七年级数学下册第四章三角形3探究三角形全等的条件第1课时三角形全等的判定SSS课件新版北师大版

合集下载

七年级数学下册第四章三角形知识归纳

七年级数学下册第四章三角形知识归纳

第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示.2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角。

二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.用字母可表示为a+b〉c,a+c〉b,b+c〉a;a—b<c,a-c<b,b-c 〈a.2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c〉a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b-<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。

2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

3、判定一个三角形的形状主要看三角形中最大角的度数.4、直角三角形的面积等于两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质。

北师大版七年级数学下册第四章三角形复习三角形全等的判定及其应用与尺规作三角形课件

北师大版七年级数学下册第四章三角形复习三角形全等的判定及其应用与尺规作三角形课件
第九讲 三角形全等的判定及其应用
与尺规作三角形
全等三角形的性质
全等三角形的对应边相等,对应角相等。
书写格式:
∵△ABC≌ △DFE ∴ AB=DF, BC=FE, AC=DE (全等三角形的对应边相等) ∠ A= ∠ D, ∠ B= ∠ F ,
∠ C= ∠ E (全等三角形的对应角相等)
全等三角形的条件
证明两条线段 相等:可以放 在一个三角形 中证等腰
例3:如图,点B在线段AE上,∠CAE=∠DAE, ∠CBE=∠DBE.求证:EC=ED.
例4 如图,已知点E在△ABC的外部,点D在BC边上, DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( D ) A.△ABD≌△AFD B.△AFE≌△ADC C.△AEF≌△DFC D.△ABC≌△ADE
类型2 对称模型
图形特点:沿公共边或者公共顶点所在某条直线折叠可得 两三角形重合
常见模型: 类型3 旋转模型
图形特点:共顶点,绕该顶点旋转可得到两三角形重合
类型4 一线三等角
图形特点:同一条线上有三个相等的角
类型5 组合模型 平移+旋转模型
平移+对称模型
图形特点:将其中一个三角形平移至与另一个三角形对应顶点重合,然后 两三角形可关于这点所在直线对称变换后重合,或者绕该顶点旋转后重合
三角形全等判定方法一
三边分别相等的两个三角形全等。
(可以简写为“边边边”或“SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS)E
F
三角形全等的判定二
两角及其夹边分别相等的两个三角 形全等. 简记为 “角边角”或“ASA” 。

2020湘教版七年级数学下册 4.3 探索三角形全等的条件

2020湘教版七年级数学下册 4.3 探索三角形全等的条件

【解析】因为四边形ABCD是正方形,所以AB=AD, ∠ABC=∠BAD=90°. 因为BF⊥a于点F,DE⊥a于点E, 所以∠FAB+∠FBA=∠FAB+∠EAD=90°,所以∠FBA=∠EAD. 所以在Rt△AFB和Rt△AED中,因为∠AFB=∠DEA=90°,∠FBA=∠EAD ,AB=DA, 所以△AFB≌△DEA(AAS), 所以AF=DE=8,BF=AE=5, 所以EF=AF+AE=8+5=13. 答案:13
【规律总结】 由已知说明两三角形全等的一般思路
(1)若已知两边→ (2)若已知一边一角→ 边为角的对边→ 找任找一角角的找另→夹一角A邻A→S边S→AS SAS 边为角的邻边→ 找边的找另第一三邻边角→→SSASSA
找边的对角→ AAS (3)若已知两角→
找夹边→ ASA 找任一角的对边→ AAS
【解析】由BD=CE可得BD+DE=CE+DE即BE=CD,得三边对应相等. 答案:BE=CD或BD=CE
5.如图所示,在△ABC和△EFD中,AD=FC,AB=FE,BC=ED.说明△ABC≌△FED.
【解析】因为AD=FC,所以AD+DC=FC+DC, BC=ED,
即AC=FD,在△ABC和△FED中,AC=FD, AB=FE,
【规范解答】因为AE∥CF,
所以∠AED=∠CFB,
…………………………2分
特别提醒:BE和DF不是△ADE
因为DF=BE, 所以DF+EF=BE+EF,
与△CBF中的对应边.
即DE=BF,…………… 4分
在△ADE和△CBF中,
AE=CF,∠AED=∠CFB ,DE=BF,
所以△ADE≌△CBF(SAS). ……………………6分

4.3探索三角形全等的条件第1课时边边边(教案)2021-2022学年七年级数学下册北师大版(安徽)

4.3探索三角形全等的条件第1课时边边边(教案)2021-2022学年七年级数学下册北师大版(安徽)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在小组讨论环节,学生们分享的成果让我感到惊喜,他们能够将所学知识应用到实际问题中。但我也意识到,有些学生在表达自己的观点时不够自信,可能需要我在课堂上创造更多机会,鼓励他们大胆发言。
最后,我会在课后收集学生的反馈,了解他们在学习过程中的困惑和问题,以便在下一节课中进行针对性的讲解和辅导。通过不断的反思和改进,我相信我能让这节课更加高效,让学生们真正掌握三角形全等的种方法来帮助学生理解三角形全等的条件,特别是SSS全等定理。我注意到,学生们在开始时对全等概念的理解比较模糊,但在通过实际操作和案例分析后,他们的理解逐渐加深。我觉得有几个环节做得不错,但也有些地方需要改进。
首先,导入新课时的生活化问题设计,成功吸引了学生的注意力,他们能够将新知识与日常生活联系起来,这有助于提高他们的学习兴趣。在讲授理论知识时,我尽量使用简洁明了的语言,结合教具和动画演示,让学生能够直观感受到全等三角形的特征。
2.增强空间想象能力,通过观察和操作,把握三角形全等在几何图形中的应用,培养几何直观;
3.培养数学应用意识,能够将三角形全等知识应用于解决实际问题,体会数学与现实生活的联系,提高解决实际问题的能力。
三、教学难点与重点
1.教学重点
-理解并掌握三角形全等的定义,明确全等三角形的性质。
-熟悉并运用SSS全等条件,即三边分别相等的两个三角形全等。

三角形全等的判定(第1课时) 教案

三角形全等的判定(第1课时) 教案

课题:三角形全等的判定(第1课时)授课时间2016年9月13日授课班级初一(8)班授课教师俞云妹教学目标:知识技能掌握边边边条件的内容;能初步应用边边边条件判定两个三角形全等.过程方法1、经历探索三角形全等条件的过程,体会用操作,归纳得出数学结论的过程2、会运用边边边条件证明两个三角形全等情感态度通过探索三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好品质以及发现问题的能力.教学重点和难点:重点:寻找”sss”条件难点:探索三角形全等的条件教学过程:教学策略教学环节教学内容师生活动设计意图一、情境引入复习:已知△ABC ≌△ A ′B ′ C ′,找出其中相等的边与角:思考:满足这六个条件可以保证△ABC ≌△A ′B ′C ′吗?追问1:当满足一个条件时, △ABC 与△A ′B ′C ′全等吗?追问2:当满足两个条件时, △ABC 与△A ′B ′C ′全等吗?师出示复习,学生回答.独立思考思考问题.学生发现需要再分两种情况进行说明,即一条边分别相等、一个角分别相等.在探究过程中,可以通过画图加以说明,也可以利用三角尺等进行说明.学生独立思考,教师适先提出“全等判定”问题,构建出三角形全等条件的探索路径,然后以问题串的方式呈现探究过程,引导学生层层深入地思考问题.追问3:当满足三个条件时, △ABC 与△A ′B ′C ′全等吗?满足三个条件时,又分为几种情况呢?时点拨,最后达成共识:满足“两个条件”分两边、一边一角或两角分别相等三种情况.学生分三组分别进行探究,通过画图、展示交流,最后得出结论:只满足“两个条件”的两个三角形不一定全等.学生回答问题,并相互补充,发现需要分四种情况进行研究,即三边、三角、两边一角、两角一边分别相等.二、观察发现活动:尺规作图,探究“边边边”判定方法先任意画出一个△ABC ,再画出一个△A ′B ′C ′,使A ′B ′= AB ,B ′C ′= BC ,A ′C ′= AC .把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?画法:(1)画线段B ′C ′=BC ; (2)分别以B ′、C ′为圆心,BA 、BC 为半径画弧,两弧交于点A ′;(3)连接线段A ′B ′,A ′C′.思考:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?边边边公理:三边对应相等的两个三角形全等.简写为“边边边”或“SSS ”.师指导学生学生画法,学生操作、思考并小组交流.师板书,规范符号表示形式.通过作图、剪图、比较图的过程,感悟基本事实的正确性,获得三角形全等的“边边边”判定方法.在概括基本事实的过程中,引导学生透过现象看本质,锻炼学生用数学语言概括结论的问题:我们曾经做过这样的实验:将三根木条钉成一个三角形木架,这个三角形木架的形状、大小就的应用练习:1.课本P37页练习第1、2题五、体验收获谈谈你的收获和体会师引导学生回答,并补充完善.能力.通过小结,使学生梳理本节课所学内容,掌握本节课的核心—构建三角形全等条件的探索思路,以及判定三角形全等的“边边边”方法.六、实践延伸学生课后独立完成.检测学生对本节所学知识的掌握情况.。

北师版数学七年级下册 利用“角边角”“角角边”判定三角形全等

北师版数学七年级下册 利用“角边角”“角角边”判定三角形全等

1. 在△ABC 和△DEF 中,AB=DE,∠B=∠E,要使
△ABC≌△DEF,则下列补充的条件中错误的是( A )
A.AC=DF
B.BC=EF
C.∠A=∠D
D.∠C=∠F
2. 在△ABC 与△A′B′C′ 中,已知∠A=44°,∠B=67°,
∠C′=69°,∠A′=44°,且 AC=A′C′,那么这两个三角
∠B =∠B' (全等三角形对应角相等).
因所在为以△∠AABDAD⊥D和BBC=△∠,AAA'B''DD'D''B⊥' 中'.B,'C',全边等上的三高角也形B相对等应.
∠ADB =∠A'D'B' (已证),
DC A′
∠B =∠B' (已证),
AB = AB (已证),
B′
D′ C′
所以△ABD≌△A'B'D'(AAS). 所以 AD = A'D'.
几何语言: 在△ABC 和△A′B′C′ 中,
∠A =∠A′(已知),
A
A′
AB = A′B′(已知),
∠B =∠B′(已知),
B
C B′
C′
所以△ABC≌△A′B′C′(ASA).
典例精析
例1 已知:∠ABC=∠DCB,∠ACB=∠DBC.
试说明:△ABC≌△DCB. 解:在△ABC 和△DCB 中,
3 cm
60°
45°
思考: 这里的条件与问题 1 中的条件有什么相同点与不同
点?你能将它转化为问题 1 中的条件吗?
60°
75°
归纳总结

4.3探索三角形全等的条件(3)全等三角形的判定——SAS-2024学年北师大版数学七年级下册

4.3探索三角形全等的条件(3)全等三角形的判定——SAS-2024学年北师大版数学七年级下册
所以△AEB≌△ADC(SAS).
所以∠B=∠C.
4.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点
在同一直线上,连接BD,BE.以下四个结论:
①BD=CE;
②∠ACE+∠DBC=90°;
③BD⊥CE;
④∠BAE+∠DAC=180°.
①③④
其中正确的是____________.(把正确结论的序号填在横线上)
解:在△ABC与△DCB中,
= ,
∠ = ∠,
= ,
所以△ABC≌△DCB(SAS).
3.如图,已知线段BE,CD交于点O,点D在线段AB上,点E在线段
AC上,AB=AC,AD=AE.试说明∠B=∠C.
解:在△AEB和△ADC中,
= ,
∠ = ∠ ,
= ,
△AOD≌△COB.
= ,
解:在△AOD和△COB中, ∠ = ∠,
= ,
所以△AOD≌△COB(SAS).
如图,BA=BE,BC=BD,∠ABD=∠EBC.试说明△ABC≌
△EBD.
解:因为∠ABD=∠EBC,
所以∠ABD-∠CBD=∠EBC-∠CBD.
所以∠ABC=∠EBD.
是由它抽象出的几何图形,点B,C,E在同一条直线上,连接DC.请
找出图②中的全等三角形,并说明理由.(不再添加其他线段,不再
标注或使用其他字母)
△ABE≌△ACD
解:你找到的全等三角形是:_________________.
解:因为△ABC和△DAE是等腰直角三角形,
所以AB=AC,AE=AD,∠BAC=∠DAE=90°.
第四章
三角形

探索三角形全等的条件第1课时利用“边边边”判定三角形全等课件

探索三角形全等的条件第1课时利用“边边边”判定三角形全等课件

BC=B'C' ∴ △ABC ≌△A'B'C(' SSS)
基本事实
运用新知
(针对目标2)
例1. 已知:在△ABC和△DEF中,AB=DE,AC=DF, BC=EF,试说明两个三角形全等吗?
A
解:在△ABC和△ DEF中
∵ AB=DE ( 已知) BC= EF ( 已知) AC=DF ( 已知 )
∴ △ABC ≌△DEF( SSS )
几何语言的表述:
在△ABC和△DEF中
AB=DE,
A
D
AC=DF,
BC=EF.
B
CE
F
∴△ABC≌△DEF
探究新知
动手做一做: (1)取出三根硬纸条钉成一个三角形,你能拉动其中两边, 使这个三角形的形状发生变化吗?
三角形的框架,它的大小和形状 是固定不变的,三角形的这个性 质叫做三角形的稳定性.
探究新知
B
A
E
D
C 评价方式:自评、互评 评价标准:每得到一对全等三角形得1❤
能说明全等的理由得1❤ 能通过同学的讲解理解全等的理由得1❤
应用新知 (针对目标3)
有一些长度适当的木条,用钉子把它们分别钉成三角形和四边形,
并拉动它们.
三角形的大小和形状是固定不变的,而四边形的形状会改变.
只要三角形三边的长度确定了,这个三角形的形
状和大小就确定,三角形的这个性质叫
三角形的
稳定性
探究新知
想一想:给出三个条件画三角形时,你能说出有哪几种可能 的情况吗?
三角、三边、两角一边和两边一角,一共四种情况
结论: 1. 三个内角分别相等的两个三角形不一定全等. 2. 三边分别相等的两个三角形全等,简写为“边边边”或“SSS”.

北师版初中七下数学4.3.1 探索三角形全等的条件(1)(课件)

北师版初中七下数学4.3.1 探索三角形全等的条件(1)(课件)

当堂检测
5.如图,AB=DC,添加一个条件,可用“SSS”判定△ABC≌△DCB, 这个条件是 AC=DB .
6.如图,建高楼常需要用塔吊来吊建筑材料,而塔吊的 上部是三角形结构,这是应用了三角形的哪个性质? 答:__稳__定__性____.
当堂检测
7.已知AC=AD,BC=BD,试说明:AB是∠DAC的角平分线.
90° 30° 60°
90° 60°
30°
这说明有三个角对
应相等的两个三角
形不一定全等.
讲授新课
②三条边:已知两个三角形的三条边都分别为3 cm,4 cm,6 cm, 它们一定全等吗?
4 cm 3 cm 6 cm
4 cm 3 cm 6 cm
4 cm 3 cm 6 cm
通过平移、旋转、翻折,得到它们能够完全重合,也就 是说它们是全等的.
C
解:在△ABC和△ABD中,
AC=AD( 已知), BC=BD( 已知), AB=AB( 公共边), ∴△ABC≌△ABD( SSS ),
1 A
2
B D
∴∠1=∠2(全等三角形的对应角相等), ∴AB是∠DAC的角平分线(角平分线的定义).
当堂检测
8.已知:如图,AB=DC,AD=BC.
求证:∠A=∠C.
讲授新课
在生活中,我们也经常会看到应用四边形不稳定性的例子.
当堂检测
1.如图,下列三角形中,与△ABC全等的是(C )
当堂检测
2. 如图,已知AB=AC,AE=AD,点B,D,E,C在同一 条直线上,要利用“SSS”推理得出△ABE≌△ACD,还需 要添加的一个条件可以是( B ) A.BD=DE B.BD=CE C.DE=CE D.以上都不对

七年级数学下册第四章4.3.1-4.3.3教案

七年级数学下册第四章4.3.1-4.3.3教案

第四章 三角形4.6探索三角形全等的条件(第1课时)教学目标1.探索三角形全等的“边边边”的条件,会利用“边边边”的条件判断两个三角形全等2.知道三角形的稳定性 教学重、难点重点:利用“边边边”的条件判断两个三角形全等 难点:利用“边边边”的条件判断两个三角形全等 教学过程一、情境导入【温习旧知】已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.图中相等的边是: 相等的角是: 【自学指导】活动一:只给一个条件画三角形 1.画一个边长为3厘米的三角形。

2.画一个内角为45°的三角形。

与你的小组成员交流,只给一个条件,大家画出的三角形全等吗?活动二:只给两个条件画三角形1.画一个边长为3厘米,内角为45°的三角形。

2.画两个内角分别为30°和50°的三角形。

3.画一个两边长分别为2厘米和3厘米的三角形。

与你的小组成员交流,,只给两个条件,大家画出的三角形全等吗?C 'B 'A 'C B A活动三:给出三个条件画三角形给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条___、两边一内角、两_____一边. 1.画三个内角分别为30°,60°和90°的三角形。

把你画的三角形与同伴画的三角形进行比较,它们全等吗?2.画三条边长分别为3cm 、4cm 、5cm 的三角形。

把你画的三角形与同伴画的三角形进行比较,它们全等吗?结论:(1)_______________的两个三角形全等,简写为_________或_________.(2)用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的__________.二、思考探究,获取新知 问题一:如图, △ABC 是一个钢架,AB=AC,AD 是连接点A 与BC 中点D 的支架,求证: △ABD ≌ △ACD问题二: 已知:如图AB=CD,AD=BC.则∠A 与∠C 相等吗?为什么?三、精讲延伸DB1.已知:如图,AD=BC ,AE=FC ,DF=BE 。

专题探索三角形全等的条件(SSS和SAS)(知识讲解)数学七年级下册(北师大版)

专题探索三角形全等的条件(SSS和SAS)(知识讲解)数学七年级下册(北师大版)

专题4.10 探索三角形全等的条件(SSS 和SAS )(知识讲解)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).特别说明:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).特别说明:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、用“SSS”和“SAS”直接证明三角形全等➽➼证明✮✮求值1.如图,已知:AB =AC ,BD =CD ,E 为AD 上一点.(1) 求证:△ABD △△ACD ;(2) 若△BED =50°,求△CED 的度数.【答案】(1) 证明见分析 (2) 50CED ∠=︒【分析】(1)根据SSS 即可证明△ABD △△ACD ;(2)只要证明△EDB △△EDC (SAS ),即可推出△BED =△CED ,进而得到答案. (1)证明:在△ABD 和△ACD 中, AB ACBDCD AD AD ⎧⎪⎨⎪⎩===,△△ABD △△ACD (SSS );(2)解:△△ABD △△ACD ,△△ADB =△ADC ,在△EDB 和△EDC 中,DB DC BDE CDE DE DE ⎧⎪∠∠⎨⎪⎩===,△△EDB △△EDC (SAS ),△△BED =△CED ,△△BED =50°,△△CED =△BED =50°.【点拨】本题考查全等三角形的判定和性质,解题的关键是根据图形题意,熟练掌握两个三角形全等判定与性质.举一反三:【变式1】如图,点A 、M 、N 、C 在同一条直线上,AB CD =,BN DM =,AM CN =,求证:AB CD ∥.【分析】根据AB CD =,BN DM =,AM CN =,利用SSS 定理证明ABN CDM ≌,从而得到A C ∠=∠,再根据内错角相等,两直线平行,AB CD ∥得证.解:证明:∵AM CN =∴AM MN CN MN∴AN CM =在ABN 和CDM 中AB CD BN DM AN CM =⎧⎪=⎨⎪=⎩,∴()ABN CDM SSS △≌△∴A C ∠=∠∴AB CD ∥(内错角相等,两直线平行)【点拨】本题考查了三角形全等的判定方法和性质,以及平行线的判定,解题关键是掌握全等三角形的判定方法,运用全等三角形的性质证明线段和角相等.【变式2】如图,已知AB AC =,AD AE =,BD CE =,求证:312.【分析】利用SSS 可证明△ABD△△ACE ,可得△BAD=△1,△ABD=△2,根据三角形外角的性质即可得△3=△BAD+△ABD ,即可得结论.解:在△ABD 和△ACE 中,AB=AC AD=AE BD=CE ⎧⎪⎨⎪⎩,△△ABD△△ACE ,△△BAD=△1,△ABD=△2,△△3=△BAD+△ABD ,△△3=△1+△2.【点拨】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.2.已知:如图,AB AC =,F ,E 分别是AB AC ,的中点,求证:ABE ACF ≌.在ABE 与△AB AC A A AE AF =⎧⎪∠=∠⎨⎪=⎩ABE △≌△【点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:ASAAAS 、、【变式1】如图,点D 在BC 上,,ADB B BAD CAE ∠=∠∠=∠.(1) 添加条件:____________(只需写出一个),使ABC ADE ≅;(2) 根据你添加的条件,写出证明过程.【答案】(1) AC AE = (2) 见分析【分析】(1)根据已知条件可得AB AD =,BAC DAE ∠=∠,结合三角形全等的判定条件添加条件即可;(2)结合(1)的条件,根据三角形全等的判定条件添加条件进行证明即可.解:(1)添加的条件是:AC AE =,故答案为AC AE =;(2)△,ADB B ∠=∠△AB AD =,△BAD CAE ∠=∠△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,又AC AE =△ABC ADE ≅【点拨】本题主要考查了三角形全等的判定,确定出三角形全等判定条件是解答本题的关键.【变式2】如图所示,DC CA ⊥,EA CA ⊥,CD AB =,CB AE =,求证:(1) BCD EAB ≌△△;(2) DB BE ⊥.【分析】(1)利用SAS 判定定理证明三角形全等即可;(2)由()≌DCB BAE SAS △△,可得∠=∠DBC BEA ,∠=∠BDC EBA ,再利用90DBC BDC ∠+∠=︒,可得90∠+∠=︒DBC EBA ,即90DBE ∠=︒,所以DB BE ⊥.解:(1)证明:△DC CA ⊥,EA CA ⊥,△90∠=∠=︒DCB BAE ,在DCB △和BAE 中,CD AB DCB BAE CB AE =⎧⎪∠=∠⎨⎪=⎩△()≌DCB BAE SAS △△. (2)证明:由(1)可知()≌DCB BAE SAS △△, △∠=∠DBC BEA ,∠=∠BDC EBA ,△90DBC BDC ∠+∠=︒,△90∠+∠=︒DBC EBA ,即90DBE ∠=︒,△DB BE ⊥.【点拨】本题考查全等三角形的判定定理及性质,垂直的定义,解题的关键是掌握全等三角形的判定定理及性质.类型二、用“SSS”和“SAS”间接证明三角形全等➽➼证明✮✮求值3.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC≌≌DEF .【分析】首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC△△DEF .解:△AF=DC ,△AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩△△ABC△△DEF (SSS )举一反三: 【变式1】如图,已知:PA=PB,AC =BD ,PC =PD ,△PAD 和△PBC 全等吗?请说明理由.【分析】由AC=BD ,利用线段的和差关系可得AD=BC ,利用SSS 即可证明△PAD△△PBC.解:△AC =BD ,△AC+CD=BD+CD ,即AD =BC ,又△PA =PB ,PC =PD ,△△PAD△△PBC(SSS)【点拨】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.【变式2】如图,点D ,A ,E ,B 在同一直线上,EF =BC ,DF =AC ,DA =EB .试说明:△F =△C .【分析】根据SSS 的方法证明△DEF△△ABC,即可得到结论.解:因为DA =EB , 所以DE =AB.在△DEF 和△ABC 中, 因为DE =AB ,DF =AC ,EF =BC ,所以△DEF△△ABC(SSS),所以△F =△C.【点拨】本题考查了全等三角形的判定和性质,属于简单题,找到证明全等的方法是解题关键.4.如图,在ABCD 中,点E 、F 在BD 上,ABE 与CDF 全等吗?若全等,写出证明过程;若不全等,请你添加一个条件使它们全等,并写出证明过程.(1) 你添加的条件是__________.(2) 证明过程: 【答案】(1) BE DF =,答案不唯一; (2) 证明见分析; 【分析】(1)根据选择的全等三角形判定方法添加合适的条件即可;(2)由四边形ABCD 是平行四边形得到AB CD ∥,AB CD =,得ABE CDF ∠=∠,再用上添加的条件,即可证明结论.(1)解:BE DF =(答案不唯一)故答案为:BE DF =(答案不唯一)(2)证明:△四边形ABCD 是平行四边形,△AB CD ∥,AB CD =,△ABE CDF ∠=∠,在ABE 和CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,△ABE CDF △≌△(SAS ).【点拨】此题考查了平行四边形的性质、全等三角形的判定等知识,熟练掌握全等三角形的判定是解题的关键.举一反三:【变式1】如图,在ABC 和ADE 中,AB AD =,AC AE =,且BAD CAE ∠=∠,求证:ABC ADE △≌△.【分析】根据BADCAE ∠=∠可得BAC DAE ∠=∠,再根据SAS 即可证明.证明:△BAD CAE ∠=∠,△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC ADE △≌△.【点拨】本题主要考查了用SAS 证明三角形全等,解题的关键是通过BAD CAE ∠=∠得出BAC DAE ∠=∠.【变式2】图,BE CF =,AC DF =,AC DF ∥.求证:ABC DEF ≌△△.【分析】首先根据BE CF =可得BC EF =,再由AC DF ∥可得ACB F ∠=∠,然后利用定理证明ABC DEF ≌即可.证明:△BE CF =,△BE EC CF EC ++=,即BC EF =,△AC DF ∥,△ACB F ∠=∠, 在ACB △和DFE △中,BC EF ACB F AC DF =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC DEF ≌.【点拨】此题主要考查了全等三角形的判定和平行线的性质,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.注意:AAA SSA 、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.类型三、全等的性质与“SSS”和“SAS”综合➽➼证明✮✮求值 5.已知:如图,在ABC 中,AB AC AD =,是BC 边上的中线.求证:AD BC ⊥(填空).证明:在三角形ABD ACD 和中,△()()()______________BD AB ⎧=⎪⎪=⎨⎪⎪⎩已知已知公共边,△ ≌ ( ).△ADB ∠= (全等三角形的对应角相等).△1902ADB BDC ∠∠︒==(平角的意义). △(垂直的意义).【答案】,,,,SSS DC AC AD AD ABD ACD ADC AD BC =∠⊥,△△,,【分析】证明()SSS ADB ADC ≌△△.推出ADB ADC ∠∠=,可得结论. 证明:△AD 是BC 边上的中线,△BD CD =,在三角形ABD △和ACD 中,【变式1】如图:AB AC =,BD CD =,若28B ∠=︒,求C ∠的度数.【答案】28︒ 【分析】连接AD ,利用“SSS ”证明ABD ACD △≌△,即可得到答案.解:连接AD ,在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,()SSS ABD ACD ∴≌C B ∴∠=∠,28B ∠=︒,28C ∴∠=︒.【点拨】本题考查了全等三角形的判定和性质,正确作辅助线构造全等三角形是解题关键.【变式2】已知:如图,AC BD =,AD BC =,AD ,BC 相交于点O ,过点O 作OE AB ⊥,垂足为E .求证:(1) ABC BAD ≌.(2) AE BE =.【分析】(1)利用SSS 证明ABC BAD ≌;(2)根据全等三角形的性质得出DAB CBA ∠=∠,则OA OB =,根据等腰三角形的性质可得出结论.(1)证明:在ABC 和BAD 中,AC BD BC AD AB BA =⎧⎪=⎨⎪=⎩,△ABC BAD ≌(2)证明:△ABC BAD ≌△CBA DAB ∠=∠,△OA OB =,△OE AB ⊥,△AE BE =.【点拨】此题考查了全等三角形的判定与性质,利用SSS 证明ABC BAD ≌是解题的关键.6.如图,在ABC 中,CM 是AB 边上的中线,8AC =,12BC =,求CM 的取值范围.【答案】210CM <<【分析】倍长中线CM 至点N ,构造BNM ,易得ACM BNM ≅△△,再利用三角形的三边关系找到CN 的取值范围,进而得到CM 的取值范围.解:如图,延长CM 到点N ,使CM MN =,连接BN ,在ACM △和BNM 中,CM NM AMC BMN AM BM =⎧⎪∠=∠⎨⎪=⎩,∴ACM BNM ≅△△(SAS ),∴8AC BN ==, 在BCN △中,BC BN CN BC BN -<<+,∴128128CN -<<+,即420CN <<,∴4220CM <<,即210CM <<.【点拨】本题考查了全等三角形的性质与判定以及三角形的三边关系,解决本题的关键是倍长中线构造全等三角形.举一反三:【变式1】如图,已知在ABC 与ADE 中,90BAC DAE AB AC AD AE ∠=∠=︒==,,,点C ,D ,E 三点在同一条直线上,连接BD .图中的CE BD 、有怎样的数量和位置关系?请证明你的结论.【答案】CE BD =,证明见分析【分析】根据SAS 证明ACE ABD ≌△△,即可得到CE BD =.解:CE BD =,证明:△90BAC DAE ∠=∠=︒,△BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠,在ACE △和ABD △中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩△()SAS ACE ABD ≌△CE BD =.【点拨】此题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.【变式2】如图已知AOB 和MON △都是等腰直角三角形.(1) 如图1,连接AM ,BM ,此时AM ,BN 的数量关系为___________请说明理由.(2) 若将MON △绕点O 顺时针旋转,如图2,当点N 恰好在AB 边上时,求证:222BN AN MN +=.【答案】(1) AM BN =,理由见分析(2) 见分析 【分析】(1)由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =(2)连接AM ,由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =,再求得90MAN ∠=︒,利用勾股定理即可得到222BN AN MN +=解:(1)AM BN =,理由如下:△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ON AOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =(2)如下图,连接AM ,△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,45B BAO ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ONAOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =,45B MAO ∠=∠=︒,△90MAN MAO BAO ∠=∠+∠=︒,△222AM AN MN +=,△222BN AN MN +=【点拨】本题考查了旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质及勾股定理,熟练掌握全等三角形的判定和性质是解决问题的关键。

3 探索三角形全等的条件 第一课时 用“边边边”判定三角形全等

3 探索三角形全等的条件  第一课时 用“边边边”判定三角形全等

文字语言:三边对应相等的两个三角形全等.
(简写为“边边边”或“SSS”) A 几何语言:
在△ABC和△ DEF中,
AB=DE, BC=EF,
B
C
D
CA=FD,
∴ △ABC ≌△ DEF(SSS).
E
F
典例精析
例1 如图,有一个三角形钢架,AB =AC ,AD 是
连接点A 与BC 中点D 的支架.试说明:
3.在复杂的图形中进行三角形全等条件的分析和探 索.(难点)
导入新课
导入
一块三角形的玻璃损坏后,只剩下如图①所示 的残片,你对图中的残片做哪些测量,就可以割 取符合规格的三角形玻璃?与同伴交流.
讲授新课
一 三角形全等的判定(“边边边”)
探究活动1:一个条件可以吗?
(1)有一条边相等的两个三角形 不一定全等 (2)有一个角相等的两个三角形 不一定全等
不会

发现
1.三角形具有稳定性. 2.四边形没有稳定性.
理解“稳定性”
“只要三角形三条边的长度固定,这个三角形的形 状和大小也就完全确定,三角形的这种性质叫做 “三角形的稳定性”. 这就是说,三角形的稳定性不是“拉得动、拉不动” 的问题,其实质应是“三角形边长确定,其形状和 大小就确定了”.
你能举出一些现实生活中的应用了三角形 稳定性的例子吗?
当堂练习
1.填空题:
(1)如图,AB=CD,AC=BD,△ABC和△DCB
是否全等?试说明理由. 解: △ABC≌△DCB. 理由如下:
AB = CD,
A = B
D =
C
AC = BD, BC = CB ,
△ABC≌ △DCB (SSS).
(2)如图,D、F是线段BC上的两点, A

北师大版七年级下册数学说课稿:4.3.1《探索三角形全等的条件》

北师大版七年级下册数学说课稿:4.3.1《探索三角形全等的条件》

北师大版七年级下册数学说课稿:4.3.1《探索三角形全等的条件》一. 教材分析《探索三角形全等的条件》这一节内容是北师大版七年级下册数学的一个重要部分。

在此之前,学生已经学习了三角形的性质、三角形的分类以及三角形的判定等知识。

本节课通过探索三角形全等的条件,让学生掌握三角形全等的判定方法,为后续学习三角形相似、解三角形等知识打下基础。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,能够通过观察、操作、猜想、验证等方法探索数学问题。

但部分学生对几何图形的认识还不够清晰,对全等三角形的概念及判定方法的理解可能存在困难。

因此,在教学过程中,要关注学生的认知水平,引导学生逐步理解全等三角形的判定条件。

三. 说教学目标1.知识与技能:让学生掌握三角形全等的判定方法,能够运用这些方法判断两个三角形是否全等。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生探索几何问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:三角形全等的判定方法。

2.教学难点:如何引导学生理解并掌握三角形全等的判定条件,以及如何运用这些判定方法解决实际问题。

五. 说教学方法与手段本节课采用讲授法、问答法、讨论法、操作活动法等教学方法。

利用多媒体课件、几何画板等教学手段,帮助学生直观地理解全等三角形的判定条件。

六. 说教学过程1.导入新课:通过复习三角形的相关知识,引导学生回顾已学过的三角形性质,为新课的学习做好铺垫。

2.探索全等三角形的判定条件:(1)让学生观察两个形状相同的三角形,引导学生发现全等三角形的特征。

(2)引导学生通过操作,尝试将一个三角形变换成另一个三角形,从而探索全等三角形的判定条件。

(3)学生进行讨论,总结全等三角形的判定方法。

3.讲解判定方法:(1)边边边(SSS)判定法:引导学生理解并掌握三角形三边分别相等,则两个三角形全等。

北师大版数学七年级下册4.用“边角边”判定三角形全等课件

北师大版数学七年级下册4.用“边角边”判定三角形全等课件

当堂小练
如图,点A,F,C,D在一条直线上,AB//DE,AB=DE,AF=DC.
求证:BC//EF.
证明: ∵ AB//DE, ∴∠A=∠D.
∵AF=DC, ∴ AF+FC=DC+CF.
A
即AC=DF.
在△ABC和△DEF中,
AB=DE,
∠A=∠D,
AC=DF,
∴ △ABC≌△DEF(SAS),∴∠ACB=∠DFE,BC//EF.
新课讲授
解:由题可知,∠ACB=∠DCE(对顶角相等). 在△CAB和△CDE中, CA=CD, ∠ACB=∠DCE, CB=CE, ∴△CAB≌△CDE(SAS). ∴AB=DE,即DE的长就是A,B的距离.
新课讲授
练一练 如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相
同的距离,到达C,D两地.此时C,D到B的距离相等吗?为什么?
两种情况是否都能判定两个三角形全等?你能具体说明吗?
新课讲授
思考 先画出一个△ABC,再画出一个△A′B′C′,使得AB=A′B′,∠A=∠A′
,AC=A′C′(即两边及其夹角分别相等),此时的△ABC和△A′B′C′
全等吗?
画法:(1)画∠DA′E=∠A;
(2)在射线A′D上截取A′B′=AB,
解:C,D到B的距离相等.
∵AB是南北方向,CD是东西方向,
B
∴∠BAD=∠BAC=90°.
在△BAD和△BAC中,
AD=AC,
∠BAD=∠BAC,
D AC
BA=BA,
∴△BAD≌△BAC(SAS),∴BD=BC.
新课讲授
思考 先画出一个△ABC,再画出一个△A′B′C′,使得AB=A′B′,∠B=∠B′ ,AC=A′C′(即两边及其中一边的对角分别相等),此时的△ABC 和△A′B′C′全等吗?

北师大版数学七年级下册4 第3课时 利用“边角边”判定三角形全等

北师大版数学七年级下册4 第3课时 利用“边角边”判定三角形全等
解析:要判断能不能使△ABC≌△DEF,应看所给出的条件是不 是两边和这两边的夹角,只有选项C的条件不符合,故选C.
方法总结:判断三角形全等时,注意两边与其中一边的对 角相等的两个三角形不一定全等.解题时要根据已知条件的 位置来考虑,只具备SSA时是不能判定三角形全等的.
随堂即练
1.在下列图中找出全等三角形进行连线.
►Living without an aim is like sailing without a compass. 生活没有目标,犹如航海没有罗盘。
►A man is not old as long as he is seeking something. A man is not old until regrets take the place of dreams. 只要一个人还有追求,他就没有老。直到后悔取代了梦想,一个人才算老。
复习引入
1.回顾三角形全等的判定方法1
三边对应相等的两个三角形全等(可以简写为
“边边边”或“SSS”).
A
2.符号语言表达:
在△ABC和△ DEF中
B
D
C
AB=DE
BC=EF
CA=FD
E
F
所以 △ABC ≌△ DEF(SSS)
新课引入
除了SSS外,还有其他情况吗?
当两个三角形满足六个条件中的3个时,有四种情况:
所以∠1+∠DBC= ∠2+ ∠DBC(等式的性质),
即∠ABC=∠DBE. 在△ABC和△DBE中,
AB=DB(已知), ∠ABC=∠DBE(已证), CB=EB(已知),
A
D
1
B2
C
所以△ABC≌△DBE(SAS).

初中数学教学课例《全等三角形的判定(第一课时)》教学设计及总结反思

初中数学教学课例《全等三角形的判定(第一课时)》教学设计及总结反思

如果两个三角形有 3 组元素对应相等,那么这两个
三角形很有可能全等。这三组元素包含有以下四种情
况:“两边一角”、“两角一边”、“三边”、“三角”。
上几节课我们讨论了三边相等的情况,从这节课开始,
我们将对“两边一角”进行讨论。
如果两个三角形有两条边和一个角分别对应相等,
这两个三角形会全等吗?
问题 1:如果已知一个三角形的两边及一角,那么
初中数学教学课例《全等三角形的判定(第一课时)》教学 设计及总结反思
学科
初中数学
教学课例名
《全等三角形的判定(第一课时)》

三角形全等的判定是指三角形中的边、角满足什么
条件可以判断两个三角形全等。
教学重点:构建三角形全等条件的探索思路,“边 教材分析
边边”判定方法。
教学难点:构建三角形全等条件的探索思路,用尺
有几种可能的情况呢?(两种,两边一夹角和两边一对 角)
每一种情况下得到的三角形都全等吗? (三)探索新知: 一.探究两边相等以及它们的夹角相等的三角形全 等。 再任意画出一个,再画出一个,使,,(即使两边 和它们的夹角对应相等)。把画好的剪下,放到上,它 们全等吗? 通过以上小实验,你发现了什么? 二.得出结论 同学们各抒己见后总结:发现对于已知的两条线段 和一个角,以该角为夹角,所画的三角形都是全等的。 这就是判别三角形全等的另外一种简便的方法: 两边和它们的夹角对应相等的两个三角形全等(可 以简写成“边角边”或“SAS”)。 三.例题讲解 例 1 如图 11.2-6,有一鱼塘,要测鱼塘两端 A,B 的距离,可先在平地上取一个可以直接到达 A 和 B 的点 C,连接 AC 并延长到 D,使 CD—CA,连接 BC 并延长到 E,使 CE—CB,连接 DE,那么量出 DE 的长就是 A,B 的距离,为什么?

七年级数学下册第四章三角形3探索三角形全等的条件教学课件新版北师大版

七年级数学下册第四章三角形3探索三角形全等的条件教学课件新版北师大版

1.讨论并解决“问题导引”中的问题. 略.
2.如图,∠B=∠E,AB=EF,BD=EC,那么△ABC与△FED 等吗? 为什么?AC∥FD吗? 为什么? 解:全等. 因为BD=EC, 所以BD-CD=EC-CD,即BC=ED. 因在△ABC与△FED中, 为AB=EF ,∠B=∠E ,BC=ED, 以△ABC ≌ △FED(SAS). 所以∠ACB=∠FDE.所以∠ACD=∠FDC. 所以AC∥FD.
判定两个三角形全等的思路: (1)至少应找出一组对应边相等. (2)根据已知条件寻找合适的判定方法: 已知两边想到用SAS或SSS;已知一角一边想到用SAS 或ASA或AAS;已知两角想到用ASA或AAS.
谢谢观赏
勤能补拙,学有成就!
2021下册 北师大版
第四章 三角形
3 探索三角形全等的条件(第1课时)
1.能记住三角形全等的“SSS”判定条件及三角形的稳 定性. 2.经历对三角形全等的分析与画图,归纳获得三角形全 等的条件并会利用.
如图,工人师傅要检查人字梁的∠B和∠C是否相等, 但他手边没有量角器,只有一个刻度尺.他是这样操作的: ①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量 出DE的长为a米,FG的长为b米.若a=b,则说明∠B和∠C是 相等的.你想知道其中的奥秘吗?让我们一起来探索吧!
第四章 三角形 3 探索三角形全等的条件
第2课时
1.通过作图、思考、探索出全等三角形的“ASA”“AAS” 的判定方法.
2.能说出判定三角形全等的“ASA”“AAS”的内容,并会运 用它们解决简单的数学问题.
如图,某同学不慎将一块三角形玻璃模具打碎成了三块, 他是否可以只带其中的一块碎片到商店去,配到一块与原 来一样的三角形模具?如果可以,带哪块去合适?为什么?

北师版七年级下册数学 第4章 三角形 用三边关系判定三角形全等

北师版七年级下册数学 第4章 三角形  用三边关系判定三角形全等
知识点 1 判定两个三角形全等的基本事实:“边边边”
1. 只给一个条件(一组对应边相等或一组对应角相等). ①只给一条边:
②只给一个角:
60°
60°
知1-导
可以发现按这些 条件画的三角形 都不能保证一定 全等.
60°
2. 给出两个条件: ①一边一内角:
知1-导
30° ②两内角:
30°
30°
30°50°
∴△ABC≌△A′B′C′(SSS).
B′
知1-导
A
C A′
C′
知1-讲
例1 如图,已知点A,D,B,F在一条直线上,AC=FE, BC=DE,AD=FB.试说明:△ABC≌△FDE.
导引: 欲说明△ABC≌△FDE,已知AC=FE, BC=DE,需说明AB=FD,然后根据 “SSS”可得结论.由AD=FB,利用等 式的性质可得AB=FD,进而得解.
两个三角形全等的判定1: 三边对应相等的两个三角形全等. 简写为“边边边”或“SSS”. 注:这个定理说明,只要三角形的三边的长度确定 了,这个三角形的形状和大小就完全确定了,这也 是三角形具有稳定性的原理.
用符号语言表达:
在△ABC和△A′B′C′中,
AB= A′B′,
A∵C= A′C′,
B
BC= B′C′,
知2-讲
总结
知2-讲
在本例中,有两组相等线段,可作辅助线构造有 公共边的两个三角形,利用“SSS”说明两个三角形全 等.
知2-练
1 如图,AB=DE,AC=DF,BC=EF,则∠D 等于( D ) A.30° B.50° C.60° D.100°
知2-练
2 如图,已知AE=AD,AB=AC,EC=DB,下 列结论: ①∠C=∠B;②∠D=∠E;③∠EAD= ∠BAC;④∠B=∠E. 其中错误的是( D) A.①② B.②③ C.③④ D.只有④

第四章第03讲 探究三角形全等的条件(6类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第四章第03讲 探究三角形全等的条件(6类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第03讲探究三角形全等的条件(6类热点题型讲练)1.理解和掌握全等三角形判定方法“边角边”、“角边角”、“角角边”、“边边边”定理.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.知识点01全等三角形的判定(1)判定定理1:SSS ﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS ﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA ﹣﹣两角及其夹边分别对应相等的两个三角形全等.(可以简写成“角边角”或“ASA ”).特别说明:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .(4)判定定理4:AAS ﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(可以写成“角角边”或“AAS ”)特别说明:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.知识点02全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.知识点03全等三角形的应用(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.题型01三角形的稳定性及应用【例题】(2024上·广西南宁·八年级统考期末)如图,南宁白沙大桥是一座斜拉索桥,造型美观,结构稳固,其蕴含的数学道理是()A.三角形的稳定性B.四边形的不稳定性C.三角形两边之和大于第三边D.三角形内角和等于180【变式训练】1.(2023上·河北沧州·八年级统考期中)以下生活现象不是利用三角形稳定性的是()A.B.C.D.2.(2024上·福建厦门·八年级统考期末)周日,小乔在家帮妈妈打扫卫生,为方便拆取窗帘,他拿来一个人字梯,并且在人字梯的中间绑了一条结实的绳子,如图所示,请问小乔这样做的道理是()A .两点之间,线段最短C .三角形具有稳定性3.(2024上·湖北省直辖县级单位角形,这样做的数学依据是题型02用SSS 证明两三角形全等【例题】(2023·云南玉溪·统考三模)如图,点B EC F ,,,在一条直线上,AB DF AC DE BE CF ===,,,求证:ABC DFC △≌△.【变式训练】1.(2023·云南·统考中考真题)如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.2.(2023春·全国·七年级专题练习)如图,已知90E F ∠=∠=︒,点B C ,分别在AE AF ,上,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)求证:DE DF =.题型03用ASA 证明两三角形全等【例题】(2023春·广东惠州·八年级校考期中)如图,BC EF ∥,点C ,点F 在AD 上,AF DC =,A D ∠=∠.求证:ABC DEF ≌△△.【变式训练】1.(2023·校联考一模)如图,点A 、D 、B 、E 在同一条直线上,若AD BE =,A EDF ∠=∠,.E ABC ∠=∠求证:AC DF =.2.(2023·浙江温州·温州市第八中学校考三模)如图,在ABC 和ECD 中,90ABC EDC ∠=∠=︒,点B 为CE 中点,BC CD =.(1)求证:ABC ECD ≌△△.(2)若2CD =,求AC 的长.题型04用AAS 证明两三角形全等【例题】(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)如图,点E 在ABC 边AC 上,AE BC =,BC AD ∥,CED BAD ∠=∠.求证:ABC DEA△△≌【变式训练】1.(2023·浙江温州·统考二模)如图,AB BD =,DE AB ∥,C E ∠=∠.(1)求证:ABC BDE ≅ .(2)当80A ∠=︒,120ABE ∠=︒时,求EDB ∠的度数.2.(2023秋·八年级课时练习)如图,已知点C 是线段AB 上一点,DCE A B ∠∠∠==,CD CE =.(1)求证:ACD BEC △≌△;(2)求证:AB AD BE =+.题型05用SAS 证明两三角形全等【例题】(2023·广东广州·校考模拟预测)如图,已知OA OC =,OB OD =,AOB COD ∠=∠.求证:AOB COD ≌△△.【变式训练】1.(2023·吉林松原·校联考三模)已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AB DE =,BF CE =.求证:ABC DEF ≌△△.2.(2023春·山东济南·七年级济南育英中学校考期中)如图,点B 、E 、C 、F 在一条直线上,AC DF ∥,AC DF =,BE CF =.求证:ABC DEF ≌△△.题型06添加条件使两三角形全等【例题】(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【变式训练】1.(2023·黑龙江鸡西·校考三模)如图,点,,,B F C E 在一条直线上,已知,==BF CE AC DF ,请你添加一个适当的条件_________使得ABC DEF ≌△△.(要求不添加任何线段)2.(2023·北京大兴·统考二模)如图,点B ,E ,C ,F 在一条直线上,AC DF ∥,BE CF =,只需添加一个条件即可证明ABC DEF ≌△△,这个条件可以是________(写出一个即可).3.(2023秋·八年级课时练习)如图,已知90A D ∠=∠=︒,要使用“HL ”证明ABC DCB △≌△,应添加条件:_______________;要使用“AAS ”证明ABC DCB △≌△,应添加条件:_______________________.一、单选题1.(2023上·湖北恩施·八年级统考期末)巴东长江大桥全长2.1公里,位于长江水道之上,是连接巴东县南北两岸的重要通道.如图,这是大桥中的斜拉索桥,那么斜拉索大桥中运用的数学原理是()A .三角形的内角和为180︒B .三角形的稳定性C .两点之间线段最短D .垂线段最短2.(2024上·浙江衢州·八年级统考期末)如图,小筧家里有一块三角形玻璃碎了,他带着残缺的玻璃去玻璃店配一块与原来相同的,请问师傅配出相同玻璃的依据是()A .SSSB .SASC .AASD .ASA3.(2023上·江苏盐城·八年级统考期末)在下列条件中,不能作为判断ABC DEF ≌△△的条件是()A .,,AB DE BC EF C F==∠=∠B .,,AB DE AC DF A D ==∠=∠C .,,AB DE AC DF BC EF ===D .,,A D B E AC DF∠=∠∠=∠=4.(2024上·山东烟台·七年级统考期末)如图,ABC 中,90AB AC BAC =∠=︒,,CD AD ⊥于点D ,BE AD⊥于点E ,若74CD BE ==,,则DE 的长为()A .2B .3C .4D .75.(2024上·海南儋州·八年级统考期末)如图,小李用若干长方体小木块,分别垒了两堵与地面垂直的木块墙,其中木块墙24cm AD =,12cm CE =.木块墙之间刚好可以放进一个等腰直角三角板,点B 在DE 上,点A 和C 分别与木块墙的顶端重合,则两堵木块墙之间的距离DE 为()A .48cmB .42cmC .38cmD .36cm二、填空题8.(2024上·山东滨州·八年级统考期末)BB '可以绕着O 点转动,就做成了一个测量工具,那么判定OAB 和OA B ''△全等的依据为9.(2024上·河南驻马店·八年级统考期末)教育部颁布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校社团组织了一次测量探究活动,测量校园内的小河的宽度,如图所示,小东和小颖在河对岸选定一个目标点别与河岸垂直且A 、C 、E三、解答题11.(2024上·吉林长春·八年级统考期末)如图,点A 、C 、D 、B 在同一条直线上,点E 、F 分别在直线AB 的两侧,AE BF =,CE DF =,AD BC =.(1)求证:ACE BDF V V ≌.(2)若55CDF ∠=︒,求ACE ∠的度数.12.(2023上·四川巴中·八年级统考期末)如图,BD AC ⊥于点D ,CE AB ⊥于点E ,BE CD =,BD 与CE 交于点O .(1)求证:COD BOE ≌△△;(2)若2CD =,5AE =,求AC 的长.13.(2024上·浙江湖州·八年级统考期末)如图,在ABC 中,E 是AB 上一点,AC 与DE 相交于点F ,F 是AC 的中点,AB ∥CD .(1)求证:AEF CDF △≌△;(2)若107AB CD ==,,求BE 的长.14.(2023上·四川眉山·八年级校考期中)如图,在四边形ABCD 中,AB CD ,12∠=∠,DB DC =,DBC DCB ∠=∠.(1)求证:ABD EDC △≌△;(2)若135A ∠=︒,30BDC ∠=︒,求BCE ∠的度数.15.(2024上·浙江丽水·八年级统考期末)如图,,,A D B E AF CD ∠∠∠∠===.(1)求证:ABC DEF ≌△△;(2)若20A ∠=︒,75E ∠=︒,求BCF ∠的度数.16.(2023上·甘肃武威·八年级校考期中)如图,在ABC 中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE △≌△;(2)若100A ∠=︒,50C ∠=︒,求DEC ∠的度数.17.(2024上·四川宜宾·八年级统考期末)小明和小亮准备用所学数学知识测一池塘的长度,经过实地测量,绘制如下图,点B F C E 、、、在直线l 上(点F 、C 之间的距离为池塘的长度),点A 、D 在直线l 的异侧,且AB DE ∥,A D ∠=∠,测得AB DE =.(1)求证:ABC DEF ≌△△;(2)若120m BE =,38m BF =,求池塘FC 的长度.18.(2023上·广西来宾·八年级统考期中)如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)求证:CB CD =;(2)若8AE =,6CD =,求四边形AECF 的面积;(3)猜想DAB ∠,ECF ∠,DFC ∠三者之间的数量关系,并证明你的猜想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航ຫໍສະໝຸດ ◆典例导学◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

相关文档
最新文档