《反比例函数》导学案

合集下载

反比例函数导学案

反比例函数导学案

6.1 反比例函数导学案班级________ 姓名___________教学目标:知识与技能目标:①了解反比例函数的意义,理解反比例函数的概念;②会求简单实际问题中的反比例函数解析式。

过程与方法目标:①从现实情景和学生的已有知识经验出发,讨论两个变量之间的相互关系,从而加深对函数概念的理解;②使学生经历抽象反比例函数概念的过程中感悟反比例函数的概念。

情感与价值观目标:①通过反比例函数概念的教学,使学生亲身经历知识的发生、发展的过程,培养学生的自主、合作的意识以及确立良好的认知观;②学生通过对反比例函数的简单应用,使其初步形成数学的建模意识和能力。

教学重点与难点:反比例函数的概念;例1涉及较多的《科学》学科知识,学生理解问题时有一定的难度是本节的难点。

一、合作学习:思考并完成下面的问题:问题1:北京到杭州铁路线长为1650km。

一列火车从北京开往杭州,记火车全程的行驶时间为x(h),火车行驶的平均速度为y(km/h), (1)你能完成下列表格吗?(2) y与x有什么数量关系?能用一个函数表达式表示吗?问题2:测量质量都是100g的金、铜、铁、铝四种金属块的体积V(cm3),获得数据. 表中ρ(g/cm3)表示金属块的密度(近似值).已知锌的密度是7g/cm3, 金的密度是19.30g/cm3,(2)V与ρ有什么数量关系?能用一个函数表达式表示吗?做一做:1、某住宅小区要种植一个面积为1000 平方米的矩形草坪,草坪长为y米,宽为x 米,则y关于x 的关系式为_______________;2、已知北京市的总面积为1.68×104平方千米,全市总人口为n人,人均占有土地面积为s平方千米,则s关于n的关系式为_______________;归纳:一般地形如________________(k是常数,k≠0)的函数叫做_____________函数.___________叫做反比例函数的比例系数。

人教版数学九年级(下)第二十六章《反比例函数》导学案

人教版数学九年级(下)第二十六章《反比例函数》导学案

人教版数学九年级(下)第二十六章《反比例函数》导学案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围栏建一个面积为24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求另一边长y(m)与x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如kyx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数⇔kyx=(k≠0)⇔xy=k(k≠0) ⇔变量y与x成反比例,比例系数为k.拓展 (1)在反比例函数kyx=(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,分母不能是多项式,只能是x的一次单项式,如1yx=,312yx=等都是反比例函数,但21yx=+就不是关于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k 的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数kyx=中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式kyx=(k≠0).(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y 的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数kyx=(k≠0)的图象的两个分支关于原点对称.(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.知识点4反比例函数kyx=(k≠0)的性质难点;灵活应用(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数kyx=的图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

人教版九年级数学下册 26.1.1《反比例函数》导学案

人教版九年级数学下册 26.1.1《反比例函数》导学案

26.1.1 反比例函数 导学案【学习目标】1.理解反比例函数的概念,能确定简单的反比例函数关系式.2.培养学生分析问题的能力,并体会函数在实际问题中的应用.【重、难点】重点:理解反比例函数的概念.难点:用待定系数法求反比例函数.导学流程:一、【旧知回顾】:1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时,y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式.(以上这种求函数解析式的方法叫: . )二、【新知学习】:知识点一:(阅读课本P2页,完成下列内容)1、用函数解析式表示下列问题中的关系:(1)京沪线铁路全程为1463千米,某次列车的平均速度v (千米/小时)随此次列车的全程运行时间t (小时)的变化而变化(2)某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪的长y (米)随宽x (米)的变化而变化 。

(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S 随全市总人口n (人)的变化而变化 。

2、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。

可变形为:xy=k 或y=kx -1 针对练习一:1. 已知游泳池的容积为a m 3,向池内注满水所需时间t (h),随注水速度v (m 3/h),那么a = ,当 为定值时,t 、v 成_________关系.2.已知下列函数:(1) ,(2) ,(3)xy = 21(4) ,(5) ,(6)(7)y =x -4 ,其中y 是x 反比例函数的是知识点二:用待定系数法求反比例函数解析 例1、已知:y 与x 成反比例函数,当x=2 时, y=6(1)写出y 与x 的函数关系式。

(2)求当x=4 时, 求y 的值。

3x y =x y 2-=25+=x y x y 23-=31+=x y针对练习二: 1、当m =_____时,函数是反比例函数.2、已知y 与x 2成反比例,并且当x =3时y =4.(1)写出y 和x 之间的函数解析式为 ;(2)当x =1.5时y 的值为________.(3)当y=6时,x=达标检测,反思目标: 1、下列函数:(1) , (2) ,(3)xy =9 (4) ,(5) ,(6)y =2x -1, (7)y = x ,其中y 是x 反比例函数的是_____________. 2、若函数 是反比例函数,则m 的取值是中考连接:已知函数y =y 1+y 2 ,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 。

人教版数学六年级下册反比例导学案(推荐3篇)

人教版数学六年级下册反比例导学案(推荐3篇)

人教版数学六年级下册反比例导学案(推荐3篇)人教版数学六年级下册反比例导学案【第1篇】一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。

因此反比例函数的概念与意义的教学是基础。

二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.解决问题:能从实际问题中抽象出反比例函数并确定其表达式.情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式.难点:反比例函数表达式的确立.五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.由于是分式,当x=0时,分式无意义,所以x≠0。

当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。

此时y就不是反比例函数了。

举例:下列属于反比例函数的是(1)y=(2)xy=10(3)y=k—1x(4)y=—此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=kx?1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

反比例函数的意义导学案3.doc

反比例函数的意义导学案3.doc

26.1.1《反比例函数》导学案学习目标:1.理解并掌握反比例函数的概念;2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式;3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想;一、创设情境问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为M63km,乘坐某次列车所用时间t (单位:h)随该列车平均速度v (单位:km/h )的变化而变化.(2)某住宅小区要种植一个面积为lOOOn?的矩形草坪,草坪的长为y随宽x的变化_________________(3)已知北京市的总面积为1.68X 104 km2 ,人均占有面积$ (单位:km2/人)随全市总人口〃(单位:人)的变化而变化.上面的函数关系式,都具有的形式,其中是常数。

二、归纳反比例函数的定义:如果两个变量x, y 之间的关系可以表示成形式,那么y是x的反比例函数,反比例函数的自变量x的取值范围是你还能将反比例函数的基本形式改写成什么样子?①②【跟踪练习】1.下列哪个等式中的y是x的反比例函数?(1 ) y=4x(2) 】=3X(3)y = 6x +1 (4) xy-=123(5 ) y=X5(6)y = ----X(7)5 y = -• x + 2(8) y =32x(9 ) -+ 3X(10) y=x+42.若函数y = (s+l)x”『-2是反比例函数,则m=.3.函数y = -一—中自变量x的取值范围是__________ .x + 2三、例题讲解例1、己知y是x的反比例函数,当x=2时,y二6(1)写出y与x的函数关系式:⑵求当炉4时,y的值。

【跟踪练习】已知*是x的反比例函数,并且当疔4时,尸一9.(1)写出y与x之间的函数关系式;(2)求尸2时x的值.四、自主探索,知识提升1、己知y与x-1成反比例,当x=2时y=l,则这个函数的表达式是( )A 1 「A、 y = --- B、 y =- C、y = —- D、y = --lx-1 x+1 X(提示:设y与x-l的关系式是y = -^-) x-12.己矢口 y与妒成反比例,并且当x=3时y=4.(1)写出y与x之间的函数关系式.(2)求x=l. 5时y的值.五、课时小结:反比例函数概念 六、课后检测题5. 若函数疙宣1竺+ (〃广-4)是y 关于x 的反比例函数,则m 二6. (1)函数y =-中,自变量x 的取值范围是X(2)如果函数y =是反比例函数,贝U k 尹x7. 如果函数),=竺£丰是反比例函数,那么m 的值是X8. 己知变量y 与x 成反比例,当x=4时,y=—8;则当y=4时,x 的值是A. y(x + l) 1B.x-\C. y —D. y =—* 3x2. 函数y =—— 中自变量X 的取值范围是x + 2.3. 若函数y = (3 + 〃?)尸扁是反比例函数,则 为的值为 ___4.已知*与X 成反比例,且当X=—2时,y=3,则y 与 X 之间的函数关系式 1.下列函数是反比例函数的是(),当 x=—3 时,y= 是。

人教版数学六年级下册反比例导学案(精推3篇)

人教版数学六年级下册反比例导学案(精推3篇)

人教版数学六年级下册反比例导学案(精推3篇)〖人教版数学六年级下册反比例导学案第【1】篇〗第一课时教学设计思想本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。

首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。

接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。

分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

教学目标知识与技能1.能灵活列反比例函数表达式解决一些实际问题。

2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。

过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重难点重点:掌握从实际问题中建构反比例函数模型。

难点:从实际问题中寻找变量之间的关系。

关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教学方法启发引导、合作探究教学媒体课件教学过程设计(一)创设问题情境,引入新课[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?[生]是为了应用。

[师]很好。

学习的目的是为了用学到的知识解决实际问题。

究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

〖人教版数学六年级下册反比例导学案第【2】篇〗教学内容:教科书第56页的例1、第57页的“试一试”和“练一练”,完成练习十的第1~3题。

教学目标:1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

【人教版】九年级数学下册-26.1.1 反比例函数(导学案)

【人教版】九年级数学下册-26.1.1 反比例函数(导学案)

第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数——反比例函数的概念和解析式一、新课导入1.课题导入情景:如图,舞台灯光可以瞬间将黑夜变成如白昼般明亮,这样的效果是如何实现的?是通过改变电阻来控制电流的变化实现的.因为当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮.问题:电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时,你能用含有R的代数式表示I吗?那么I是R的函数吗?I是R的什么函数呢?本节课我们开始学习反比例函数.(板书课题)2.学习目标(1)理解反比例函数的概念.(2)会求反比例函数式.3.学习重、难点重点:反比例函数的概念,能求反比例函数式.难点:反比例函数的概念.二、分层学习1.自学指导(1)自学内容:教材P2.(2)自学时间:5分钟.(3)自学方法:探究、思考、归纳、总结.(4)自学参考提纲:①形如y=kx(k为常数,k≠0)的函数叫做反比例函数,自变量x的取值范围是x≠0.②由y=kx可得,xy=k,若y=kx-n是反比例函数,则n=1.③反比例函数y=212mx--的比例系数k是122m-2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会判断反比例函数.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)反比例函数的定义;反比例函数式的变式;自变量x的取值范围;k的值.(2)练习:①写出下列问题中两个变量之间的函数关系式,并指出比例系数k的值.a.一个游泳池的容积为2000 m3,游泳池注满水所用的时间t(单位:h)随注水速度v(单位:m3/h) 的变化而变化;答案:2000,2000. t kv==b.某长方体的体积为1000 m3,长方体的高h(单位:m)随底面积S(单位:m2) 的变化而变化;答案:1000,1000.h kS==c.一个物体重100 N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.答案:100,100.p k S == ②下列函数中哪些是反比例函数?哪些是正比例函数?并指出比例系数. y=4x y x=3 y=2x - y=6x+1 y=x 2-1 y=21x xy=123 答案:反比例函数:y=2x -,比例系数为-2;xy=123,比例系数为123. 正比例函数:y=4x ,比例系数为4;y x =3,比例系数为3. ③若函数y=63m x- 是反比例函数,则m 的取值范围是m≠2.1.自学指导(1)自学内容:教材P3例1.(2)自学时间:5分钟.(3)自学方法:先学习例题的方法,然后模仿例题解答自学参考提纲中的问题.(4)自学参考提纲:①已知y 是x 的反比例函数,求其解析式时,一般先设y=k x ,再由已知条件求出k 即可.②已知y 是x 的反比例函数,则y 与x 成反比例吗?如果y 与x 2成反比例,怎样设其解析式?y 与x 成反比例.可设y=2k x . ③已知y 与x2成反比例,并且当x=3时,y=4.a.写出y 关于x 的函数解析式;236y x ⎛=⎫ ⎪⎝⎭ b.当x=1.5时,求y 的值;(y=16)c.当y=6时,求x 的值.(x=±6)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:关注学生对成反比例与反比例函数的理解.②差异指导:指导学生辨析反比例函数与成反比例.(2)生助生:同桌之间、小组内交流、研讨.4.强化:用待定系数法求反比例函数式的要点.三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).在学习了一次函数和二次函数后,反比例函数是初中学习阶段的第三种函数类型.在反比例函数教学过程中,应注意将反比例函数和正比例函数进行类比,帮助学生区分其异同,真正理解反比例函数的概念.另外要辨析反比例函数与成反比例的区别,引导学生通过交流研讨来弄清其区别.本节的教学重点是理解反比例函数的概念和求解函数解析式,教学过程中应强调自变量的取值范围以及反比例函数与实际问题的联系.教师最好能够多举实例,联系生活实际,将抽象问题具体化,从而帮助学生理解新知.一、基础巩固(70分)1.(10分)下列等式中,y 是x 的反比例函数的是(B ) A.y=21x 3 C.y=5x+6 D.x=1y 2.(10分) 矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为4y x= 3.(10分) 面积为30 cm 2的三角形的底y (cm )与底边上的高x (cm )的函数关系式是60 y x= 4.(10分) 指出下列函数中哪些是反比例函数,并指出k 的值.(1)y=2x (2)y=53x - (3)y=x 2 (4)y=2x+1解:(2)y=53x -是反比例函数,k=53-. 5.(10分) 写出下列函数解析式,并指出它们各是什么函数.(1)体积是常数V 时,圆柱的底面积S 与高h 的关系;(2)柳树乡共有耕地S 公顷,该乡人均耕地面积y 与全乡总人口x 的关系. 解:(1)S=V h ,反比例函数.(2)y=S x,反比例函数. 6.(10分) 已知y 与x2成反比例,并且当x=6时y=5.(1)写出y 与x 之间的函数解析式;(2)求当x=12时y 的值.解:(1)设y=2k x ,当x=6时,y=5,∴5=26k ,解得k=180,∴y=2180x . (2)把x=12代入y=2180x ,得y=218012=54 7.(10分) 已知y 与x 的部分取值满足下表:试猜想y 与x 的函数关系可能是你们学过的哪类函数,并写出这个函数的解析式.解:猜想:y 是x 的反比例函数,解析式为y=6x-. 二、综合应用(20分)8.(10分) 如果y 是z 的反比例函数,z 是x 的反比例函数,则y 是x 的什么函数?正比例函数.9.(10分) 如果y 是z 的反比例函数,z 是x 的正比例函数,则y 是x 的什么函数?反比例函数.三、拓展延伸(10分)10.(10分) 已知函数y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y 与x 的函数关系式;(2)当x=4时,求y 的值.解:(1)设y1=k1x,y2=2k x,则y=k1x+2k x,∵当x=1时,y=4;当x=2时,y=5,∴k1+k2=4,2k1+2k x=5,∴k1=k2=2,∴y=2x+2x.(2)当x=4时,y=2×4+24=172.。

人教版九年级数学下册第二十六章26.1.1反比例函数导学案

人教版九年级数学下册第二十六章26.1.1反比例函数导学案

26.1.1反比例函数【学习目标】1、理解并掌握反比例函数定义;能根据实际问题中的条件确定反比例函数的解析式及自变量的取值范围。

2、从实际问题情景中经历探索、分析和建立两个变量之间的反比例函数关系的过程。

3、用类比的思想方法,发展观察能力、探究能力及交流总结能力。

4、通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高应用数学的意识。

【学习重点】1、理解并掌握反比例函数的定义,掌握反比例函数的一般形式;2、能根据已知条件确定反比例函数的解析式。

【学习难点】经历探索和表示反比例函数的过程,体验用反比例函数表示变量之间的关系。

【学习过程】一、想一想:1、我们已经学过哪些函数?这些函数中分别有几个变量?2、我们用什么方法求函数的解析式?二、试一试:问题一、世纪广场的音乐喷泉伴随着音乐节奏,在灯光的照射下忽明忽暗,让乾州古城增添了几分神秘。

这样的效果就是通过改变电阻来控制电流的变化实现的.当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮。

我们知道,电流I,电阻R,电压U之间满足关系式U=IR.当U=220V时. 你能用含有R的代数式表示I吗?问题二、在下列实际问题中,变量间的对应关系可用怎样的函数关系式表示? 1、吉首至长沙高速公路全长382公里,一辆汽车的平均速度V(单位:km/h)随该汽车行驶时间t(单位:h)的变化而变化;2、已知吉首市总面积1062平方公里,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化;问题三、上述关系式中有几个变量?它们有什么共同特征?小结:一般的,形如的函数,叫做反比例函数,其中是自变量,是函数。

思考:x的值能不能取0,为什么?三、试一试:问题四、下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)x y 3=; (2)xy 32-=; (3)x y -=2; (4)2=xy ; (5)2x y =; (6)2x y =; (7)1-=x y ; (8)11-=x y 小结:反比例函数的三种形式:① ,② ,③ (k 为常数,k ≠0) 问题五、你能求出下列函数的关系式吗? 例题:已知y 是x 的反比例函数,当2=x 时,6=y .(1)求出y 与x 的函数关系式;(2)当4=x 时,求y 的值。

人教版数学六年级下册反比例导学案3篇

人教版数学六年级下册反比例导学案3篇

人教版数学六年级下册反比例导学案3篇〖人教版数学六年级下册反比例导学案第【1】篇〗教学目标:1、知识与能力目标:(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

教学重点和难点重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

难点:反比例函数性质的灵活运用。

数形结合思想的应用。

教学方法:探究——讨论——交流——总结教学媒体:多媒体课件。

教学过程:一、知识梳理:同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?课件展示:1.反比例函数的意义2.反比例函数的图象与性质3.利用反比例函数解决实际问题二、合作交流、解读探究(一)与反比例函数的意义有关的问题课件展示:忆一忆:什么是反比例函数?要求学生说出反比例函数的意义及其等价形式巩固练习:课件展示:1.下列函数中,哪些是反比例函数?(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+42、写出下列问题中的函数关系式,并指出它们是什么函数?⑴当路程s一定时,时间t与平均速度v之间的关系.⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系.3.若y= 为反比例函数,则m=______4.若y=(m-1) 为反比例函数,则m=______ .(二)运用反比例函数的图象与性质解决问题1.反比例函数的图象是2.图象性质见下表(课件展示):3.做一做(课件展示)(1)函数y= 的图象在第______象限,当x<0时,y随x的增大而______ .(2)双曲线y= 经过点 (-3 ,______ ).(3)函数y= 的图象在二、四象限内,m的取值范围是______ .(4)若双曲线经过点(-3 ,2),则其解析式是______.(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y= 的图象上,则y1、y2 与y3的大小关系(从大到小)为____________ .(三)综合运用(课件展示)一次函数的图像y=ax+b与反比例函数y= 交与M(2,m)、N(-1,-4)两点。

人教版数学六年级下册反比例导学案(推荐3篇)

人教版数学六年级下册反比例导学案(推荐3篇)

人教版数学六年级下册反比例导学案(推荐3篇)人教版数学六年级下册反比例导学案【第1篇】教学目标1、知识与技能目标:通过对反函数的学习,在具体情境中感受反函数的解决实际问题,与生活息息相关,加深对函数概念的理解。

2、过程与方法目标:通过带领学生解决实际问题,体验反函数的学习过程,并且能够运用反函数解决实际问题。

3、情感、态度与价值观目标:在整个教学过程中照顾到全体学生,创造平等的教学氛围和环境。

教学重点理解反函数的概念,体验学习反函数概念的过程。

教学难点理解反函数的概念,会运用反函数去解决实际问题。

教学准备:多媒体课件教学过程一、导入活动内容:教师提出问题,引导学生复习函数及一元一次函数的相关知识。

问题1:上次课我们学习了函数,那么有谁知道一次函数和正比例函数表达式么?师:同学们能用语言和字母分别表示一次函数和正比例函数:生:一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.师:如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,如果速度是恒定的,我们关心的是花费的时间,那么时间是如何去求的呢?生:师:那么这里的t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?二、新授活动内容:师:同学们可以根据以下三个具体的问题列出表达式吗?京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t 单位:h)的变化而变化;某住宅小区要种植一个面积为1000的矩形草坪,草坪的长y( 单位:m)随宽度x 单位:m)的变化而变化;已知北京市的总面积为平方千米,人均占有的土地面积S(单位:平方千米/人)随全市总人口n 单位:人)的变化而变化。

生: 1) 2) 3)师:同学们你们还记得函数的定义吗?一起回顾下。

人教版九年级数学反比例函数导学案

人教版九年级数学反比例函数导学案

26.1 反比例函数26.1.1 反比例函数的意义【学习目标】1.经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2.理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。

【学法指导】自主、探究、合作交流,经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。

【学习过程】一、知识链接:1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的 .2.一次函数的解析式是:;当时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式.以上这种求函数解析式的方法叫:二、自主学习:提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v (单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么?(1)(2)(3)2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗?【归纳总结:】1、三个函数表达式:1463t v =、x y 1000=、S =n41068.1⨯有什么共同特征?你能用一个一般形式来表示吗? 2、对于函数关系式y 1000=,完成下表:观察是否给出一个确定的x 的值,y 都有唯一确定的值与其对应。

3、类比一次函数的概念给上述新的函数下一个恰当的定义 〖思考〗在反比例函数的概念中,你认为需要注意什么?例1、下列哪些式子表示y 是关于x 的反比例函数?每一个反比例函数中相应的k 值是多少?⑴ x y 4=; ⑵x y 5-=; ⑶16+=x y ; ⑷3=x y; ⑵ ⑸123=xy ⑹xy 32-= ⑺x y -=例2、已知y 是x 的反比例函数,并且当x=3时,y=-8。

《反比例函数》导学案

《反比例函数》导学案

反比例函数(第一课时)导学案
一、学习目标
1.理解反比例函数的概念。

2.会判断一个函数是否为反比例函数。

3.能用待定系数法求反比例函数解析式。

二、复习回顾
1、什么是函数?
2、我们学习了哪几种函数? 函数名称 一般形式 图像
3.确定函数解析式的方法?
4、什么是正比例关系和反比例关系?
三、典例讲解
例2:k 为何值时, 是反比例函数 ?
练一练:y 与x-1成反比例,当x=2时,y=-6. 求出y 与x 的函数关系式.
例1.判断下列函数中y 是否为x 的反比例函数?若是,指出
k 的值;若不是,请说明理由. x y 2-=x y 34-=21x y -=131-=x y ()02≠=a a x a y 为常数,①⑤2=xy 12y x -=②③④⑥⑦12+=x y ⑧52)2(-+=k x
k y
本课检测。

反比例函数的导学案

反比例函数的导学案

1反比例函数九年级学生曾在小六(下)学过“反比例”,在七(下)学过“变量之间的关系”,在八(上)学过“函数及一次函数”。

对“反比例”、“函数”等已经有了一定认识,在此基础上来讨论反比例函数有了一定的经验积累,为这里的学习奠定了较好基础。

学好它,将为后继学习(如二次函数等)一、学习目标记住反比例函数的概念和三种表达式二、教学和活动过程第一环节:巩固复习1、一次函数若两个变量x,y 的关系可以表示成y=kx+b (k,b 是常数,k≠0)的形式,则称y 是做x 的一次函数(x 为自变量,y 为因变量).特别地,当常数b=0时,一次函数y=kx+b(k≠0)就成为:y=kx(k 是常数,k≠0),称y 是x 的正比例函数.一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数.2、下列函数中哪些是正比例函数?①y =3x-1②y =2x 2③y=0.75x ④y=2x+1;⑤y=180-2x;⑥y=-2x.第二环节:引入新课问题1:若每天背10个单词,那么所掌握的单词总y(个)与时间x(天)之间的关系函数式为。

问题2:小明原来掌握了150个单词,以后每天背10个单词,那么他所掌握单词总量y(个)与时间x(天)之间的关系式为。

问题3:九年级英语全册约有单词1200个,小明同学计划用x(天)全部掌握,那么平均每天需要记忆的单词量y(个)与时间x(天)之间的关系式为。

问题4:一个面积为6400㎡的长方形,那么花坛的长a(m)与宽b(m)之间的关系式为。

例1导体中的电流I,与导体的电阻R、导体两端的电压U 之间满足关系式U=IR.当U=220V 时,(1)你能用含有R 的代数式表示I 吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R 越来越大时,I 怎样变化?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?例2京沪高速铁路全长约为1318km,列车沿京沪高速铁路从上海驶往北京,列车行完全程所需要的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t 是v 的函数吗?为什么?反比例函数的概念:一般地,如果两个变量x,y 之间的关系可以表示成:(k 为常数,K≠0)的形式,那么称y 是x 的反比例函数。

九上第六章反比例函数全章导学案

九上第六章反比例函数全章导学案

学习课题:17.1.1反比例函数的意义 预习案:学法指导:用10到15分钟阅读课本内容,完成下列问题,将预习中不能解决的问题和疑惑记下来 1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?3在思考(1)中,当路程一定时,速度和时间成什么关系?在思考(2)中,当矩形草坪面积一定时,矩形草坪的长与宽成什么关系?在思考(3)中,当北京市的总面积一定时,人均占有的土地面积与全市总人口成什么关系?4、什么是反比例函数?哪个是比例系数?比例系数有什么特点? 探究案:问题1、在思考(1)(2)(3)中得到的关系式与一次函数、正比例函数的关系式一样吗? 2、这些关系式有什么特征?3、你能归纳出反比例函数的概念吗?4、反比例函数的自变量x 的取值范围是怎样的?函数值y 的取值范围是什么? 【活动1】、反比例函数的概念:第2题的函数表达式叫做反比例函数关系式, 一般的,形如()0k y k k x =≠为常数,的函数叫做 ,例如10y x=。

可变形为:() y kx =,(0k ≠)其中:自变量是 ,自变量的次数是 。

2.例题:例1:已知函数73-=m x y 是反比例函数,求m 的取值。

解:∵函数是反比例函数,∴m-7= , 解得:m =例2:已知y 是x 的反比例函数,当2=x 时,6=y 。

(1)求出该反比例函数的表达式; (2)求当4=x 时y 的值; (3)当x 取何值时,y 的值为-3。

解:(1)∵y 是x 的反比例函数,∴设__________∴把2=x 和6=y 代入上式,得__________,解之得:=k ______ ∴所求的函数表达式为:__________。

(2)把4x =代入 , 得y= 。

(3)把3y =-代入 , 得【活动2】已知y 是x 的反比例函数,当x=2时,y=6(1)写出y 与x 的函数关系式:(2)求当x=4时,y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数
备课人: 审核人:学习目标:1.理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求
函数解析式
学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式;
学习难点:理解反比例函数的概念及建模;
知识链接:1、形如)0(≠=k kx y 的函数叫做正比例函数,2,形如
)0k b (≠+=是常数,且、k b kx y 的函数叫做一次函数。

当b=0时称为正比例函数
1、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,
k ≠0)的形式,那么称y 是x 的反比例函数.反比例函数的基本形式还能表示为
2、下列等式中,哪些是反比例函数? (填序号) (1)3x y = (2)x y 2-= (3)xy =21 (4)25+=x y
(5)x y 23-= (6)31+=x y
(7)y =x -4 3、苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系
式为
4、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解
析式为
5、函数2
1+-=x y 中自变量x 的取值范围是 6、y 是x 的反比例函数,下表给出了x 与y 的一些值: x -2 -1 21- 21
1 3
y
32 2 -1
(1)写出这个反比例函数的表达式;(2)根据函数表达式
完成上表。

三、探究、合作、交流:(根据掌握的知识,认真填写下列内容)
1、已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 ,
当x =-3时,y =
2、已知y-2与x 成反比例,当x=3时,y=1,则y 与x 间的函数关系式是 。

3、当n 何值时,y =(n 2+2n )21n n x +-是反比例函数?。

4、已知y 与x 成反比例,且当x=2时,y=6,求y 与x 的函数关系式.
5、已知y 与x-1成反比例函数,当x=2时y=1,则这个函数的表达式是( )
A 、1
1-=x y B 、1-=x k y C 、11+=x y D 、11-=x y 6、已知y 与x 2成反比例,并且当x=3时y=4.
(1)写出y 与x 之间的函数关系式。

(2)求x=1.5时y 的值。

7、已知y=y 1+y 2,y 1与X 成正比例,y 2与x 成反比例,且当x=1时,y =0;当x =4时,y =9.求y 与x 的函数关系式
8.若函数2
8)3(m x m y -+=是反比例函数,求m 。

四、当堂训练
1、写出下列函数关系式,并指出它们各是什么函数
(1)平行四边形面积是24cm 2,它的一边长xm 和这边上的高hcm 之间的关系是 .
(2)小明用10元钱与买同一种菜,买这种菜的数量mkg 与单价n 元/kg•之间的关系是
(3)老李家一块地收粮食1 000kg ,这块地的亩数S 与亩产量tkg/亩之间的关系是
2、若y 是x-1的反比例函数,则x 的取值范围是
3、若函数28)3(m x m y -+=是反比例函数,则m 的取值是
4、已知y与x2成反比例,并且当x=3时y=4.
(1)写出y与x之间的函数关系式。

(2)求x=1.5时y的值。

五、课后达标训练
1、写出下列函数解析式:
(1)体积是常数V时,圆柱的底面积S于高h的关系;
(2)柳树乡共有耕地S公顷,该乡人均耕地面积y于全乡人口x的关系;
(3)近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则y与x的函数关系式为____________.
(4)某工厂现有材料100吨,若平均每天用去x吨,这批原材料能用y天,则y与x之间的函数关系式为.
2、矩形的面积为4,一条边的长为x,另一条边的长为y,则y与x的函数解析式为。

3、已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5. (1)求y与x的函数关系式. (2)当x=-2时,求函数y的值。

相关文档
最新文档