2012年温州市中考数学试卷及答案
温州市中考数学试卷及答案(Word解析版)
浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选,多选,错选,均不给分)1.(4分)(•温州)计算:(﹣2)×3的结果是()A.﹣6 B.﹣1 C.1D.6考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣2)×3=﹣2×3=﹣6.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2.(4分)(•温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是()A.羽毛球B.乒乓球C.排球D.篮球考点:扇形统计图.分析:利用扇形图可得喜欢各类比赛的人数的百分比,选择同学们最喜欢的项目,即对应的扇形的圆心角最大的,由此即可求出答案.解答:解:喜欢乒乓篮球比赛的人所占的百分比最大,故该班最喜欢的球类项目是篮球.故选D.点评:本题考查的是扇形图的定义.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.3.(4分)(•温州)下列各图中,经过折叠能围成一个立方体的是()A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.解答:解:A、可以折叠成一个正方体;B、是“凹”字格,故不能折叠成一个正方体;C、折叠后有两个面重合,缺少一个底面,所以也不能折叠成一个正方体;D、是“田”字格,故不能折叠成一个正方体.故选A.点评:本题考查了展开图折叠成几何体.注意只要有“田”、“凹”字格的展开图都不是正方体的表面展开图.4.(4分)(•温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11考点:三角形三边关系分析:看哪个选项中两条较小的边的和不大于最大的边即可.解答:解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为9﹣4<5<8+4,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选C.点评:本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.5.(4分)(•温州)若分式的值为0,则x的值是()A.x=3 B.x=0 C.x=﹣3 D.x=﹣4考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣3=0,且x+4≠0,再解即可.解答:解:由题意得:x﹣3=0,且x+4≠0,解得:x=3,故选:A.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.6.(4分)(•温州)已知点P(1,﹣3)在反比例函数y=(k≠0)的图象上,则k的值是()A.3B.﹣3 C.D.﹣考点:反比例函数图象上点的坐标特征.分析:把点P(1,﹣3)代入反比例函数y=,求出k的值即可.解答:解:∵点P(1,﹣3)在反比例函数y=(k≠0)的图象上,∴﹣3=,解得k=﹣3.故选B.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.7.(4分)(•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.B.C.D.考点:垂径定理;勾股定理分析:根据垂径定理可得AC=BC=AB,在Rt△OBC中可求出OB.解答:解:∵OC⊥弦AB于点C,∴AC=BC=AB,在Rt△OBC中,OB==.故选B.点评:本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理的内容.8.(4分)(•温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()A.B.C.D.考点:锐角三角函数的定义分析:利用正弦函数的定义即可直接求解.解答:解:sinA==.故选C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.(4分)(•温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5 B.8C.10.5 D.14考点:平行线分线段成比例.分析:根据平行线分线段成比例定理列式进行计算即可得解.解答:解:∵DE∥BC,∴=,即=,解得EC=8.故选B.点评:本题考查了平行线分线段成比例定理,找准对应关系是解题的关键.10.(4分)(•温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B.C.D.考点:圆的认识分析:首先根据AB、AC的长求得S1+S3和S2+S4的值,然后两值相减即可求得结论.解答:解:∵AB=4,AC=2,∴S1+S3=2π,S2+S4=,∵S1﹣S2=,∴(S1+S3)﹣(S2+S4)=(S1﹣S2)+(S3﹣S4)=π∴S3﹣S4=π,故选D.点评:本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(•温州)因式分解:m2﹣5m=m(m﹣5).考点:因式分解-提公因式法.分析:先确定公因式m,然后提取分解.解答:解:m2﹣5m=m(m﹣5).故答案为:m(m﹣5).点评:此题考查了提公因式法分解因式,关键是确定公因式m.12.(5分)(•温州)在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是8分.考点:算术平均数.分析:根据算术平均数的计算公式,先求出这5个数的和,再除以5即可.解答:解:根据题意得:(8.2+8.3+7.8+7.7+8.0)÷5=8(分);故答案为:8.点评:此题考查了算术平均数,用到的知识点是算术平均数的计算公式,熟记公式是解决本题的关键.13.(5分)(•温州)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=110度.考点:平行线的性质;三角形内角和定理.分根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答.析:解答:解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.故答案为:110.点评:本题考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.14.(5分)(•温州)方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.考点:解一元二次方程-配方法.分析:首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.解答:解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.点评:此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.15.(5分)(•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是(1,3).考点:一次函数图象上点的坐标特征;坐标与图形变化-对称.分根据轴对称的性质可得OB=OB′,然后求出AB′,再根据直线y=x+b可得析:AB′=B′C′,然后写出点C′的坐标即可.解答:解:∵A(﹣2,0),B(﹣1,0),∴AO=2,OB=1,∵△A′B′C′和△ABC关于y轴对称,∴OB=OB′=1,∴AB′=AO+OB′=2+1=3,∵直线y=x+b经过点A,C′,∴AB′=B′C′=3,∴点C′的坐标为(1,3).故答案为:(1,3).点评:本题考查了一次函数图象上点的坐标特征,坐标与图形变化﹣对称,根据直线解析式的k值等于1得到AB′=B′C′是解本题的关键.16.(5分)(•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是18cm、31cm.考点:圆的综合题分析:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′,设圆孔半径为r.在Rt△KBG中,根据勾股定理,得r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.则根据图中相关线段间的和差关系求得CN=QG﹣QN′=44﹣26=18(cm),AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm).解答:解:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′.设圆孔半径为r.在Rt△KBG中,根据勾股定理,得BG2+KG2=BK2,即(130﹣50)2+(44+r)2=1002,解得,r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.∴QN′=KN′﹣KQ=42﹣16=26(cm),KM′=49(cm),∴CN=QG﹣QN′=44﹣26=18(cm),∴AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm),综上所述,CN,AM的长分别是18cm、31cm.故填:18cm、31cm.点评:本题以改造矩形桌面为载体,让学生在问题解决过程中,考查了矩形、直角三角形及圆等相关知识,积累了将实际问题转化为数学问题经验,渗透了图形变换思想,体现了数学思想方法在现实问题中的应用价值.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程)17.(10分)(•温州)(1)计算:+()+()0(2)化简:(1+a)(1﹣a)+a(a﹣3)考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项去括号,最后一项利用零指数幂法则计算,合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.解答:解:(1)原式=2+﹣1+1=3;(2)原式=1﹣a2+a2﹣3a=1﹣3a.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)(•温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.考点:全等三角形的判定与性质;角平分线的性质;含30度角的直角三角形.分析:(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.解(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,答:∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.点评:本题考查了全等三角形的判定,角平分线性质,含30度角的直角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.19.(8分)(•温州)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.考点:作图-旋转变换;作图-平移变换.专题:图表型.分析:(1)根据网格结构,把△ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;(2)把△ABC绕点C顺时针旋转90°即可使点P在三角形内部.解答:解:(1)平移后的三角形如图所示;(2)如图所示,旋转后的三角形如图所示.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.20.(10分)(•温州)如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积.考点:待定系数法求二次函数解析式;二次函数的性质;抛物线与x轴的交点.专题:计算题.分析:(1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式;(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,利用梯形面积公式即可求出梯形COBD的面积.解答:解:(1)将A(﹣1,0)代入y=a(x﹣1)2+4中,得:0=4a+4,解得:a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4;(2)对于抛物线解析式,令x=0,得到y=3,即OC=3,∵抛物线解析式为y=﹣(x﹣1)2+4的对称轴为直线x=1,∴CD=1,∵A(﹣1,0),∴B(3,0),即OB=3,则S梯形OCDA==6.点评:此题考查了利用待定系数法求二次函数解析式,二次函数的性质,以及二次函数与x 轴的交点,熟练掌握待定系数法是解本题的关键.21.(10分)(•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?考点:概率公式;一元一次不等式的应用.分析:(1)根据概率公式,求摸到黄球的概率,即用黄球的个数除以小球总个数即可得出得到黄球的概率;(2)假设取走了x个黑球,则放入x个黄球,进而利用概率公式得出不等式,求出即可.解答:解:(1)∵一个不透明的袋中装有5个黄球,13个黑球和22个红球,∴摸出一个球摸到黄球的概率为:=;(2)设取走x个黑球,则放入x个黄球,由题意,得≥,解得:x≥,答:至少取走了9个黑球.点评:此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.(10分)(•温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.考点:圆周角定理;等腰三角形的判定与性质;勾股定理.分析:(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x﹣2)2+x2=42,解此方程即可求得CB的长,继而求得CE的长.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.点评:此题考查了圆周角定理、线段垂直平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度适中,注意掌握方程思想与数形结合思想的应用.23.(10分)(•温州)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲 66 89 86 68乙 66 60 80 68丙 66 80 90 68(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?考点:二元一次方程组的应用;加权平均数.分析:(1)根据求加权平均数的方法就可以直接求出甲的总分;(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由条件建立方程组求出其解就可以求出甲的总分而得出结论.解答:解:(1)由题意,得甲的总分为:66×10%+89×40%+86×20%+68×30%=79.8;(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由题意,得,解得:,∴甲的总分为:20+89×0.3+86×0.4=81.1>80,∴甲能获一等奖.点评:本题考查了列二元一次方程组解实际问题的运用,加权平均数的运用,在解答时建立方程组求出趣题巧解和数学运用的百分比是解答本题的关键.24.(14分)(•温州)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A (6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.(1)当0<m<8时,求CE的长(用含m的代数式表示);(2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.考点:相似形综合题.分析:(1)首先证明△BCE∽△BAO,根据相似三角形的对应边的比相等即可求得;(2)证明△EDA∽△BOA,根据相似三角形的对应边的比相等即可求得;(3)分m>0,m=0和m<0三种情况进行讨论,当m=0时,一定不成立,当m>0时,分0<m<8和m>8两种情况,利用三角函数的定义即可求解.当m<0时,分点E与点A重合和点E与点A不重合时,两种情况进行讨论.解答:解:(1)∵A(6,0),B(0,8).∴OA=6,OB=8.∴AB=10,∵∠CEB=∠AOB=90°,又∵∠OBA=∠EBC,∴△BCE∽△BAO,∴=,即=,∴CE=﹣m;(2)∵m=3,∴BC=8﹣m=5,CE=﹣m=3.∴BE=4,∴AE=AB﹣BE=6.∵点F落在y轴上(如图2).∴DE∥BO,∴△EDA∽△BOA,∴=即=.∴OD=,∴点D的坐标为(,0).(3)取CE的中点P,过P作PG⊥y轴于点G.则CP=CE=﹣m.(Ⅰ)当m>0时,①当0<m<8时,如图3.易证∠GCP=∠BAO,∴cos∠GCP=cos∠BAO=,∴CG=CP•cos∠GCP=(﹣m)=﹣m.∴OG=OC+OG=m+﹣m=m+.根据题意得,得:OG=CP,∴m+=﹣m,解得:m=;②当m≥8时,OG>CP,显然不存在满足条件的m的值.(Ⅱ)当m=0时,即点C与原点O重合(如图4).(Ⅲ)当m<0时,①当点E与点A重合时,(如图5),易证△COA∽△AOB,∴=,即=,解得:m=﹣.②当点E与点A不重合时,(如图6).OG=OC﹣OG=﹣m﹣(﹣m)=﹣m﹣.由题意得:OG=CP,∴﹣m﹣=﹣m.解得m=﹣.综上所述,m的值是或0或﹣或﹣.点本题是相似三角形的判定于性质以及三角函数的综合应用,正确进行分类是关键.评:。
【中考12年】浙江省温州市2001-2012年中考数学试题分类解析 专题5 数量和位置变化
2001-2012年某某某某中考数学试题分类解析汇编(12专题)专题5:数量和位置变化一、选择题1. (2003年某某某某4分)函数x的取值X围是【】A.x≥2 B.x≥0 C.x>2 D.x≤2【答案】A。
【考点】函数自变量的取值X围,二次根式有意义的条件。
【分析】求函数自变量的取值X围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负-≥⇒≥。
故选A。
在实数X围内有意义,必须x20x22. (2004年某某某某4分)将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是【】(A)y=2(x+1)2+3 (B) y=2(x-1)2-3(C) y=2(x+1)2-3 (D) y=2(x-1)2+3【答案】A。
【考点】二次函数图象与平移变换。
【分析】抛物线平移不改变a的值。
因此,原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(-1,3)。
故新抛物线的解析式为y=2(x+1)2+3。
故选A。
3. (2006年某某某某4分)点A(1,2)向右平移2个单位得到对应点A’,则点A’的坐标是【】A.(1.4)B.(1.0) C.(-l,2) D.(3,2)【答案】D。
【考点】坐标平移。
【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。
上下平移只改变点的纵坐标,下减上加。
因此,点A(1,2)向右平移2个单位得到对应点A’,则点A’的坐标是(3,2)。
故选D。
二、填空题1. (2004年某某某某5分)要使函数y x的取值X围是▲ 。
【答案】x 3≥。
【考点】函数自变量的取值X 围,二次根式有意义的条件。
【分析】求函数自变量的取值X 围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使x 3-在实数X 围内有意义,必须x 30x 3-≥⇒≥。
2. (2004年某某某某5分)找出能反应下列各情景中两个变量间关系的图象,并将代号填在相应横线上。
浙江省温州2012年中考数学真题试题(带解析)
2012年中考数学精析系列——某某卷(本试卷满分150分,考试时间120分钟)参考公式:二次函数()2y ax bx c a 0=++≠图象的顶点坐标是2b 4ac b ()2a 4a--,.一.选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1. (2012某某某某4分)给出四个数-1,0, 0.5,7,其中为无理数的是【 】 A. -1. B. 0 C. 0.5 D. 7 【答案】D 。
【考点】无理数。
【分析】根据初中无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可作出判断:结合所给的数可得,无理数为7。
故选D 。
2. (2012某某某某4分)数据35,38,37,36,37,36,37,35的众数是【 】 A. 35. B. 36 C. 37 D. 38 【答案】C 。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是37,故这组数据的众数为37。
故选C 。
3. (2012某某某某4分)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是【 】。
【答案】B 。
【考点】简单组合体的三视图。
【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体:主视图为两列,左边一个正方形,右边两个正方形,故选B。
4. (2012某某某某4分)一次函数y=-2x+4图象与y轴的交点坐标是【】A. (0, 4)B. (4, 0)C. (2, 0)D. (0, 2 )【答案】A。
5. (2012某某某某4分)把多项式a²-4a分解因式,结果正确的是【】A.a (a-4)B. (a+2)(a-2)C. a(a+2)( a-2)D. (a-2 ) ²-4【答案】A。
2012中考数学试题及答案
2012中考数学试题及答案2012年中考数学试题是每年中学生们备战中考的重要资源之一。
在本篇文章中,我们将为您提供2012年中考数学试题及答案,帮助您更好地了解试题的类型和解题方法。
1. 选择题:A. 单项选择题:1. 若一个扇形的半径为8 cm,弧长为12 cm,则该扇形的圆心角为:A) 45° B) 60° C) 90° D) 120°解析:我们知道,扇形的圆心角等于扇形所对的圆心弧的度数,而弧长占的圆周长的比值就是扇形的圆心角占的整圆的比值。
因此,设该扇形的圆心角为x,则12cm/2πr = x/360°。
代入r=8 cm,解得x = 90°。
所以答案选C。
2. 若x+2 = 5,则x的值为:A) 5 B) 3 C) 4 D) 7解析:将x+2=5两边同时减去2,得x=3。
所以答案选B。
B. 完形填空:下面是一道完形填空题,请根据上下文和所给选项,选择最佳答案。
Jonas felt nervous as he 1 to the front of the classroom. His legs feltweak and shaky. He could hear his classmates 2 softly to each other, but the teacher's 3 was low and pleasant. He looked out at the rows of faces, all ofthem 4 at him. His heart was pounding, and he felt as if he could hardly breathe. But he liked that 5 . It made him feel alive.1. A) went B) go C) was going D) is going2. A) talk B) talked C) were talking D) talking3. A) voice B) noise C) sound D) words4. A) lay B) sat C) stood D) walking5. A) situation B) idea C) feeling D) chance解析:根据上下文,我们可以知道Jonas走到了教室前面,所以选项A) went符合语境。
2012年浙江省温州市中考数学试卷
2012年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选、均不给分)1.(4分)给出四个数,,,,,其中为无理数的是()A.﹣1B.0C.0.5D.2.(4分)数据35,38,37,36,37,36,37,35的众数是()A.35B.36C.37D.383.(4分)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.4.(4分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)5.(4分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣46.(4分)小林家今年1﹣5月份的用电量情况如图所示.由图可知,相邻两个月中,用电量变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月7.(4分)已知⊙O1与⊙O2外切,O1O2=8cm,⊙O1的半径为5cm,则⊙O2的半径是()A.13cm B.8cm C.6cm D.3cm8.(4分)下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=29.(4分)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.B.C.D.10.(4分)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC 方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q 两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少二、填空题(本题有6小题,每小题5分,共30分)11.(5分)化简:2(a+1)﹣a=.12.(5分)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是度.13.(5分)若代数式的值为零,则x=.14.(5分)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有人.15.(5分)某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有人(用含有m的代数式表示)16.(5分)如图,已知动点A在函数>的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)解方程:x2﹣2x=5.18.(8分)如图,在方格纸中的三个顶点及A、B、C、D、E五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等19.(8分)如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.20.(9分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.21.(9分)某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号.他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若CD=40米,B在C 的北偏东35°方向,甲、乙的游泳速度都是2米/秒.问谁先到达B处?请说明理由.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.(10分)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.23.(12分)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.24.(14分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.2012年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选、均不给分)1.(4分)给出四个数,,,,,其中为无理数的是()A.﹣1B.0C.0.5D.【解答】解:结合所给的数可得,无理数有:.故选:D.2.(4分)数据35,38,37,36,37,36,37,35的众数是()A.35B.36C.37D.38【解答】解:因为37出现的次数最多,所以众数是37;故选:C.3.(4分)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.4.(4分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)【解答】解:令x=0,得y=﹣2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:A.5.(4分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【解答】解:a2﹣4a=a(a﹣4),故选:A.6.(4分)小林家今年1﹣5月份的用电量情况如图所示.由图可知,相邻两个月中,用电量变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月【解答】解:1月至2月,125﹣110=15千瓦时,2月至3月,125﹣95=30千瓦时,3月至4月,100﹣95=5千瓦时,4月至5月,100﹣90=10千瓦时,所以,相邻两个月中,用电量变化最大的是2月至3月.故选:B.7.(4分)已知⊙O1与⊙O2外切,O1O2=8cm,⊙O1的半径为5cm,则⊙O2的半径是()A.13cm B.8cm C.6cm D.3cm【解答】解:根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是8﹣5=3(cm).故选:D.8.(4分)下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=2【解答】解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.9.(4分)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.B.C.D.【解答】解:设其中有x张成人票,y张儿童票,根据题意得,,故选:B.10.(4分)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC 方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q 两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少【解答】解:如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BCM S△ABC,开始时,S△MPQ=S△ACM S△ABC,点P到达AC的中点时,点Q到达BC的中点时,S△MPQ S△ABC,结束时,S△MPQ=S△BCM S△ABC,所以,△MPQ的面积大小变化情况是:先减小后增大.故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)化简:2(a+1)﹣a=a+2.【解答】解:原式=2a+2﹣a=a+2.故答案是:a+2.12.(5分)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是90度.【解答】解:图形可看作由一个基本图形每次旋转90°,旋转4次所组成,故最小旋转角为90°.故答案为:90.13.(5分)若代数式的值为零,则x=3.【解答】解:由题意得,0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.14.(5分)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有27人.【解答】解:如图所示,89.5~109.5段的学生人数有24人,109.5~129.5段的学生人数有3人,所以,成绩不低于90分的共有24+3=27人.故答案为:27.15.(5分)某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有(2m+3)人(用含有m的代数式表示)【解答】解:∵设会弹古筝的有m人,则会弹钢琴的人数为:m+10,∴该班同学共有:m+m+10﹣7=2m+3,故答案为:(2m+3).16.(5分)如图,已知动点A在函数>的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于.【解答】解:解法一:过点D作DG⊥x轴于点G,过点E作EF⊥y轴于点F.令A(t,),则AD=AB=DG,AE=AC=EF=t.在直角△ADE中,由勾股定理,得DE.∵△EFQ∽△DAE,∴QE:DE=EF:AD,∴QE,∵△ADE∽△GPD,∴DE:PD=AE:DG,∴DP.又∵QE:DP=4:9,∴:4:9,解得t2.∴图中阴影部分的面积AC2AB2t23;解法二:∵QE:DP=4:9,∴EF:PG=4:9,设EF=4t,则PG=9t,∴A(4t,),由AC=AEAD=AB,∴AE=4t,AD,DG,GP=9t,∵△ADE∽△GPD,∴AE:DG=AD:GP,4t::9t,即t2,图中阴影部分的面积4t×4t.故答案为:.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)解方程:x2﹣2x=5.【解答】解:(1)(﹣3)2+(﹣3)×2=9﹣6﹣2=3﹣2;(2)配方得(x﹣1)2=6∴x﹣1=±∴x1=1,x2=1.18.(8分)如图,在方格纸中的三个顶点及A、B、C、D、E五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等【解答】解:(1)如图所示:;(2)如图所示:.19.(8分)如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.【解答】证明:由平移变换的性质得:CF=AD=10cm,DF=AC,∵∠B=90°,AB=6cm,BC=8cm,∴AC10,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.20.(9分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.【解答】解:(1)根据题意得:100,答:红球有30个.(2)设白球有x个,则黄球有(2x﹣5)个,根据题意得x+2x﹣5=100﹣30解得x=25.所以摸出一个球是白球的概率P;(3)因为取走10个球后,还剩90个球,其中红球的个数没有变化,所以从剩余的球中摸出一个球是红球的概率;21.(9分)某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号.他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若CD=40米,B在C 的北偏东35°方向,甲、乙的游泳速度都是2米/秒.问谁先到达B处?请说明理由.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【解答】解:由题意得∠BCD=55°,∠BDC=90°∵tan∠BCD∴BD=CD•tan∠BCD=40×tan55°≈57.2cos∠BCD∴BC70.2∴t甲38.6秒,t乙(秒).∴t甲>t乙,答:乙先到达B处.22.(10分)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.【解答】(1)证明:连接OD,如图1所示:∵OD=OC,∴∠DCB=∠ODC,又∠DOB为△COD的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,∵∠ACB=90°,∴∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,又∵D在⊙O上,∴AB是⊙O的切线;(2)解法一:过点O作OM⊥CD于点M,如图1,∵OD=OE=BE BO,∠BDO=90°,∴∠B=30°,∴∠DOB=60°,∵OD=OC,∴∠DCB=∠ODC,又∵∠DOB为△ODC的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,∴∠DCB=30°,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∴OD=2,BO=BE+OE=2OE=4,∴在Rt△BDO中,根据勾股定理得:BD=2;解法二:过点O作OM⊥CD于点M,连接DE,如图2,∵OM⊥CD,∴CM=DM,又O为EC的中点,∴OM为△DCE的中位线,且OM=1,∴DE=2OM=2,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∵Rt△BDO中,OE=BE,∴DE BO,∴BO=BE+OE=2OE=4,∴OD=OE=2,在Rt△BDO中,根据勾股定理得BD=2.23.(12分)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.【解答】解:(1)①根据信息填表②由题意,得,解得40≤x≤42,∵x为正整数,∴x=40或41或42,∴有三种方案,分别是(i)A地40件,B地80件,C地80件;(ii)A地41件,B地77件,C地82件;(iii)A地42件,B地74件,C地84件;(2)由题意,得30x+8(n﹣3x)+50x=5800,整理,得n=725﹣7x.∵n﹣3x≥0,∴725﹣7x﹣3x≥0,∴﹣10x≥﹣725,∴x≤72.5,又∵x≥0,∴0≤x≤72.5且x为正整数.∵n随x的增大而减少,∴当x=72时,n有最小值为221.24.(14分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.【解答】解:(1)当m=3时,y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0,x2=6,∴A(6,0)当x=1时,y=5∴B(1,5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B,C关于对称轴对称∴BC=4.(2)连接AC,过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB又∵∠AHC=∠PBC=90°∴△ACH∽△PCB,∴,∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,又∵B,C关于对称轴对称,∴BC=2(m﹣1),∵B(1,2m﹣1),P(1,m),∴BP=m﹣1,又∵A(2m,0),C(2m﹣1,2m﹣1),∴H(2m﹣1,0),∴AH=1,CH=2m﹣1,∴,∴m.(3)∵B,C不重合,∴m≠1,(I)当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1,(i)若点E在x轴上(如图1),∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,在△BPC和△MEP中,∠∠,∴△BPC≌△MEP,∴BC=PM,∴2(m﹣1)=m,∴m=2,此时点E的坐标是(2,0);(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴m﹣1=1,∴m=2,此时点E的坐标是(0,4);(II)当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,(i)若点E在x轴上(如图3),易证△BPC≌△MEP,∴BC=PM,∴2(1﹣m)=m,∴m,此时点E的坐标是(,0);(ii)若点E在y轴上(如图4),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴1﹣m=1,∴m=0(舍去),综上所述,当m=2时,点E的坐标是(2,0)或(0,4),当m时,点E的坐标是(,0).。
浙江省温州中考数学真题试题(带解析)
2012年中考数学精析系列——温州卷(本试卷满分150分,考试时间120分钟)参考公式:二次函数()2y ax bx c a 0=++≠图象的顶点坐标是2b 4ac b ()2a 4a--,.一.选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1. (2012浙江温州4分)给出四个数-1,0, 0.5,7,其中为无理数的是【 】 A. -1. B. 0 C. 0.5 D. 7 【答案】D 。
【考点】无理数。
【分析】根据初中无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可作出判断:结合所给的数可得,无理数为7。
故选D 。
2. (2012浙江温州4分)数据35,38,37,36,37,36,37,35的众数是【 】 A. 35. B. 36 C. 37 D. 38 【答案】C 。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是37,故这组数据的众数为37。
故选C 。
3. (2012浙江温州4分)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是【 】。
【答案】B 。
【考点】简单组合体的三视图。
【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体:主视图为两列,左边一个正方形,右边两个正方形,故选B 。
4. (2012浙江温州4分)一次函数y =-2x +4图象与y 轴的交点坐标是【 】A. (0, 4)B. (4, 0)C. (2, 0)D. (0, 2 )【答案】A。
5. (2012浙江温州4分)把多项式a²-4a分解因式,结果正确的是【】A.a (a-4)B. (a+2)(a-2)C. a(a+2)( a-2)D. (a-2 ) ²-4【答案】A。
【中考12年】浙江省温州市20012012年中考数学试题分类解析 专题4《图形的变换》
2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题4:图形的变换一、选择题1. (2001年浙江温州3分)圆柱的底面半径是2,高线长是5,则它的侧面积是【 】 A .10 B .20 C .10π D .20π 【答案】D 。
【考点】圆柱的侧面积。
【分析】根据圆柱的侧面积公式计算即可:侧面积=225=20ππ⨯⨯。
故选D 。
2. (2002年浙江温州4分)圆锥的高线长是8㎝,底面直径为12㎝,则这个圆锥的侧面积是【 】A .48πcm 2B .cm 2C .cm 2D .60πcm 2【答案】D 。
【考点】圆锥的计算。
【分析】根据圆锥的侧面积公式计算:∵圆锥的底面直径为12㎝,∴圆锥的底面周长为12π㎝。
∵圆锥的高线长是8㎝,∴。
∴圆锥的侧面积=12×底面周长×母线长=12×12π×10=60π(cm 2)。
故选D 。
3. (2003年浙江温州4分)圆锥的母线长为8cm ,底面半径为6cm ,则圆锥的侧面积是【 】 A .96πcm 2B .60πcm 2C .48πcm 2D .24πcm 2【答案】C 。
【考点】圆锥的计算。
【分析】根据圆锥的侧面积公式计算:∵圆锥的底面半径为6 cm ,∴圆锥的底面周长为12πcm 。
∴圆锥的侧面积=12×底面周长×母线长=12×12π×8=48π(cm 2)。
故选C 。
4. (2004年浙江温州4分)如图,点B 在圆锥母线VA 上,且VB=31VA ,过点B 作平行与底面的平面截得一个小圆锥的侧面积为S 1,原圆锥的侧面积为S ,则下列判断中正确的是【 】(A) 1S S 13= (B) 1S S 14= (C) 1S S 16= (D) 1S S 19= 【答案】D 。
【考点】圆锥的计算。
【分析】两个圆锥的展开图都是扇形,这两个扇形圆心角相等,小圆锥半径是大圆锥半径的13。
浙江省温州市2001-2012年中考数学试题分类解析 专题10 四边形
2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题10:四边形一、选择题1. (2002年浙江温州4分)如图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC,如果这个梯形的周长为30,则AB的长是【】A.4 B.5 C.6 D.7【答案】C。
【考点】等腰梯形的性质,角平分线的定义,三角形内角和定理,含30度角直角三角形的性质,平行的性质,等腰三角形的判定。
【分析】∵在梯形ABCD中,AB=DC,∠C=60°,∴∠ABC=60°。
∵BD平分∠ABC,∴∠CBD=∠ABD=30°。
∴∠BDC=90°。
设AB=DC=x,则BC=2x。
∵AD∥BC,∴∠CBD=∠ADB。
∴∠ABD=∠ADB。
∴AD=AB= x。
∵梯形的周长为30,∴AD+BC+AB+DC=30,即5x=30,x=6。
故选C。
2. (2003年浙江温州4分)梯形的上底长为3,下底长为5,那么梯形的中位线长等于【】A.2 B.4 C.6 D.8【答案】B。
【考点】梯形的中位线定理。
【分析】根据梯形的中位线等于上下底和的一半的性质,得所求梯形的中位线长等于3+5=42。
故选B。
3. (2006年浙江温州4分)如图,在梯形ABCD中,AD∥BC,CA平分∠BCD,CD=5,则AD的长是【】A.6B.5C. 4D. 3【答案】B。
【考点】角平分线的定义,平行的性质,等腰三角形的判定。
【分析】∵CA平分∠BCD,∴∠ABC=∠ACD。
∵AD∥BC,∴∠ABC=∠CAD。
∴∠ACD=∠CAD。
∴AD=AC=5。
故选B。
4. (2010年浙江温州4分)如图,AC,BD是矩形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有【】A.1个 B.2个 C.3个 D.4个【答案】D。
【考点】矩形的性质,平行四边形的判定和性质,全等三角形的判定。
【中考12年】浙江省温州市2001-2012年中考数学试题分类解析 专题1 实数
2001-2012年某某某某中考数学试题分类解析汇编(12专题)专题1:实数一、选择题1. (2001年某某某某3的相反数是【 】A . C . D 【答案】A 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0的相反数是。
故选A 。
2.(2001年某某某某3分)用科学记数法表示数0.031,其结果是【 】 A .3.1×102B .3.1×10-2C .0.31×10-1D .31×103【答案】B 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
第一个有效数字前有2个0(含小数点前的1个0),从而20.031 3.110=⨯-。
故选B 。
3. (2001年某某某某3分)已知线段a ,b ,c ,其中c 是a 和b 的比例中项,a=4,b=9,则c 等于【 】 A .4 B .6 C .9 D .36 【答案】B 。
【考点】比例线段。
【分析】根据比例中项的概念,当两个比例内项相同时,就叫比例中项,再列出比例式即可得出c :根据比例中项的概念,得c 2=ab=36,c=±6。
又线段不能是负数,-6应舍去,取c=6。
故选B 。
4. (2002年某某某某4分)计算(+2)+(-3)其结果是【 】 A .+1 B .-1 C .+6 D ,-6【考点】有理数的加法。
【分析】根据有理数的加法法则绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值来计算:(+2)+(-3)=-1。
浙江省温州市2001-2012年中考数学试题分类解析 专题4 图形的变换
2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题4:图形的变换一、选择题1. (2001年浙江温州3分)圆柱的底面半径是2,高线长是5,则它的侧面积是【 】 A .10 B .20 C .10π D .20π 【答案】D 。
【考点】圆柱的侧面积。
【分析】根据圆柱的侧面积公式计算即可:侧面积=225=20ππ⨯⨯。
故选D 。
2. (2002年浙江温州4分)圆锥的高线长是8㎝,底面直径为12㎝,则这个圆锥的侧面积是【 】A .48πcm 2B .cm 2C .cm 2D .60πcm 2【答案】D 。
【考点】圆锥的计算。
【分析】根据圆锥的侧面积公式计算:∵圆锥的底面直径为12㎝,∴圆锥的底面周长为12π㎝。
∵圆锥的高线长是8。
∴圆锥的侧面积=12×底面周长×母线长=12×12π×10=60π(cm 2)。
故选D 。
3. (2003年浙江温州4分)圆锥的母线长为8cm ,底面半径为6cm ,则圆锥的侧面积是【 】 A .96πcm 2B .60πcm 2C .48πcm 2D .24πcm 2【答案】C 。
【考点】圆锥的计算。
【分析】根据圆锥的侧面积公式计算:∵圆锥的底面半径为6 cm ,∴圆锥的底面周长为12πcm 。
∴圆锥的侧面积=12×底面周长×母线长=12×12π×8=48π(cm 2)。
故选C 。
4. (2004年浙江温州4分)如图,点B 在圆锥母线VA 上,且VB=31VA ,过点B 作平行与底面的平面 截得一个小圆锥的侧面积为S 1,原圆锥的侧面积为S ,则下列判断中正确的是【 】(A) 1S S 13= (B) 1S S 14= (C) 1S S 16= (D) 1S S 19=【答案】D 。
【考点】圆锥的计算。
【分析】两个圆锥的展开图都是扇形,这两个扇形圆心角相等,小圆锥半径是大圆锥半径的13。
浙江省温州市2001-2012年中考数学试题分类解析 专题7 统计与概率
2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题7:统计与概率一、选择题1. (2001年浙江温州3分)设有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取一个杯子,是一等品的概率等于【】A.310B.710C.37D.17【答案】B。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,一等品的概率等于710。
故选B。
2. (2002年浙江温州4分)一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的概率是【】A.150B.225C.15D.310【答案】D。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,∵1000张奖券中,中奖的情况有20+80+200=300,∴ 第一位抽奖者(仅买一张奖券)中奖的概率是3003=100010。
故选D。
3. (2003年浙江温州4分)布袋里放有3个红球和7个白球,每个球除颜色外都相同.从中任意摸出一个球,则摸到白球的概率等于【】A.0.3 B.0.5 C.0.7 D.1【答案】C。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,从10个球中任意摸出一个球,摸到白球的概率等于7=0.710。
故选C。
4. (2005年浙江温州4分)在一个暗箱里放入除颜色外其它都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到是红球的概率是【】A、311B、811C、1114D、314【答案】D。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,从暗箱里红球的概率是3331114=+。
温州市2001-2012年中考数学试题分类解析专题1:实数
2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题1:实数一、选择题1. (2001年浙江温州3的相反数是【 】A . C . D 【答案】A 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0的相反数是A 。
2.(2001年浙江温州3分)用科学记数法表示数0.031,其结果是【 】A .3.1×102B .3.1×10-2C .0.31×10-1 D .31×103【答案】B 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
0.031第一个有效数字前有2个0(含小数点前的1个0),从而20.031 3.110=⨯-。
故选B 。
3. (2001年浙江温州3分)已知线段a ,b ,c ,其中c 是a 和b 的比例中项,a=4,b=9,则c 等于【 】A .4B .6C .9D .36【答案】B 。
【考点】比例线段。
【分析】根据比例中项的概念,当两个比例内项相同时,就叫比例中项,再列出比例式即可得出c :根据比例中项的概念,得c 2=ab=36,c=±6。
又线段不能是负数,-6应舍去,取c=6。
故选B 。
4. (2002年浙江温州4分)计算(+2)+(-3)其结果是【 】A .+1B .-1C .+6D ,-6【考点】有理数的加法。
【分析】根据有理数的加法法则绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值来计算:(+2)+(-3)=-1。
浙江省温州市2001-2012年中考数学试题分类解析 专题6 函数的图像与性质
2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题6:函数的图像与性质一、选择题1. (2005年浙江温州4分)已知抛物线的解析式为y =(x -2)2+1,则抛物线的顶点坐标是【 】 A 、(-2,1) B 、(2,1) C 、(2,-1) D 、(1,2)【答案】B 。
【考点】二次函数的性质。
【分析】直接根据顶点式y =(x -2)2+1写出抛物线的顶点坐标(2,1)。
故选B 。
2. (2006年浙江温州4分)反比例函数ky x= 的图象经过点(-1,2),k 的值是【 】 A. 12- B. 12C.-2D.2 【答案】C 。
【考点】曲线上点的坐标与方程的关系。
【分析】根据点在曲线上,点的坐标满足方程的关系,将(-1,2)代入k y=x ,得k2=1-,解得k=-2。
故选C 。
3. (2007年浙江温州4分)已知点P (-1,a )在反比例函数2y x=的图象上,则a 的值为【 】 A. -1 B. 1 C. -2 D. 2 【答案】C 。
【考点】曲线上点的坐标与方程的关系。
【分析】根据点在曲线上,点的坐标满足方程的关系,将(-1,a )代入2y=x ,得2a==21--。
故选C 。
4. (2007年浙江温州4分)抛物线2y x 4=+与y 轴的交点坐标是【 】A.(4,0)B.(-4,0)C.(0,-4)D. (0,4) 【答案】D 。
【考点】抛物线与y 轴的交点问题。
【分析】令x=0,得2y 04=4=+,∴抛物线2y x 4=+与y 轴的交点坐标是(0,4)。
故选D 。
5. (2008年浙江温州4分)抛物线y =(x -1)2+3的对称轴是【 】 (A )直线x =1 (B )直线x =3 (C )直线x =-1 (D )直线x =-3【答案】A 。
【考点】二次函数的性质。
【分析】直接根据项点式得到对称轴是直线x =1。
故选A 。
6. (2008年浙江温州4分)已知反比例函数ky=x的图象经过点(3,-2),则k 的值是【 】 (A )-6 (B )6 (C )23(D )23-【答案】A 。
中考数学解析汇编 频数分布
频数分布14.1频数与频率(2012浙江省温州市,14,5分)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成右图所示的统计图。
由图可知,成绩不低于90分的共有_____人。
【解析】由频数分布直方图可知成绩不低于90分的共有24+3=27(人)【答案】27【点评】本题是统计与概率的频数分布直方图问题,解题时要能从所给的统计图、表中获取有用的信息.难度较小.(2012山东莱芜, 19,8分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数:(1)确定调查方式时,甲同学说:“我到六年级(一)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”。
请你指出哪位同学的调查方式最合理;(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图。
①a= , b= ;②在扇形统计图中器乐类所对应扇形的圆心角的度数是;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.【解析】(1) 丙同学的抽样调查具有随机性、代表性和普遍性,甲乙同学的调查方式不具有随机性、代表性和普遍性,所以丙同学的调查方式最合理; (2) ①a=10020.020=,b=15.010015= ②器乐类所对应扇形的圆心角的度数=()15.020.025.01360---⨯=144° ③估计参加武术类校本课程的人数:56014025.0=⨯ 【答案】(1) 丙同学的调查方式最合理;(2) ①a= 100, b= 0.15②144°; ③人14025.0560=⨯【点评】本题考察了数据的统计调查,以及用数据的描述,统计图表的互相转换,另外考察了统计中的重要思想即用样本估计总体.解决此类问题时,应仔细观察图表,利用各聘数和等于数据总数,各频率之和等于1.14.2 频数分布直方图(2012贵州铜仁,21,10分)某市对参加2012年中考的50000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整; (2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是________,并根据上述信息估计全市初中毕业生中视力正常的学生有多少人?【分析】(1)首先利用表格数据求出样本的总人数,之后就可以求出a 的值,再根据频率之和等于1,可求出b ,最好再将频数分布直方图补充完整;(2)根据中位数的定义可以求出此次抽样调查所得数据的中位数的视力范围,继而可得到甲同学的视力情况在什么范围内(3)根据条件先求出视力在4.9以上(含4.9)的人数,除以总人数计算出视力正常的人数占被统计人数的百分比,然后根据样本估计总体的思想可求出全市初中毕业生中视力正常的学生有多少人 【解析】(1)20÷0.1=200 a=200-20-40-70-10=60 b=10÷200=0.05 故填 60 0.05(2)由题意可知:中位数在4.6≤x<4.9 所以甲同学的视力情况应4.6≤x<4.9 (3)视力正常的人数占被统计人数的百分比是200)1060(+×100%=35%估计全市初中毕业生中视力正常的学生有17500%3550000=⨯(人)【点评】此题考查了读频数分布直方图的能力及利用统计图获取信息的能力,同时也考查了中位数、众数的求法,是一道综合性试题。
温州市2001-2012年中考数学试题分类解析专题9:三角形
温州中考数学试题分类解析汇编专题9:三角形一、选择题6. (2007年浙江温州4分)如图,在ABC中,AB=AC=5,BC=6,点E,F是中线AD 上的两点,则图中阴影部分的面积是【】A.6B.12C.24D.307. (2008年浙江温州4分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是【】(A)23(B)32(C)34(D)438. (2008年浙江温州4分)以OA为斜边作等腰直角三角形OAB,再以OB为斜边在△OAB外侧作等腰直角三角形OBC,如此继续,得到8个等腰直角三角形(如图),则图中△OAB 与△OHJ的面积比值是【】(A)32 (B)64 (C)128 (D)256二、填空题1. (2001年浙江温州3分)如图,在四边形ABCD中,AB=8,BC=1,∠DAB=30°,∠ABC=60°,则四边形ABCD的面积为,AD的长是▲ .F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S2,S3,若S1+S3=10,则S2= ▲ .6. (2008年浙江温州5分)如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为1,4,则图中三个阴影三角形面积之和为▲.8. (2010年浙江温州5分)勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边_PQ上,那么△PQR 的周长等于▲ .9. (2011年浙江温州5分)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是▲.三、解答题3. (2004年浙江温州8分)如图,已知AB∥CD,AD,BC相交于E,F为EC上一点,且∠EAF=∠C。
浙江温州中考数学
浙江温州中考数学————————————————————————————————作者:————————————————————————————————日期:2012年温州市初中毕业生学业考试数学试题(满分150分,考试时间120分钟)试题卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(2012浙江温州,1,4分)给出四个数-1,0,0.5,7,其中为无理数的是( ) A.-1 B.0 C.0.5 D.7【答案】D2.(2012浙江温州,2,4分)数据35,38,37,36,37,36,37,35的众数是( ) A.35 B.36 C.37 D.38【答案】C3.(2012浙江温州,3,4分)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法,“牟合方盏”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )【答案】B4.(2012浙江温州,4,4分)一次函数y=-2x+4的图象与y轴的交点坐标是( ) A.(0,4) B.(4,0) C.(2,0) D.(0,2)【答案】A5.(2012浙江温州,5,4分)把多项式a2-4a分解因式,结果正确的是( )A.a(a-4) B.(a+2)(a-2) C.a(a+2) (a-2) D.(a-2)2-4【答案】A6.(2012浙江温州,6,4分)小林家今年1-5月份的用电量情况如图所示,由图可知,相邻的两个月中,用电量变化最大的是( ).A.1月至2月B.2月至3月C.3月至4月D.4月至5月【答案】B7.(2012浙江温州,7,4分)已知⊙O1与⊙O2外切,O1O2=8cm.⊙O1的半径为5cm,则⊙O2的半径是( )A.13cm B.8cm C.6cm D.3cm【答案】D8.(2012浙江温州,8,4分)下列选项中,可以用来证明命题“若a2 >1,则a>1”是假命题的反例是( )A.a=-2 B.a=-1 C.a=1 D.a=2【答案】A9.(2012浙江温州,9,4分)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是( )A.2035701225x yx y+=⎧⎨+=⎩B.2070351225x yx y+=⎧⎨+=⎩C.1225703520x yx y+=⎧⎨+=⎩D.1225357020x yx y+=⎧⎨+=⎩【答案】B10.(2012浙江温州,10,4分)如图,在△ABC中,∠C=90 ,M是AB的中点.动点P 从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )A.一直增大B.一直减小C.先减小后增大D.先增大后减少【答案】C卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分)11.(2012浙江温州,11,5分)化简:2(a+1)-a=.【答案】2a+12.(2012浙江温州,12,5分)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是度.【答案】9013.(2012浙江温州,13,5分)若代数式211x--的值为零,则x= .【答案】314.(2012浙江温州,14,5分)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成右图所示的统计图.由图可知,成绩不低于90分的共有人.【答案】2715.(2012浙江温州,15,5分)某校艺术斑同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有人(用含m的代数式表示).【答案】23m+16.(2012浙江温州,16,5分)如图,已知动点A在函数4yx=(x>0)的图象上.AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴、y轴于点P,Q当QE∶DP=4∶9时,图中阴影部分的面积等于.【答案】163三、解答题(本题共8小题,共80分.解答需写出必要的文字说明、算步骤或证明过程)17.(2012浙江温州,17,10分)(1)计算:2(3)(3)220-+-⨯-;【答案】2(3)(3)2209625325-+-⨯-=---(2)解方程:225x x-=.【答案】配方,得2(1)6x-=,16x∴-=±,1216,16x x∴=+=-18.(2012浙江温州,18,8分)如图,在方格纸中,△PQR的三个顶点及A,B,C,D,E五个点都在小方格的顶点上.现以A,B,C,D,E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等....【答案】19.(2012浙江温州,19,8分)如图,△ABC中.∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连结AD,求证:四边形ACFD是菱形.【答案】证法一:∵∠B=90°,AB=6cm,BC=8cm,∴AC=10cm.由平移变换的性质得CF=AD=10cm,DF=AC,∴AD=CF=AC=DF,∴四边形ACFD是菱形.解法二:由平移变换的性质得AD∥CF,AD=CF=10cm,∴四边形ACFD是平行四边形.∵∠B=90°,AB=6cm,BC=8cm,∴AC=10cm,∴AC=CF,∴平行四边形ACFD是菱形.20.(2012浙江温州,20,9分)一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是3 10.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.【答案】(1)31003010⨯=,∴红球有30个.(2)设白球有x 个,则黄球有(2x -5),根据题意得 x +2x -5=100-30,解得 x =25. ∴摸出一个球是白球的概率2511004P ==. (3)从剩余的球中摸出一个球是红球的概率301100103P ==-.21.(2012浙江温州,21,9分)某海滨浴场东西走向的海岸线可近似看作直线l 如图).救生员甲在A 处的瞭望台上观察海面情况,发现其正北方向的B 处有人发出求救信号.他立即沿AB 方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C 处人海,径直向B 处游去.甲在乙人海10秒后赶到海岸线上的D 处,再向B 处游去,若CD =40米,B 在C 的北偏东35°方向,甲、乙的游泳速度都是2米/秒,同谁先到达B 处?请说明理由. (参考数据:s i n 55°≈0.82,c o s 55°≈0.57,tan 55°≈1.43)【答案】由题意得 ∠B =55 °,∠BDC =90 °, ∵tan ∠BCD =BDCD, ∴0tan 40tan 5557.2(BD CD BCD =∠=⨯≈米).∵cos CD BCD BC ∠=,∴04070.2()cos cos55CD BC BCD ==≈∠米. ∴57.21038.6()2t =+=甲秒,70.235.1()2t ==乙秒.∴t t >甲乙.答:乙先到达B 处.22.(2012浙江温州,22,10分)如图,△ABC 中,∠ACB = 90°,D 是边AB 上的一点,且∠A =2∠DCB .E 是BC 上的一点,以EC 为直径的⊙O 经过点D . (1)求证:AB 是⊙O 的切线;(2)若CD 的弦心距为1,BE =EO ,求BD 的长.【答案】(1)证明:连接OD ,∵∠DOB =2∠DCB ,又∵∠A =2∠DCB ,∴∠A =∠DOB . 又∵∠A +∠B =90°,∴∠DOB +∠B =90°,∴∠BDO =90°,∴OD ⊥AB ,∴AB 是⊙O 的切线. (2)解法一:过点O 作OM ⊥CD 于点M , ∵1OD OE BE 2BO ===,∠BDO =90°,∴∠B =30°,∴∠DOB =60°,∴∠DCB =30°,∴OC =2OM =2,∴OD =2,BO =4,∴BD =23.解法二:过点O 作OM ⊥CD 于点M ,连接DE ,∵OM ⊥CD ,∴CM =DM .又∵OC =OE ,∴DE =2OM =2.∵Rt △BDO 中,OE =BE ,∴DE =21BO ,∴BO =4,∴OD =OE =2,∴BD =23.23.(2012浙江温州,23,12分)温州享有“中国笔都”之称,其产品畅销全球.某制笔企业欲将n 件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示.设安排x 件产品运往A 地.(1) 当n =200时, ① 根据信息填表:A 地B 地C 地合计产品件数(件)x2x200 运费(元)30x②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.【答案】解:(1)①根据信息填表:②由题意得200321600564000x xx-≤⎧⎨+≤⎩,解得640427x≤≤.∵x为整数,∴x=40或41或42,∴有3种方案,分别为:(i)A地40件,B地80件,C地80件;(ii)A地41件,B地77件,C地82件;(iii)A地42件,B地74件,C地84件.(2)由题意得30x+8(n-3x)+50x=5800,整理得n=725-7x.∵n-3x≥0,∴x≤72.5又∵x≥0,∴0≤x≤72.5且x为整数∵n随x的增大而减少,∴当x=72时,n有最小值为221.24.(2012浙江温州,24,14分)如图,经过原点的抛物线y=-x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B,C不重合).连结CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连结CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并写出相对应的点E坐标;若不存在,请说明理由.【答案】解:(1)当m=3时,y=-x2+6x,令y=0,得-x2+6x=0,x1=0,x2=6,∴A(6,0).当x=1时,y=5,∴B(1,5).∵抛物线y=-x2+6x的对称轴为直线x=3,又∵B,C关于对称轴对称,∴BC=4.(2)过点C作CH⊥x轴于点H(如图1),由已知得∠ACP=∠BCH=90°,∴∠ACH=∠PBC,又∵∠AHC=∠PBC=90°,∴△ACH∽△PCB,∴AH PBCH BC=.∵抛物线y=-x2+2mx的对称轴为直线x=m,其中m>1,又∵B,C关于对称轴对称,∴BC=2(m-1),∵B(1,2m-1),P(1,m), ∴BP=m-1,又∵A(2m,0),C(2m-1,2m-1),∴H(2m-1,0),∴AH=1,CH=2m-1 ,∴11212(1)mm m-=--,∴32m=.(3) ∵B,C不重合,∴m≠1.(I)当m>1时,BC=2(m-1),PM=m,BP=m-1,(i)若点E在x轴上(如图1),∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,∴∠BPC=∠MEP.又∵∠CBP=∠PME=90°,PC=EP,∴△BPC≌△MEP,∴BC=PM,∴2(m -1)=m,∴m=2,此时点E的坐标是(2,0).(ii)若点E在y轴上(如图2),过点P作P N⊥y轴于点N,易证△BPC≌△N PE,∴BP=P N=OM=1,∴m-1=1,∴m=2,此时点E的坐标是(0,4).(II)当0<m<1时,BC=2(1-m),PM=m,BP=1-m,(i) 若点E在x轴上(如图3),易证△BPC≌△MEP,∴BC=PM,∴2(1-m)=m,∴23 m=,此时点E的坐标是(4,03).(ii) 若点E在y轴上(如图4),过点P作P N⊥y轴于点N,易证△BPC≌△N PE,∴BP=P N=OM=1,∴1-m =1,∴m=0(舍去).综上所述,当m=2时,点E的坐标是(2,0)或(0,4);∴23m=,点E的坐标是(4,03).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6题图月份14012010080第10题图第12题图x100份“生活中的数学知识”大赛试卷的成绩频数分布直方图(人)成绩(分)温州市2012年中考数学试卷一、 选择题(本题有10小题,每小题4分,共40分) 1.给出四个数-1,0, 0.5 ) A. -2.数据35,38,37,36,37,36,37,35的众数是( ) A. 35. B. 36 C. 37 D. 383.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )。
4.一次函数y=-2x+4图象与y 轴的交点坐标是( ) A. (0, 4) B. (4, 0) C. (2, 0) D. (0, 2 )5.把多项式a ²-4a 分解因式,结果正确的是( )A.a (a-4)B. (a+2)(a-2)C. a(a+2)( a-2)D. (a -2 ) ²-4 6.小林家今年1―5月份的用电量情况如图所示,由图可知, 相邻的两个月中,用电量变化最大的是( )A.1月至2月B.2月至3月C.3月至4月D.4月至5月7.已知⊙O 1与⊙O 2外切,O 1O 2=8cm ,⊙O 1的半径为5cm ,则⊙O 2的半径是( ) A. 13cm. B. 8cm C. 6cm D. 3cm8.下列选项中,可以用来证明命题“若a ²>1,则a >1”是假命题的反例是( ) A. a=-2. B. a==-1 C. a=1 D. a=29.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x 张成人票,y 张儿童票,根据题意,下列方程组正确的是( )+=20.35+70=1225x y A x y ⎧⎨⎩ +y=20.70+35=1225x B x y ⎧⎨⎩ +=1225.70+35=20x y C x y ⎧⎨⎩+=1225.35+70=20x y D x y ⎧⎨⎩10.如图,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B.已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( ) A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小 二、 填空题(本题有6小题,每小题5分,共30分) 11.化简:2(a+1) -a=_______________.12.分别以正方形的各边为直径向其内部作半圆得到的图形如图所示,将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是______度.13. 若代数式2-1-1x 的值为零,则x=____________. 14.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成右图所示的统计图。
由图可知,成绩不低于90分的共有______人.15.某校艺术班的同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人。
设会弹古筝的有m 人,则该班同学共有_______________人,(用含m 的代数式表示)16.如图,已知动点A 在函数4=y x(x>o)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 至点D ,使AD=AB ,延长BA 至点E,使AE=AC.直线DE 分别交x 轴,y 轴于点P,Q.当QE :DP=4:9时,图中的阴影部分的面积等于____________.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)DC B A(第19题图)B第18题图第18题图17.(本题10分)(1)计算:(-3)2+(-3)×2;(2)解方程:x 2-2x=518.(本题8分)如图,在方格纸中,△PQR 的三个顶点及A,B,C,D,E 五个点都在小方格的顶点上,现以A,B,C,D,E 中的三个顶点为顶点画三角形, (1)在图甲中画出一个三角形与△PQR 全等;(2)在图乙中画出一个三角形与△PQR 面积相等但不全等....19.(本题8分)如图,△ABC 中,∠B=90°,AB=6cm ,BC=8cm ,将△ABC 沿射线BC 方向平移10cm ,得到△DEF ,A ,B ,C 的对应点分别是D,E,F ,连结AD ,求证:四边形ACFD 是菱形。
20.(本题9分)一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是310. (1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.35°(第21题图)北第22题图BC21. (本题9分)某海滨浴场东西走向的海岸线可以近似看作直线l (如图).救生员甲在A 处的瞭望台上观察海面情况,发现其正北方向的B 处有人发出求救信号,他立即沿AB 方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C 处入海,径直向B 处游去.甲在乙入海10秒后赶到海岸线上的D 处,再向B 处游去.若CD=40米,B 在C 的北偏东35°方向,甲乙的游泳速度都是2米/秒.问谁先到达B 处?请说明理由.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.(本题10分)如图,△ABC 中,∠ACB=90°,D 是边AB 上的一点,且∠A=2∠DCB.E 是BC 上的一点,以EC 为直径的⊙O 经过点D 。
(1)求证:AB 是⊙O 的切线;(2)若CD 的弦心距为1,BE=ED.求BD 的长.第24题图第23题图A 地23、(本题12分)温州享有“中国笔都”之称,其产品畅销全球, 某制笔企业欲将n 件产品运往A,B,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示。
设安排x 件产品运往A 地。
(1)当200n =时, ①根据信息填表:②若运往B 地的件数不多于运往C 地的件数,总运费不超过4000元,则有哪几种运输方案? (2)若总运费为5800元,求n 的最小值。
24、(本题14分)如图,经过原点的抛物线22(0)y x mx m =-+>与x 轴的另一个交点为A.过点(1,)P m 作直线PM x ⊥轴于点M ,交抛物线于点B.记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连结CB,CP 。
(1)当3m =时,求点A 的坐标及BC 的长; (2)当1m >时,连结CA ,问m 为何值时CA CP ⊥?(3)过点P 作PE PC ⊥且PE PC =,问是否存在m ,使得点E 落在坐标轴上?若存在,求出所有满足要求的m 的值,并定出相对应的点E 坐标;若不存在,请说明理由。
第22题解法一图BC第22题解法二图BC2012年温州市中考数学试卷答案1. B.2. C.3. B4. A5. A6. B.7. D.8.A.9. B 10 C. 11. a+2.12. 90.13. 3.14. 2715. (2m+3)16. 133. 17.解:(-3)²+(-3)×2=9-6-=3-解:配方,得(x -1)²=6∴x -1=∴x 12=118.19.证明:(1)∵∠B=90°;AB=6cm ,BC=8cm ∴AC=10cm由平移变换的性质得 CF=AD=10cm ,DF=AC=10cm ∴AC=CF=FD=AD ∴四边形ACFD 是菱形(2)由平移变换的性质得AC //=DF ∵∠B=90°;AB=6cm ,BC=8cm ∴AC=10cm AC=DF=10cm∴四边形ACFD 是平行四边形 AC=AD=10cm□ACFD 是菱形20.解:(1)100×310=30,∴红球有30个。
(2)设白球有x 个,则黄球有(2x -5)个,根据题意得:x+2x -5=100-30 解得x=25∴摸出一个球是白球的概率P=251=1004(3)从剩余的球中摸出一个球是红球的概率P=301=100-10321.解:由题意得∠BCD=55°,∠BDC=90°∵tan ∠BCD=BDCD ∴BD=CD ·tan ∠BCD=40×tan55°≈57.2(米) ∵ cos ∠BCD=CDBC∴BC=40=70.2()cos cos55CD BCD ≈∠米∴57.2t =+10=38.6()2甲秒70.2t ==35.1()2乙秒 ∴t 甲>t 乙答:乙先到达B 处。
22. (1)证明:连结OD ,∵∠DOB=2∠DCB 又∵∠A=2∠DCB ∴∠A=∠DOB 又∵∠A+∠B=90° ∴∠DOB+∠B=90°第18题图乙(1)第18题图甲(1)第18题图乙(2)第18题图甲(2)。