三段式电流保护的设计(完整版)
(完整word版)三段式电流保护
三段式电流保护一、 电流速断保护(第I 段)图1 简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护.为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A 母线处的保护1来讲,其起动电流'.1dz I 必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B 母线上三相短路时的电流..max d B I ,即:'.1..maxdz d B I I >(1—1)引入可靠系数' 1.2~1.3k K =,则上式即可写为: ''.1..max dz k d B I K I =•(1—2)当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C 母线上三相短路时的电流..max d C I ,即:''.2..max dz k d C I K I =•(1—3)当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数' 1.2~1.31k K =>,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、 限时电流速断保护(第II 段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
三段式电流保护(通用教材)
由三相五柱电压互感器组成
中性点直接接地系统的接地 保护
零序电流保护 零序方向电流保护
零序电流保护
零序电流速断保护的整定原则 (1)零序I段的动作电流应躲过被保护线路末端发生单相或两
相接地短路时可能出现的最大零序电流。 (2)躲过由于断路器三相触头不同时合闸所出现的最大零序
电流。 (3)在220kV及以上电压等级的电网中,当采用单相或综合
影响阻抗继电器正确工作的因素及克服方法
电力系统振荡的影响及振荡闭锁回路 电力系统振荡
影响阻抗继电器正确工作的因素及克服方法
振荡闭锁 电力系统发生振荡和短路时的主要区别 振荡时,电流和各点电压的幅值均呈现周期性变化而短路后,短路电
而短路时,电流是突然增
动作时限的整定
构成
灵当敏过系 电数流(保K护sen作)的为校本验线路的t2I主II保护t时1II,I 要求Kt sen
≥
1.3~1.5;
当作为相邻线路的后备保护时,要求Ksen ≥ 1.2。
模块2 电网相间短路的方向电流保护 (TYBZ01301002)
【模块描述】本模块讨论以电流的方向为判据,解决 两侧电源或单电源环网线路电流保护的选择性问题。 通过问题的提出和解决,达到理解掌握方向元件的构 成,正确动作,正确接线和整定计算的目的。
绝缘监视装置
绝缘监视装置
零序电流保护
当发生单相接地时,故障线路的零序电流是所有非故 障元件的零序电流之和,故障线路零序电流比非故障 线路大,利用这个特点可以构成零序电流保护。保护 装置通过零序电流互感器取得零序电流,电流继电器 用来反映零序电流的大小并动作于信号。
零序功率方向保护
利用故障线路与非故障线路零序功率方向不同的特点, 可以构成有选择性的零序功率方向保护,发生接地故 障时,故障线路的零序电流滞后于零序电压90°,若 使零序功率方向继电器的最大灵敏角为,则此时保护 装置灵敏动作。非故障线路的零序电流超前零序电压 90°,零序电流落人非动作区,保护不动作。
电力系统继电保护课程设计——三段式电流保护的设计说明
电力系统继电保护课程设计题目:三段式电流保护的设计班级::学号:指导教师:设计时间:1 设计原始资料1.1 具体题目如图 1.1所示网络,系统参数为ϕE =115/3kV ,1G X =15Ω、2G X =10Ω、3G X =10Ω, 1L =2L =60km 、3L =40km 、C B L -=50km 、D C L -=30km 、E D L -=20km ,线路阻抗0.4Ω/km,I rel K =1.2、II rel K =III rel K =1.15,max C B I -=300A ,max D C I -=200A ,max E D I -=150A ,ss K =1.5,re K =0.85。
A B图1.1 系统网络图试对线路BC 、CD 进行电流保护的设计。
1.2 要完成的容(1)保护的配置及选择;(2)短路电流计算(系统运行方式的考虑、短路点的考虑、短路类型的考虑);(3)保护配合及整定计算;(4)保护原理展开图的设计;(5)对保护的评价。
2 设计要考虑的问题2.1 设计规程2.1.1 短路电流计算规程在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流, 然后根据计算结果,在满足《继电保护和自动装置技术规程》和题目给定的要求条件下,尽可能采用简单的保护方式。
其计算步骤及注意事项如下。
(1)系统运行方式的考虑除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或故障切除的情况下,发生短路时流过保护装置的短路电流最大和最小的系统运行方式,以便计算保护的整定值和保护灵敏度。
在需采用电流电压联锁速断保护时,还必须考虑系统的正常运行方式。
(2)短路点的考虑求不同保护的整定值和灵敏度时,应注意短路点的选择。
若要绘制短路电流、电压与距离的关系曲线,每一条线路上的短路点至少要取三点,即线路的始端、中点和末端三点。
(3)短路类型的考虑相间短路保护的整定计算应取系统最大运行方式下三相短路电流,以作动作电流整定之用;而在系统最小运行方式下计算两相短路电流,以作计算灵敏度之用。
电流三段保护课程设计
电流三段保护课程设计一、教学目标本课程旨在让学生掌握电流三段保护的基本原理、接线方式、动作逻辑及应用场合。
通过学习,学生能熟练运用电流三段保护知识解决实际问题,提高电气设备的安全运行能力。
1.理解电流三段保护的定义、分类及作用。
2.掌握电流三段保护的原理、接线方式及动作逻辑。
3.熟悉电流三段保护在不同场合的应用案例。
4.能够分析电气设备的保护需求,选择合适的电流三段保护方案。
5.能够正确安装、调试电流三段保护装置。
6.能够对电流三段保护装置进行故障排查和维护。
情感态度价值观目标:1.培养学生对电气设备安全运行的重视。
2.培养学生动手实践、团队协作的能力。
3.培养学生关注新技术、新动态的意识。
二、教学内容本课程的教学内容主要包括电流三段保护的基本原理、接线方式、动作逻辑及应用场合。
具体安排如下:1.电流三段保护的基本原理:介绍电流三段保护的定义、分类及作用。
2.电流三段保护的接线方式:讲解电流三段保护的接线方式及其优缺点。
3.电流三段保护的动作逻辑:分析电流三段保护的动作逻辑,让学生理解其工作原理。
4.电流三段保护的应用场合:通过案例介绍电流三段保护在不同场合的应用。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:用于讲解电流三段保护的基本原理、接线方式和动作逻辑。
2.讨论法:学生针对实际案例进行讨论,提高学生分析问题和解决问题的能力。
3.案例分析法:通过分析具体案例,使学生更好地理解电流三段保护的应用。
4.实验法:安排实验室实践活动,让学生亲自动手操作,提高实际操作能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的电流三段保护教材作为主要教学资源。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣。
4.实验设备:准备电流三段保护实验装置,让学生进行实际操作。
电流三段保护课程设计
电流三段保护课程设计一、课程目标知识目标:1. 让学生掌握电流三段保护的概念、原理及其在电路中的应用;2. 了解电流三段保护的分类、特点及选用原则;3. 掌握电流三段保护装置的接线方式、动作特性及参数设置。
技能目标:1. 能够分析电路中电流三段保护的需求,正确选择合适的保护装置;2. 学会使用电流三段保护装置进行电路保护设计,提高电路安全性能;3. 能够根据实际电路情况,调整电流三段保护装置的参数,确保其正常运行。
情感态度价值观目标:1. 培养学生关注电路安全、提高安全防护意识的价值观;2. 激发学生探索科学原理的兴趣,培养其创新精神和实践能力;3. 增强学生的团队合作意识,培养其在电路设计和调试过程中与他人协作的能力。
课程性质:本课程属于电学领域,以电路保护为背景,结合电流三段保护的实际应用,培养学生的电路设计能力和安全意识。
学生特点:初三学生,已具备一定的电学基础知识,具备初步的电路分析和设计能力,但对电流三段保护的了解有限。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,通过实例分析、动手实践等方式,提高学生对电流三段保护知识的应用能力。
在教学过程中,关注学生的个体差异,鼓励学生提问、探讨,激发其学习兴趣。
最终实现课程目标,为学生的电学知识体系和安全意识打下坚实基础。
二、教学内容1. 电流三段保护的基本概念与原理- 电流三段保护的定义与作用- 电流三段保护的原理及分类- 电流三段保护在电路中的应用2. 电流三段保护装置的选用与接线- 电流三段保护装置的选用原则- 常见电流三段保护装置的接线方式- 动作特性及参数设置方法3. 电路保护设计实例分析- 家庭电路保护设计实例- 工业电路保护设计实例- 发电机保护设计实例4. 电流三段保护装置的调试与维护- 调试方法及注意事项- 日常维护与故障排除- 更换及升级电流三段保护装置教学内容安排与进度:1. 第1课时:电流三段保护基本概念与原理2. 第2课时:电流三段保护装置的选用与接线3. 第3课时:电路保护设计实例分析(家庭电路)4. 第4课时:电路保护设计实例分析(工业电路与发电机)5. 第5课时:电流三段保护装置的调试与维护教材章节及内容关联:本教学内容与教材中“电路保护与控制”章节相关,涉及以下知识点:1. 电流保护的作用、原理及分类2. 电流保护装置的选用与接线3. 电路保护设计实例4. 电流保护装置的调试与维护三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:- 对于电流三段保护的基本概念、原理和选用原则等理论知识,采用讲授法进行系统讲解,帮助学生建立完整的知识体系。
继保35kv线路三段式电流保护课程设计
继保35kv线路三段式电流保护课程设计继电保护是电力系统中的重要组成部分,它起到监测、检测和保护电力设备和输、变电线路的作用,在电力系统的安全稳定运行中起着至关重要的作用。
而35kV线路作为输电网中的重要组成部分,电流保护是其常见的一种保护方式。
本文将针对35kV线路的三段式电流保护进行课程设计,并给出相关参考内容。
一、课程名称:35kV线路三段式电流保护二、课程目标:1. 了解35kV线路的电流保护原理和工作机制;2. 学习35kV线路电流保护的主要技术参数;3. 掌握35kV线路三段式电流保护的组成和工作原理;4. 能够分析35kV线路电流保护的故障判据和动作特性;5. 掌握35kV线路三段式电流保护的调试与运维方法。
三、课程大纲:1. 35kV线路电流保护的基本原理1.1 电流保护的作用和要求1.2 电流保护的分类和选择原则1.3 35kV线路电流保护的基本工作原理2. 35kV线路电流保护的技术参数2.1 勾画特性及其参数2.2 判据电流和动作时间的选择2.3 调整装置的线路电流参数3. 三段式电流保护的组成和原理3.1 三段式电流保护的组成和结构3.2 第一段保护和第二段保护的原理及调整方法3.3 第三段保护的原理及其应用4. 故障判据和动作特性分析4.1 电流故障判据的分析4.2 动作特性的研究4.3 保护固有特性的影响因素5. 三段式电流保护的调试与运维方法5.1 保护调试的基本流程5.2 保护测试与评估方法5.3 运维中的常见问题及处理方法四、参考内容:1. 尹世文. 电力系统继电保护与自动装置[M]. 中国电力出版社,2019.2. 向伟,等. 电力系统继电保护与自动装置技术[M]. 中国电力出版社,2018.3. 顾大珩. 交流电气保护技术[M]. 中国电力出版社,2019.4. 《电力系统继电保护与自动化装置设计与分析》教材5. 《电力系统保护与自动化装置工程设计与应用》教材以上提供的参考内容是一些建议性的,可以根据需要进行合理调整,确保教材覆盖了所需的基本理论和实践知识,并满足学生的学习需求。
三段式电流保护的设计(完整版).
学号 2010《电力系统继电保护》课程设计(2010届本科)题目:三段式电流保护课程设计学院:物理与机电工程学院专业:电气程及其自动化作者姓名:指导教师:职称:教授完成日期:年12 月26 日目录1 设计原始资料........................................................................................................................................ - 3 -1.1 具体题目..................................................................................................................................... - 3 -1.2 要完成的内容............................................................................................................................. - 3 -2 设计要考虑的问题................................................................................................................................ -3 -2.1 设计规程..................................................................................................................................... - 3 -2.1.1 短路电流计算规程.......................................................................................................... - 3 -2.1.2 保护方式的选取及整定计算 .......................................................................................... - 4 -2.2 本设计的保护配置..................................................................................................................... - 5 -2.2.1 主保护配置...................................................................................................................... - 5 -2.2.2 后备保护配置.................................................................................................................. - 5 -3 短路电流计算........................................................................................................................................ - 5 -3.1 等效电路的建立......................................................................................................................... - 5 -3.2 保护短路点及短路点的选取..................................................................................................... - 6 -3.3 短路电流的计算......................................................................................................................... - 6 -3.3.1 最大方式短路电流计算 .................................................................................................. - 6 -3.3.2 最小方式短路电流计算 .................................................................................................. - 7 -4 保护的配合及整定计算........................................................................................................................ - 8 -4.1 主保护的整定计算..................................................................................................................... - 8 -4.1.1 动作电流的计算............................................................................................................ - 8 -4.1.2 灵敏度校验...................................................................................................................... - 9 -4.2 后备保护的整定计算................................................................................................................. - 9 -4.2.1 动作电流的计算.............................................................................................................. - 9 -4.2.2 动作时间的计算............................................................................................................ - 10 -4.2.3 灵敏度校验.................................................................................................................... - 10 -5 原理图及展开图的的绘制.................................................................................................................. - 10 -5.1 原理接线图............................................................................................................................... - 10 -5.2 交流回路展开图........................................................................................................................- 11 -5.3 直流回路展开图....................................................................................................................... - 12 -6 继电保护设备的选择.......................................................................................................................... - 12 -6.1 电流互感器的选择................................................................................................................... - 12 -6.2 继电器的选择........................................................................................................................... - 13 -7 保护的评价.......................................................................................................................................... - 14 -摘要电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
线路三段式电流保护
实验一三段式电流保护一、传统电磁型继电器三段式电流保护(1)实验目的1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2.理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
(2)实验原理1.阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区。
图1 三段式电流保护各段的保护范围及时限配合很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图2.11-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路X L-2的一部分,其动作时限为t1II= t2I+△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括X L-1及XL-2全部,其动作时限为t1III,它是按照阶梯原则来选择的,即t1III=t2III+△t ,t2III为线路XL-2的过电流保护的动作时限。
(完整版)三段式电流保护的整定及计算
第1章输电线路保护配置与整定计算重点:掌握110KV及以下电压等级输电线路保护配置方法与整定计算原则。
难点:保护的整定计算能力培养要求:基本能对110KV及以下电压等级线路的保护进行整定计算。
学时:4学时主保护:反映整个保护元件上的故障并能以最短的延时有选择地切除故障的保护称为主保护。
后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。
辅助保护:为补充主保护或后备保护的不足而增设的简单保护。
一、线路上的故障类型及特征:相间短路(三相相间短路、二相相间短路)接地短路(单相接地短路、二相接地短路、三相接地短路)其中,三相相间短路故障产生的危害最严重;单相接地短路最常见。
相间短路的最基本特征是:故障相流动短路电流,故障相之间的电压为零,保护安装处母线电压降低;接地短路的特征:1、中性点不直接接地系统特点是:①全系统都出现零序电压,且零序电压全系统均相等。
②非故障线路的零序电流由本线路对地电容形成,零序电流超前零序电压90°。
③故障线路的零序电流由全系统非故障元件、线路对地电容形成,零序电流滞后零序电压90°。
显然,当母线上出线愈多时,故障线路流过的零序电流愈大。
④故障相电压(金属性故障)为零,非故障相电压升高为正常运行时的相间电压。
⑤故障线路与非故障线路的电容电流方向和大小不相同。
因此中性点不直接接地系统中,线路单相故障可以反应零序电压的出现构成零序电压保护;可以反应零序电流的大小构成零序电流保护;可以反应零序功率的方向构成零序功率方向保护。
2、中性点直接接地系统接地时零序分量的特点:①故障点的零序电压最高,离故障点越远处的零序电压越低,中性点接地变压器处零序电压为零。
②零序电流的分布,主要决定于输电线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数目和位置无关。
③在电力系统运行方式变化时,如果输电线路和中性点接地的变压器数目不变,则零序阻抗和零序等效网络就是不变的。
但电力系统正序阻抗和负序阻抗要随着系统运行方式而变化,将间接影响零序分量的大小。
保护三段式电流保护的设计(完整版)
继电保护原理课程设计报告专业:电气工程及其自动化班级:电气1103姓名: 马春辉学号:3指导教师:苏宏升__________ 兰州交通大学自动化与电气工程学院2014年7月12日1设计原始资料具体题目 如图所示网络,系统参数为 E =115/ 3kV , X GI =18Q 、X G 2=18Q 、X G 3=10Q,L 1 = L 2 =50km L 3=30km L B c =60km L cD =40km L D E =30km 线路阻抗 Q /km ,对线路进行三段式电流保护的设计图系统网络图要完成的内容本题完成对线路保护3进行三段式电流保护的设计K ;1 二、H 二 K r! ,1 B Cm ax=300A=200A1 D Emax=150AK ss=,心=。
试A '19 8A345CE2 分析课题的设计内容设计规程主保护配置选用三段式电流保护,经灵敏度校验可得电流速断保护不能作为主保护。
因此,主保护应选用三段式距离保护。
后备保护配置过电流保护作为后备保护和远后备保护。
3 短路电流计算等效电路的建立由已知可得, 线路的总阻抗的计算公式为X ZL其中:Z —线路单位长度阻抗;L —线路长度。
所以,将数据代入公式可得各段线路的线路阻抗分别为X L1 X L2 ZL1 0.4 50 20X L3 ZL3 0.4 30 12X BC ZL B C 0.4 60 24X DE ZL D E 0.4 30 12经分析可知, 路 L i 、 L 3最大运行方式即阻抗最小时,则有三台发电机运行,线运行,由题意知G 、G3连接在同一母线上,则X smin X G 1〃X G2 XL1〃 X L 2 〃 X G 3 X L 3式中 X smin —最大运行方式下的阻抗值;最大运行方式等效电路如图所示同理,最小运行方式即阻抗值最大,分析可知在只有 应地有最小运行方式等效电路图如图所示16 U AAA图最大运行方式等效电路图9 10 // 10 12 10.2G i 和L i 运行,相smaxX GI X LI18 20 38式中 E —系统等效电源的相电动势;乙一短路点至保护安装处之间的阻抗;Z s —保护安装处到系统等效电源之间的阻抗;K —短路类型系数、三相短路取1,两相短路取于(1)对于保护2等值电路图如图所示,母线 D 最大运行方式下发生三 相短路流过保护2的最大短路电流为kDmaxX smin XBCX CD图最小运行方式等效电路图保护短路点及短路点的选取选取B 、C D E 点为短路点进行计算。
继电保护课程设计(三段电流保护)
继电保护课程设计(三段电流保护)
三段电流保护是用于保护高压设备的继电保护,其功能是当电网中电流大于设定值时,快速切断电源,以限制设备受到电流损害的事故发生。
在设备类型复杂,功率范围较大的
系统中,设置三段电流保护具有良好的保护模式和灵敏度,具有选择性的和安全的动作效果,可以更快更有效地保护设备不受损害。
三段电流保护主要包括三个段落:由一个定值控制开关和两个分断开关组成。
当电网
电流越过上限值设定时,定值控制开关会发出开关控制命令,第一段断路器会被触发,将
电流切断,随后第二段断路器也会被触发,最终实现彻底的断开。
这样,无论是误动作还
是正常操作,都能够及时保护设备不受到电流损害的危险。
三段电流保护的控制器采用“零、声发仪”的原理,它可以检测电网的三相电流,并
与设定值比较,当电流超出设定值时,就会发出报警信号,从而触发定值控制开关。
它还
能够对电流、流向等指标进行记录,提供便于统计的数据。
在安装三段电流保护的过程中,要把握其灵敏度和安全技术标准,确保正确的安装和
接线结构,同时保证器件的稳健性和可靠性,避免因灵敏度过高、错误操作等原因而出现
误动作,影响电流保护的正确动作。
总之,三段电流保护具有良好的保护模式和灵敏度,能够有效地保护高压设备,确保
高压设备误动作最小化,切断电流并实现设备安全保护。
电力系统继电保护课程设计——三段式电流保护的设计说明
电力系统继电保护课程设计题目:三段式电流保护的设计班级::学号:指导教师:设计时间:1 设计原始资料1.1 具体题目如图 1.1所示网络,系统参数为ϕE =115/3kV ,1G X =15Ω、2G X =10Ω、3G X =10Ω, 1L =2L =60km 、3L =40km 、C B L -=50km 、D C L -=30km 、E D L -=20km ,线路阻抗0.4Ω/km ,I rel K =1.2、II rel K =III rel K =1.15,max C B I -=300A ,max D C I -=200A ,max E D I -=150A ,ss K =1.5,re K =0.85。
A B图1.1 系统网络图试对线路BC 、CD 进行电流保护的设计。
1.2 要完成的容(1)保护的配置及选择;(2)短路电流计算(系统运行方式的考虑、短路点的考虑、短路类型的考虑);(3)保护配合及整定计算;(4)保护原理展开图的设计;(5)对保护的评价。
2 设计要考虑的问题2.1 设计规程2.1.1 短路电流计算规程在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流, 然后根据计算结果,在满足《继电保护和自动装置技术规程》和题目给定的要求条件下,尽可能采用简单的保护方式。
其计算步骤及注意事项如下。
(1)系统运行方式的考虑除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或故障切除的情况下,发生短路时流过保护装置的短路电流最大和最小的系统运行方式,以便计算保护的整定值和保护灵敏度。
在需采用电流电压联锁速断保护时,还必须考虑系统的正常运行方式。
(2)短路点的考虑求不同保护的整定值和灵敏度时,应注意短路点的选择。
若要绘制短路电流、电压与距离的关系曲线,每一条线路上的短路点至少要取三点,即线路的始端、中点和末端三点。
(3)短路类型的考虑相间短路保护的整定计算应取系统最大运行方式下三相短路电流,以作动作电流整定之用;而在系统最小运行方式下计算两相短路电流,以作计算灵敏度之用。
继保35kv线路三段式电流保护课程设计
继保35kv线路三段式电流保护课程设计35kV线路三段式保护是指将一条35kV输电线路分为三个保护段,每个保护段具备相应的电流保护功能。
这种保护方式可以提高线路的安全性和可靠性,及时发现和隔离线路故障,保护线路设备不受损坏,确保供电可靠性。
本文将为大家介绍35kV线路三段式电流保护的基本原理、主要组成部分、工作方式以及相关设计参考内容。
一、基本原理35kV线路三段式电流保护是基于不同电流下的线路工作特点设计的。
将线路划分为三个保护段,根据线路故障的发生位置和类型,每个保护段可以独立而又协同地对故障进行保护,实现快速定位和隔离故障。
二、主要组成部分1. 电流互感器:用于测量线路中的电流值,并将其转化为与线路电流成正比的低电流值。
通常采用非电气化、无饱和材质的电流互感器。
2. 故障指示器:当线路故障时,故障指示器会发出信号,用于通知操作人员故障的发生位置,以便进行维修。
故障指示器可以采用声光报警装置。
3. 报警信号传输装置:用于将故障指示器发出的信号传输给操作中心或维修人员,以便及时采取措施解决问题。
4. 对故障段进行隔离的断路器:当出现故障时,断路器可以及时切断故障段,以保护线路设备和其他部分不受到故障的影响。
5. 保护终端:用于监测线路电流和相电压,并对故障进行判断和保护动作。
三、工作方式35kV线路三段式电流保护的工作方式如下:1. 检测:通过电流互感器对线路中的电流进行连续监测,并将监测数据传输到保护终端。
2. 比较:保护终端将测量到的电流值与预设的故障电流阈值进行比较,如果电流超过阈值,则判断为故障。
3. 定位:根据故障电流的大小和方向,确定故障位置所在的保护段。
4. 隔离:对故障段进行断路器的操作,切断故障径路,以保护线路设备和其他部分不受到故障的影响。
四、相关设计参考内容1. 选择适合的电流互感器:根据线路电流的大小和特点,选择合适的电流互感器,保证测量的准确性和可靠性。
2. 设计电流故障阈值和动作时间曲线:根据线路的特点和运行要求,合理设置电流保护的动作值和时间曲线,以达到快速定位和隔离故障的目的。
三段式电流保护的设计
三段式电流保护的设计
三段式电流保护是指将电路保护划分为三个阶段,分别为“预警”、“报警”和“切断”。
在实际应用中,三段式电流保护可以起到很好的保护作用,有效地减小电路事故的风险。
三段式电流保护的设计需要考虑以下几个方面:
1. 预警阶段设计:预警阶段是指当电路中出现一些异常情况时,系统会产生出警告信息,提醒用户注意电路的运行状况。
预警阶段所设计的保护措施通常包括监测电流、电压、频率等参数,一旦出现异常将及时警示,并做出相应的调整。
2. 报警阶段设计:当预警阶段不能消除电路问题时,就会进入到报警阶段。
在报警阶段,电路保护系统会通过报警灯、声音或其他方式向用户发出警告信号,提示其必须尽快切断电路。
在设计报警阶段保护措施时,需要考虑到报警条件的设置,以及如何使系统及时响应,降低事故风险。
3. 切断阶段设计:当电路出现危险时,切断阶段的保护措施将会自动切断电路。
切断阶段需要设计高效的过载保护、短路保护等,以降低电路事故的风险。
切断阶段所采用的保护措施需要考虑电路负载、电源能力等因素,以确保在切断电
路时,不会对设备造成影响。
综上所述,三段式电流保护的设计需要从预警、报警和切断三个方面综合考虑,以便在电路中出现问题或异常时,及时警示用户并采取相应的保护措施,使电路运行更加稳定和安全。
三段式电流保护整定校验方案设计
三段式电流保护通常用于3-66kV电力线路的相间短路保护。
在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。
在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。
短路电流值还与系统运行方式及短路的类型有关。
所以对于三段式电流保护电路进行整定以及校验是至关重要的。
这样有助于对于线路正常进行运输。
减少安全事故发生的概率。
当保护线路上发生短路故障时,其主要特征为电流增加和电压降低。
电流保护主要包括:无限时电流速断保护、限时电流速断保护和定时限过电流保护。
电流速断、限时电流速断、过电流保护都是反映电流升高而动作的保护装置。
它们之间的区别主要在于按照不同的原则来选择启动电流。
速断是按照躲开某一点的最大短路电流来整定,限时电流速断是按照躲开下一级相邻元件电流速断保护的动作电流整定,而过电流保护则是按照躲开最大负荷电流来整定。
但由于电流速断不能保护线路全长,限时电流速断又不能作为相邻元件的后备保护,因此,为保证迅速而有选择地切除故障,常将电流速断、限时电流速断和过电流保护组合在一起,构成三段式电流保护。
具体应用时,可以只采用速断加过电流保护,或限时电流速断加过电流保护,也可以三者同时采用。
但是在三段式电流保护电路在实施的过程中会存在着一定的问题,所以需要对于三段式电路进行整定和校验,这样才能够使的线路能够正常的进行传输电量。
三段式电流保护通常用于3-66kV电力线路的相间短路保护。
在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。
在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。
短路电流值还与系统运行方式及短路的类型有关。
所以对于三段式电流保护电路进行整定以及校验是至关重要的。
三段式电流保护整定校验方案设计
三段式电流保护整定校验方案设计电流保护是电气系统中非常重要的一环,它能够帮助我们及时发现电气系统中的故障并采取措施进行保护。
而电流保护整定校验方案的设计是为了确保电流保护装置的准确性和可靠性。
本文将提出一种三段式电流保护整定校验方案设计,并对其进行详细说明。
1.系统架构三段式电流保护整定校验方案设计主要包括三个部分:整定参数、设备校验和系统测试。
首先,我们需要确定电流保护装置的整定参数,包括整定电流、整定时间等参数。
其次,需要对电流保护装置进行设备校验,确保设备本身的功能正常。
最后,对整个系统进行测试,验证电流保护装置的性能是否符合设计要求。
2.整定参数整定参数是电流保护整定校验方案设计中的重要一环,它直接影响到电流保护装置的动作性能。
整定参数的确定需要考虑电流保护装置所处的环境和工作条件。
通常情况下,电流保护装置的整定参数可以根据电气系统的额定电流和额定电压来确定。
在确定整定参数时,需要考虑以下因素:-额定电流:根据电气系统的额定电流确定电流保护装置的整定电流。
-整定时间:根据电气系统的特点确定电流保护装置的整定时间。
-动作特性:根据不同的保护对象选择不同的动作特性。
整定参数的确定需要根据具体的情况进行调整,以确保电流保护装置的动作性能符合要求。
3.设备校验设备校验是电流保护整定校验方案设计中的重要环节,它主要是对电流保护装置的功能进行检测,确保设备本身的正常运行。
设备校验主要包括以下内容:-固有电流误差测试:测试电流保护装置的固有电流误差,确保其准确性。
-动作时间测试:测试电流保护装置的动作时间,确保其可靠性。
-响应波形测试:测试电流保护装置对故障的响应波形,确保其对故障的识别能力。
设备校验需要依据相关标准和规范进行,确保电流保护装置的功能符合设计要求。
4.系统测试系统测试是电流保护整定校验方案设计中的最后一步,它主要是对整个系统进行测试,验证电流保护装置的性能是否符合设计要求。
系统测试主要包括以下内容:-整定校验测试:测试电流保护装置的整定参数,确保其满足设计要求。
(完整word版)三段式电流保护
三段式电流保护电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成一整套保护,称做三段式电流保护。
电流速断保护当输电线路发生严重故障时,将会产生很大的故障电流,故障点距离电源愈近,短路电流就愈大.电流速断保护就是反应电流升高而不带时限动作的一种电流保护,但电流速断保护不能保护线路的全长.根据继电保护速动性的要求,电流速断保护的动作时限为瞬时动作,任一相电流大于整定值,保护就会跳闸并发信号。
电流速断保护原理逻辑图如下电流限时速断保护由于电流速断保护(无时限)不能保护线路全长,因此需要增加带时限的电流速断保护,用以保护线路的其余部分的故障,并作为电流速断保护的后备保护。
其保护范围不仅包括线路全长,而且深入到相邻线路的无时限保护区一部分。
电流限时速断保护的动作时限应与电流速断保护相配合。
当任一相电流大于整定值并超过整定延时,保护跳闸并发信号.电流限时速断保护原理逻辑图如下:图1—2 电流限时速断保护原理逻辑图过电流保护原理电网中发生相间短路故障时,电流会突然增大,电压突然下降,过流保护就是按线路选择性的要求,整定电流继电器的动作电流的。
当线路中故障电流达到电流继电器的动作值时,电流继电器动作按保护装置选择性的要求,有选择性的切断故障线路三段式电流保护整体图三段式电流保护各段保护范围及时限的配合L1首端故障, L1的三段保护均启动,速断保护动作。
L1末端故障, L1的时限速断、定时过流保护均启动,时限速断保护动作。
L2首端故障, L1定时过流保护启动, L2的三段保护均启动, L2速断保护动作。
三段式电流保护的区别三段的区别主要在于起动电流的选择原则不同。
其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。
当线路发生短路时,重要特征之一是线路中的电流急剧增大, 当电流流过某一预定值时,反应于电流升高而动作的保护装置叫过电流保护.电源的保护功能主要是过压、过流保护两种功能。
三段式电流保护的设计
三段式电流保护的设计1. 引言在电力系统和电力装置中,电流过载是一种常见的问题。
电流过载可能会损坏设备和线路,甚至导致火灾等危险情况的发生。
因此,电流保护对于保障电力系统和设备的安全运行至关重要。
三段式电流保护是一种常用的保护方式,它可以在电流超过设定阈值时自动切断电路。
本文将介绍三段式电流保护的设计原理和实现方法,以及在实际应用中的一些注意事项。
2. 设计原理三段式电流保护采用了分段设定电流阈值的方式,以适应不同负载条件下的电流变化。
它通常由三个保护段组成,分别是低、中、高级保护段。
•低级保护段:该段用于检测较小的电流波动和短暂过载。
设定的电流阈值较低,可以快速响应并切断电路,以避免设备损坏。
•中级保护段:该段用于检测中等程度的电流过载。
设定的电流阈值较高,可以容忍一定程度的过载,以防止误切断。
•高级保护段:该段用于检测严重的电流过载和故障。
设定的电流阈值较高,可以快速切断电路,以保护设备和线路的安全。
3. 实现方法实现三段式电流保护需要借助电流保护装置和控制器。
以下是一种常见的实现方法:1.选择合适的电流保护装置:根据设备和线路的负载情况,选择合适的电流保护装置。
常见的电流保护装置包括熔断器、电流保护开关等。
保护装置应具备可调节电流阈值的功能,以实现三段式保护。
2.设计控制逻辑:根据三段式电流保护的要求,设计合适的控制逻辑。
控制器可以使用微处理器、PLC等设备实现。
控制逻辑应包括对不同保护段的电流阈值的设定和保护动作的触发条件。
3.连接和调试:将电流保护装置和控制器连接起来,并进行调试。
确保电流保护装置能够准确地检测和切断电路,并根据设定的电流阈值实现三段式保护。
注意事项在进行三段式电流保护设计和实施时,需要注意以下事项:•合理设定电流阈值:根据实际情况,合理设定低、中、高级保护段的电流阈值。
阈值设置过低可能导致误切断,阈值设置过高可能无法及时切断电路。
•系统可靠性和灵敏度:保护装置和控制器的选择要考虑系统可靠性和灵敏度的要求。
继保35kv线路三段式电流保护课程设计
继保35kv线路三段式电流保护课程设计
继电保护是电力系统中保护设备的重要组成部分,是保障电力系统安全稳定运行的关键技术之一。
35kV线路是电力系统中电能传输的重要组成部分,对其进行合理设计和配置电流保护装置,能够保护系统设备,防止事故发生并最大程度地减小故障范围,提高系统的可靠性和稳定性。
继保35kV线路三段式电流保护的设计过程中需要考虑以下几个方面:
1. 线路参数和系统要求:设计师需要了解线路的电阻、电感、电容等参数,以及系统的额定电流、短路电流等要求。
2. 选择合适的保护装置:根据线路的特点和系统的要求,选择适合的保护装置。
三段式电流保护是一种常用的保护方式,可根据线路的长度和电流变化情况进行配置。
3. 确定保护阀值:根据故障检测的要求,确定不同段保护的阀值。
一般情况下,距离最近的一段电流保护的阀值设置较低,而后续段的阀值逐渐增大。
4. 调整保护动作时间:根据三段电流保护的配置和阀值,调整保护的动作时间,使其能够在故障发生时能够准确、快速地进行保护动作,保护系统设备。
5. 配置旁路断路器:为了提高系统的可靠性和可用性,在电流保护的同时,还可以考虑配置旁路断路器,当故障发生时能够
迅速地切除故障部分,保护系统其他设备不受损害。
6. 进行阻抗匹配:在三段电流保护的配置过程中,需要进行阻抗的匹配,以保证保护的准确性。
阻抗匹配的设计是根据线路的特性和保护装置的参数来确定的。
综上所述,继保35kV线路三段式电流保护的设计需要考虑线路参数和系统要求,选择合适的保护装置,确定阀值和动作时间,配置旁路断路器,并进行阻抗匹配。
通过合理的设计和配置,能够提高系统的可靠性和稳定性,保护设备的安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号 2010《电力系统继电保护》课程设计(2010届本科)题目:三段式电流保护课程设计学院:物理与机电工程学院专业:电气程及其自动化作者姓名:指导教师:职称:教授完成日期:年12 月26 日目录1 设计原始资料........................................................................................................................................ - 3 -1.1 具体题目..................................................................................................................................... - 3 -1.2 要完成的内容............................................................................................................................. - 3 -2 设计要考虑的问题................................................................................................................................ -3 -2.1 设计规程..................................................................................................................................... - 3 -2.1.1 短路电流计算规程.......................................................................................................... - 3 -2.1.2 保护方式的选取及整定计算 .......................................................................................... - 4 -2.2 本设计的保护配置..................................................................................................................... - 5 -2.2.1 主保护配置...................................................................................................................... - 5 -2.2.2 后备保护配置.................................................................................................................. - 5 -3 短路电流计算........................................................................................................................................ - 5 -3.1 等效电路的建立......................................................................................................................... - 5 -3.2 保护短路点及短路点的选取..................................................................................................... - 6 -3.3 短路电流的计算......................................................................................................................... - 6 -3.3.1 最大方式短路电流计算 .................................................................................................. - 6 -3.3.2 最小方式短路电流计算 .................................................................................................. - 7 -4 保护的配合及整定计算........................................................................................................................ - 8 -4.1 主保护的整定计算..................................................................................................................... - 8 -4.1.1 动作电流的计算............................................................................................................ - 8 -4.1.2 灵敏度校验...................................................................................................................... - 9 -4.2 后备保护的整定计算................................................................................................................. - 9 -4.2.1 动作电流的计算.............................................................................................................. - 9 -4.2.2 动作时间的计算............................................................................................................ - 10 -4.2.3 灵敏度校验.................................................................................................................... - 10 -5 原理图及展开图的的绘制.................................................................................................................. - 10 -5.1 原理接线图............................................................................................................................... - 10 -5.2 交流回路展开图........................................................................................................................- 11 -5.3 直流回路展开图....................................................................................................................... - 12 -6 继电保护设备的选择.......................................................................................................................... - 12 -6.1 电流互感器的选择................................................................................................................... - 12 -6.2 继电器的选择........................................................................................................................... - 13 -7 保护的评价.......................................................................................................................................... - 14 -摘要电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。