空间中的垂直关系(带答案)

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间中得垂直关系专题训练

知识梳理

一、线线垂直:

如果两条直线于一点或经过后相交于一点,并且交角为 ,则称这两条直线互相垂直、

二、线面垂直:

1、定义:如果一条直线与一个平面相交,并且与这个

平面内得_________________,则称这条直线与这个平

面垂直、也就就是说,如果一条直线垂直于一个平面,

那么她就与平面内任意一条直线都、直线l与平面

α互相垂直,记作l⊥α、

2、判定定理:如果一条直线与平面内得直线垂直,则这条直线与这个平面垂

直、

推论①:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也于这个平面、

推论②:如果两条直线同一个平面,那么这两条直线平行、

3、点到平面得距离: 长度叫做点到平面得距离、

三、面面垂直:

1、定义:如果两个相交平面得交线与第三个平面 ,又这两个平面与第三个平面相交

所得得两条交线 ,就称这两个平面互相垂直、平面α,β互相垂直,记作α⊥β、

2、判定定理:如果一个平面经过另一个平面得___________,则这两个平面互相垂直、

3、性质定理:如果两个平面互相垂直,那么在一个平面内垂直于直线垂直于另

一个平面、

四、求点面距离得常用方法:

1、直接过点作面得垂线,求垂线段得长,通常要借助于某个三角形、

2、转移法:借助线面平行将点转移到直线上某一特殊点到平面得距离来求解、

3、体积法:利用三棱锥得特征转换位置来求解、

题型一线线垂直、线面垂直得判定及性质

例1、如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E就是PC得中点、求证:

(1)CD⊥AE;

(2)PD⊥平面ABE、

【变式1】已知:正方体ABCD﹣A1B1C1D1 ,AA1=2,E为棱CC1得中点.

(Ⅰ ) 求证:B1D1⊥AE;

(Ⅱ ) 求证:AC∥平面B1DE.

【解答】(Ⅰ)连接BD,则BD∥B1D1,∵ABCD就是正方形,∴AC⊥ BD.

∵CE⊥平面ABCD,BD⊂平面ABCD,∴CE⊥BD.

又∵AC∩CE=C,∴BD⊥面ACE.∵AE⊂面ACE,∴BD⊥AE,∴B1D1⊥AE.﹣﹣﹣(5分)

(Ⅱ)证明:取BB1得中点F,连接AF、CF、EF.∵ E、F就是C1C、B1B得中点,

∴ CE∥B1F且CE=B1F,∴ 四边形B1FCE就是平行四边形,∴ CF∥ B1E.∵ 正方形BB1C1C 中,E、F就是CC、BB得中点,∴ EF∥BC且EF=BC

又∵ BC∥AD且BC=AD,∴ E F∥AD且EF=AD.∴ 四边形ADEF就是平行四边形,可得

AF∥ED,∵ AF∩CF=C,BE∩ED=E,

∴ 平面ACF∥平面B1DE. 又∵ AC⊂平面ACF,∴AC∥面B1DE.

【变式2】如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E、G分别就是CD、PC得中点,点F在PD上,且PF:FD=2:1.

(Ⅰ )证明:EA⊥PB;

(Ⅱ )证明:BG∥面AFC.

【解答】(Ⅰ)证明:因为面ABCD为菱形,且∠ABC=60°,所以△ ACD为等边三角形,

又因为E就是CD得中点,所以EA⊥AB.又PA⊥平面ABCD,所以EA⊥PA.

而AB∩PA=A

所以EA⊥面PAB,所以EA⊥PB.

(Ⅱ)取PF中点M,所以PM=MF=FD.连接MG,MG∥C F,所以MG∥面AFC.

连接BM,BD,设AC∩BD=O,连接OF,

所以BM∥OF,所以BM∥面AFC.

而BM∩MG=M

所以面BGM∥面AFC,所以BG∥面AFC.

【变式3】如图,四棱柱ABCD﹣A1B1C1D1得底面ABCD就是正方形,O为底面中心,A1O⊥平面ABCD,AB=,AA1=2.

(1)证明:AA1⊥BD

(2)证明:平面A1BD∥平面CD1B1;

(3)求三棱柱ABD﹣A1B1D1得体积.

【解答】(1)证明:∵底面ABCD就是正方形,∴BD⊥AC,又∵ A1O⊥平面ABCD且BD⊂面ABCD,∴ A1O⊥BD,又∵ A1O∩AC=O,A1O⊂面A1AC,AC⊂面A1AC,

∴BD⊥面A1AC,AA1⊂面A1AC,∴ AA1⊥BD.

(2)∵ A1B1∥AB,AB∥CD,∴ A1B1∥CD,又A1B1=CD,∴四边形A1B1CD就是平行四边形, ∴ A1D∥B1C,同理A1B∥CD1,∵ A1B⊂平面A1BD,A1D⊂平面A1BD,CD1⊂平面CD1B1,B1C⊂平面CD1B,且A1B∩A1D=A1,CD1∩B1C=C,∴平面A1BD∥平面CD1B1.

(3)∵ A1O⊥面ABCD,∴ A1O就是三棱柱A1B1D1﹣ABD得高,

在正方形ABCD中,AO=1.在Rt△A1OA中,AA1=2,AO=1,

∴ A1O=,∴ V三棱柱ABD﹣A1B1D1=S△ABD•A1O=•2•=

∴三棱柱ABD﹣A1B1D1得体积为.

【变式4】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=BC=AC=AA1=4, 点F在CC1上,且C1F=3FC,E就是BC得中点.

(1)求证:AE⊥平面BCC1B1

(2)求四棱锥A﹣B1C1FE得体积;

(3)证明:B1E⊥AF.

【解答】(1)∵ AB=AC,E就是BC得中点,

∴AE⊥ BC.

在三棱柱ABC﹣A1B1C1,中,BB1∥ AA1,

∴ BB1⊥平面ABC,

∵ AE⊂平面ABC,

∴ BB1⊥AE,….(2分)

又∵ BB1∩BC=B,….(3分)

BB1,BC⊂平面BB1C1C,

∴AE⊥平面BB1C1C,….(4分)

(2)由(1)知,即AE为四棱锥A﹣B1C1FE得高,在正三角形ABC中,AE=AB=2,…

在正方形BB1C1C,中,CE=BE=2,CF=1,∴=﹣﹣S△CFE=4×=11.…(6分)

∴=•AE==…(7分)

(3)证明:连结B1F,由(1)得AE⊥平面BB1C1C,∵ B1E⊂平面BB1C1C,∴AE⊥B1E,….(8分)在正方形BB1C1C,中,B1F==5,B1E==2,EF==,∵ B1F2=B1E2+EF2,∴ B1E⊥EF….(9分)

又∵AE∩EF=E,….(10分)AE,EF⊂平面AEF,∴ B1E⊥平面AEF,….(11分)

∵ AF⊂平面AEF,∴ B1E⊥AF.….(12分)

【变式5】如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E 为PC得中点,G在BC上,且CG=CB

(1)求证:PC⊥BC;

(2)求三棱锥C﹣DEG得体积;

(3)AD边上就是否存在一点M,使得PA∥平面MEG?若存在,求AM得长;否

则,说明理由.

【解答】(1)证明:∵PD⊥平面ABCD,∴PD⊥BC.又∵ABCD就是正方形,∴BC⊥CD.

又∵PD∩CD=D,∴BC⊥平面PCD.又∵PC⊂平面PCD,∴PC⊥BC.(2)∵BC⊥平面PCD,

∴ GC就是三棱锥G﹣DEC得高.

∵ E就是PC得中点,

∴ S△EDC=S△PDC==×(×2×2)=1.V C﹣DEG=V G﹣DEC=GC•S△DEC=××1=.

(3)连结AC,取AC中点O,连结EO、GO,延长GO交AD于点M,则PA∥平面MEG.

证明:∵E为PC得中点,O就是AC得中点,∴EO∥PA.又∵EO⊂平面MEG,PA⊄平面MEG,

相关文档
最新文档