届青年教师奖;(3) 2002年获得吉林省第七届青年科技奖;(4) 2006年获得吉林省长春市政府特殊津贴。

科研项目1) “相变和图像处理等领域中的某些非线性扩散方程”,教育部优秀青年教师教学与科研奖励基金项目,项目负责人,2000—2004;2) “图像处理中的非线性扩散模型”,国家自然科学基金项目青年基金项目,项目负责人,2001—2003;3) “流体动力学等领域中的具有退化性或奇异性的某些数学模型”,国家自然科学基金面上项目,项目负责人,2006—2008;4)“数学与其它领域交叉的若干专题”,国家重点基础研究发展计划973计划,参加者,2006—2011;5)“带有奇异性的某些流体动力学模型”,国家自然科学基金面上项目,项目负责人,2010年~2012年。

发表论文目录1.Yuan, Hongjun; Xu, Xiaojing Existence and uniqueness of solutions for a classof non-Newtonian fluids with singularity and vacuum. J. Differential Equations 245 (2008), no. 10, 2871--2916.2.Lian, Songzhe; Yuan, Hongjun; Cao, Chunling; Gao, Wenjie; Xu, Xiaojing On theCauchy problem for the evolution $p$-Laplacian equations with gradient term and source. J. Differential Equations 235 (2007), no. 2, 544--585.3.Lei, Yutian; Wu, Zhuoqun; Yuan, Hongjun Radial minimizers of a Ginzburg-Landaufunctional. Electron. J. Differential Equations1999, No. 30, 21 pp.4.Wu, Zhuoqun; Yuan, Hongjun; Yin, Jingxue Some properties of solutions for asystem of dynamics of biological groups. Comm. Partial Differential Equations22 (1997), no. 9-10, 1389--1403.5.Yuan, Hong Jun, Hölder continuity of interfaces for the porous medium equationwith absorption. Comm. Partial Differential Equations 18 (1993), no. 5-6, 965--976.6.Yuan, Hongjun; Wang, Changjia Unique solvability for a class of fullnon-Newtonian fluids of one dimension with vacuum. Z. Angew. Math. Phys. 60 (2009), no. 5, 868--898. 35Q357.Yin, Li; Xu, Xiaojing; Yuan, Hongjun Global existence and uniqueness ofsolution of the initial boundary value problem for a class of non-Newtonian fluids with vacuum. Z. Angew. Math. Phys. 59 (2008), no. 3, 457--474.8.Xu, Xiaojing; Yuan, Hongjun Existence of the unique strong solution for a classof non-Newtonian fluids with vacuum. Quart. Appl. Math. 66 (2008), no. 2, 249--279.9.Wang, Changjia; Yuan, Hongjun Global strong solutions for a class ofheat-conducting non-Newtonian fluids with vacuum. Nonlinear Anal. Real World Appl. 11 (2010), no. 5, 3680–3703,10.Lining, Tong; Hongjun, Yuan Classical solutions to Navier-Stokes equationsfor nonhomogeneous incompressible fluids with non-negative densities. J. Math.Anal. Appl. 362 (2010), no. 2, 476–504.11.Lian, Songzhe; Gao, Wenjie; Cao, Chunling; Yuan, Hongjun Study of thesolutions to a model porous medium equation with variable exponent ofnonlinearity. J. Math. Anal. Appl. 342 (2008), no. 1, 27--38.12.Lian, Songzhe; Yuan, Hongjun; Cao, Chunling; Gao, Wenjie The limiting problemof the drift-diffusion-Poisson model with discontinuous $p$-$n$-junctions.J. Math. Anal. Appl. 347 (2008), no. 1, 157--168.13.Yuan, Hongjun; Chen, Mingtao Positive solutions for a class of $p$-Laplaceproblems involving quasi-linear and semi-linear terms. J. Math. Anal. Appl.330 (2007), no. 2, 1179--1193.14.Xin, Zhouping; Yuan, Hongjun Vacuum state for spherically symmetric solutionsof the compressible Navier-Stokes equations. J. Hyperbolic Differ. Equ. 3 (2006), no. 3, 403--442.15.Yuan, Hongjun; Tong, Lining; Xu, Xiaojing BV solutions for the Cauchy problemof a quasilinear hyperbolic equation with $\sigma$-finite Borel measure and nonlinear source. J. Math. Anal. Appl. 311 (2005), no. 2, 715--735.16.Yuan, Hongjun; Xu, Xiaojing; Gao, Wenjie; Lian, Songzhe; Cao, ChunlingExtinction and positivity for the evolution $p$-Laplacian equation with $L^1$ initial value. J. Math. Anal. Appl. 310 (2005), no. 1, 328--337.17.Hongjun, Yuan; Songzhe, Lian; Wenjie, Gao; Xiaojing, Xu; Chunling, CaoExtinction and positivity for the evolution $p$-Laplacian equation in $R^n$.Nonlinear Anal. 60 (2005), no. 6, 1085--1091.18.Hongjun, Yuan; Xiaoyu, Zheng Existence and uniqueness for a quasilinearhyperbolic equation with $\sigma$-finite Borel measures as initial conditions.J. Math. Anal. Appl. 277 (2003), no. 1, 27--50.19.Yuan, Hongjun The Cauchy problem for a singular conservation law with measuresas initial conditions. J. Math. Anal. Appl. 225 (1998), no. 2, 427--439.20.Hongjun, Yuan Source-type solutions of a singular conservation law withabsorption. Nonlinear Anal. 32 (1998), no. 4, 467--492.21.Yuan, Hong Jun Extinction and positivity for the evolution $p$-Laplacianequation. J. Math. Anal. Appl. 196 (1995), no. 2, 754--763.22.Yuan, Hong Jun The Cauchy problem for a quasilinear degenerate parabolicsystem. Nonlinear Anal. 23 (1994), no. 2, 155--164.23.Yuan, Hong Jun Finite velocity of the propagation of perturbations for generalporous medium equations with strong degeneracy. Nonlinear Anal. 23 (1994), no. 6, 721--729.24.Yuan, Hongjun Continuity of weak solutions for quasilinear parabolicequations with strong degeneracy. Chin. Ann. Math. Ser. B 28 (2007), no. 4, 475--498.25.Yuan, Hong Jun; Lian, Song Zhe; Cao, Chun Ling; Gao, Wen Jie; Xu, Xiao JingExtinction and positivity for a doubly nonlinear degenerate parabolic equation.Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 10, 1751--1756.26.Yuan, Hong Jun; Tong, Li Ning BV solutions for a quasilinear hyperbolicequation with nonlinear source and finite Radon measures as initial conditions.(Chinese) Acta Math. Sci. Ser. A Chin. Ed. 30 (2010), no. 1, 54–70,27.Yuan, Hongjun; Wang, Shu The zero-Mach limit of a class of combustion flow.J. Partial Differ. Equ. 22 (2009), no. 4, 362–375,28.Ren, Chang Yu; Guan, Jin Rui; Yuan, Hong Jun A class of general-form parabolicMonge-Ampère equations. (Chinese) Chinese Ann. Math. Ser. A 30 (2009), no.3, 421--432. 35K9629.Yuan, Hongjun; Yan, Han Existence and uniqueness of BV solutions for a classof degenerate Boltzmann equations with measures as initial conditions. J.Partial Differ. Equ. 22 (2009), no. 2, 127--152. 35F2530.Yuan, Hongjun; Xu, Xiaojing Some entropy inequalities for a quasilineardegenerate hyperbolic equation. J. Partial Differential Equations18 (2005), no. 4, 289--303.31.Yuan, Hong Jun; Wu, Gang Quasilinear degenerate parabolic equation with Diracmeasure. (Chinese) Chinese Ann. Math. Ser. A 26 (2005), no. 4, 515--526;translation in Chinese J. Contemp. Math.26 (2005), no. 3, 291--30232.Yuan, Hongjun; Jin, Yang Existence and uniqueness of BV solutions for theporous medium equation with Dirac measure as sources. J. Partial Differential Equations 18 (2005), no. 1, 35--58.33.Yuan, Hong Jun; Xu, Xiao Jing Existence and uniqueness of BV solutions fora quasilinear degenerate hyperbolic equation with local finite measures asinitial conditions. (Chinese) Chinese Ann. Math. Ser. A 26 (2005), no. 1, 39--48; translation in Chinese J. Contemp. Math.26 (2005), no. 1, 43--5434.Yuan, Hongjun Instantaneous shrinking and localization of functions in$\roman Y_\lambda(m,p,q,N)$ and their applications. Chinese Ann. Math. Ser.B 22 (2001), no. 3, 361--380.35.Yuan, Hongjun Cauchy's problem for degenerate quasilinear hyperbolicequations with measures as initial values. J. Partial Differential Equations12 (1999), no. 2, 149--178.36.Yuan, Hongjun Localization condition for a nonlinear diffusion equation.Chinese J. Contemp. Math. 17 (1996), no. 1, 45--58.37.Yuan, Hongjun Existence and nonexistence of interfaces of weak solutions fornonlinear degenerate parabolic systems. J. Partial Differential Equations 9 (1996), no. 2, 177--185.38.Yuan, Hongjun Extinction and positivity for the non-Newtonian polytropicfiltration equation. J. Partial Differential Equations 9 (1996), no. 2, 169--176.39.Yuan, Hong Jun A localization condition for a class of nonlinear diffusionequations. (Chinese) Chinese Ann. Math. Ser. A 17 (1996), no. 1, 47--58.40.Zhao, Junning; Yuan, Hongjun The Cauchy problem of some nonlinear doublydegenerate parabolic equations. Chinese J. Contemp. Math. 16 (1995), no. 2, 173--192.41. Zhao, Jun Ning; Yuan, Hong Jun The Cauchy problem for a class of nonlinear doubly degenerate parabolic equations. (Chinese) Chinese Ann. Math. Ser. A 16 (1995), no. 2, 181--196.42. Wu, Zhuo Qun; Yuan, Hong Jun Uniqueness of generalized solutions for a quasilinear degenerate parabolic system. J. Partial Differential Equations 8 (1995), no. 1, 89--96.43.Yuan, Hong Jun Regularity of free boundary for certain degenerate parabolic equations. Chinese J. Contemp. Math. 15 (1994), no. 1, 77--86.44.Zhao, Jun Ning; Yuan, Hong Jun Uniqueness of the solutions of $u_t=\Delta u^m$ and $u_t=\Delta u^m-u^p$ with initial datum a measures: the fast diffusion case. J. Partial Differential Equations 7 (1994), no. 2, 143--159.45.Yuan, Hong Jun Regularity of the free boundary for a class of degenerate parabolic equations. (Chinese) Chinese Ann. Math. Ser. A15 (1994), no. 1, 89--97.。

英国物理知识点总结

英国物理知识点总结

英国物理知识点总结1. Classical MechanicsClassical mechanics is the branch of physics that deals with the motion of objects and the forces that cause them to move. It is based on three fundamental principles: Newton's laws of motion, which describe how objects behave when forces are applied to them; the conservation of energy, which states that energy can neither be created nor destroyed, only transformed from one form to another; and the conservation of momentum, which says that the total momentum of a closed system remains constant over time.One of the most influential figures in the development of classical mechanics was Isaac Newton, an English physicist and mathematician who is widely regarded as one of the most important scientists in history. Newton's three laws of motion laid the foundation for the modern understanding of how objects move, and his law of universal gravitation provided the first coherent explanation of the force that causes apples to fall from trees and the moon to orbit the Earth.2. ElectromagnetismElectromagnetism is the study of the electromagnetic force, which is one of the four fundamental forces of nature. It encompasses both electricity and magnetism, and describes how charged particles interact with each other and with magnetic fields. The principles of electromagnetism were first unified by James Clerk Maxwell, a Scottish physicist who formulated a set of equations that describe how electric and magnetic fields are generated and how they propagate through space.Maxwell's equations have had a profound impact on our understanding of light, as they demonstrate that light is an electromagnetic wave. This discovery has paved the way for the development of numerous technologies, including radio, television, and telecommunications. It also laid the groundwork for the theory of special relativity, as the constancy of the speed of light is a fundamental postulate of that theory.3. ThermodynamicsThermodynamics is the branch of physics that deals with the relationship between heat and other forms of energy. It is concerned with the behavior of systems that exchange heat, work, and energy with their surroundings, and it encompasses concepts such as temperature, entropy, and the laws of thermodynamics.The first law of thermodynamics, also known as the law of conservation of energy, states that energy cannot be created or destroyed, only transferred or converted from one form to another. The second law of thermodynamics, on the other hand, states that the total entropy of an isolated system can never decrease over time, and is always increasing. These two laws have far-reaching implications for our understanding of the behavior of heat andenergy, and they are fundamental to the design and operation of many technologies, such as heat engines and refrigerators.4. Quantum MechanicsQuantum mechanics is the branch of physics that deals with the behavior of matter and energy at the smallest scales, such as atoms and subatomic particles. It is a fundamentally different theory from classical mechanics, as it incorporates the principles of wave-particle duality and the uncertainty principle, which states that the position and momentum of a particle cannot be simultaneously measured with arbitrary precision.One of the key figures in the development of quantum mechanics was Paul Dirac, an English physicist who made numerous contributions to the field. He formulated the Dirac equation, which describes the behavior of relativistic electrons, and he also predicted the existence of antimatter, which was later confirmed through experimental observations.5. RelativityRelativity is the branch of physics that deals with the behavior of objects in the presence of strong gravitational fields or when they are moving at a significant fraction of the speed of light. It encompasses two theories: special relativity, which describes how the laws of physics are the same for all observers in uniform motion, and general relativity, which describes how gravity is a curvature of spacetime caused by the presence of mass and energy.The theory of special relativity was formulated by Albert Einstein, a German-born physicist who became a naturalized British citizen later in his life. It introduces the concept of spacetime, which unifies space and time into a single, four-dimensional continuum, and it provides a new understanding of how time and space are relative to the observer's frame of reference.6. Particle PhysicsParticle physics is the branch of physics that studies the properties and behavior of the fundamental particles that make up the universe. It seeks to understand the forces and interactions that govern these particles, and to uncover the underlying laws of nature that govern their behavior.The United Kingdom has made significant contributions to the field of particle physics, particularly through the research conducted at the CERN laboratory in Switzerland. British physicists have been involved in numerous experiments and discoveries, such as the observation of the Higgs boson, which is the particle that gives mass to other fundamental particles.7. Astrophysics and CosmologyAstrophysics and cosmology are two related branches of physics that deal with the study of the universe at the largest scales. They seek to understand the properties and behavior of celestial objects such as stars, galaxies, and black holes, as well as the structure and evolution of the universe as a whole.The United Kingdom has a strong tradition of research in astrophysics and cosmology, with several leading institutions and research groups dedicated to the study of these topics. British astronomers and astrophysicists have made significant contributions to our understanding of the cosmos, such as the discovery of pulsars, the mapping of the cosmic microwave background, and the identification of dark matter and dark energy.In conclusion, the field of physics encompasses a wide range of topics and disciplines, and the United Kingdom has played a significant role in the development of many of these areas. From classical mechanics to quantum physics, from electromagnetism to relativity, and from particle physics to astrophysics, British physicists have made important contributions to our understanding of the natural world and the fundamental forces that govern it. As our knowledge of the universe continues to expand, it is certain that the UK will remain at the forefront of physics research and discovery.。

超对称电动力学系统的Faddeev-Senjanovic量子化

超对称电动力学系统的Faddeev-Senjanovic量子化

Abstract According to the method of path integral quantization for the canonical constrained system in Faddeev-Senjanovic scheme, we quantize the supersymmetrical electrodynamic system in general situation, and obtain the generating functional of Green function. Another first class constraint is obtained by making the linear combination of several primary constraints, the generator of gauge transformation is constructed, gauge transformations of all the different fields are deduced. Utilizing the consistency equation of gauge fixing condition to deduce another gauge fixing condition, we find that the secondary constraint of the system is an Euler-Lagrange equation which is just the conversation law of electric charge. Thus, we do not need to calculate the other secondary constraints step by step, and get no new constraints naturally. So, the Faddeev-Senjanovic path integral quantization of the supersymmetrical electrodynamic system is simplified.

量子力学导论,薛定谔方程与路径积分,第2版

量子力学导论,薛定谔方程与路径积分,第2版

量子力学导论,薛定谔方程与路径积分,第2版Harald J W MullerKirstenIntroductionto Quantum MechanicsSchrodinger Equation and Path Integral,2nd Edition2012,950 pHardcoverISBN***-**********Harald J W MüllerKirsten著薛定谔在1926年建立了以他的名字命名的方程,开创了量子力学进入严格的和近似定量计算的新局面,促进量子力学迅速扩展了应用能力和范围。

20年之后费曼提出了量子力学的路径积分形式,并证明了与薛定谔方程的等价性。

它不仅能够解决量子力学中的一般的定量计算问题,而且在随后几十年的量子场论和规范场论的发展过程中起了不可替代的重要作用。

这两种定量处理方法各有优劣,薛定谔方程对于量子力学问题的处理无疑具有极大的优点,其图像清晰而且在数学上有许多为物理学家熟悉1/ 3的成熟处理方法,受到物理学家的普遍欢迎。

相比之下,路径积分方法的使用要麻烦得多。

但近年来,人们越来越发现路径积分方法在很多应用中有着独特的优越性。

对于这两种方法,已经有许多优秀的量子力学教科书以及专著分别给出了非常详细的讨论。

但是将两种方法对同一问题的解决办法进行相互对照与比较,从而对于各自的优点和特定的应用范畴有更深刻的理解的著作还十分罕见,本书填补了这一空白。

这是一部量子力学的教科书,它涵盖了作为导论性课程所有的主要内容,不但详述了各种位势下薛定谔方程的微扰解,介绍并算出了对应的路径积分的解,而且还详细地考虑了微扰展开的高阶行为,这在其他类似的书籍中很少见到。

本书的另一特点是没有提供习题,而是结合课文的内容选用了大量例题,给出了非常详细的计算细节,对于读者的学习十分有利。

本书的第1版出版于2006年。

第2版中,添加了许多重要的应用和很多实例。

特别是关于Coulomb势的一章被扩充到包含了化学键的介绍,而周期势的一章补充了关于金属和半导体能带论的一节,而在高阶行为的一章添加了关于渐进展开中成功地计算收敛因子的例证。

Path Integrals on Riemannian Manifolds with Symmetry and Stratified Gauge Structure

Path Integrals on Riemannian Manifolds with Symmetry and Stratified Gauge Structure

.
(1.15)
In a rigolous sense, the limit N → ∞ dose not exists but physicists use this expression for convenience. Philosophy of the path integral is symbolically written as propagation of the wave = trajectories We can construct the path integral on the half line R≥0 = R/Z2 as well: KN (x′ , x; t) = KD (x , x; t) =
arXiv:hep-th/0110015v1 2 Oct 2001
1
Basic observations and the questions
Let us consider the usual quantum mechanics of a free particle in the one-dimensional space R. A solution for the initial-value problem of the Schr¨ odinger equation i is given by φ(x, t) = with the propagator K (x, y ; t) = x|e− 2 t∆ |y = √
K (x, y ; t) represents transition probability amplitude of the particle to move from y to x in the time interval t. If the particle is confined in the half line R≥0 = {x ≥ 0}, we need to impose a boundary condition on the wave function φ(x, t) at x = 0 to make the initialvalue problem (1.1) have a unique solution. As one of possibilities we may chose the Neumann boundary condition ∂φ (0, t) = 0. (1.4) ∂x Then the solution of (1.1) is given by φ(x, t) = with the corresponding propagator KN (x, y ; t) = K (x, y ; t) + K (−x, y ; t). (1.6)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:h ep-th/989115v116Se p1998PATH INTEGRAL FOR THE DIRAC EQUATION J.POLONYI Laboratory of Theoretical Physics,Louis Pasteur University 3rue de l’Universit´e 67087Strasbourg,Cedex,France and Department of Atomic Physics,L.E¨o tv¨o s University Puskin u.5-71088Budapest,Hungary E-mail:polonyi@fresnel.u-strasbg.fr A path integral representation is given for the solutions of the 3+1dimensional Dirac equation.The regularity of the trajectories,the non-relativistic limit and the semiclassical approximation are briefly mentioned.There are different integral or sum representations for the solution of the Dirac equation.The summation over trajectories on 1+1dimensional lattice 1can be generalized by the help of the Grassman variables 2for 3+1dimensions 3.The method presented here 4has the advantage that the integration is over the real trajectories in the continuous three-space,just as in the case of the non-relativistic Schr¨o dinger equation.The disadvantage is that the spin and the chirality flips are still described by spinors so the integrand of the path integral consists of the product of 4×4matrices.But this complication can be avoided and the c-number integration recovered by means of additional compact variables 5.We start with massless chiral fermions whose equation of motion is (∂0+c∂·σ)φ=0.The ¯h -independence reflects that the causality is maintained even on the level of the quantum fluctuations.We introduce the infinitesimal time propagator G (x,y ;∆τ)=e i A (x,y ;∆τ)defined by φ(x,τ+∆τ)= dyG (x,y ;∆τ)φ(y,τ),(1)where τ=tc .The choice of the action A (x,y ;∆τ)can be motivated in the following manner:(i)We expect a self reproducible propagator,e i A (x,y ;τ1+τ2)= dze i A (x,z ;τ1)e i A (z,y ;τ2),(2)what suggests a quadratic dependence of A in the coordinates.(ii)Transla-tional invariance further restricts the propagator toA (x,y ;∆τ)=1(iii)Rotational symmetry imposes A jk=Aδj,k and that the vector B j should be parallel to the spin,B j≈σj.(iv)We want to keep the massless propagator ¯h-independent so the only choice is A=a/∆τ2and B j=bσj/∆τ,where a and b are dimensionless constants.The substitution of this propagator into (1)shows that the desired equation of motion is recovered in the continuum limit,∆τ→0for a=b.The chiral amplitudeφ(x)is thus evolved by the path integralG(x,y;τ)= j N−1 dx j e iκ 1∆τ)2−x−y∆τ dτ 1dτ)2−dx(∆τ1¯h p·σ),2∆τe−iτG(x,y;τ)=N−1e iκτ2(x−y∆τ·σ .(5) The correct spectrum E(p)=±|p|is recovered in the continuum limit accord-ing to˜G(p,τ).G(x,y;τ)shows that whenever the particle wanders offthe light cone the diverging phase of the exponent cancels the non-causal amplitude.The equation of motion for massive fermions in the presence of an external potential Aµ(x),i∂τψ=[α·(−i∂+e/c¯h A)+β/λ−e/c¯h A0]ψwhereλ=¯h/mc, is generated by the path integralG(x,y;τ)= D[x(t)]T e iκ2(dx dτ·α e i dτ[eU(p)e i¯hβtmc2 mc)2U†(p),(7)(2π¯h)3where U(p)describes a basis transformation,so it reproduces the usual rela-tivistic spectrum.The non-relativistic limit appears as a crossover between the scaling laws< ∆xat∆τ≈λ.This result can be made more plausible my noting that that the only dimensional parameter for the average velocity in the relativistic region where mass is negligible is c.Thus the trajectories of our path integral become smoother then their non-relativistic counterpart,suggesting that the fractal-like propagation of thefirst quantized non-relativistic quantum mechanics can be embedded into a smoother,more”classical”relativistic quantum dynamics.In order to obtain the saddle point approximation consider the amplitudeD[x(t)]η†f T e iκ2(dx dτ·α e i dτ[eδx(τ−∆τ)=0(10) what can be written asx(τ)+x(τ−2∆τ)−2x(τ−∆τ)η†f G0(x,y;τ)ηi,(11)whereF(τ)=12∂γ0A/+S(τ)T(τ)·αU(τ)(12)−e i∆τ(γ0A/−β/λ) L(τ−∆τ)·α−∆τ∆τ,L jk(τ)=˙x j(τ)˙x k(τ)κ|˙x(τ)|(14)and G0is the integrand of(9)evaluated at the saddle point.Wefind that the saddle point trajectory depends on the initial andfinal spinors.Furthermore, the presence of the term O(˙x2)in the action is needed for the recovery of the usual saddle point structure.In fact,the action O(˙x)would yield one saddle3point trajectory for each initial coordinate in contrast to the non-relativistic limit where the initial coordinate and velocity are needed to specify the saddle point.For a given initial coordinate x(τ)and velocity˙x(τ+∆τ)one can solve (11)for x(τ+2∆τ).The repetition of this procedure yields the saddle point trajectory corresponding to a given initial coordinate and velocity.Since the integration over real trajectories with a c-number integrand treats fermions in the same footing as bosons one canfinally develop the same non-perturbative methods for both cases.This is the point where we canfix the parameterκwhich does not influence the expectation values in the continuum limit.It is easy to see that the straight line trajectory satisfies(11)for A=0whenκ=nπτ/|x−y|.Since the average velocity at the cutoffscale is c for∆τ→0the choiceκ=πgives the renormalized path integral which is dominated by as smooth trajectories as possible.Finally we mention that the term O(˙x2)in the action is reminiscent of the Wilson term for lattice fermions because it suppresses the unwanted lattice-copies.But it is given in thefirst quantized formalism and retains chiral invariance.Actually there is no problem of giving a space-time lattice regulated form of our path integral which avoids the Nielsen-Ninomiya no-go theorem6. The passage over the second quantized stage is quite a challenge.According to the spin-statistics theorem the phase factors corresponding to the rotation by2πand the exchange of two equivalent particles are the same.Since the former is built in our path integral formalism one expects to achieve the correct Green functions for fermions without the use of Grassman variables.Another interesting feature is that the term O(˙x2)in the action should generate a chiral invariant Wilson term.References1.R.P.Feynman,A.R.Hibbs,Quantum Mechanics and Path Integrals,(McGraw-Hill,N.Y.),1965;T.Jacobson,L.S.Schulman,J.of Phys.A 17,375(1984);B.Gaveau,T.Jacobson,M.Kac,L.S.Schulman,Phys.Rev.Lett.53,419(1984).2.B.Gaveau,L.S.Schulman,Phys.Rev.D36,1135(1987);T.Miura,Progr.of Th.Phys.61,1521(1979);D.M.Gitman,S.I.Zlatev,Phys.Rev.D55,7701(1997).3.See L.Schulman’s contribution to this Proceedings.4.P.Gosselin,J.Polonyi,Ann.Phys.267,(1998).5.Work in progress.6.H.B.Nielsen,M.Ninomiya,Nucl.Phys.185,20(1981).4。

相关文档
最新文档