物理光学_叶玉堂_光的衍射习题

合集下载

物理光学课后答案叶玉堂

物理光学课后答案叶玉堂

王伟整理
1
光学教程第二版 叶玉堂 第二部分 物理光学课后习题答案
(2) Ex E0 cos(t kz) , E y E0 cos(t kz / 4)
(3) Ex E0 sin(t kz) , Ex E0 sin(t kz)
解:(1)∵ Ex
E0
sin(t
kz)
E0
cos(t
kz ) 2
2) 2)
rs
sin( 2 sin( 2
1 ) 1)
sin(1 sin(1
2) 2)
rs
(2) rp
tan(1 tan(1
2) 2)
rp
tan( 2 tan( 2
1 ) 1)
tan(1 tan(1
2) 2)
rp
(3) ts
2 sin 2 cos1 sin(1 2 )
t s
2 sin1 sin(1
1 )
s in 1 s in 2
c os 2 cos1
4sin 2 2 cos2 1 sin 2 (2 1) cos2 (2
1 )
n2 cos2
4sin 2 2 cos2 1
n1 cos1 sin 2 (2 1) cos2 (2 1)
Tp
王伟整理
3
光学教程第二版 叶玉堂 第二部分 物理光学课后习题答案
n1,光纤包层的折射率为 n2,并且 n1 >n2。(1)证明入射光
的最大孔径角 2u 满足:sin u n12 n22 ;(2)若 n1 1.62 ,
u u
n2 1.52 ,最大孔径角为多少?
n2
c
n1
解:(1)如图,为保证光线在光纤内的入射角大于临界角,必须使入射到光纤端面的光线

光的衍射习题及答案

光的衍射习题及答案

光的衍射习题及答案第二章光的衍射1.单色平面光照射到一小圆孔上,将其波面分成半波带。

求第K个带的半径。

若极点到观察点的距离r。

为1m,单色光波长为450nm,求此时第一半波带的半径。

k解:2r02而r r0匸k:2 2kr k r02\ k r°r02将上式两边平方,得2 22 2 2, kk r0 r0 kr04略去k2 2项,则k Jkr°将k 1, r°100cm, 450010-8 cm带入上式,得0.067 cm2.平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m的P 点的光强分别得到极大值和极小值;(2)P点最亮时,小孔直径应为多大?设此时的波长为500nm解:(1)根据上题结论 k *0k .400 5 10 5k 0.1414 .. kcm当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2) P 点最亮时,小孔的直径为2 12 r 00.2828cm3•波长为500nm 的单色点光源离光阑1m 光 阑上有一个内外半径分别为 0.5mm 和1mm 勺透光圆环,接收点P 离光阑1m 求P 点的光强I 与 没有光阑时的光强度I 0之比 解:根据题按圆孔里面套一个小圆屏幕将r o400cm,10-5cm代入,得k 12 hk1r 。

k2R :k2 R 1 mr1m Rhk .0.5mm R hk2 1mm 有光阑时,由公式 得0.52 1 1 500 10 6 1000 100012 1 1500 10 6 1000 1000500nmRf(R r °)鱼丄丄r ° Rr 0 R11 1111a p a 1 a 3a 1 a 2 a 2 a 3 a 12 2 2 2 2没有光阑时a oa i所以4•波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

物理光学课后答案叶玉堂

物理光学课后答案叶玉堂

第四章 光的电磁理论4-1计算由8(2)exp 610)i y t ⎡⎤=-+++⨯⎢⎥⎣⎦E i 表示的平面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长。

解:由题意:)81063(2t y x i eE x ⨯++-= )81063(32t y x i e E y ⨯++=∴3-=xy E E ∴振动方向为:j i3+-由平面波电矢量的表达式: 3=x k 1=y k∴传播方向为: j i+3平面电磁波的相位速度为光速: 8103⨯=c m/s 振幅:4)32()2(222200=+-=+=oy x E E E V/m频率:8810321062⨯=⨯==πππωf Hz 波长:πλ==fcm 4-2 一列平面光波从A 点传到B 点,今在AB 之间插入一透明薄片,薄片的厚度mm h 2.0=,折射率n =1.5。

假定光波的波长为5500=λnm ,试计算插入薄片前后B 点光程和相位的变化。

解:设AB 两点间的距离为d ,未插入薄片时光束经过的光程为:d d n l ==01 插入薄片后光束经过的光程为:h n d nh h d n l )1()(02-+=+-= ∴光程差为:mm h n l l 1.02.05.0)1(12=⨯=-=-=∆ 则相位差为:ππλπδ6.3631.010550226=⨯⨯=∆=-4-3 试确定下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω(2))cos(0kz t E E x -=ω,)4/cos(0πω+-=kz t E E y (3))sin(0kz t E E x -=ω,)sin(0kz t E E x --=ω 解:(1)∵)2cos()sin(00πωω--=-=kz t E kz t E E x∴2πϕϕϕ=-=x y∴ 为右旋圆偏振光。

(2)4πϕϕϕ=-=x y∴ 为右旋椭圆偏振光,椭圆长轴沿y =x (3)0=-=x y ϕϕϕ∴ 为线偏振光,振动方向沿y =-x4-4 光束以30°角入射到空气和火石玻璃(n 2=1.7)界面,试求电矢量垂直于入射面和平行于入射面分量的反射系数s r 和p r 。

光的衍射习题1

光的衍射习题1

第二章光的衍射(1)一、选择题1.根据惠更斯—菲涅耳原理,若已知光在某时刻的阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的(A) 振动振幅之和(B) 光强之和(C) 振动振幅之和的平方(D) 振动的相干叠加2.在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a同时使单缝沿y轴正方向作为微小位移,则屏幕C(A) 变窄,同时向上移;(B)(C) 变窄,不移动;(D) 变宽,同时向上移;(E) 变宽,不移动。

3.波长λ=5000Ǻ的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。

今测的屏幕上中央条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距f为(A) 2m (B) 1m (C) 0.5m (D) 0.2m (E) 0.1m4.在透光缝数为的光栅衍射实验里,缝干涉的中央明纹中强度的最大值为一个缝单独存在时单缝衍射中央明纹强度最大值的(A) 1倍(B) N倍(C)2N倍(D) N2倍5.波长为4.26Ǻ的单色光,以70º角掠射到岩盐晶体表面上时,在反射方向出现第一级级大,则岩盐晶体的晶格常数为(A) 0.39Ǻ (B) 2.27Ǻ (C) 5.84λǺ (D) 6.29Ǻ二、填空题1.惠更斯—菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的______,决定了P点的合震动及光强。

2.在单缝夫琅和费衍射实验中,设第一级安稳的衍射角很小,若钠黄光(λ≈5890Ǻ)中央明纹宽度为4.0mm,则λ=4420Ǻ的蓝紫色光的中央明纹宽度为_____.3.一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹。

若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____级和第_____级谱线。

4.单色平行光垂直照射一侧狭缝,在缝后远处的屏上观察到夫琅和费衍射图样,现在把缝宽加倍,则透过狭缝的光的能量变为_____倍,屏上图样的中央光强变为_____倍5.一双缝衍射系统,缝宽为a,两缝中心间距为d。

光的衍射习题及答案

光的衍射习题及答案

光的衍射习题及答案第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。

求第к个带的半径。

若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。

解:2022rrk k+=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+略去22λk 项,则 λρ0kr k=将 cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。

解:(1)根据上题结论 ρρ0kr k=将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2)P 点最亮时,小孔的直径为 cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。

解:根据题意 m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ 按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

光学教程(叶玉堂著)课后答案下载

光学教程(叶玉堂著)课后答案下载

光学教程(叶玉堂著)课后答案下载《光学教程》是清华大学出版社xx年出版图书,作者是叶玉堂,饶建珍,肖峻等。

以下是为大家的光学教程(叶玉堂著),仅供大家参考!点击此处下载???光学教程(叶玉堂著)课后答案???本教程以物理光学和应用光学为主体内容。

第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统。

第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展;第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。

第一篇应用光学第1章几何光学基础1.1几何光学的基本定律1.2物像基本概念1.3球面和球面系统1.4平面与平面系统1.5光学材料例题习题第2章理想光学系统2.1理想光学系统的基本特性、基点和基面 2.2理想光学系统的物像关系2.3理想光学系统的放大率2.4理想光学系统的组合2.5单透镜2.6光学系统中的光束限制2.7像差概述2.8波像差2.9矩阵运算在几何光学中的应用例题习题第3章光学仪器的基本原理3.1眼睛3.2放大镜3.3显微镜3.4望远镜3.5摄影系统3.6现代光学系统习题第二篇物理光学第4章光的电磁理论4.1电磁波谱电磁场基本方程4.2光波在各向同性介质中的传播 4.3光波的偏振特性4.4光波在介质界面上的反射和折射 4.5光波场的频率谱4.6球面光波和柱面光波例题习题第5章光的干涉5.1光干涉的条件5.2双光束干涉5.3多光束干涉5.4光学薄膜5.5典型的干涉仪及其应用5.6光的相干性例题习题第6章光的衍射6.1光的衍射现象6.2衍射的基本原理6.3夫琅禾费衍射6.4光学成像系统的衍射和分辨本领 6.5夫琅禾费多缝衍射6.6衍射光栅6.7菲涅耳衍射6.8全息术例题习题第7章晶体光学7.1介电张量7.2单色平面波在晶体中的传播7.3单轴晶体和双轴晶体的光学性质 7.4晶体光学性质的图形表示7.5平面波在晶体表面的反射和折射 7.6偏振器和补偿器7.7偏振光和偏振器件的琼斯矩阵 7.8偏振光的干涉7.9电光效应7.10声光效应7.11旋光现象7.12磁致旋光效应例题习题第8章光的吸收、色散和散射8.1光与物质相互作用的经典理论8.2光的吸收8.3光的色散8.4光的散射例题习题第9章现代光学技术简介9.1航天光学遥感9.2自适应光学9.3红外与微光成像9.4瞬态光学9.5光学信息处理9.6微光学9.7单片光电集成习题答案参考文献主题索引1.阳光大学生网课后答案下载合集2.光学教程叶玉堂饶建珍课后答案清华大学出版社3.光学教程第三版姚启钧著课后习题答案高等教育出版社4.光学教程郭永康鲍培谛课后答案四川大学出版社。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1= x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3m = 2.4 mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12 mm Δx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。

物理光学_叶玉堂_晶体光学习题

物理光学_叶玉堂_晶体光学习题

当前测试题类型: 单选1. 在单轴晶体中,一般D和E的方向______。

A:垂直B:平行C:有一小的角度D:完全无关2. 从光线或波法线的菲涅耳公式,可以证明______。

A:反射定律B:双折射的存在C:折射定理D:离散角的存在3. 正负单轴晶体的划分一般以它的主折射率来确定。

对方解石晶体而言,它的主折射率_______。

A:no>neB:no<>C:no=neD:都有可能4. 单轴晶体只有一条光轴,一般取为_______。

A:任意B:X轴C:Y轴D:Z轴5. 如果要把线偏振光变成圆偏振光,可以使用_______。

A:全波片B:3/4波片C:半波片D:1/4波片6. 我们可以根据Q参量的大小对声光效应产生的衍射进行分类,如果Q<<1,将产生_______。

A:拉曼-柰斯衍射B:布拉格衍射C:两种都有D:说不清楚7. 某线偏振光与Y轴夹角为45°,在光路上放一波片,使其出射光仍为线偏振光,但是偏振方向转过了90°。

那么该波片应使用_______。

A:全波片B:半波片C:1/4波片D:3/4波片8. 下面那些物质不存在着旋光现象?A:KDP晶体B:糖溶液C:松节油D:石英晶体当前测试题类型: 多选1. 与机械转镜式光束偏转器相比,利用电光效应制成的电光偏转器在光束偏转应用领域的优点有______。

A:速度快B:偏转角度大C:稳定性好D:精度高2. 下列物质中,是双轴晶体的有_______。

A:云母B:蓝宝石C:石膏D:铌酸锂当前测试题类型: 简答1. 为什么在晶体中介电张量是对称的?2. 在晶体中相速度与光线速度之间有什么联系?3. 什么是波法线菲涅耳公式、光线菲涅耳公式?从中,可以得出有关晶体的什么结论?4. 写出单轴晶当前测试题类型: 判断1. 线偏振光入射到光学各向异性晶体中,不会有双折射现象产生。

对错2. 晶体的光轴是指晶体中固定的方向。

光沿该方向传播,有双折射现象产生。

高考物理光的衍射题

高考物理光的衍射题

高考物理光的衍射题光的衍射是光通过一个小孔或者绕过障碍物后,发生偏折和交叉现象的现象。

光的衍射是光的波动性质的重要表现,对光学的研究和应用具有重要意义。

下面我们将以高考物理中常见的一些光的衍射题为例,详细解析光的衍射原理和解题方法。

1. 单缝衍射题目:将单色光垂直入射到一个宽度为a的单缝上,当入射光波长为λ时,在离缝中心距离x处的衍射光亮度达到最大值。

求此时的衍射极限角。

解析:根据单缝衍射的原理,当衍射光达到最大亮度时,衍射极限角θ可以通过以下公式计算得到:sinθ = λ / a其中,λ为入射光波长,a为单缝宽度。

在解题过程中,我们可以根据已知条件代入公式,求解得到最终的答案。

2. 双缝衍射题目:将波长为λ的单色光垂直入射到一个由两个宽度为a的缝隙组成的缝隙上,两个缝距离为d。

在距离屏幕L处观察到光的衍射图样,求出观察到的第m级明条纹的夹角。

解析:双缝衍射是一种常见的光学现象,在解题过程中需要用到夫琅禾费衍射公式:asinθ = mλ其中,m代表观察到的明条纹级别,λ为入射光波长,a为单个缝隙宽度,d为两个缝隙的距离,θ为夹角。

在解答此类题目时,可以根据已知条件代入公式,求解得到最终的答案。

3. 狭缝衍射题目:将波长为λ的单色光垂直入射到一条宽度为a的狭缝上,通过一个观察屏幕上观察光的衍射现象。

如果将观察屏幕水平移动一个距离L,观察到的亮条纹数目N也移动了一个单位。

求解狭缝的宽度a。

解析:狭缝衍射是一种比较复杂的光学现象,需要运用夫琅禾费衍射公式结合几何关系来解答。

根据已知条件可以得到以下公式:a = λ * L / N其中,λ代表入射光的波长,L为观察屏幕的移动距离,N为亮条纹的移动单位。

通过代入已知条件,求解得到狭缝的宽度a。

通过对以上三个典型的高考物理光的衍射题的解析,我们可以发现光的衍射问题在高考物理中经常出现。

解答光的衍射题需要运用光的波动性质和几何关系相结合的方法,通过物理公式的运用来求解。

人教版高中物理选修一《光的衍射》练习题(含解析)(1)

人教版高中物理选修一《光的衍射》练习题(含解析)(1)

第四单元光第5课光的衍射一、基础巩固1.下列属于光的衍射现象的是( )A.B.C.D.【答案】A【解析】A图中单色光通过狭缝后产生衍射现象;B是光的干涉现象;C是薄膜干涉;D是光的色散;故选A.2.如图,用激光照射直径小于激光束的不透明圆盘,例如小分币,我们可以在光屏上看到的图样为下图中的()A.B.C.D.【答案】B【解析】用激光照射直径小于激光束的不透明圆盘,会产生光的衍射现象,中央出现亮点,图样为B所示;故选B.3.用激光照射直径小于激光束的不透明圆盘,发现在不透明圆板的阴影中心,有一个亮斑,产生这个亮斑的原因是()A.光的反射B.光的衍射C.光的折射D.光的干涉【答案】B【解析】当用激光照射直径小于激光束的不透明圆盘时,在圆盘后屏上的阴影中心出现了一个亮斑,亮斑的周围是明暗相间的环状衍射条纹,这就是泊松亮斑,是激光绕过不透光的圆盘发生衍射形成的。

泊松最初做本实验的目的是推翻光的波动性,而实验结果却证明了光的波动性,故B正确,ACD错误;故选B。

4.用单色光通过小圆盘和小圆孔做衍射实验时,在光屏上得到衍射图形,它们的特征是A.中央均为亮点的同心圆形条纹B.中央均为暗点的同心圆形条纹C.用小圆盘时中央是暗的,用小圆孔时中央是亮的D.用小圆盘时中央是亮的,用小圆孔时中央是暗的【答案】A【解析】圆孔衍射实验图样,与单色光通过小圆盘得到的泊松亮斑,它们中央均为亮点的同心圆形条纹,故A正确,BCD错误。

5.单色光照射双缝,在像屏上观察到明暗相间的干涉条纹,现用遮光板将其中的一个缝挡住,则像屏上观察到的现象是()A.宽度均匀的明暗相间的条纹B.中央亮而宽,两边窄而暗条纹C.一条亮纹D.一片亮光【答案】B【解析】如果将双缝中一条缝挡住,其他不改变,光屏上出现的图案是光的衍射条纹即中央亮而宽,两边窄而暗条纹,故B正确,ACD错误。

故选B。

6.关于光的干涉和衍射现象,下列各种说法中正确的是()A.通过一个狭缝观察日光灯可看到彩色条纹是光的色散现象B.白光通过双缝后产生的干涉条纹是彩色的,是由于各种色光传播速度不同C.干涉和衍射的条纹都是明暗相间的,所以不能通过条纹来判断是干涉现象还是衍射现象D.光的干涉条纹和衍射条纹都是光波叠加的结果【答案】D【解析】通过一个狭缝观察日光灯可看到彩色条纹是光的衍射现象,故A错误;白光通过双缝后产生的干涉,由于各种色光波长不同,导致干涉条纹间距不同,从而出现彩色条纹,故B错误;干涉和衍射的条纹都是明暗相间的,干涉条纹是平行等距的,衍射条纹是不等距的,所以可以通过条纹来判断是干涉现象还是衍射现象,故C错误;光的干涉条纹和衍射条纹都是光波叠加的结果,故D正确。

物理光学 课后参考答案 叶玉堂

物理光学 课后参考答案 叶玉堂

精心整理第四章光的电磁理论4-1计算由8(2)exp 610)i y t ⎡⎤=-+++⨯⎢⎥⎣⎦E i 表示的平面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长。

解:由题意:)81063(2t y x i e E x ⨯++-=∴3-=xy E E ∴振动方向为:j i3+-振幅:0E 频率:=f 波长:λ=4-2n =1.5。

解:设AB 则相位差为:πλδ6.3631.0105506=⨯⨯=∆=- 4-3试确定下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω (2))cos(0kz t E E x -=ω,)4/cos(0πω+-=kz t E E y (3))sin(0kz t E E x -=ω,)sin(0kz t E E x --=ω 解:(1)∵)2cos()sin(00πωω--=-=kz t E kz t E E x∴2πϕϕϕ=-=x y∴为右旋圆偏振光。

(2)4πϕϕϕ=-=x y∴为右旋椭圆偏振光,椭圆长轴沿y =x (3)0=-=x y ϕϕϕ∴为线偏振光,振动方向沿y =-x4-4光束以30°角入射到空气和火石玻璃(n 2=1.7)界面,试求电矢量垂直于入射面和平行于入射面分量的反射系数s r 和p r 。

∴=s r 4-5n 1=1和n 2=解:θ∴=s r ∴tan r α4-6p 波的2θ时(折射角为1θ),s 波和p 波的反射系数分别为's r 和'p r ,透射系数分别为's t 和'p t 。

试利用菲涅耳公式证明:(1)'-=s s r r ;(2)'-=p p r r ;(3)s s s T t t =';(4)p p p T t t ='证明:(1))sin()sin(2121θθθθ+--=s r(2))tan()tan(2121θθθθ+-=p r(3))sin(cos sin 22112θθθθ+=s t )sin(cos sin 22121θθθθ+='s t∴)(sin cos sin 4cos sin cos sin )sin(cos sin 2)sin(cos sin 22121222122*********θθθθθθθθθθθθθθθθ+⋅=+⋅+='s s t t (4))cos()sin(cos sin 2212112θθθθθθ-+=p t )cos()sin(cos sin 2121221θθθθθθ-+='p t∴)cos()sin(cos sin 2)cos()sin(cos sin 2121221212112θθθθθθθθθθθθ-+⋅-+='p p t t4-7如图,M 1、M 2是两块平行放置的玻璃片(n =1.5),背面涂黑。

光学教程叶玉堂第一章答案

光学教程叶玉堂第一章答案

1-4 一个玻璃球半径为R ,折射率为n ,若以平行光入射,当玻璃的折射率为何值时,会聚点恰好落在球的后表面上?解:如图所示,平行光入射经前表面折射成像,要会聚在后表面,则R l 2=' 代入物象关系式r n n l n l n -'=-'',其中-∞=l :R n R n 12-'=' 求得:2='n1-6 在一张报纸上放一个平凸透镜,眼睛通过透镜看报纸。

当平面朝着眼睛时,报纸的虚像在平面下12mm 处;当凸面朝着眼睛时,报纸的虚像在凸面下15mm 处,若透镜的中央厚度为20mm ,求透镜的折射率和凸球面的曲率半径。

解:当平面朝着眼睛时,凸面紧贴报纸,因此只有平面成像,如图(a )所示:mm l 20-=,∞=r ,1='n ,mm l 12-=' 代入物象公式r n n l n l n -'=-'':∞-=---n n 120121 求得:n =1.525当凸面朝着眼睛时,只有凸面成像,如图(b )所示:mm l 20-=,1='n ,mm l 15-=' 代入物象公式:r .525.1120525.1151-=---求得:r =-54.783 mmA1-9 一个直径为400mm 的玻璃球,折射率为1.52。

球内有两个小气泡,看上去一个恰好在球心,另一个从最近的方向去看,在球表面和中心的中间,求两气泡的实际位置。

解:∵通过球心的光线垂直于球表面出射或入射∴看上去在球心的气泡,其实际位置就是在球心。

另一个气泡像位于表面和中心的中间,球直径为400mm∴mm l 100212400-=⨯-=' 代入物象关系式r n n l n l n -'=-'':20052.1152.11001--=--l 求得:mm l 635.120-=∴另一个气泡的实际位置离球心的距离为:200-120.635=79.365 mm1-12 有一玻璃半球,折射率为1.5,半径为100mm ,其中的平面镀银。

光的衍射习题答案

光的衍射习题答案

光的衍射习题答案第六章光的衍射6-1 求矩形夫琅和费衍射图样中,沿图样对角线方向第一个次极大和第二个次极大相对于图样中心的强度。

解:对角线上第一个次极大对应于πβα43.1==,其相对强度为:0022.043.143.1sin sin sin 422=??? ??=?=ππββααI I 对角线上第二个次极大对应于πβα46.2==,其相对强度为:00029.046.246.2sin sin sin 422=??? ??=?=ππββααI I6-2 由氩离子激光器发出波长488=λnm 的蓝色平面光,垂直照射在一不透明屏的水平矩形孔上,此矩形孔尺寸为0.75mm ×0.25mm 。

在位于矩形孔附近正透镜(5.2=f m )焦平面处的屏上观察衍射图样,试求中央亮斑的尺寸。

解:中央亮斑边缘的坐标为:63.175.01048825006±=??±=±=-a f x λmm 26.32=x mm88.425.01048825006±=??±=±=-b f y λmm 76.92=y mm∴中央亮斑是尺寸为3.26mm ×9.76mm 的竖直矩形6-3 一天文望远镜的物镜直径D =100mm ,人眼瞳孔的直径d =2mm ,求对于发射波长为5.0=λμm 光的物体的角分辨极限。

为充分利用物镜的分辨本领,该望远镜的放大率应选多大?解:当望远镜的角分辨率为: 636101.610100105.022.122.1---?===Dλθrad人眼的最小分辨角为: 4361005.3102105.022.122.1---?===de λθrad∴望远镜的放大率应为:50===dD M e θθ6-4 一个使用汞绿光(546=λnm )的微缩制版照相物镜的相对孔径(f D /)为1:4,问用分辨率为每毫米380条线的底片来记录物镜的像是否合适?解:照相物镜的最大分辨本领为: 375411054622.1122.116=?==-fD N λ/mm∵380>375∴可以选用每毫米380条线的底片。

光的衍射单元测试题及答案

光的衍射单元测试题及答案

光的衍射单元测试题及答案
问题一:
一束波长为500 nm 的单色光照射到一条宽度为0.2 mm 的狭缝上,狭缝后面的屏幕距离狭缝10 m,屏幕上呈现出光的衍射现象。

1. 屏幕上的主极大位置是在哪里?
2. 如果把狭缝的宽度从0.2 mm 增加到 0.5 mm,屏幕上呈现出
的光的衍射现象会如何变化?
答案:
1. 主极大位置计算公式为X = (n * λ * D) / a,其中 X 表示主极
大位置(即屏幕上距离狭缝的位置),n 表示标志某一极大的整数,λ 表示光波的波长,D 表示狭缝到屏幕的距离,a 表示狭缝的宽度。

根据公式计算,主极大位置 X = (1 * 500 nm * 10 m) / 0.2 mm = 2500 mm = 2.5 m。

2. 当狭缝宽度增加到 0.5 mm,屏幕上呈现出的光的衍射现象
会发生如下变化:
- 主极大宽度会变窄,即在屏幕上的主极大位置左右两侧的亮区会缩小。

- 主极大强度会变弱,即主极大上的亮度会减弱。

- 衍射角会变大,即从屏幕上看,衍射光束的夹角会增大。

请注意,以上答案仅供参考,具体情况可能会因实际条件和实验设计的差异而略有不同。

物理光学_叶玉堂_光的电磁理论习题

物理光学_叶玉堂_光的电磁理论习题

1. 同频率的光波在介质中传播的波长与在真空中的波长相比A:更长B:更短C:相同D:不同2. 在忽略介质对光的吸收的情况下,球面波的振幅_____。

A:随到点光源的距离的平方成反比变化B:不随到点光源的距离变化C:随到点光源的距离成反比变化D:随到点光源的距离的平方根成反比变化1. 表征光波时间周期性的量有_____A:周期B:频率C:波长D:圆频率2. 对线偏振的描述正确的是A:在光的传播方向上各点的光矢量在同一平面内。

B:在垂直于传播方向的平面内,平面偏振的光矢量端点的轨迹为一直线。

C:线偏振是完全偏振光。

D:以上描述都不正确。

3. 传播方向相同、振动方向相互垂直、相位差恒定的两平面偏振光叠加可合成_____A:自然光B:椭圆偏振光C:线偏振光D:圆偏振光4. 部分偏振光可以用____来表示。

A:线偏振光和圆偏振光的叠加B:线偏振光和自然光的混合C:振幅不相等,相位关系确定的相互垂直的两个光矢量D:振幅不相等,相位关系不确定的相互垂直的两个光矢量5. 决定光在界面上的反射、透射特性因素有_____。

A:入射光的入射角B:入射光的光强C:界面两侧介质的折射率D:入射光的偏振态6. 当光由光密介质射向光疏介质时,发生全反射的条件是____。

A:入射角大于临界角B:入射角小于临界角C:入射角等于临界角D:入射光为偏振光7. 当入射角为布儒斯特角时,______。

A:反射光中不存在s分量B:p分量入射波全部透射C:反射光与折射光互相垂直D:反射光中存在p分量1. 哇哇对错2. 光波是一种横电磁波。

对错3. 理想的时谐均匀平面光波是在时间上无限延续,空间上无限延伸的光波动。

对错4. 光在折射率为n的介质中传播距离z引起的相位改变与在真空中传播距离nz引起的相位变化相同。

对错5. 时谐均匀平面波的复振幅为空间坐标和时间的函数。

对错6. 自然光可以用振幅相同,但相位关系确定的振动方向相互垂直的两个光矢量表示。

大学物理光学 光的衍射习题

大学物理光学 光的衍射习题

解得 当第二次重合时是
k1 k2

3 2

6 4

9 6

k1 k2

0
6 4
6 1
即k1=6, k2=4
由光栅方程可知
d sin 60
d
6 4400 10 0.866
7
3 . 05 10
3
mm
12.波长= 600nm的单色光垂直入射到一光栅上, 测得第二级主极 大的衍射角为300, 且第三级是缺级。 a)光栅常数d 等于多少? b)透光缝可能的最小宽度a等于多少? c)在选定了上述d 和a之后, 求屏幕上可能呈现的主极大的极次。
sin m d sin 0
sin m d sin 0 m d 1 2 1
m d 1 2 1 m 2 . 1 m d 1 2 1 m 6 . 3
m 6 , 5 , 4 , 3 , 2 , 1 , 0 , 1 ,2
解:(1)由光栅衍射主极大公式
d kλ sin θ
d sin k
8
2 6000 10 sin 30

2 . 4 10
4
cm
(2) 由于第三级缺级, 则: d sin 3 同时满足,可得
a sin θ
a d 3 2.4 10 3
8.右下图为夫琅和费双缝衍射实验示意图, S为缝光源, S1、S2为 衍射缝, S、S1、S2的缝长均垂直纸面。已知缝间距为d, 缝宽为a, L1、L2为薄透镜.试分析在下列几种情况下, 屏上衍射花样的变 L1 L2 屏 化情况: s1 (1) d增大a不变;(2) a增大d不变; s (3) 双缝在其所在平面内沿与缝长 s2 垂直方向移动。

13光的衍射习题.doc

13光的衍射习题.doc

13光的衍射习题十三、光的衍射习题13-1衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程屮经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动?答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3什么叫半波带?单缝衍射中怎样划分半波帯?对应于单缝衍射第3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A、B首尾两点向方向发出的衍射线的光程差用级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带.・・•由来划分.对应于第213-4在单缝衍射屮,为什么衍射角愈大(级数愈大)的那些明条纹的亮度愈小?答:因为衍射角愈大则值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式屮的波长来测定光的波长,问测出的波长是光在空气屮的还是在水,而空气中为n解:当全部装置浸入水中时,由于水中波长变短,对应,・•・,即,水中同级衍射角变小,条纹变密.如用来测光的波长,则应是光在水中的波长.(因只代表光在水中的波程差).13-6在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由矢口,衍射角变大,条纹变稀;变大,保持a, k不变,则衍射角亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时;斜入射时,,保持a, 不变,则应有或.即原来的k级条纹现为级.13-7单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否孑盾?怎样说明?答:不矛盾•单缝衍射暗纹条件为,是用半波带法分析(子波叠加问2题).相邻两半波带上对应点向方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数N成正比,所以明纹很亮;又因为在相邻明纹间有个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即2可知,当时明纹缺级.a时,——数级缺级;时,级次缺级;级次缺级.13-10若以白光垂直入射光栅,不同波长的光将会有不同的衍射角•问(1)零级明条纹能否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什么因素有关?解:⑴零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由,对同一k值,衍射角.13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000A的单色平行光的第二级明条纹位置重合,求前一种单色光的波长.解:单缝衍射的明纹公式为o当时,时,重合时角相同,所以有o5A得13-12单缝宽0.10mm,透镜焦距为50cm,用的绿光垂直照射单缝.求:⑴位于透镜焦平而处的屏幕上屮央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少?解:中央明纹的宽度为半角宽度为空气中,,所以(2)浸入水中,13-13用橙黄色的平行光垂直照射一宽为a=0.60mm的单缝,缝后凸透镜的焦距f=40.0cm,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心 1.40mm处的P点为一明; 13-16波长 条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处 的波而可分成儿个半波带?解:(1)由于P 点是明纹,故有由 ,1o 故当 ,得,得(2)若,则P 点是第3级明纹;oo 若 ,则P 点是第4级明纹.⑶由2可知,13-15波长为5000A 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的 透镜焦距为60cm. 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法 线成30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当前测试题类型: 单选
1. 菲涅尔近似是将下式的哪一项忽略了。

A:第一项
B:第二项
C:第三项
D:没有忽略任一项
2. 菲涅耳衍射和夫琅和费衍射的区别条件是
A:观察屏到衍射屏的距离z1 与衍射孔的线度(x1,y1)之间的相对大小B:观察屏到衍射屏的距离z1
C:衍射孔的线度(x1,y1)
D:对公式近似的处理方法不同
3. 矩孔的夫琅和费衍射图样中相邻两暗点之间的间隔为
A:等间距的
B:间距按比例变化
C:间距变化,但没有规律
D:不一定
4. 园孔的夫琅和费衍射图样中相邻两暗环的间距为
A:等间距的
B:距离中心愈远,间距愈小
C:距离中心愈远,间距愈大
D:间距变化,但没有规律
5. 多缝衍射是__作用的结果
A:干涉
B:衍射
C:干涉和衍射
D:干涉或衍射
6. 多缝衍射(缝数N)的两个相邻主极大之间有____个次极大
A:N
B:N+1
C:N-1
D:N-2
7. 闪耀光栅又叫__
A:定向光栅
B:分光光栅
C:偏转光栅
D:无
当前测试题类型: 多选
1. 下列说法错误的是:
A:圆孔夫琅和费衍射斑的大小与半径成反比,而与光波波长成反比
B:圆孔夫琅和费衍射斑的大小与半径成正比,而与光波波长成正比
C:圆孔夫琅和费衍射斑的大小与半径成反比,而与光波波长成正比
D:圆孔夫琅和费衍射斑的大小与半径成正比,而与光波波长成反比2. 提高显微物镜分辨率的途径有:
A:增大物镜的数值孔径
B:减小光波波长
C:用油浸物镜以增大物方折射率
D:增大物镜的焦距
3. 当光栅的缝数N增大时,下面哪个说法是正确的?
A:光的能量向主极大的位置集中
B:亮条纹变得更加宽而亮
C:缺级现象显著
D:色散本领变强
4. 关于光栅的色分辨本领下列说法错误的是:
A:正比于光谱级次m
B:正比于光栅线数N
C:正比于光栅常数d
D:与分辨极限成正比
当前测试题类型: 简答
1. 简述巴比涅原理
2. 简述闪耀光栅的工作原理。

当前测试题类型: 判断
1. 夫琅和费衍射就是衍射屏入射光场的傅立叶变换。

对错
2. 菲涅尔衍射就是衍射屏入射光场的傅立叶变换。

对错
3. 菲涅耳衍射区不包含夫琅和费衍射区。

对错
4. 互补屏在衍射场某点产生的的复振幅之和等于光波自由传播时在该点产生的光场复振幅。

对错
5. 圆孔的夫琅和费衍射图样中两相邻暗环的间距不相等。

对错
6. 光学系统像面上的复振幅分布,可以用夫琅和费衍射公式来计算。

对错
7. 望远镜物镜的直径D愈大,分辨率愈低。

对错
8. 多缝衍射花样中有一定会出现缺级现象。

对错
9. 波长相差1Ǻ的两条谱线分开的角距离或线距离,称为光栅的色散本领。

对错
10. 光栅的角色散与光栅常数d成反比,与级次m成正比。

对错
11. 闪耀光栅将光能量从衍射零级主极大转移并集中到某一级光谱上去,实现该级光谱的闪耀。

对错
12. 对于圆孔的菲涅尔衍射,当圆孔包含的波带数目很大时,圆孔的大小不再影响观察中心点的光强。

对错
13. 对于圆屏的菲涅尔衍射,中心点的光强与圆屏包含的波带数目有关。

对错
当前测试题类型: 填空
1. 凡是不能用____、_____或______来解释的光偏离直线传播的现象称为光的衍射。

2. 光的衍射现象与光的干涉现象就其实质来讲,都是________引起光强的重新分布。

3. 利用巴俾涅原理很容易由圆孔、单缝的衍射特性得到____、_____的衍射特性.
4. 一单缝缝宽为10m,由波长为500nm的平行光垂直照射,中央亮纹的半角宽度为____。

5. 一照相机相对孔径为1/5.6,其分辨本领为每毫米_____.
6. 光栅方程的普遍形式为________。

7. 对于观察屏轴上P0点,设光阑包含12个波带,让奇数波带通光,而偶数波带不通光,则P0点的光强约为光阑不存在时的____倍。

相关文档
最新文档