5.2求解二元一次方程组 课时教学设计

合集下载

二元一次方程组教学设计

二元一次方程组教学设计

二元一次方程组教学设计篇1:二元一次方程组教学设计教学目标1、认识二元一次方程和二元一次方程组.2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。

二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。

视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。

归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解.思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?带着问题让学生观看洋葱数学视频二元一次方程组的解视频内容设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

《解二元一次方程组(第1课时)》教学设计

《解二元一次方程组(第1课时)》教学设计

《解二元一次方程组(第1课时)》教学设计【教学目标】1.知识与能力:了解解方程组的概念,了解解方程组的基本思路是“消元”,会阐述用代入法解二元一次方程组的基本思路──通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程,掌握代入消元法解二元一次方程组的步骤。

2.过程与方法:通过浅显易懂并形象的“天平”实例,引入代入消元法,直观地揭示了代入消元的实质。

通过例2的学习,让学生经历代入消元法解二元一次方程组的一般步骤,归纳出用代入消元法解二元一次方程组的一般步骤。

通过揭示解二元一次方程组本质思想——消元,让学生初步体验化“未知”为“已知”,化复杂问题为简单问题的化归思想,提高学生观察、归纳、猜想、验证的能力,不断增强解题能力。

3.情感态度与价值观:提供适当的情景,吸引学生的注意力,激发学生的学习兴趣;在合作学习中,学会交流与合作。

【教学重点、难点】重点:了解解方程组的基本思路是“消元”,了解代入消元法的思想和操作方法,掌握代入消元法解二元一次方程组的步骤。

难点:例2要把其中一个方程变形后用含一个未知数的一次式来表示另一个未知数的形式时,方能代入。

【教学准备】电脑、投影【教学过程】(一)创设情景,提出问题提问:1. 什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?2. 下列哪些数对14x y =-⎧⎨=⎩21x y =⎧⎨=⎩10x y =⎧⎨=⎩12x y =⎧⎨=⎩是方程组31x y x y +=⎧⎨-=⎩的解。

3. 引导性材料:我国古代数学名著《孙子算经》上有这一一题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几头?如果设鸡有x 头,兔有y 头,所得的式子怎样?上节我们碰到过二元一次方程组20010x y y x +=⎧⎨=+⎩,可知95105x y =⎧⎨=⎩是方程组20010x y y x +=⎧⎨=+⎩的解,但这是通过观察检验后得来的,那么,有没有一种一般解法?鸡兔同笼问题又如何解答?(二)合作交流,探索新知 观察课本P93合作学习中图示,小组讨论下列问题:1、观察图4-3,你得到什么启发?2、如何解二元一次方程组20010x y y x +=⎧⎨=+⎩,观察x+(x+10)=200与200(1)10(2)x y y x +=⎧⎨=+⎩有没有内在联系?有什么内在联系?(通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系──把方程①中的“y”用“x +10”去替换就可得到一元一次方程。

二元一次方程组教学设计

二元一次方程组教学设计

二元一次方程组教学设计二元一次方程组教学设计作为一名人民教师,通常会被要求编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

那么什么样的教学设计才是好的呢?下面是作者为大家收集的二元一次方程组教学设计,欢迎阅读,希望大家能够喜欢。

二元一次方程组教学设计1二元一次方程组是一元一次方程教学的延续与深化。

很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”(2)设女同学y名,则男同学2(y—1)这个等量关系可列方程:x=2×[(x—1)—1];名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。

如此解决问题比较“绕”,数学的'特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。

由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。

由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:从而实现问题的解决。

课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。

《二元一次方程组的解法》教学设计

《二元一次方程组的解法》教学设计

《二元一次方程组的解法》教学设计【教材依据】这节课内容是华师大版数学七年级下册第七章《二元一次方程组》的第二节,本节内容共安排了2个课时去完成。

本节课为《二元一次方程组的解法》第1课时。

在本节之前,学生已经掌握了有理数、整式的运算、解一元一次方程等知识,对二元一次方程、二元一次方程组等概念已了解,学生已经具备了进一步学习二元一次方程组解法的基本能力。

这节课的主要内容是用代入消元法解二元一次方程组,教材从实际问题出发,通过培养学生自主探索、合作交流、分析问题、解决问题的能力来学习二元一次方程组的解法——代入消元法。

探索如何用代入消元法将“二元”转化为“一元”的消元过程和用代入消元法解二元一次方程分别是本节课的重、难点。

组织学生学好本节课的内容将会为以后的“三元一次方程组、函数、线性方程组、高次方程组”学习打下坚实的基础。

一、设计思路(一)指导思想新课标指出,教学活动是师生积极参与、交往互动、共同发展的过程。

在课堂教学中学生是学习的主体,教师是学习的组织者、引导者与合作者。

教师在组织引导学生学习的过程中要充分调动学生学习的兴趣、积极性、主动性;要求学生通过积极思考、动手实践、自主探索、合作交流来提高数学能力。

(二)教学目标1.知识与技能。

(1)掌握用代入法解二元一次方程组的步骤。

(2)熟练运用代入法解简单的二元一次方程组。

2.过程与方法。

(1)培养学生的分析、动手、数学思维能力。

(2)使学生能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形。

(3)通过解决问题使学生初步理解用代入法解二元一次方程组的基本思路。

3.情感态度与价值观。

(1)通过合作交流,探索二元一次方程组的解法。

(2)培养学生的合作交流意识、自主探索、分析问题、解决问题能力。

(三)教学重、难点1.教学重点:用代入消元法解二元一次方程组。

2.教学难点:在解题过程中让学生充分体会“消元”思想和“化未知为已知”的化归思想。

(四)教学理念与方法本课借助多媒体辅助教学,给学生以直观形象的演示,增强学生感性认识的同时增强教学效。

北师大版初中数学八年级(上)5-2 求解二元一次方程组(第2课时)(学案+练习)

北师大版初中数学八年级(上)5-2 求解二元一次方程组(第2课时)(学案+练习)

2 求解二元一次方程组(第2课时)学习目标1. 会用加减消元法解二元一次方程组.(重点)2. 进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.(难点)自主学习学习任务一 探究加减法解二元一次方程组 3521,2511.x y x y ⎧+=⎪⎨-=-⎪⎩①② 发现方程①和②中的5y 和-5y 互为 ,将方程①和②的左右两边分别相加,然后根据等式的基本性质消去未知数 ,得到一个关于 的一元一次方程,从而实现化“二元”为“一元”的目的.解:①+②,得 , 解得 .把 代入①,解得 . 所以原方程组的解为 . 学习任务二 用加减法解二元一次方程组解二元一次方程组257,23 1.x y x y -=⎧⎨+=-⎩解:②-①,得 ,解得 .把 代入①,得 , 解得 .所以方程组的解为 .归纳:在方程组的两个方程中,若某个未知数的系数是相反数,则可直接把这两个方程的两边分别 ,消去这个未知数,若某个未知数的系数相等,可直接把这两个方程的两边分别 ,消去这个未知数,得到一个一元一次方程,从而求出它的解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.合作探究用加减消元法解二元一次方程组的基本思路是什么?用加减消元法解二元一次方程组的主要步骤有哪些?例1解方程组2312, 3417.x yx y+=⎧⎨+=⎩例2用加减消元法解方程组:4,4333(4)4(2). x yx y⎧+=⎪⎨⎪-=+⎩当堂达标1.用加减法解方程组324,233,x yx y⎧-=⎪⎨+=⎪⎩①②下列解法正确的是()A.①×2-②×3,消去yB.①×3+②×2,消去yC.①×3+②×2,消去xD.①×3-②×2,消去x2.由方程组223,224,x y mx y m-=+⎧⎨+=+⎩可得x与y的关系式是()A.3x=7+3mB.5x-2y=10C.-3x+6y=2D.3x-6y=23.已知二元一次方程组23,24,m nm n-=⎧⎨-=⎩则m+n的值是.4.解下列方程组:(1)3,1;x yx y-=⎧⎨+=⎩(2)3415,2410;x yx y+=⎧⎨-=⎩(3)133,2223 3.x yx y⎧-=-⎪⎨⎪+=⎩课后提升1.对于非零的两个实数m,n,定义一种新运算,规定m*n=am-bn,若2*(-3)=8,5*3=-1,则(-3)*(-2)的值为.2.已知实数a,b满足方程组327,238,a ba b+=⎧⎨+=⎩则a2-b2的值是.反思感悟我的收获:我的易错点:参考答案当堂达标1.B2.D3.-14.解:(1)3,1.x yx y⎧-=⎪⎨+=⎪⎩①②①+②,得2x=4,解得x=2.把x=2代入①,得2-y=3,解得y=-1.所以原方程组的解是2,1. xy=⎧⎨=-⎩(2)3415, 2410. x yx y⎧+=⎪⎨-=⎪⎩①②①+②,得5x=25,解得x=5.把x=5代入②,得2×5-4 y=10,解得y=0.所以原方程组的解是5,0. xy=⎧⎨=⎩(3)133, 2223 3.x yx y⎧-=-⎪⎨⎪+=⎩①②由①,得x-3y=-6,③②+③,得3x=-3,解得x=-1.把x=-1代入③,得y=5 3 .所以原方程组的解是1,5.3 xy=-⎧⎪⎨=⎪⎩课后提升1.1 2.-3。

北师大版数学八年级上册2《求解二元一次方程组》教案1

北师大版数学八年级上册2《求解二元一次方程组》教案1

北师大版数学八年级上册2《求解二元一次方程组》教案1一. 教材分析《求解二元一次方程组》是人教版初中数学八年级上册的一章内容。

这一章主要让学生掌握二元一次方程组的解法,以及应用方程组解决实际问题。

此章节在数学知识体系中起着承前启后的作用,为后续学习更复杂的方程组和函数打下基础。

二. 学情分析学生在学习本章内容前,已经掌握了方程和一元一次方程的解法,但对于二元一次方程组,他们可能还缺乏直观的认识和解决方法。

因此,在教学过程中,需要引导学生从实际问题中抽象出二元一次方程组,并通过实例让学生感受方程组的意义和应用。

三. 教学目标1.理解二元一次方程组的含义,掌握二元一次方程组的解法。

2.能够应用二元一次方程组解决实际问题。

3.培养学生的抽象思维能力和解决问题的能力。

四. 教学重难点1.重点:二元一次方程组的解法及应用。

2.难点:如何引导学生从实际问题中抽象出二元一次方程组,以及解二元一次方程组的方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中提出问题,并探索解决问题的方法。

2.使用多媒体教学,通过动画和实例,帮助学生直观地理解二元一次方程组的概念和解法。

3.学生进行小组讨论和合作交流,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.练习题和实际问题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生提出二元一次方程组的问题,激发学生的学习兴趣。

2.呈现(10分钟)介绍二元一次方程组的概念,并通过多媒体展示实例,让学生直观地理解二元一次方程组的意义。

3.操练(10分钟)引导学生通过小组讨论,探索解二元一次方程组的方法。

教师在旁边给予指导,并引导学生总结解法。

4.巩固(10分钟)让学生独立解决一些简单的二元一次方程组问题,检验学生对解法的掌握情况。

5.拓展(10分钟)引导学生思考如何应用二元一次方程组解决实际问题,并让学生举例说明。

6.小结(5分钟)教师引导学生总结本节课所学内容,强调二元一次方程组的概念和解法。

代入法2【公开课教案】(含反思)

 代入法2【公开课教案】(含反思)

5.2 求解二元一次方程组第1课时 代入法第一环节:情境引入内容:教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.设他们中有x 个成人,y 个儿童,我们得到了方程组⎩⎨⎧=+=+.3435,8y x y x 成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验⎩⎨⎧==3,5y x 是不是方程8x y +=和方程5334x y +=的解,从而得知这个解既是8x y +=的解,也是5334x y +=的解,根据二元一次方程组的解的定义,得出⎩⎨⎧==3,5y x 是方程组⎩⎨⎧=+=+3435,8y x y x 的解.所以成人和儿童分别去了5人和3人. 提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?目的:“温故而知新”,培养学生养成时时回顾已有知识的习惯,并在回顾的过程中学会思考和质疑,通过质疑,自然地引出我们要研究和解决的问题.设计效果:通过对已有知识的回顾和思考,学生知识获得既感到自然又倍添新奇,有跃跃欲试的心情.第二环节:探索新知内容:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题? (由学生独立思考解决,教师注意指导学生规范表达)解:设去了x 个成人,则去了(8)x -个儿童,根据题意,得:()53834x x +-=解得:5x = 将5x =代入8x -,解得:8-5=3.答:去了5个成人, 3个儿童.在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)1.列二元一次方程组设有两个未知数:x 个成人,y 个儿童.列一元一次方程只设了一个未知数:x 个成人,儿童去的个数等于去的总人数与去的成人数之差,得出(8)x -个.因此y 应该等于(8)x -.而由二元一次方程组的一个方程8x y +=,根据等式的性质可以推出8y x =-.2.发现一元一次方程中53(8)34x x +-=与方程组中的第二个方程5334x y +=相类似,只需把5334x y +=中的“y ”用“()8x -”代替就转化成了一元一次方程.教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同一个未知量.所以将⎩⎨⎧=+=+②y x ①y x 3435,8中的①变形,得8y x =-③,我们把8y x =-代入方程②,即将②中的y 用()8x -代替,这样就有()53834x x +-=.“二元”化成“一元”.教师总结:同学们很善于思考.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.(教师把解答的详细过程板书在黑板上,并要求学生一起来完成)解:8,5334.x y x y +=⎧⎨+=⎩①②由 得:8y x =-. ③将③代入②得:()53834x x +-=.解得:5x =. 把5x =代入③得:3y =.所以原方程组的解为:⎩⎨⎧==.3,5y x (提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有误)下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.(放手让学生用已经获取的经验去解决新的问题,由学生自己完成,让两个学生在黑板上规范的板书,教师巡视:发现学生的闪光点以及存在的问题并适时的加以辅导,以期学生在解答的过程中领会“代入消元法”的真实含义和“化归”的数学思想.)目的:通过学生自己对比、思考、发现,让学生惊喜的发现“温故而知新”,将新知融入旧知,体会“化未知为已知”的化归思想的神奇,培养学生独立获取知识的愿望和能力.设计效果:通过学生自己的观察、比较、总结出二元一次方程组的解法,从中体会到解方程组中“消元”的本质.第三环节:巩固新知内容:1.例:解下列方程组:(1) ⎩⎨⎧+==+;3,1423y x y x (2)⎩⎨⎧=+=+.134,1632y x y x (根据学生的情况可以选择学生自己完成或教师指导完成)(1)解:将②代入①,得:()14233=++y y .解得:1=y .把1y =代入②,得:4=x .所以原方程组的解为:⎩⎨⎧==.1,4y x (2)由②,得:y x 413-=. ③ 将③代入①,得:()1634132=+-y y .解得:2=y .将y=2代入③,得:5=x .所以原方程组的解是⎩⎨⎧==.2,5y x (⑵题需先进行恒等变形,教师要鼓励学生通过自主探索与交流获得求解,在求解过程中学生消元的具体方法可能不同,所以教学中不必强求解答过程的统一,但要提出如何选择将哪个方程恒等变形、消去哪个未知数能使运算较为简单.让学生在解题中进行思考)(教师在解完后要引导学生再次就解出的结果进行思考,判断它们是否是原方程组的解.促使学生进一步理解方程组解的含义以及学会检验方程组解的方法.)2.思考总结:(教师根据学生的实际情况进行生与生、师与生之间的相互补充与评价,并提出下面的问题)⑴给这种解方程组的方法取个什么名字好?⑵上面解方程组的基本思路是什么?⑶主要步骤有哪些?⑷我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?(由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法,请学生小组的代表回答或学生举手回答,其余学生可以补充,力求让学生能够回答出以下的要点,教师要板书要点,在学生回答时注意进行积极评价)1.在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的.我们将这种方法叫代入消元法.2.解二元一次方程组的基本思路是消元,把“二元”变为“一元”.3.解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立.4.用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.目的:进一步熟悉解二元一次方程组的基本思路,熟练解二元一次方程组的基本步骤和过程,并能对二元一次方程组的解进行检验.设计效果:通过本环节的学习,学生能够独立地运用代入消元法解二元一次方程组.第四环节:练习提高内容:1.教材随堂练习(在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,可以不必强调解答过程统一.可能会出现整体代换的思想,若有条件可以提出,为下一课做点铺垫也可以)2.补充练习:用代入消元法解下列方程组:(1)⎩⎨⎧=-=+;32,42y x y x (2)⎩⎨⎧=+=-;32,1943y x y x ⑶⎪⎩⎪⎨⎧=-+=-.023,723y x y x (注:[2]题可以用整体代入法来解,把第二个方程变为23y x =-,再将它代入第一个方程,得()32319x x --=;[3]题分数线有括号功能;[4]题如果有时间,学生学有余力可作为补充题目.)目的:对本节知识进行巩固练习.设计效果:通过练习,巩固和熟练了运用代入消元法解二元一次方程组的方法.第五环节:课堂小结内容: 师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”; 解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.目的:鼓励学生通过本节课的学习,谈谈自己的收获与感受,加深对 “温故而知新” 的体会,知道“学而时习之”.设计效果:学生能够在课堂上畅所欲言,并通过自己的归纳总结,进一步巩固了所学知识.第六环节:布置作业课本习题5.2教学设计反思1.引入自然.二元一次方程组的解法是学习二元一次方程组的重要内容.教材通过上一小节的实际问题,比较一元一次方程的列法和解法,从而自然引入二元一次方程组的代入消元解法.2.探究有序.回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有了很好的认知基础,探究显得十分自然流畅.3.充分体现了转化与化归思想.引导学生充分思考和体验转化与化归思想,以利于总体目标中所提出的“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验”的落实.4.值得注意的方面.在学生总结解题步骤的环节,一定要留给学生足够的观察、思考、总结、组织语言的时间,训练学生的观察归纳能力,提高学生学习能力.7.3 平行线的判定第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔.教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.第二环节:探索平行线判定方法的证明活动内容:①证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a ∥b.如何证明这个题呢?我们来分析分析.师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a∥b(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.②证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF 与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB.师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.教学效果:由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.第三环节:反馈练习活动内容:课本第231页的随堂练习第一题活动目的:巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.第四环节:学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第232页习题6.4第1,2,3题思考题:课本第233页习题6.4第4题(给学有余力的同学做)教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。

5.2 求解二元一次方程组(第2课时) 八年级上册北师大版

5.2 求解二元一次方程组(第2课时)  八年级上册北师大版

①左边 + ②左边 = ①右边 + ②右边
探究新知
3x+5y+2x-5y=10 5x+0y=10 5x=10 x=2
把x=2代入①,得y=3,
所以
3x 5 y 2x 5 y
21 -11
的解是
x 2,
y
3.
探究新知
参考小丽的思路,怎样解下面的二元一次方程组呢? 2x-3y=7,① 2x+y=3. ②
把x=0.6代入①,得:
3×0.6+10y=2.8
解得:y=0.1
x=0.6
所以这个方程组的解是
y=0.1
同一未知数的 系数互为相反数_ 时,把两个方程 的两边分别相加!
巩固练习
变式训练
解二元一次方程组:
4x 2y 6 3x 2y 1
① ②
解:由①+②得: 7x=7
x=1
把x=1代入①,得: y=-1
3.培养学生的分析能力,能迅速根据所给的二 元一次方程组,选择一种简单的方法解方程组. 2.熟练运用消元法解简单的二元一次方程组.
1.掌握用加减消元法解二元一次方程组的步骤.
探究新知 知识点
加减法解二元一次方程组
怎样解下面的二元一次方程组呢?
3x 5y 21, ① 2x 5y -11. ②
素养考点 3 加减法解找系数最小公倍数的二元一次方程组
例3 用加减法解方程组:
2x 3y 12 ① 3x 4 y 17 ②
解: ①×3得: 6x + 9y =36 ③ ②×2得: 6x + 8y =34 ④
③ - ④得:
y =2
把y =2代入①,得: x =3
能否使两个方 程中x(或y) 的系数相等 (或相反)呢?

二元一次方程组数学活动课教学设计

二元一次方程组数学活动课教学设计

初中数学七下人教版第八章《二元一次方程组》数学活动课教学设计一、教材分析(一)教材的地位和作用本节课是人教版标准实验教科书七年级上册第八章数学活动课。

本节内容是教材中二元一次方程组部分的拔高,也为今后学习一次函数埋下伏笔。

在学生学习了二元一次方程(组)的相关内容后,让学生进一步从另一个角度重新认识二元一次方程组,体会数形结合的思想方法,这对今后的学习有着十分重要的意义。

另一方面本课对提高学生的动手能力,合作意识和交流的能力也有着积极的作用,体现了数学教育的育人功能。

(二)教学目标知识与技能目标:在平面直角坐标系中从图形的角度理解二元一次方程和二元一次方程组的解.运用二元一次方程组,分析新闻中隐含的信息。

过程与方法目标:1、通过自主探究,认识二元一次方程组的几何意义。

2、尝试用二元一次方程组的知识去解决一些实际问题。

情感态度与价值观目标:在活动中开阔学生的视野,增加学生的知识提高学习数学的兴趣。

(三)教学重点和难点重点:从图形角度理解二元一次方程组的解;难点:用二元一次方程组刻画实际问题中的等量关系,并加以解决.(四)教具、学具准备为实现以上教学目标、突出重点、解决难点,充分发挥现代技术的作用。

本节课运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。

二、学生分析1、心理特征来说,七年级的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让每一个学生都参与到课堂教学中来,发挥学生学习的主动性,感受成功的快乐。

2、从认知状况来说,学生在此之前已经学习了二元一次方程(组),对二元一次方程(组)已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于二元一次方程(组)的图象的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

5.2 求解二元一次方程组(第1课时)

5.2 求解二元一次方程组(第1课时)

解:
由①得:
y
5 2
x

把 ③ 代入②得:500x 250 5 x 22500000
2
解得:x=20000
把x=20000代入③得:y=50000
所以
x 20000
y
50000
探究新知 方法点拨
5.2 求解二元一次方程组
用代入消元法解二元一次方程组时,尽量选取未知 数系数的绝对值是1的方程进行变形;若未知数系数的绝 对值都不是1,则选取系数的绝对值较小的方程变形.
将 x=15代入③得y=5.则这个方程组的解是 答:这个队胜15场,负5场.
x
y
15, 5
课堂检测
5.2 求解二元一次方程组
拓广探索题
李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利
18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利
1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?
解: 设甲、乙两种蔬菜各种植了x、y亩,依题意得:
x+y=10

2000x+1500y=18000 ②
由①得y=10-x . ③
将③代入②,得 2000x+1500(10-x)=18000 .
解得 x=6.将x=6代入③,得y=4.
答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩.
课堂小结
解二元一 次方程组
(2)如果设胜的场数是x ,负的场数是y,
可得二元一次方程组
x y 2x
10, y 16.
那么怎样解这个二元一次方程组呢?
素养目标
5.2 求解二元一次方程组
3.初步体会化归思想在数学学习中的运用. 2.了解解二元一次方程组的基本思路.

《求解二元一次方程组(代入法)》同步课堂教案 (公开课)2022年

《求解二元一次方程组(代入法)》同步课堂教案 (公开课)2022年

5.2 求解二元一次方程组第一课时〔代入法〕一、教学目标〔一〕知识与技能会用代入消元法解二元一次方程组〔二〕过程与方法了解解二元一次方程组的消元思想,初步表达数学研究中“化未知为〞的化归思想,从而“变陌生为熟悉〞〔三〕情感态度价值观利用小组合作探讨学习,使学生领会朴素的辩证唯物主义思想二、教学重点用代入法解二元一次方程组.三、教学难点用代入法解二元一次方程组的根本思想是化归——化陌生为熟悉.四、教学过程〔一〕课题引入上节课我们的老牛和小马的包裹谁的多的问题,经过大家的共同努力,得出了如下二元一次方程组:到底谁的包裹多呢?x-y=2 ①x+1=2(y-1) ②这就需要解这个二元一次方程组.一元一次方程我们会解,二元一次方程组如何解呢?我们大家知道二元一次方程只需要消去一个未知数就可变为一元一次方程,那么我们发现:由①得y=x-2由于方程组相同的字母表示同一个未知数,所以方程②中的y也等于x-2,可以用x-2代替方程②中的y.这样就得到大家会解的一元一次方程了.〔二〕例题讲解我们知道了解二元一次方程组的一种思路,下面我们来做一做例1 解方程组3x+ 2y=14 ①x= y+3 ②解:将②代入①,得3(y+3)+2y = 143y+9+2y=145y =5y=1将y=1代入②,得x=4所以原方程组的解是x=4y=1例2 解方程组2x+3y=16 ①x+4y=13 ②教师先分析:此题不同于例1, (即用含有一个未知数的代数式表示另一个未知数),②式不能直接代入①,那么我们应当怎样处理才能转化为例1②式这样的形式呢? 请同学答复(应先对②式进行恒等变化,把它化为例1中②式那样的形式.)分小组合作完成上述例题,请两个小组的代表上黑板上来板演解:由②,得x=13-4y将③代入①,得2(13-4)S+3y=1626-8y+3y=16-5y=-10y=2将代入③,得x=5所以原方程组的解是x=5y=2〔三〕同学合作议一议上面解方程组的根本思路是什么?主要步骤有哪些?上面解方程组的根本思路是“消元〞——把“二元〞变为“一元〞。

二元一次方程组教学设计(配套的)

二元一次方程组教学设计(配套的)

《二元一次方程组》的教学设计教学目标:知识与技能:能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解.过程与方法:通过实例认识二元一次方程和二元一次方程组都是反映数量关系的重要数学模型,通过对以上知识点的学习,提高分析问题、解决问题的能力和逻辑思维能力.情感态度与价值观:通过问题情境得出二元一次方程,通过探究代入数值检验来学习二元一次方程的解.教学方法:讨论法、尝试指导法.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.重点:二元一次方程、二元一次方程组、二元一次方程组的解,以及检验一对数值是不是某个二元一次方程组的解;难点:二元一次方程组的解的概念,弄清对于一个二元一次方程,只要给出其中任一个未知数的取值,就必定能找到适合这个方程的另一个未知数的值,进一步理解二元一次方程有无数个解.以及二元一次方程组(未知数的个数与独立等量关系个数相等)有唯一确定的解.教学过程设计:(一)创设情境、我们来看一个问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次想在全部10场比赛中得到16分,那么这个队胜负场数应分别是多少?(二)新课讲授,掌握归纳1、师:在这个问题当中,求几个未知数?能不能根据题意直接设两个未知数呢?如果能的话怎样设?生:能,如:设胜的场数是x,负的场数是y胜的场数+负的场数=总场数,胜场积分+负场积分=总积分,这两个条件可以用方程表示.x+y=10,2x +y=16上面两个方程中,每个方程都含有两个未知数(x 和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.这两个方程有什么特点?与一元一次方程有什么不同? 注意:1) 等式中含有两个未知数2) 定义中未知数的项的次数是1,而不是指两个未知数的次数都是1 完成练习:判断下列方程是否为二元一次方程,并说明理由.拓展创新二元一次方程我们再来看引言中的方程 ,符合问题的实际意义的 x 、y 的值有哪些?使二元一次方程左右两边相等的一组未知数的值,叫做这个二元一次方程的一个解通常记作:28x y =⎧⎨=⎩课堂练习:1.下面4组数值中,哪些是二元一次方程 2x+y=10的解?1) 26x y =-⎧⎨=⎩ 2) 34x y =⎧⎨=⎩3) 43x y =⎧⎨=⎩ 4) 62x y =⎧⎨=-⎩2、方程2x+y=8的解 ( ) A 、只有一个 B 、只有两个 C 、只有三个 D 、有无数个二元一次方程组把两个方程写在一起:10216x y x y +=⎧⎨+=⎩,就组成了一个方程组。

解二元一次方程组教学设计(精品篇)

解二元一次方程组教学设计(精品篇)

《解二元一次方程组》教案教学内容分析:本节课是在学生已具备的知识基础——二元一次方程的解与二元一次方程组的解的概念,而如何求出二元一次方程组的解,是学生最关心的、最迫切想知道的。

本课要解决的就是让学生掌握用代入法解二元一次方程组,体验数学的化归思想。

求二元一次方程的解是学生必须掌握的技能,也为下面利用二元一次方程组解应用题打下基础。

教学目标:1、解解二元一次方程组的“消元”思想,体会学习数学中的“化未知为已知”,“化复杂为简单”的化归思想。

2、了解代入法的概念,掌握代入法的基本步骤。

3、会用代入法求二元一次方程组的解。

教学重点、难点:重点是了解代入法的一般步骤,会用代入法解二元一次方程,难点是对代入消元法解方程组过程的理解及例2中当方程组设有一个字每系数为1(或-1)时,如何用一个未知数代替另一个未知数。

教学准备:多媒体动画显示梨换成苹果与砝码的过程(也可用投影片抽拉,或实物演示)教学过程:一、创设情景,引出课题1下有九十四足,问鸡兔各几头? 根据学生列出的方程组⎩⎨⎧=+=+944235y x y x 问:如何求它的解?2、引出课题:4.3 解二元一次方程组二、直观显示,体验转化1、用多媒体(或投影片抽拉或实物演示)显示用(y 把方程组中的二元转化为一元的过程。

2、合作学习,求出x 、y 的值。

3、让学生谈谈如何求二元一次方程组⎩⎨⎧=++=20010y x x y 的解。

4三、学习新知,形成体系2y -3x=1 ①1、典例讲解:例1,解方程组x =y -1 ②先让学生议论:如何用代入法解方程组?师归纳:关键是把“二元”→“一元”,用y -1代替x 代入①式中的x (可以动画显示y -1代替x 的过程)解:把②代入①,得 2y -3(y -1)=1 2y -3y +3=1(求得y 后,让学生讨论:如何求x ,代入②还是代入①简便?) 把y =2代入②,得x =2-1=1∴方程组的解是⎩⎨⎧==21y x注意:把2y-3(y-1)=1中的(y -1),x =2-1=1中的2用彩色粉笔处理。

《第五章2求解二元一次方程组》作业设计方案-初中数学北师大版12八年级上册

《第五章2求解二元一次方程组》作业设计方案-初中数学北师大版12八年级上册

《求解二元一次方程组》作业设计方案(第一课时)一、作业目标本作业设计旨在通过实践操作,使学生掌握二元一次方程组的基本概念和求解方法,能够运用消元法或代入法解决简单的二元一次方程组问题,并培养学生的逻辑思维能力和解决问题的能力。

二、作业内容作业内容主要分为以下几个部分:1. 理论知识回顾:要求学生复习二元一次方程组的基本概念,包括方程组的形式、解的概念等。

2. 练习消元法:提供几个二元一次方程组的实例,要求学生运用消元法求解,并记录下每一步的运算过程。

3. 练习代入法:同样提供几个二元一次方程组的实例,要求学生运用代入法求解,并比较两种方法的优劣。

4. 实际应用:设置几个与实际生活相关的问题,如购物找零、分配任务等,将这些问题抽象为二元一次方程组,并要求学生求解。

5. 自主探究:鼓励学生对自己设立的二元一次方程组进行求解,培养学生自主探究的能力。

三、作业要求针对此作业设计,具体作业要求如下:三、作业要求学生应认真对待每一项作业内容,并严格按照以下要求完成作业:1. 理论知识回顾:要求学生对二元一次方程组的基本概念进行全面复习,并能够准确阐述其含义。

2. 练习消元法与代入法:在求解过程中,学生需详细记录每一步的运算过程,确保解题步骤清晰、准确。

对于每种方法,都应尝试至少两个实例,并比较其优劣。

3. 实际应用:学生需将实际问题抽象为二元一次方程组,并运用所学知识进行求解。

在解题过程中,应注重实际问题的背景,理解问题的实际含义。

4. 自主探究:学生需自行设立二元一次方程组,并尝试求解。

此环节旨在培养学生的自主探究能力和创新能力。

以上作业要求旨在使学生通过实践操作,真正掌握二元一次方程组的求解方法,提高其解决问题的能力。

希望学生能够认真对待每一次作业,不断提高自己的学习能力和解题能力。

四、作业评价...五、作业反馈通过作业的批改与讲解,教师将对学生的作业进行全面评价,并及时给予反馈。

对于存在的问题,教师将指导学生进行改正,并给出相应的建议。

北师大版八年级数学上册《求解二元一次方程组》第1课时示范课教学设计

北师大版八年级数学上册《求解二元一次方程组》第1课时示范课教学设计

第五章 二元一次方程组
2 解二元一次方程组
第1课时
一、教学目标
1.会用代入消元法解二元一次方程组.
2.了解解二元一次方程组的“消元”思想,初步体会化未知为已知的化归思想.
3.经历将二元一次方程组变形为一元一次方程的过程,学会将未知数的个数由多化少,逐一解决,体会消元思想在解方程中的应用.
4.通过探究二元一次方程组的解法,经历解二元一次方程组的过程,提高学生逻辑思维能力、计算能力、解决实际问题的能力.
二、教学重难点
重点:会用代入消元法解二元一次方程组.
难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想.
三、教学用具
多媒体课件
四、教学过程设计
【情境导入】
话说有一天,一头牛和一匹马驮着包裹赶路. 下面请同学们认真分析他们的对话,然后回答问题:
提问:它们各驮了多少包裹呢?
预设答案:设老牛驮了x 个包裹,小马驮了y 个包裹.
212(1)
x y x y -=⎧⎨
+=-⎩ 你能列一元一次方程解决这个问题吗?
-5y=-10,
y= 2.
将y=2代入③,得x=5.
所以原方程组的解是
5,
2. x
y
=⎧

=⎩
【问题】
1.将③代入②可以吗?
不可以,因为③是由②得出的,再代回②中,恒成立.
2.上面解方程组的基本思路是什么?
归纳:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.
3.主要步骤有哪些?
预设答案:
把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,从而求得方程组的解,这种解方程组的方法叫做代入消元法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2求解二元一次方程组教学设计
一、教学课题:求解二元一次方程组
二、教学目标:
知识与技能:会用代入消元法解二元一次方程组;
过程与方法:经历将二元一次方程组转化为一元一次方程进行求解的过程掌握代入消元法;数学思考:了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.
三、教材分析:
重点:用代入消元法解二元一次方程组.
难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想.
学习的知识类型:
事实性知识:求解一元一次方程
概念性知识:求解二元一次方程组的大致步骤。

程序性知识:利用代入消元法求解二元一次方程组。

反身认知:总结利用代入消元法需要注意的部分。

四、学情分析:
1、学生的学习起点:学生已经掌握了有理数、整式的运算、一元一次方程等知识,了解了二
元一次方程、二元一次方程组及其解等基本概念。

2、学生学习困难点:如何选择消除未知元
3、学生学习问题点:“消元”思想和“化未知为已知”的化归思想.
五:学习方式:自主归纳,合作探求,分类讨论。

六:教学方式:自主练习、合作探究、讲授结合(问题-评价)。

七:教学过程:
八:作业布置与板书设计:。

相关文档
最新文档