3D PHYSICS-BASED RECONSTUCTION OF SERIALLY ACQUIRED SLICES
田间作物群体三维点云柱体空间分割方法
第37卷第7期农业工程学报V ol.37 No.7 2021年4月Transactions of the Chinese Society of Agricultural Engineering Apr. 2021 175田间作物群体三维点云柱体空间分割方法林承达,韩晶,谢良毅,胡方正(华中农业大学资源与环境学院,武汉430070)摘要:农田作物群体表型信息对于研究作物内部基因改变和培育优良品种具有重要意义。
为实现田间作物群体点云数据中单个植株对象的完整提取与分割,以便于更高效地完成作物个体表型参数的自动测量,该研究提出一种田间作物柱体空间聚类分割方法。
利用三维激光扫描仪获取田间油菜、玉米和棉花的三维点云数据,基于HSI(Hue-Saturation-Intensity,色调、饱和度、亮度)颜色模型进行作物群体目标提取,采用直通滤波方法获取作物茎秆点云,基于茎秆点云数据使用欧氏距离聚类分割算法提取每个植株的聚类中心点,并以聚类中心点建立柱体空间模型,使用该模型分割得到田间作物每个单体植株的点云数据。
试验结果表明,该研究的方法对油菜、玉米和棉花3种作物的分割准确率分别为90.12%、96.63%和100%,与欧氏距离聚类分割结果相比,准确率分别提高了36.42,61.80和82.69个百分点,算法耗时分别缩短为后者的9.98%,16.40%和9.04%,与区域增长算法分割结果相比,该研究的方法可用于不同类型农作物,适用性更强,能够实现农田中较稠密作物植株的分割。
该研究的方法能够实现农田尺度下单个植株的完整提取与分割,具有较高的适用性,可为精确测量作物个体表型信息提供参考。
关键词:作物;激光;三维点云;柱体空间模型;分割doi:10.11975/j.issn.1002-6819.2021.07.021中图分类号:TP391 文献标志码:A 文章编号:1002-6819(2021)-07-0175-08林承达,韩晶,谢良毅,等. 田间作物群体三维点云柱体空间分割方法[J]. 农业工程学报,2021,37(7):175-182. doi:10.11975/j.issn.1002-6819.2021.07.021 Lin Chengda, Han Jing, Xie Liangyi, et al. Cylinder space segmentation method for field crop population using 3D point cloud[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 175-182. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.021 0 引 言随着人口数量的不断增加,人类对粮食和油料作物的需求急剧上升,但其产量却受到可利用耕地减少、土地荒漠化和自然灾害等的影响而难以提升。
3D地震反射面自动构造的地质结构快速解释方法
3D地震反射面自动构造的地质结构快速解释方法付强;萧蕴诗【期刊名称】《计算机工程与应用》【年(卷),期】2011(047)002【摘要】Computer assisted seismic interpretation is a powerful tool for inceased productivity and accuracy. A fast structural interpretation method based on automatic constrution of 3D reflecting surface is proposed.The project invoives analysis of the seismic data before the automated tracking takes place,selection of what should be tracked,automatic construction of 3D reflecting surface and the structural interpretation.The goal is to aid the interpeter by giving more and better information to the interpreation process.%计算机辅助地震数据自动解释是提高地震数据解释精度和速度的重要工具.讨论基于全层位追踪及3D地震反射面自动构造的地质构造解释方法的研究和实现.包括地震特征数据提取,波阻抗层位追踪和3D地震反射面生成.方法将波阻抗层位视为3D地震反射面与测线平面上的交线,以此为基础直接构造3D地震反射面,直接对3D反射面操作以得到构造解释结果.从而充分地利用地震数据信息,提高解释的精度和速度.【总页数】3页(P210-212)【作者】付强;萧蕴诗【作者单位】同济大学电子信息与工程学院,上海201804;同济大学电子信息与工程学院,上海201804【正文语种】中文【中图分类】TP3-05【相关文献】1.采区三维地震资料构造解释方法 [J], 张凯;殷裁云;徐延勇;李晓婷2.贝尔凹陷霍多莫尔复杂构造带三维地震精细解释方法及地质效果 [J], 王江;赵传军3.应用于喇嘛甸油田的3D3C地震解释方法 [J], 姜岩;王彦辉;李操4.渤海湾盆地海域古近系-新近系地质结构和构造样式地震解释 [J], 刘春成;戴福贵;杨津;杨克绳5.用于勘探SanJuan盆地Dakota群含气砂岩的3D地震解释方法 [J], 津强(摘译)因版权原因,仅展示原文概要,查看原文内容请购买。
三维编织复合材料力学性能研究进展
基金项目 : 国家自然科学基金 ( 10772064) ; 863项目资助 ( 2007AA 0190) 作者简介 : 曾 涛 ( 1967! ) , 男 , 博士 , 教授 , E m ai: l jllfroe2002@ yahoo . com. cn .
第 1期
曾
涛等: 三维编织复合材料力学性能研究进展
D evelopm ent of I nvestigation into M echanical Properties of 3D Braided Composites
ZENG Tao, JIANG L i li
( S chool of C ivil Engineering and A rch itecture , H arb in U n ivers ity of Scien ce and T echnology, H arb in 150080 , Ch ina)
Abstract : R ecent developm ents o f investig at io n into m echanical properties o f 3D braided composites at hom e an abroad are su mm arized , in wh ich the experi m en ta, l theoret ica l and num erica l si m ulat io n research are inc luded . The th eo retica l investigations present the * type m ode,l f ib er in clin ation m ode, l three ce lls m ode,l he lix fib er cell and the study on stiffness and strength . In num erical si m u lation research , the so lid m ode l o f 3D braided com posites based on fo r m in g techno logy , bra id ed procedure and th e course of the yarns are introduced . F ina lly, som e problem s in presen t stud ie s are summ arized and future investig at ing trends are proposed . K ey w ord s : 3D braided com posites; m echanical properties; geom etric m ode;l stiffn ess; strength
严格三维极限平衡法
2
滑体的整体平衡方程
2.1 面元上的力和力矩 设作用在滑体 Ω 的滑面 S 上的法向应力和切向 应力分别为σ 和τ,则作用在单位法线为 n 的某一典 型面元 dS 上的法向力为 σndS ,沿阻滑方向 s 的摩 阻力为 τ sdS ,所以面元 dS 上的反力为
df = (σ n + τ s )dS
-
二维在内的任何其他严格条分法都无法比拟的。作 者认为解的定性性质非常重要:当一个问题的解存 在、唯一并有良好的数值特性时,就能给基于此理 论和算法的程序员以信心。 最后,将平衡方程组中的体积分都转化为边界 积分,从而在分析前仅需对滑体表面进行剖分,而 不必再对整个滑体进行条分。这样既解决了前述的 边缘条柱问题,又简化了前处理,使其可以直接利 用 GIS 的输出——GIS 一般都是将地表和岩性分界 面用一种称之为 TIN(triangulated irregular network) 的数据来表示的[14],因此也可称本文所建议的方法 为无条分法。
体底面 dS 上的反力 σ ndS + τ sdS ,柱体的重力
c w = ce − f e u
(5b)
−kdw 和地震力 edq ,作用于微圆柱顶部面元 dS u 的
外力 pdS u ,以及圆柱周围的土体对它的作用力 dh 。 这里 k 为 z 轴的单位向量, dw 为微圆柱所受重力,
dS O
(5a)
图1 Fig.1
σ ndS
式中: Fs 为安全系数; ce 和 f e 为抗剪强度参数,采 用有效应力分析时为有效应力抗剪强度参数,采用 总应力分析时为总应力抗剪强度参数; u 为孔隙水 压力,当采用总应力分析时 u = 0 ; c w 可表示为
滑体内一微圆柱的受力示意图
真三维显示器的交互技术
图 2 系统连接和数据传输示意图 Fig. 2 Sketch map of system connections and data
transferring
(a) 硬件结构示意图
第7卷 第1期 2012 年 1 月
(b) 显示器外观
真三维显示器的交互技术
3
态,所以在获得 2 台摄像机内参数的同时,也可以同时 获得 2 台摄像机之间的相对姿态关系。本文采用 Jean-Yves Bouguet 的 Matlab 工具箱对双目相机进行标 定。实际操作中采集了标定板在不同位置的 12 对图像, 图 6 所示为其中的 3 对图像。
目前国内基于真三维显示器的交互技术研究几乎是空白笔者研究的目标正是开发一套基于perspecta3d真三维显示器能够在室内环境使用的真三维显示交互系统24系统硬件构成真三维显示交互系统由真三维显示器红外双摄像机跟踪器手持交互装置和系统主机4部分组成
第7卷 第1期 2012 年 1 月
中国科技论文 CHINA SCIENCEPAPER
Abstract: For the purpose of direct and natural display, true three-dimension display has attracted widespread attention from all over the world. To interact with true three-dimension display naturally and directly, a human computer interacting system is developed, which is based on a new prototype true three-dimension display device named Perspecta 3D display. The system is consist of two infrared cameras and a hand-hold interacting instrument. Infrared images of the hand-hold instrument are captured from the cameras and then the position of the hand-hold instrument in 3D space is calculated in real time by direct linear transformation (DLT) algorithm. Based on the location of the instrument, the movement of the user is determined by the Kalman filtering method. Then the user can interact with the 3D virtual images in real time, from which commonly used operations, such as click, drag, zoom in, zoom out, rotate and so on can be achieved by simple gesture movements. Key words: image processing;true three-dimension display;infrared camera tracker;real time interaction
基于单目视觉三维重建的货运列车超限检测方法研究
第18卷第4期铁道科学与工程学报Volume18Number4 2021年4月Journal of Railway Science and Engineering April2021 DOI:10.19713/ki.43−1423/u.T20200583基于单目视觉三维重建的货运列车超限检测方法研究杜伦平1,朱天赐1,刘期柏2,梁力东2,王泉东1,傅勤毅1,刘斯斯1(1.中南大学交通运输工程学院,湖南长沙410072;2.广州局集团公司货运部,广东广州510088)摘要:针对基于雷达和激光等技术的货运列车超限检测系统存在检测区域不完整及只能在列车移动状态下进行测量的缺陷,提出一种基于单目视觉三维重建的货运列车超限检测方法。
通过单目视觉三维重建算法对获取的序列图像进行建模处理得到目标货运列车的三维点云模型。
对三维点云模型进行全局坐标系转换与切片投影,得到目标货运列车若干横截面二维点云图形。
结合铁路货运列车超限检测标准,构建标准界限图形。
将获得的二维点云图形代入标准界限图形中进行超限检测判别。
实验结果显示,该方法具有较高的检测精度和检测效率,能够满足铁路货运列车超限检测作业要求。
关键词:货运列车;超限检测;单目视觉;三维重建;点云模型处理中图分类号:TP29文献标志码:A开放科学(资源服务)标识码(OSID)文章编号:1672−7029(2021)04−1009−08Research on detection method of freight train gauge-exceeding based on3D reconstruction of monocular visionDU Lunping1,ZHU Tianci1,LIU Qibai2,LIANG Lidong2,WANG Quandong1,FU Qinyi1,LIU Sisi1(1.School of Traffic and Transportation Engineering,Central South University,Changsha410075,China;2.Freight Department of China Railway Guangzhou Group Co.,Ltd.,Guangzhou510088,China)Abstract:In view of the defects of the detection system of freight train gauge-exceeding based on radar and laser technology that the detection area is incomplete and can only be measured in the moving state of the train,a method of gauge-exceeding detection of freight train based on monocular visual3D reconstruction was proposed. The3D point cloud model of the target freight train was obtained by modeling and processing the acquired sequence images through the monocular visual3D reconstruction algorithm.The global coordinate system conversion and slice projection were performed on the three-dimensional point cloud model to obtain two-dimensional point cloud graphics of several cross sections of the target freight bined with the railway freight train gauge-exceeding detection standard,a standard limit graph was constructed.The obtained two-dimensional point cloud graphics were substituted into the standard boundary graphics for gauge-exceeding detection and discrimination.Experimental results show that the method has high detection accuracy and efficiency,and can meet the requirements of railway freight train gauge-exceeding detection.Key words:freight train;gauge-exceeding detection;monocular vision;three-dimensional reconstruction;point cloud model processing收稿日期:2020−06−24基金项目:广州铁路局科研项目(广铁合货运部(2019)0002);国家自然科学基金青年基金资助项目((2018)61806222)通信作者:刘斯斯(1988−),女,湖南长沙人,讲师,博士,从事计算机视觉、大数据挖掘技术研究;E−mail:********************.cn铁道科学与工程学报2021年4月1010铁路运输在我国运输业中占据决定性地位。
三维变形体的因式分解重建方法
因此,该重建落在射影空间。
3 欧氏重建
通过 SVD 分解,可以求到一组射影重建 P '2 m3l 和 B '3l n ,根据式(12) ,有
P2 m3l P '2 m3l T3l 3l
133
将式(8)代入式(7)中,有
m 'i ,1 m 'i ,2 m 'i , n 2n R i i , k B k
k 1 l
(9)
将上式整理可得
B1 (10) m 'i ,1 m 'i ,2 m 'i , n i ,1R i i ,2 R i i ,l R i 2 2 n 3l Bl Mi Pi 3 l n
2016 年 2 月 第 43 卷 第 1 期
西安电子科技大学学报(自然科学版) JOURNAL OF XIDIAN UNIVERSITY
Feb.2016 Vol.43 No.1
doi:10.3969/j.issn.1001-2400.2016.01.021
三维变形体的因式分解重建方法
彭亚丽 1,2, 刘侍刚 2, 梁新刚 2, 廖福轩 2
j j
ˆ 时,至此,已经将矩阵 T 求解完毕,即可实现非刚体的三维重建。 当求到所有的矩阵 T 3l 3 l j
4 实验
4.1 仿真实验 为了比较本文方法和 Llado 方法[11]的重建精度,本文随机的在一个单位球产生 200 个空间点,并将这 些空间点分别分成 3 个和 4 个非刚体的刚体基元。 当分成 3 个刚体基元时, 第一个刚体基元由前 80 个空间 点组成,第二个和第三个基元各由 60 个空间点组成;当分成 4 个刚体基元时,第一个刚体基元由前 80 个 空间点组成,后面三个基元各由 40 个空间点组成。变化相机的参数以产生 50 幅图像,并在图像中加入 0 至 2 个像素的图像噪声,分别用本文方法和 Llado 方法进行重建,在每个图像噪声下,各运行 100 次,计 算重投影误差,后取平均值,模拟实验结果如图 1 所示。
地震资料全三维精细构造解释技术研究
196地震勘探作业属于能源开发过程中了解地质构造的重要基础,地震勘探作业开展将会得到充足的地震资料,地震资料全三维精细构造解释技术的研究对于理解地球内部复杂结构至关重要,地球的内部不仅包含不同类型的岩石和矿物,还存在着各种地质构造,如断裂带、隆升带等[1]。
通过精细的三维解释,能够深入了解这些地质构造的几何形态、空间分布以及相互关系。
地球深部结构的详细解释可以帮助工作人员准确预测地下资源的分布,包括石油、天然气等,这对于有效开发和管理地球资源具有战略性意义,有助于提高勘探的成功率和资源的利用效率[2]。
研究主要是对相干数据体解释断层、全三维自动追踪解释层位以及变速做图等技术进行研究,为推动我国地质勘探领域的进一步发展奠定基础。
1 相干数据体解释断层1.1 相干数据体的技术原理在进行油气资源勘探作业时,相干数据体解释断层是一项关键的技术任务,断层是地球内部结构中的重要构造,它对油气运移和聚集具有重要影响。
相干数据体解释断层主要是通过地震勘探仪器获取地下反射波数据,这些数据记录了地下结构的变化,对采集到的地震数据进行预处理,包括去噪、校正、剖面叠加等步骤,以确保数据的质量[3]。
将地震数据从时间域转换到深度域,以获取地下结构的深度信息,通过速度分析,建立地下的速度模型,这对于后续的图像重建和解释非常关键。
利用地震道集数据,计算相干体来衡量不同深度层之间的相干性,相干体表示在多个地震剖面上,同一位置的地下结构信息的一致性程度,对相干体进行阈值处理,提取出地震资料全三维精细构造解释技术研究李潇中石化石油物探技术研究院有限公司 江苏 南京 211100摘要:针对地震资料全三维精细构造解释问题,首先对相干数据体解释断层进行分析,在此基础上,对全三维自动追踪解释断层问题进行探讨,最后,对变速做图技术进行深入研究,为推动我国地震资料全三维精细结构解释技术的进一步发展奠定基础。
研究表明:通过分析相干数据体以此实现断层的自动和半自动解释,可以理清目标区域中的断层系统,在引入全三维追踪层位技术以后,可以对目标层进行全面解释,对于地震波的传播速度而言,其将会随着岩性横向或者纵向的变化而变化,因此,在将T0图转化为深度构造图的过程中,可以引入变速做图技术,进而可以得到准确的地质构造信息,为井位的合理部署奠定基础。
基于分水岭算法的3D-motif构造及其对表面形貌的表征
g ra d mo eme nn f lo e h o g i ee ttr s od ,a d eg t rmee sweep o o e oc aa tr e te e n r a igu n s tr u h df r n h e h l s n ih a tr r r p s d t h rce i h m. S r f pa z u-
基 于分 水 岭算 法 的 3 — of 造 及 其对 表 面 形 貌 的表 征 Dm t 构 i
万筱怡 刘小 君 刘 煜
( 合肥工业大学摩擦学研究所
安徽合肥 2 0 0 ) 3 09
复杂地层结构三维地质建模空间插值方法研究
DOI: 10.3969/J.ISSN.2097-3764.2024.01.016Vol. 19 No.01 March, 2024第 19 卷 第1期 2024 年 3 月/复杂地层结构三维地质建模空间插值方法研究郑杨,简季(成都理工大学地球科学学院,四川 成都 610059)摘 要:三维地质体对于自然资源勘探、环境保护、自然灾害风险评估等领域都具有重要意义。
在建模过程中,地质体的模型精度与插值算法有着直接关系。
为研究不同插值算法的适用情况,文章对云南陆良某污染场地进行浅层三维地质建模,分别选取反距离权重法和自然邻域法,利用钻孔数据插值建模,并对模型结果进行目视检验和误差对比分析。
研究结果表明:反距离权重法适用范围广,建模精度较高;相较于自然邻域法,反距离权重法更适用于地层结构复杂的三维地质建模,该方法对断层细节的描述更细致,模型更符合实际情况;而自然邻域法在断层明显的区域插值效果较差,不适用于地层结构复杂的情况。
关键词:三维地质模型;钻孔数据;反距离权重法;自然邻域法;精度验证Spatial interpolation methods for 3D geological modeling ofcomplex strata structuresZHENG Yang, JIAN Ji(School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China )Abstract: Three-dimensional (3D) geological bodies are of great significance in natural resources exploration, environmental protection, natural disaster risk assessment, and other fields. In the modeling process, the accuracy of geological body models is directly related to interpolation algorithms. T o study the applicability of different interpolation algorithms, this paper con-ducted shallow 3D geological modeling in a heavy metal pollution area in Luliang, Yunnan. The inverse distance weighting method and natural neighborhood method were selected to interpolate the drilling data in the study area. Visual inspection and error comparison were carried out of the model results. The results show that the inverse distance weighting method has a wider applicability range and higher modeling accuracy. Compared to the natural neighborhood method, the inverse dis-tance weighting method is more suitable for complex geological modeling with distinct stratigraphic structures, providing a more detailed description of fault details and a model that better reflects reality. On the other hand, the natural neighbor-hood method has poor interpolation performance in areas with distinct faults and is not suitable for complex stratigraphic structures.Keywords: 3D geological model; drill data; inverse distance weighting method; natural neighborhood method; accuracy verifica-tion收稿日期:2023-09-05;修回日期:2023-11-16第一作者简介:郑杨(1990- ),男,在读硕士研究生,研究方向:数字孪生与三维建模。
三维立体展示物探AMT剖面资料的一种方法
Advances in Geosciences地球科学前沿, 2020, 10(6), 460-464Published Online June 2020 in Hans. /journal/aghttps:///10.12677/ag.2020.106042A Method of 3D Stereoscopic Display ofGeophysical Profile DataLili JiangGeophysical Measuring Exploration Institute of Liaoning Province, Shenyang LiaoningReceived: May 22nd, 2020; accepted: Jun. 4th, 2020; published: Jun. 11th, 2020AbstractIn geological exploration work, there are often geophysical profiling survey works. When there are many profiles, the three-dimensional display of the survey profiles can more effectively ex-tract useful geological information, and can analyze relevant geological problems more visually and intuitively, such as concealed rock mass morphology, distribution of marker layer, occurrence of fault zone, etc., so as to provide basic data for deep prospecting. With the wide application of 3D visualization technology, there are many softwares with the function of displaying measurement results in 3D. This article illustrates a method of converting the geophysical profile measurement result map into a volume image through an example, which provides a way to realize the three- dimensional display of the profile measurement results.KeywordsGeophysical Prospecting Profile, 3D Visualization, Graphics Conversion三维立体展示物探AMT剖面资料的一种方法蒋丽丽辽宁省物测勘查院有限责任公司,辽宁沈阳收稿日期:2020年5月22日;录用日期:2020年6月4日;发布日期:2020年6月11日摘要地质勘查工作中经常会有物探剖面测量工作,当剖面较多时将测量剖面结果进行三维立体展示可更有效地提取到有用的地质信息,可以更形象、更直观地分析相关的地质问题,如隐伏岩体形态、标志层的分布、断裂带产状等,从而为深部找矿提供基础资料。
镁合金动态再结晶的研究现状
近年来,随着能源供求的紧张、不可再生能源的大量消耗,能源危机逐渐凸显。
为节约能源,各国对新材料的需求更加迫切,尤其是轻合金材料,如镁及镁合金材料。
镁合金具有密度小、比强度高等优点,是目前工业应用中最轻的工程材料[1]。
然而,镁合金为密排六方结构,与其它合金相比结构对称性低,因此成形性较差,从而限制镁合金特别是变形镁合金在工业上的应用。
动态再结晶(DRX )是在热塑性变形过程中发生的再结晶[2],作为一种重要的软化和晶粒细化机制,动态再结晶对控制镁合金变形组织、改善塑性成形能力以及提高材料力学特性具有十分重要的意义。
镁合金动态再结晶随合金变形方式的不同存在一定的差异,因此,系统研究其动态再结晶形核与晶粒长大的规律,完善镁合金的塑性变形理论体系,并利用动态再结晶细化晶粒的原理有效控制镁合金的组织和性能,将在生产中具有极为重要的应用价值[3-6]。
简述了当今国内外现有的镁合金动态再结晶机制和变形温度、变形速率、变形程度以及稀土元素对镁合金动态再结晶的影响。
1影响因素通常镁合金塑性变形过程中变形温度、应变速率、应变量的改变和稀土元素的添加都会影响塑性变形机制,因此,会对动态再结晶的行为造成影响[7]。
1.1变形温度的影响变形温度是通过改变位错密度的累积速率影响DRX 形核和长大,随着温度的升高、原子的扩散、位错的交滑移和晶界的迁移得到加强,变形的临界切应力减小[8-9]。
合金中原子的热振荡加剧、扩散速率增大、位错的运动(滑移、攀移、交滑移)及位错缠结滑动比低温时更容易,使动态再结晶的形核率增大,晶界的迁移能力明显增强,因此,提高变形温度可以促进镁合金动态再结晶的发生[10]。
何运斌等[11]对热变形中的ZK60镁合金研究后发现,变形温度增加时,试样的平均动态再结晶体积分数增大,合金变形更加均匀。
S.M.Fatemi-Var ⁃zaneh ,A.Zarei-Hanzaki 等在对AZ31镁合金动态再结晶的研究中指出,在试验温度范围内,试样的组织随非连续动态再结晶的发生而改变,如动态再结晶晶粒的尺寸与动态再结晶晶粒的体积分数均随变形温度的上升而增大[12],如图1所示。
基于变刚度与力反馈的虚拟3D画笔触觉行为
基于变刚度与力反馈的虚拟3D 画笔触觉行为黄磊†,侯增选,李楠楠,张迪靖,苏金辉(大连理工大学机械工程学院,辽宁大连116024)摘要:针对汽车工业中虚拟油泥模型外观设计问题,采用一种六自由度输入设备并基于实时力反馈交互技术,提出一种新型的变刚度画笔模型以及触觉装饰方法,实现在虚拟三维物体表面实时触觉绘制与外观装饰.基于变刚度弹性理论,深入研究虚拟3D 画笔的触觉行为.首先,采用一种弯曲弹簧振子模型来构建3D 画笔的力学模型,并分析虚拟画笔实时变形与承受的绘制力之间的内在关系;接着,基于一种加权平均距离的碰撞算法,研究虚拟画笔与虚拟3D 物体之间的碰撞检测问题;采用一种球扩展操作以获得弯曲画笔的最小包围球,进而计算得到虚拟投影平面;根据在一个采样点处的画笔变形,得到虚拟投影平面上的二维笔触;通过将二维画笔笔触实时地映射到三维对象表面,便可以得到三维笔触;沿着三维绘制方向,通过控制绘制力矩并叠加不同大小、形状的3D 笔触便可得到3D 笔道.仿真对比实验结果表明,所采用的画笔模型及方法可以有效增强用户虚拟绘制时的真实性.关键词:计算机触觉;人机交互;实时力反馈;变刚度;碰撞检测中图分类号:TP23文献标志码:AHaptic Behavior of Virtual 3D Brush Basedon Variable Stiffness and Force FeedbackHUANG Lei †,HOU Zengxuan ,LI Nannan ,ZHANG Dijing ,SU Jinghui(College of Mechanical Engineering ,Dalian University of Technology ,Dalian 116024,China )Abstract :For the exterior design of virtual clay model in automotive industry,a novel variable stiffness brushmodel and haptic decorating method are proposed using a six DOF input device and based on real-time force feed -back technology,and the haptic behavior of virtual 3D brush based on variable stiffness is studied in detail.Firstly,the relationship between brush deformation and endured force is examined by employing the bending spring -mass model to construct the 3D brush mechanical model.Then,the collision detection between virtual hairy brush and vir -tual 3D object is studied based on a collision algorithm of Weighted Average Distance.An effective ball expanding op -eration is used to compute the smallest bounding sphere of the bent brush and then to determine the projection plane.The 2D footprint produced between the brush and the projection plane is calculated according to the deformation of the brush at a sampling point,and then,the 3D brush footprint can be obtained by projecting the 2D brush footprint onto the 3D object surface.The 3D brush stroke is formed by controlling the exerted force and superimposing 3D brush footprints along the direction of painting.Experiment results show that the adopted method can effectively en -收稿日期:2019-08-01基金项目:国家自然科学基金资助项目(51175058),National Natural Science Foundation of China (51175058);国家重点基础研究发展计划(973计划)项目(2014CB046604),National Program on Key Basic Research Project (973Program )(2014CB046604)作者简介:黄磊(1985—),男,湖北襄阳人,大连理工大学博士研究生†通讯联系人,E-mail :******************第47卷第8期2020年8月湖南大学学报(自然科学版)Journal of Hunan University (Natural Sciences )Vol.47,No.8Aug.2020DOI :10.16339/ki.hdxbzkb.2020.08.006文章编号:1674—2974(2020)08—0049—11无论是从企业层面还是从普通消费者的层面来讲,产品外观设计阶段在工业零部件或消费产品的概念设计阶段都占有非常重要的位置.产品外观设计,包括产品形状设计和产品外表面的装饰,通常采用计算机辅助工业设计(Computer Aided Industrial Design ,CAID )的手段或方式来完成.传统的CAID 采用纹理映射的方法来实现从二维图片到三维模型外表面的转换,以此来实现3D 产品外表面的装饰[1].然而,从2D 图片到3D 物体外表面的映射变换很容易引起原有图形的扭曲和走样,并且纹理映射应用的过程既繁琐又易耗用过多的计算机内存资源.在产品的创新设计中,设计师的灵感非常重要,而纹理映射技术需要映射二维图形到三维物体的外表面,妨碍了设计师自由地捕捉设计灵感.伴随着虚拟绘画与书法的深入发展,尝试在3D 产品模型外表面直接进行虚拟装饰的方法开始被关注.该方法不仅能避免纹理映射存在的过度扭曲等一系列缺点,还能允许设计师完全自由发挥想象力和捕捉设计灵感.画笔是触觉虚拟绘制技术的主要实施工具,艺术家通过灵活控制画笔的位置、姿态、实时弯曲变形来完成产品创作过程.因此,在虚拟交互式的三维绘制过程中,能否构造出一个有表现力的基于物理的虚拟3D 画笔模型是非常重要的环节.针对虚拟画笔建模及其绘制问题,国内外学者已做了大量研究,并取得了重要进展.Artnova 系统[2]采用了一种以用户为中心的观看技术,通过考虑用户的触觉操作,将视觉和触觉反馈集成起来,动态地确定新的视点位置.但在系统中并未构建3D 画笔模型,这也降低了交互式绘制体验的真实性.Gregory 等[3]提供了一种直观的基于触觉设备的三维绘制接口,用于交互式的编辑和绘制多边形网格.系统通过视觉与触觉两种反馈能够让用户自然的创建出复杂的绘制模式.然而该系统并未集成6自由度力反馈设备,并且在绘制过程中不能实现双手交互.Fu 等[4]提出了一种触觉绘制系统,该系统为用户提供一种简单的方式能精确地将颜色添加到网格模型上.该绘制系统还将虚拟画笔与一种配备了3自由度的触觉设备集成起来.由于真实的画笔具有6自由度,因此该系统不能提供给用户多种富有表现力的画笔效果.在虚拟画笔建模方面,Chu 等[5]提出了一种基于画笔笔画轮廓的建模方法,利用前后连接的贝塞尔曲线来实时模拟画笔笔道的形成.Kim 等[6-7]在原有画笔模型的基础上,通过添加画笔笔毛束的几何学模型及其相关变形算法,得到了一种新的画笔模型,该模型可以更好地模拟真实画笔的变形.Baxter [8]通过对原有画笔模型加以改进,并采用能量最小化的方法来优化画笔笔头的几何学表示.Larsson 等[9]提出了一种新型的画笔模型,该画笔几何模型用自由运动链表示画笔的中心脊骨,并利用多边形网格表示画笔中的笔毛簇,基于最小包围球思想并结合能量最优化理论求解画笔笔头的变形.徐军[10]于2017年在深入分析毛笔物理性能、归纳毛笔建模方法以及在总结毛笔笔法的基础上,通过分析力对毛笔变形的影响机理,采用弹簧-振子模型构建了毛笔力反馈仿真新模型,并根据毛笔受力后的形态变化和运动变化,研究了笔道绘制算法,实现了毛笔笔道的实时绘制.基于上述研究,本文提出了一种新型的基于物理的变刚度3D 画笔模型以及相应的三维物体表面触觉绘制和装饰方法,并融入实时力反馈技术和采用一台6自由度的力反馈设备,实现了三维物体表面的交互式绘制.在绘制时,画笔的力觉信息可以实时传输给力反馈设备,因此,用户可以通过反馈的触觉力,实时调整绘制结果以达到预期效果.1虚拟画笔建模为了实现三维物体模型表面的触觉绘制装饰,构建一个富有表现力的虚拟3D 画笔模型是非常重要的.基于画笔的实际特性,我们构建了一个带有双层结构的3D 画笔模型[11-14],该模型融合了画笔外在的几何学特性和内在的动力学特性,可以模拟真实画笔的物理特性,满足虚拟三维物体表面自由绘制与装饰的需求.1.1几何学模型画笔的几何学模型与其力学模型紧密关联.受Chu 等[5]画笔建模方法的启发,我们将几何学模型(图1)表示为一个骨架和一个经过蒙皮的表面.脊骨骨架用于处理画笔的常规弯曲变形.将骨架描述为前后连接的线段序列(也称脊骨段),并且从笔根部hance the reality to users.Key words :computer haptics;human-computer interaction;real-time force feedback;variable stiffness;colli 原sion detection湖南大学学报(自然科学版)2020年50黄磊等:基于变刚度与力反馈的虚拟3D 画笔触觉行为到笔尖部,单个脊骨段将变得越来越短.假定画笔骨架被n +1个节点P 0,P 1,…,P n 划分为n 个小段,P 0为笔尖节点,P n 为笔根节点.线段P i -1P i 的长度定义为L i .L 1,L 2,…,L n 构成一等差数列,其计算公式为[15-16]:L i =L 1+(i -1)D D =2(L spine -nL 1)n (n -1)⎧⎩⏐⏐⏐⏐⎨⏐⏐⏐⏐(1)式中:i 是小于或等于n 的正整数;L i 表示控制节点P i 和P i +1之间的直线段(脊骨段)的长度;n 表示脊骨段的数量;L 1的预设值与画笔笔头的硬度有关;D 表示公差;L spine 表示画笔骨架的初始长度.画笔中心脊骨画笔表面控制节点P i笔尖控制节点笔根控制节点外轮廊控制面脊骨段图1画笔几何学模型示意图Fig.1Sketch map of the geometric model of the brush对于施加在画笔上的相同力,画笔笔头越软,则靠近笔尖处的鬃毛就越容易发生变形,此时L 1的预设值就愈小,反之亦然.L 1的值可以通过多次绘制实验获得.公差D 则由画笔骨架的初始长度(L spine )以及L 1的值联合决定.当画笔弯曲时,整个脊骨段位于同一平面内(图2).笔杆的倾斜角(即笔杆与绘制纸平面形成的角度)可表示为θ(θ∈(0,π)).而脊骨段P i -1P i 与纸平面(虚拟投影平面)之间的夹角表示为αi (i ∈[1,n ]).如果画笔未发生弯曲,则αi =θ.在虚拟绘制过程中,不考虑画笔扭曲变形,弯曲的画笔中心骨架上所有的控制节点(P 0,P 1,…,P n )都将处于同一空间平面上,该空间平面记为A 0.为了约束画笔的变形,将一组横截面定义为画笔的轮廓控制面,此类横截面垂直于空间平面A 0,同时穿过控制节点P i ,且平分于邻近的两个脊骨段所形成夹角.画笔表面被表示为三角网格面,该三角网格表面是由画笔中心骨架及一系列由上至下的轮廓控制面经过蒙皮操作而形成.当画笔未施加任何外力时,本文中的画笔形状类似于一个倒锥,因此画笔轮廓控制面在最初是一系列沿着画笔骨架方向放置的直径大小不同的圆.P iP nP i +1αil iP i -1P 0θ画笔笔杆外轮廊控制面宣纸平面虚拟投影平面图2画笔骨架的变形Fig.2The deformation of brush skeleton在虚拟交互式绘制过程中,轮廓控制平面由圆变为椭圆.控制节点位置的变化引起中心骨架的变形,而每个轮廓控制面也将相应地发生位置和形状的变化,从而引起画笔三角网格面的变形.1.2画笔骨架弯曲力学模型画笔力学模型构建的目的主要是用来仿真模拟绘制过程中画笔受到外来施加的弯矩和压力作用时的笔头弯曲变形、画笔笔头扁曲、笔毛散开等物理现象.引入一种变刚度弹簧质量模型[17]来仿真绘制过程中当外力矩施加于画笔上的时候,画笔的动态弯曲变形(图3).在虚拟交互式绘制过程中,将一个遵循空间平面内弯曲变形的虚拟扁截面变刚度的弹簧置于点P m 与接触点P m ′之间.这里,弯曲弹簧在虚拟绘制过程中将与绘制纸平面(或虚拟投影平面)成垂直或倾斜角度,并且虚拟弹簧与其在绘制平面内的正向投影(沿着法向量方向)形成一辅助空间平面P k ,受力的画笔将在空间平面P k 内发生弯曲变形.当画笔笔头刚开始接触到绘制平面时,笔头保持笔直状态.绘制过程中,随着在画笔笔杆端逐渐施加弯矩后,画笔中的可变刚度虚拟弹簧将开始产生弹性甚至弹塑性弯曲.此时,画笔骨架中的各脊骨节点的位置将跟随变化,同时规定各脊骨段的长度始终保持不变.考虑实际圆画笔的形状特点,艺术家利用画笔实施书画创作时,经蘸墨后毛笔在外力矩的作用下与纸张接触并发生弯曲变形,由于连续地运笔动作,在纸面上形成各种笔道.基于上面的分析,我们可以得出画笔的力学模型可以用一个变截面变刚度的弯曲弹簧或者弯曲梁来描述(以下统一称之为弯曲梁),并且该弹簧在外力矩和纸面的共同作用下发生第8期51弹塑性弯曲变形.因此有必要深入研究该画笔笔头的复杂力学行为.可变刚度弹簧画笔表面P m ′和P 0重合于一点P 0P mLE(a )笔头绘制初始状态P m ′P m MP 0画笔表面变形弹簧LE-D s(b )笔头受力弯曲状态图3带有可变刚度的画笔弹簧质量模型Fig.3Brush spring-mass model with variable stiffness1.2.1画笔骨架弯曲变形的基本方程首先我们可以将该弯曲弹簧抽象为一虚拟矩形变刚度悬臂梁,如图4所示,其矩形截面的宽度沿着虚拟悬臂梁的长度方向保持不变,为常数b ,矩形截面的高度沿着虚拟梁的长度方向不断变化,可用函数h (x )来表示.又规定虚拟梁的材料为理想的各向同性弹性材料.为了降低计算的复杂度,规定虚拟梁受力弯曲变形属于平面内弯曲,不考虑扭转效应,那么其横截面沿着长度x 方向的高度函数及抗弯刚度函数分别为:h (x )=h 0g(x ),E (x )I (x )=E 0I 0f (x )g 3(x )(2)式中:h 0和E 0分别为常数,h 0表示虚拟梁截面高度的参考值系数,E 0则表示虚拟梁弹性模量的参考值系数;I 0=112bh 30则表示虚拟梁横截面的惯性矩的参考值系数;f (x )和g (x )分别表示虚拟弯曲梁的弹性模量以及横截面高度方向沿着梁轴线方向的变化函数.再假定,沿轴线方向的梁材料的屈服强度变化函数σs (x)为:σs (x)=σs 0s (x )(3)式中:σs 0表示虚拟梁屈服强度的参考值系数;s (x )表示虚拟梁x 截面位置对Z 轴静矩.当画笔骨架在受力弯曲的开始阶段,变形挠度不大,其内部的虚拟弯曲梁处于弹性变形阶段,对应的挠度w e 的微分方程为:d 2we d x 2=-M (x )E (x )I (x )(4)式中:M (x )表示虚拟梁横截面上的弯矩.xylB APM bzyσs (x )图4可变刚度虚拟悬臂梁及其截面上弹塑性应力分布Fig.4Variable stiffness beam with rectangular sectionand its elastic-plastic stress distribution将式(4)实施两次积分,则得弹性区挠度积分公式为:w e =1E 0I 0∫-∫M (x )d x f (x )g 3(x )[]d x +C 1∫d x+C 2(5)式中:C 1及C 2表示对应的积分常数,可由具体的虚拟梁两端的边界条件来确定.在虚拟绘制过程中,随着画笔骨架受力弯曲变形的进一步变大,伴随虚拟梁的横截面上的弯矩逐渐加大,当某一个横截面上最大的弯矩达到梁的弹性弯矩的极限Me (x )时,虚拟梁将进入弹性极限弯曲状态.M e (x )可通过下式计算得到(对于矩形截面梁).M e (x)=112bh 20σs 0g 2(x )s (x )(6)下面,基于具体指定的虚拟梁截面高度函数、弹性模量变化函数,进行详细地虚拟变刚度弯曲梁(虚拟弯曲弹簧)的弹性弯曲变形分析.1.2.2弯曲骨架的弹塑性弯曲分析本文将画笔骨架虚拟弯曲弹簧抽象为弹性模量湖南大学学报(自然科学版)2020年52函数为指数变化函数,而截面高度函数为线性函数的虚拟悬臂梁.首先,虚拟悬臂梁的截面高度遵循线性变化,沿着长度方向(也为梁的轴线方向)材料的的弹性模量遵循指数方式变化,即满足如下形式:f(x)=exp a2x l()(7)g(x)=1-λ1x l(8)对于本文中的画笔力学模型,根据实际书写特点,可以将其力学模型抽象为左端固定右端自由的悬臂梁,忽略其自重,当在梁的自由端部施加一集中载荷P后,可把式(7)(8)代入式(5)并做积分处理,则虚拟悬臂梁(本文中的虚拟弯曲弹簧)的挠度可以表示为:w e(x)=pl2E0I0λ31a22[w1(x)-w2(x)+w3](9)其中,w1(x)=a2λ21x+a22λ1(λ1-1)exp-a2λ1()Ei a2λ1()x w2(x)=[a2(λ1-1)-λ1]λ1l exp-a2x l()+a22(λ1-1)exp-a2λ1()Ei a2λ1-a2x l()(λ1x-l)w3(x)=λ1[a2(λ1-1)-λ1]l-a22(λ1-1)l exp-a2λ1()Ei a2λ1()这里,Ei(z)代表指数积分函数.1.2.3力反馈分析基于以上对画笔模型(可变刚度梁)变形的力学分析,可以建立一个能反映出画笔骨架弯曲变形与画笔实时受力之间的一一对应关系基本二维查询表,以期实现快速地力反馈计算,如表1所示.表1反应画笔受力与相应的弯曲变形之间关系基本二维查询表Tab.1Basic query table about the relation betweenthe bending deformation and real-time forceM P mb L E P0bθb P ibθib m iM0(0,0,0)L E P0b1θb1P i1bθi1b m i0M1(0,0,0)L E P0b2θb2P i2bθi2b m i1M2(0,0,0)L E P0b3θb3P i3bθi3b m i2M i(0,0,0)L E P0biθbi P iibθiib M iiM n(0,0,0)L E P0bnθbn P inbθinb M in表1中,M表示施加在笔杆处的弯矩;P mb表示笔杆处截面的基本中心坐标,其初始值为(0,0,0);L E表示笔头的长度;P0b表示笔尖相对于点P mb的基本坐标;θb表示笔尖处的截面法线相对于笔杆的相对转角;P ib表示第i个画笔骨架节点相对于P mb的基本坐标;θib表示在画笔骨架的第i个骨架节点处的截面法线相对于笔杆的相对旋转角;m i表示施加在画笔骨架上第i个骨架节点P i处的弯矩.其中,M、P mb、L E可由力反馈设备Phantom Desktop实时提供,其余参数可由本文的算法求解获得.基于上述基本查询表,可以得出许多重要的画笔受力变形参数.其基本思想被称之为“固定形状法”.固定形状法可以被分解为两步.1)首先,考虑实际的画笔绘制过程,当施加于画笔的弯矩M、笔根中心节点P m以及笔头长度L E一定时,则画笔骨架对应的弯曲变形形状就被固定下来了(而且无论当前画笔笔杆的实际姿态角是多少),如图5所示.F reF pθαmP iP0αm xP′mP0θtP0P′mP m0(x w,y w)P m0P m(x w,y w)M yαααP m P m(x w,y w)yx图5画笔骨架的弯曲变形原理图Fig.5The schematic diagram of the deformationof brush skeleton因此,当画笔受力产生弯曲变形后,则“基本的”虚拟画笔笔尖点P m0(x w,y w)的坐标(即相对于笔根中心点P m(x m,y m))就是固定的,并且P m0(x w,y w)可以通过使用基本查询表并参照P m(x m,y m)的坐标值直接得到. 2)为了得到绘制时某一采样时刻笔尖点P0的实际坐标,可以假想将画笔骨架受力弯曲变形的基本形状P m-P m0以P m(x m,y m)为圆心顺时针旋转α角度(如图6所示),此时辅助过渡笔尖点P m0刚好落在水平x轴上(即绘制平面上).相应地,点P m0变换为实际绘制时的画笔笔尖点P0(x wa,y wa),且有y wa=0.基于图6中的几何学知识,可以得到:P m P0=P m P m0O1P02=P m P02-P m O12=P m P m02-P m O12=(x m-x w)2+(y m-y w)2-y m2=L2(10)因此,x wa=x m-L,y wa=0.由角度转换关系,笔杆的姿态角经转换,其实刚好为α(图6所示),它可由下式得到:sin(α/2)=0.5P0P m0/P m P0→α=2arcsin(0.5P0P m0P m P0)(11)黄磊等:基于变刚度与力反馈的虚拟3D画笔触觉行为第8期53P m 0(x w ,y w )P 0(x wa ,y wa )P m (x w ,y w )xO 1OM ααy图6画笔骨架受力变形分析原理示意图Fig.6The simplified schematic diagram for deformationanalysis of the brush skeleton在笔尖节点处截面法线相对于竖直线(即绘制平面的法线)的绝对转角θ(如图5所示)可由下式计算得到:θ=α+θb(12)同理,参数P i (表示画笔骨架上第i 个骨架节点的绝对坐标值)和参数θi (表示画笔骨架上第i 个节点相对于竖直线的绝对转角)都很容易通过计算得到(此处略去).由绘制平面施加给画笔笔尖部位的反力F re(图6)可由下式计算得到:F re =F p /cos αm =(1+ξm )M /(L E cos αm )=(1+ξm )M /(L E sin α)(13)式中:ξm 是用于反力计算的调整因子,ξm ∈[0,1],其可由多次绘制实验获得;F p =(1+ξm )M /L E 表示反馈力.摩擦力可以使用户感知三维虚拟物体表面的粗糙,并能在绘制过程中稳定控制3D 画笔.摩擦力F f 可由下式计算得到:F f =μF p cos γ(14)式中:γ是虚拟投影平面(虚拟绘制平面)的法向量与对应的三维物体表面法向量的夹角,且γ∈0,π2[];μ是摩擦系数,它可由多次实际绘制实验获得.1.2.4画笔表面变形在实际绘制过程中,画笔笔头在压力的作用下开始与绘图平面接触并形成一个画笔笔触,笔头从笔根到笔尖部分逐渐变的扁平.因此,在绘制平面压力和摩擦力的作用下,画笔的每个轮廓控制面的形状将逐渐从圆形变为椭圆[14],如图7所示.R iP iR iaR ib图7轮廓控制面变形示意图Fig.7Sketch of deformation of outline controlling surface随着施加在画笔上压力的增加,椭圆的短轴R ib将越来越短,而长轴R ia 将越来越长.因此,整个椭圆将变得更加扁平.当画笔未受到外力作用时,可以得到R ia =R ib =R i .随着施加在画笔上的外力逐渐增加,椭圆的形状不断变化,R ia 可由下式得到:R ia =R i ×m 2i ×e m ×(1+d m p n )(15)式中:m i 是控制节点p i 处截面的弯曲力矩;d m 和e m 是通过实际绘制实验得到的椭圆调整因子,以模拟在不同的绘制条件下最真实的画笔变形;p n 是压力系数,它被定义为压力F (绘制纸平面上的反力)与力反馈设备最大输出力的比值.这里,在我们的绘制系统中,所采用的力反馈设备Phantom Desktop 所能提供的最大输出力为7.9N ,因此p n =F /7.9,其p n ∈[0,1],假定轮廓控制面的面积在变形前后保持不变,于是短轴R ib 可由下式计算得到:R ib =R 2i R ia(16)2三维物体表面的虚拟绘制在我们的绘制系统中,采用一种局部映射方法来实时地将二维画笔笔触映射到三维物体外表面.进而,通过沿绘制方向叠加3D 画笔笔触则可以得到3D 画笔笔道.然后,采用一种基于Kubelka-Munk 的颜色光学算法对3D 笔道进行实时渲染.2.1虚拟画笔二维笔触的形成受Baxter 及Chu 等的启发,我们假定弯曲变形后的画笔笔头与虚拟绘制平面相交,将笔头穿透部分向绘制平面正向投影,则投影后的区域即为所形成的二维画笔笔触.该笔触轮廓可由经关键控制点插值后得到的两条对称的B-spline 曲线所组成,如图8(b )所示.在虚拟绘制过程中,可以通过控制笔触轮廓上关键点位置以及数量从而使二维笔触的形状与大小发生相应调整和变化.湖南大学学报(自然科学版)2020年54基于几何学知识,线段N i N ′i 为虚拟绘制平面与画笔骨架上第i 个轮廓控制圆(圆心为P i )相交得到.笔触轮廓控制点M d 是变形的笔头的左侧轮廓线(图8(a ))与毛笔骨架在绘制平面上的投影相交而得到,接着可以计算得到笔尖点P 0的坐标值,根据P 0进一步求得画笔中心骨架上节点P i 的坐标,进而可求得笔触轮廓控制点N i 、N ′i 的坐标值,相关点的具体计算过程可参考文献[13].最后过以上关键轮廓控制点P 0、N i 、N ′i 、M d ,并采用B 样条曲线插值法便可得到画笔的二维笔触轮廓,如图8(b )中所示.YP ′n P nM dM i 笔头外轮廊控制线P i轮廊控制圆P 0P ′n βZM dM i N i N ′i P 0αi +αi +12X 笔触轮廊中的线控制点笔触轮廊控制点(a )笔头正视图(b )笔头俯视图图82D 笔触的生成Fig.8The generation of 2D brush footprint2.2虚拟画笔与虚拟油泥3D 物体间的碰撞检测及接触力仿真本文采用一种OBB (Oriented Bounding Box )包围盒算法[18-19],以实现虚拟画笔笔头与三维物体外表面之间的碰撞检测.为了确定画笔与三维物体(如虚拟油泥模型)之间的相对位置,引入了一个带有很小公差范围的参数-接触距离d dep .d dep 被定义为画笔与虚拟油泥模型表面之间的距离.如果d dep 处在给定的公差范围之内,系统将会产生一个很小的接触力(约0.1N ),并通过力反馈设备Phantom Desktop 传递给用户,从而虚拟画笔与虚拟3D 模型之间的接触可以快速地被用户所感知.在系统中,虚拟画笔和虚拟三维模型的外表面被表示为三角网格,因此,d dep 还可定义为笔尖P 0与虚拟油泥3D 模型表面上一系列若干三角网格顶点之间的加权的平均距离.这些三角网格顶点十分靠近笔尖P 0点,且其个数本文中默认值通常被设定为M n =10.因此,d dep 可由下式定量计算得到:d dep =M ni =1∑w i ×n i ×(x i -x )(17)w i =d max -d iM n j =1∑dmax-d j(18)式中:w i 为加权系数;n i 为三维物体外表面的法向量;x i为三维物体表面三角网格顶点的坐标矢量;x 为笔尖节点P 0的坐标矢量;d i =x i -x ;d max 为d i 的最大值.当d dep 的值处在给定的容差范围内时,用户会感知到虚拟画笔与虚拟油泥3D 模型间的接触或碰撞.然后,用户可按下力反馈设备Phantom Desktop 上的触针按钮,可将接触力置为无效.然后,笔尖控制节点P 0自动被系统约束到三维物体的表面,以便后续的触觉绘制仿真.笔尖P 0的坐标矢量被变换为:x ←x +d dep ×nn (19)加权的平均矢量n 可表示为:n =M ni =1∑w i ×n i(20)2.3投影平面的确定在虚拟三维绘制过程中,其中一个重要的环节就是如何建立合适的虚拟投影平面,该平面用于将二维笔触通过特定算法实时映射到三维物体的表面,从而形成对应的三维绘制笔触.受Larsson 等[9]关于最小边界包围球算法的启示,本文基于一种球扩展迭代操作建立笔头最小包围球.如图9所示,顶点A 为受力变形后的虚拟画笔表任意一顶点,遍历整个虚拟画笔模型的表面顶点,搜索出距离顶点A 最远的画笔模型表面顶点B ,同理,再搜索出距离顶点B 最远的画笔模型表面顶点C ,以线段BC 的长度作为直径(其半径记为r 0),BC 的中点D 0作为球心,作球(D 0,r 0),并以此作为画笔笔头的初始边界包围球;顶点E 为初始边界包围球(D 0,r 0)之外的画笔上的一个顶点,我们将线段D 0E 的长度表示为l 1.过D 0作D 0E 的垂线并交包围球(D 0,r 0)于F 、G 两点.连接EF 、EG 、FG ,则三角形FEG 显然是基底为2r 0的等腰三角形,FG 为包围球(D 0,r 0)的直径.然后在线段D 0E 上取一点D 1,连接D 1F ,并将D 0D 1的的长度记为ld 1,将线段D 1E 的长度记为r 1.然后以r 1为新的半径,以D 1为圆形作新的扩展球(D 1,r 1).新得到的扩展球(D 1,r 1)的半径r 1为:r 1=r 20+l 212l 1(21)线段D 0D 1的长度(l d 1)为:l d 1=r 21-r 20√(22)显然,基于几何学知识,很容易进一步计算得到扩展球(D 1,r 1)的中心坐标D 1以及半径r 1.重复执行以上步骤,直到变形的画笔笔头模型的所有外表面顶点都被涵盖在某一扩展包围球中,我们把此扩展黄磊等:基于变刚度与力反馈的虚拟3D 画笔触觉行为第8期55。
三维空间耦合光学机制
三维空间耦合光学机制## Three-Dimensional Spatially Coupled Photonic Mechanism.In the realm of optics, the interplay between light and matter has given rise to a diverse array of phenomena that have revolutionized our understanding of the physical world. Among these phenomena, three-dimensional (3D) spatially coupled photonic mechanisms have emerged as a particularly intriguing area of research, offering unique opportunitiesto manipulate and control light at the nanoscale.3D spatially coupled photonic mechanisms involve the interaction of light with periodic or aperiodic structures that exhibit spatial coupling along all three spatial dimensions. This coupling results in the formation of photonic bandgaps frequency ranges within which lightcannot propagate and the emergence of novel optical phenomena such as slow light, negative refraction, and topological insulators.One prominent example of a 3D spatially coupledphotonic mechanism is the photonic crystal (PhC). PhCs are periodic structures consisting of a periodic arrangement of dielectric or metallic materials. The periodic nature ofthe PhC gives rise to a photonic bandgap, which can be tailored by modifying the size, shape, and arrangement of the constituent materials. This allows for the precise control of light propagation and the realization of devices such as optical waveguides, filters, and resonators.Another important class of 3D spatially coupledphotonic mechanisms is metasurfaces. Metasurfaces areultra-thin planar structures composed of subwavelength resonant elements. By carefully designing the shape, size, and orientation of these elements, metasurfaces can achieve unprecedented control over the phase, amplitude, and polarization of light. This has led to the development of novel optical devices such as flat lenses, cloaking devices, and holographic displays.The applications of 3D spatially coupled photonicmechanisms extend across a wide range of fields, including optics, optoelectronics, and sensing. In optics, these mechanisms enable the realization of new optical components with enhanced performance and functionality. In optoelectronics, they provide a platform for the development of highly efficient and compact devices such as light-emitting diodes and solar cells. In sensing, they offer the potential for ultra-sensitive and label-free detection of various analytes.The ongoing research and development in the field of 3D spatially coupled photonic mechanisms is expected to lead to even more transformative applications in the future. As we continue to explore the potential of these mechanisms, we can anticipate a range of groundbreaking technologies that will revolutionize our ability to manipulate andutilize light.## 三维空间耦合光学机制。
3D打印物体的稳定平衡优化
计算机研究与发展Journal of Computer Research and Development D O I:10. 7544/is s n l000-1239. 2017. 2015091154(3) :549-556, 20173D打印物体的稳定平衡优化吴芬芬刘利刚(中国科学技术大学数学科学学院合肥230026)(lgliu@m )Stable Equilibrium Optimization for 3D Printed ObjectsW u Fenfen and Liu Ligang(School o f M athem atical Sciences , U niversity o f Science and Technology o f China , H e fe i230026)Abstract 3D printing is increasingly popular, giving the public the ability to create objects. F irst of a ll, a 3D digital model is constructed by 3D modeling softw are, and then m anufactured via 3D printer. V irtual environm ent w ith no physical rules makes the model stand w ith diverse gesture, but failed in the real world. We put forw ard the stable equilibrium optim ization problem for 3D printed object for the first time. To solve this problem, we propose a stable equilibrium optim ization algorithm based on the principle of the tum bler, which can m ake the object achieve stable equilibrium. Specifically, we voxelize the object iteratively from horizontal and vertical direction voxel by voxel until obtaining the best carving resu lt, m easured by an equation;for some exceptions, we continue to modify the bottom w ithin an acceptable small range to achieve stable equilibrium. This novel heuristic carving strategy avoids possible problem s such as suspension, self-intersection, etc. M odification of the bottom part w ithin the small range also ensures that the shape of the object is basically unchanged. T he feasibility of the proposed m ethod is dem onstrated by several exam ples of successful optim ization. The lim itation is that m ultiple m aterial is not considered in this paper for the com plexity of operation, which is to be explored in the future.Key words stable equilibrium;optim ization;3D printin g;voxelization;tum bler摘要3D打印日渐流行,赋予大众创造物体的能力.首先通过计算机中3D建模软件构造3D数字模型,再借助3D打印加以制造.虚拟环境中无物理规则的特点使得模型千姿百态,但是通过3D打印之后发现物体无法平衡站立.首次提出3D打印物体的稳定平衡优化问题,针对这一问题,研究不倒翁的原理,提出稳定平衡优化算法,使得物体达到稳定平衡.具体做法为先将物体体素化,迭代式从水平、垂直方向进行逐体素的挖空,选取最佳的挖空方式;对于个别极端例子,再通过对底部小范围内的修改来达到稳定平衡.逐体素的启发式挖空策略避免了挖空可能出现的悬浮、自相交等问题;底部局部小范围的修改也保证了物体的形状基本不变,该方法的可行性通过多个例子的成功优化得到证明.关键词稳定平衡;优化;3D打印;体素化;不倒翁中图法分类号T P391.41收稿日期:2015-10-13;修回日期:2016-04-19基金项目:国家自然科学基金项目(61672482,11626253);中国科学院“百人计划”项目This w o rk was supported by the National N atural Science Foundation of China (61672482, 11626253) and the H undred Talents Program of Chinese Academy of Sciences通信作者:刘利刚(lgliu@ ustc. edu. cn)550计算机研究与发展2017, 54(3)不倒翁自古以来就受到广大老百姓的喜爱,尤 其是儿童爱不释手的玩具.常见的不倒翁上身由空 壳组成,下底由填满固体的半圆球,具有上轻下重的 特点.不倒翁在受到外力时倾倒,当撤去外力时,不 倒翁自行恢复到初始位置,这种性质在物理中称之为稳定平衡(stable equilibrium).稳定平衡原理在 人们的生活中有着广泛的应用,带给了人们更多的 乐趣与便利,如不倒翁娃娃(如图1(a)所示),不倒 翁牙刷(如图1(b)所示)、不倒翁沙袋(如图1(c)所 示)、平衡鸟等.F ig. 1 S ta b le e q u ilib riu m o b je cts图1利用稳定平衡原理的物体(来源网络)近几年,3D打印技术快速发展,引起了人们对 该科技的关注.3D打印是增材制造技术(additive manufacturing,A M)的俗称,它依据C A D设计数 据(3D数字模型),采用离散材料(液体、粉末、丝、片、板块等)逐层累加制造物体的技术[1].这种增材 制造方式相对于传统的减材制造有着得天独厚的优 势:减少材料的浪费、可制造非常复杂的物体、大大 缩小制作周期、设计空间无限等.3D打印被称为是第3次工业革命的导火线.它 给人们带来机遇的同时也带来了挑战,针对于3D 打印的问题层出不穷.这引发了科研前沿学者们的 关注和研究[23],将问题一一攻破.W a n g等人[4]提 出一种基于“蒙皮-钢架”(sk in-fm m e)的轻质结构大 大节约了 3D打印材料的使用,节省了时间和成本;针对于强度问题,S ta v a等人[5]提出自动检测脆弱 部分,使用内部挖空、局部加厚、加支撑这3种方法 对物体进行修改;V a n e k等人[6]提出自动生成树状 支撑结构的方式,解决沉积熔融式(F D M)3D打印 机不可避免的悬空部分打印失败问题;由于3D打 印机尺寸的限制,无法一次性打印大于设备本身尺 寸的物体,L u o等人[7]考虑可组装性、可打印性、结 构稳定性、美观性提出了自动切割分别打印最后拼 装组合的策略.在计算机中,3D数字模型无需遵守物理规律,比如重力、摩擦力等,但若要3D打印,违反物理规 则的物体就不能在现实世界中得到相同的效果.实 际制造的需求使得如何让计算中的3D虚拟物体打 印出来之后平衡也成为计算机图形学研究领域学者们关注的问题.P^vost等人[8]提出了交互调整修改 模型的方式达到物体平衡的目的,他们采取的策略 分为2步:1)通过模型内部的挖空调整质心位置;2) 在保证模型整体形态的基础上对模型进行局部的微 小变形.M usialsk i等人[9]采取对模型外表面进行偏 移得到内表面从而挖空物体内部的方法,结果表明 该方式能有更大的拓展和延伸;Y am an ak a等人[1°]通过改变物体的密度分布和内部结构来达到平衡的 目的•物体静止时保持稳定状态的平衡称之为静力平 衡.文献[8-10]研究更多的是物体保持静力平衡.如 果物体受到外界轻微的扰动,物体即刻失去平衡,效 果很不理想.B ach er等人[11]改进P ro v o st等人[8]的方法不仅达到静力平衡,还将物体做成动态平衡的 物体,即旋转陀螺.本文第1次提出物体的稳定平衡 优化问题,深人研究不倒翁的原理[1213],针对底面与 水平接触面只有1个接触点的物体,将原本不能保 持平衡的3D打印物体变成稳定平衡的物体.将模 型内部挖空使得物体的质心在接触点的正上方,同时将质心的高度降到尽量低,让物体达到平衡的同 时还能稳定;对于极端例子,再通过修改物体底部一 定范围内的形状实现稳定平衡.1力学分析1.1静力平衡根据牛顿力学,物体在几个力的作用下处于静止或者勻速直线运动状态叫作平衡状态.当物体放吴芬芬等:3D打印物体的稳定平衡优化在水平面上时,物体受到的重力G以及水平面对它 垂直向上的支持力N等大反向共线,物体所受合力 为零,故保持平衡,如图2(a)左图所示.当物体换个 方向放置,物体是否也能保持平衡?如图2(a)右图 所示,由于支持力的受力点为接触面,重力和支持力 不共线,故此时二力不能相互抵消,物体不平衡.那物体在什么情况下能保持平衡呢?如上所 述,当重力的方向与支持力的方向一致时,二力能相 互抵消,即物体达到平衡.物体受的重力集中于质量 中心(center of mass),简称质心.物体与地面的接 触点所形成的凸包,称之为支撑多边形(support polygon).根据力矩平衡,若物体在某个姿势下保持平衡(无人为外力下),物体的质心在重力方向上的 投影必须要落在支撑多边形内.如图3中白色多边 形就是该物体的支撑多边形,物体上的白色圆点表 示质心,白色多边形中的黑色圆点表示质心在重力 方向上的投影,可见落在支撑多边形,故物体能保持 平衡.本文针对的是与地面只有1个接触点的物体,故该物体的质心必须落在地面接触点的正上方,如图2(a)左图所示.Fig. 3 Projection of center of mass falls within thepolygon图3物体质心投影落在支撑多边形内1.2稳定平衡那稳定平衡的物体是怎么样的?当物体受到外 力F时,物体偏离初始位置;当撤去外力F时,物体551又自行恢复到初始位置.稳定平衡的严格定义为,处 于平衡状态的物体,当受到外界的扰动而偏离平衡 位置时,外力或外力矩促使物体回到原平衡位置[14].如图2(a)所示的物体发生倾斜时,重力和支持力的合力矩驱使物体恢复初始位置,而图2(b)所 示则相反,力矩使得物体更加偏移初始位置.这是稳 定平衡的本质.从能量角度考虑,势能低的物体比较稳定,物体 一定会向着势能低的状态变化.在图2(a)中,物体 质心较低,当物体倾斜时质心被抬高,造成势能增 加,所以物体具有回复初始位置的趋势,这也是不倒 翁的原理;而在图2(b)中,物体质心较高,当物体倾 斜时质心下降,造成势能减少,此时物体更加稳定,具有继续倾斜的趋势.2稳定平衡优化给定1个3D数字模型,目标是通过对该模型 进行适当的调整变形,使得模型3D打印出来之后 能稳定平衡.通过挖空模型内部优化质量分布以调 整质心位置,同时允许网格变形.将物体进行体素 化,并将每个体素标记为1或0(1代表保留,〇代表 挖空),最终得到1个二值向量表示物体内部的挖空 情况.若此时物体还不能达到稳定平衡,再对物体外 表面底面局部范围内进行形状的微小修改.2.1数学建模输人1个三角网格M表示待平衡的模型,输出 2个三角网格M〇和风定义已稳定平衡物体的内、外表面.M。
起伏地形条件下电阻率法三维反演
起伏地形条件下电阻率法三维反演韩雪;朱伟国【摘要】3D resistivity inversion under the condition of undulate topography is a difficult problem in the current resistivity method.In order to solve this problem,the authors use a weighted regularized conjugate gradient method to accomplish three-dimensional resistivity inversion algorithm of undulating terrain.The method introduces weighted regularization thought which can significantly reduce the problem of the objective function iteration divergence and improve the stability of the inversion.A comparison of the two methods in eliminating topographic influence in the inversion shows that the direct use of the terrain resistivity method of 3D inversion can yield better resolution,which can effectively eliminate the error caused by terrain.Nevertheless,under the condition that the rolling angle is almost vertical such as the cases of rivers and dams.The continual utilization of this method can hardly get a satisfactory result because it causes the inverse divergence.In such cases,the use of topographic correction method has some advantageous effects.%地形起伏下的三维反演问题是当前电阻率法研究的一个难题.为了更好地解决上述问题,采用加权正则化共轭梯度法实现起伏地形三维电阻率反演算法.该方法引入了加权正则化思想,显著降低了迭代时目标函数发散的问题,提高了反演稳定性.对比了两种消除反演中地形影响的方法,结果表明,直接带地形的电阻率法三维反演具有更好的分辨率,能有效地消除地形所造成的误差,但在起伏角度偏大,如河流、堤坝等接近垂直角度时,使用此方法会使得反演发散得不到满意的结果;此时采用基于地形校正的方法有一定的效果.【期刊名称】《物探与化探》【年(卷),期】2017(041)001【总页数】5页(P136-140)【关键词】电阻率法;三维反演;加权正则化共轭梯度法;起伏地形【作者】韩雪;朱伟国【作者单位】广东省地质物探工程勘察院,广东广州510800;广东省地质物探工程勘察院,广东广州510800【正文语种】中文【中图分类】P631电阻率法作为电法勘探的一个重要分支,在普查金属、非金属矿产、水文、工程、环境地质调查以及勘查能源等方面都发挥着重要作用[1-4]。
Reconstruction of 3D Models for Complex Buildings from Airborne and Ground-based Lidar Point Cloud
Reconstruction of 3D Models for Complex Buildings from Airborne and Ground-basedLidar Point Cloud DataShiang-En Hung1, Fuan Tsai21Postgraduate, Civil Engineering, National Central University,No.300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan ; Tel: +886-9-21-074897;E-mail: shianhong@2Associate Professor, Center for Space and Remote Sensing Research, National Central University, No.300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan ;Tel: + 886-3-422-7151 ext 57619; Fax: +886-3-4254908;E-mail: ftsai@.twKEY WORDS: Lidar, Point Cloud, Model Reconstruction, Partition, Least Squares Method (LSM), Level of Detail (LOD)ABSTRACT: Modeling from point cloud data can usually achieve high level of detail. However, the procedure to reconstruct a highly accurate model is usually complex. This paper presents a systematic approach to reconstruct building models conforming to OGC CityGML LOD3 standard from airborne and ground-based Lidar point clouds. The proposed method is divided into three main parts: “data registration”, “point cloud partitioning” and “surface reconstruction”. First, after acquiring point cloud data, they are merged to a single point cloud dataset through scaling and translation transformation. Error analysis is performed on the merged point cloud model to minimize registration errors. Then, the point cloud data are partitioned into several groups based on different conditions such as coplanarity etc. For each point group, a three-dimensional surface (or plane) is reconstructed with Least Squares Method. Finally all surfaces are combined to a complete 3D model and the accuracy is evaluated.1.INTRODUCTIONLidar, Light Detection And Ranging (Lisar) is a popular approach to obtain Three-dimensional (3D) surface information. Laser scanned points is a valuable data source for building reconstruction. Structures like wall, roof, and pillar etc. can be described in great detail because of the high density of point cloud. Hence, the promising result for building model reconstruction can be highly detailed and accurate. 3D models reconstructed from Lidar surveying are valuable data for digital archives, model surveying, and even architecture rebuilding. However, the point cloud data are discrete, and are difficult to obtain useful 3D information directly. Therefore, before the generation of building models, necessary pre-processing must be carried out. This paper proposes a systematic procedure for thereconstruction of detailed 3D building models from discrete point clouds. The primary data sources are airborne and ground-based laser scanned point clouds. They are merged to form a complete dataset. A partitioning scheme is developed to separate the data points into meaningful groups. Plane surfaces and curve surfaces of the partitioned data groups are then reconstructed and merged to generate detailed 3D building models.2.METHODOLOGYThis method is mainly divided to three steps, which are (1) data registration, (2) point cloud partitioning and (3) surface reconstruction. The procedure is illustrated in Fig. 1. First, because ground-based Lidar usually cannot acquire data from roofs, airborne Lidar data are incorporated to recover this omission. Secondly, the point clouds are partitioned based on geometric constrains. Thirdly, for plane and non-plane surfaces, different strategies are developed to reconstruct them. Finally, all plane surfaces and curve surfaces are combined to produce a completed building model.Ground-based LidarPointsAirborne LidarPoints RegistrationPartitionPlane Surface Reconstruction Curve Surface ReconstructionCombinationDetailed BuildingModelFig.1 Workflow of the reconstruction Fig. 2 Feature constraints in 3D space 2.1Data RegistrationThe airborne and ground-based point clouds are registered based on geometric constraints to form a complete dataset. Points, lines and planes are common used for representing the geometric objects in object space. In terms of the constraint in three dimensions, point features are often better and stable than line features and plane features (Jaw and Chuang, 2010). This can be observed in the examples shown in Fig. 2. Therefore, data registration in the proposed method is done by sets of conjugate points. The registration employs seven parameters to define the transformation for a set of conjugate points, which are one scale, three orientation angles andthree offsets (S, ω, φ, κ, T X, T Y, T Z). A point in XYZ coordinate system is transformed to X'Y'Z' coordinate system using Eq. (1).(1) whereMore than 3 sets of conjugate points should be selected to solve these 7 unknown parameters based on LSM. And finally transform the other points to complete data registration.2.2 Point Cloud PartitioningAlthough there is valuable 3D surface information from the Lidar point cloud, it is difficult to take advantage of them directly. Various related algorithms about point cloud processing have been proposed. By modifying the Planar Surface Growing Algorithm (Vosselman et al., 2004), a partitioning scheme is developed based on geometric constraints of plane and curve surfaces. The partition procedure include five general steps, which are (1) seeds decision, (2) seed plane generation, (3) plane surface points growing, (4) plane surface points merging, and (5) curve surface points generation.First, several seed points are placed randomly. Nearby points of a seed point are detected to fit a seed plane. The plane surface is grown starting from the seed plane. There are two geometric constraints when growing a plane. The first is the distance threshold between a point to a plane, because the large distance may lead to a high residual when fitting a plane. The other is the threshold for the maximum distance from a candidate point to the points of the seed plane. These are shown as in Fig. 3 (profile view) and Fig. 4 (top view). The blue dotted line stands for the fitted plane. The greens stand for seeds, reds for points unrestricted from constraints, and the others for candidate points.Fig. 3 Fig. 4 Fig. 5 Fig. 6From left, Fig. 3 and 4 shows the constraint for perpendicular distance and the constraint for adjacent distance. Fig. 5 and 6 shows the roof case and cylinder case (mentioned later).If the thresholds are set too strict, it may lead to over partitioning, especially when dealing with curve point cloud, or when lacking of points caused by occlusions. Therefore, the distances between the gravity center of each part, and the variation of normal vectors of each part are taken into account as the merging criteria. Once the distance of two parts is below the thresholds, and the angle of two normal vectors is small enough, they are merged together. After this step, the remaining points are either noises or curve surface points. If the population of a remaining point group is less than a pre-defined threshold, they are considered noises and discarded.2.3 Surface ReconstructionPu and Vosselman (2006) and Pu (2008) proposed a method to generate outlines of buildings from Lidar points. They segmented Lidar points to several plane groups. Then, using structure properties, they recognized the segments to seven feature structures (wall, door, roof, extrusion and so on). According to the recognition results, they generated the outlines for each structure feature. Their results seemed effective, but it is difficult to produce universal rules for recognizing different building features. Therefore, this research developed different strategies for reconstructing plane and curve surfaces. For plane surfaces, if the partitioned points are adequate, the plane equation is approximated using Least Squares Method. If three planes intersect, the intersection point is determined as the feature point. If two planes intersect to each other, the intersection line is calculated as a feature line (outline) of the model. For standing alone planes, the corner points are selected as feature points.For partitioned curve surface point clouds, they are categorized as roof or cylindrical structures by examining the vertical distribution of the points, as shown in Fig.5 (profile view) and Fig.6 (profile view). Fig. 5 shows the variation of points to line of a roof structure. Fig.6 shows the variation of points to line of a cylinder case. The blue points in the figures are the Lidar points, and the green point is the gravity center.3.EXPERIMENTAL RESULTSA small but complicated building in the campus of National Central University, Taiwan is used as the example to test the developed method and to demonstrate the effectiveness. The raw point clouds are acquired with an Optech ILRIS-3D ground-based laser scanner in four measuring stations. In addition, a set of sparse point cloud of the roof is used as simulated airborne point data to construct a complete 3D model of the target. Fig. 7 shows the raw datapoints of ground-based Lidar. The number of points is 1,703,205, and the point cloud density was set to be about 2 points per square centimeter.Fig. 7 Points from ground-based Lidar Fig. 8 Result of partitioningEight sets of conjugate points among the ground-base and airborne datasets was selected to calculate the seven parameters based on LSM as described previously. After obtaining the necessary transformation parameters, the data were transformed and registered to form a coherence point cloud model. Before partitioning, the points of widows and glass doors were removed manually, because these data are usually fragmented and may lead to undesired results. Setting 5 cm as the constraint for perpendicular distance and 10 cm as the constraint for adjacent distance, the surface growing algorithms were applied to the registered dataset to separate the model into different object groups. After the partitioning, manual editing may be necessary to finalize the result. Fig. 8 shows the partitioning result. The number of identified plane surface groups is 46, and 3 curve structure objects are successfully identified. After that, equations of identified planes are generated and to solve the corners and intersection lines as features to formulate the 3D building model as demonstrated in Fig. 9 and Fig. 10.To validate the algorithm, we apply the free station method with total stations to survey for reference data. The accuracy of reference data is 0.5 cm. The root mean square error (RMSE) for this case is 8.04 cm. Fig. 10 is the model after texturing.Fig. 9 The final produced model Fig. 10 Textured model4.CONCLUSIONS AND FUTURE WORKSThis paper presents a systematic approach to reconstruct building models from airborne and ground-based Lidar point clouds. First, the data from different sources are merged and registered based on scaling and translation transformation. Then, the points are partitioned based on modified plane surface growing algorithm. Third, different strategies are applied to plane surfaces and curve surfaces for structure reconstruction. The resultant building model are accurate and with high details, and model error conforming to OGC CityGML LOD3 standard.Future works of this research will be placed on improving the partitioning strategy, the object recognition, and automatic generation of the intersection corners and intersection lines.In addition, the developed algorithms will be used to reconstruct more complicated building models to further test their effectiveness and performance.ACKNOWLEGEMENTThis research was supported in the part by National Science Council of Taiwan under project No. NSC-98-2221-E-008-09T-MY2.REFERANCESJaw, J. J., Chuang, T. Y., 2010. LIDAR Point Clouds Registration Based on Multiple Features. Workshop on Unconventional Photogrammetry, Tainan, Taiwan, April 1-2, pp.190-200.Pu, S., Vosselman, G., 2006. Automatic Extraction of Building Features from Terrestrial Laser Scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, part 5, Dresden, Germany, September 25-27, 5 p. (on CD-ROM).Pu, S., 2008. Generating Building Outlines From Terrestrial Laser Scanning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part B5, Beijing 2008.Vosselman, G., Gorte, B. G. H., Sithole, G., Rabbani, T., 2004. Recognising Structure in Laser Scanner Point Clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 46, part 8/W2, Freiburg, Germany, October 4-6, pp. 33-38.。
基于立体视觉的DR图像定位技术
基金项目:国家自然科学基金资助项目(60372073),山西省自然基金资助项目(20020710Z X)作者简介:付丽琴(1971 ),女,副教授,在职博士研究生.文章编号:1005-0930(2005)-0130-06 中图分类号:TK413 31 文献标识码:A基于立体视觉的DR 图像定位技术付丽琴, 韩 焱, 陈树越(中北大学信息工程系,山西太原030051)摘要:提出基于立体视觉的射线数字图像的实时定位技术,该技术较之胶片法有更高的检测效率,讨论射线数字图像定位中的关键技术,并重点研究了基于旋转视差法的缺陷深度定位技术,该技术比平移法具有更多的优势;详细分析了旋转视差法深度定位中的误差来源,并提出校正的方法 本文技术可以达到很高的定位精度关键词:射线数字成像;立体视觉;视差法;缺陷定位;测量参数X 射线以其穿透力强,实时性好,系统数字化精度高等优点在无损检测领域得到了广泛的应用 在射线检测中,物体内部缺陷的实时定位是个难题 射线CT (Co m puted To m ography)虽能实现缺陷的高精度定位,但实验设备昂贵,不易推广;传统射线照相视差法,由于采用胶片[1-2],检测效率低,无法明确给出缺陷的三维定位信息 本文提出的基于立体视觉的DR 定位技术,对检测设备要求低,便于操作,精度高,且适合于在线检测 1 图像的实时获取和预处理立体视觉是运用计算机技术和光学手段,由获取的多幅图像,提取出目标的立体信息.直接DR 成像系统主要分为图像增强器成像系统、平板型成像系统和线阵扫描成像系统等[3]光子放大的DR 系统(如图像增强器DR 系统)实时性好,但适应的射线能量低,检测灵敏度相对较低;其它系统的检测灵敏度较高但成像时间较长 DR 系统成像方式的主要区别在于射线探测器,除射线转换方式外,影响系统检测灵敏度的主要因素是散射噪声和量子噪声如图1所示为用图像增强器DR 系统获取的某工件的焊缝图像,可以看到焊缝周围存在一些气孔 由于射线源和硬件条件的限制,拍摄的图像不可避免地存在对比度低的缺点,在灰度直方图上表现为窗的突峰,并且灰度分布很窄,如图2 因此,首先要对图像进行对比度增强 用I 表示原图像,处理得到的中间和结果图像分别用I 1,I 2,I 3表示,为提高对比度,本文采用了如下三步映射完成:(1)对I 中每个象素灰度取对数,得到I 1,即I 1(i ,j)=l n [I (i ,j)];(2)取对数后,I 1图像的动态范围很小,因此采用下式对I 1灰度级线性拉伸:I 2(i ,j )=4095 I 1(i ,j)-m i n [I 1(i ,j)]m ax[I (i ,j)]-m i n [I 1(i ,j )]增刊2005年10月 应用基础与工程科学学报J OURNAL OF B ASI C SC I E NCE AND E NG I N EERI N G Supp le m en tO ctober 2005(3)为尽量减少图像中背景噪声的影响,采用阈值分割(如下式),以突出缺陷(气孔)目标I 3(i ,j )=I 2(i ,j) I 2(i ,j )>T 0 I 2(i ,j )<T其中,T 为阈值,本文图像中选取T =83,分割后图像I 3如图3所示,对应直方图如图4,可以看到,灰度分布明显改善,气孔特征更为突出 此外,所获取的图像中还包含各种降质因素的影响,如散射、噪声和背景,它们会掩盖微细的缺陷,从而导致漏检和误检 为此,还可采用非线性统计滤波等方法进行降噪处理[4]2 图像标定和二维坐标获取在成像屏表面放置一标识点,作为空间坐标系X-Y -Z 的原点,缺陷的X 、Y 坐标由DR 图像上缺陷到标志点的两个方向上的距离给出 本文中选择射线源的投影位置作为标识点,该点位置可通过探伤机上附带的激光源确定 如图5由于缺陷或气孔本身具有一定尺寸,需要选择合适的特征点作为定位点,这个特征点必须是对噪声不敏感的 本文选用气孔的重心 采用方法:通过扫描图像,分别将每个气孔目标的所有象素(图5中气孔局部范围内具有高灰度级的象素)坐标记录下来,然后由这些象素坐标求每个气孔的重心坐标,将气孔的重心作为定位的特征点 如图5中,三个气孔重心的象素坐标分别为:(76,285),(398,261)和(701,113) 若以成像屏中心(射线源的投影位置)为坐标原点,可得到三个气孔的X 、Y 方向上的物理坐标分别为(-29.5,131付丽琴等:基于立体视觉的DR 图像定位技术图5 加标定后DR 图像F i g .5 T he cali brated DR i m ag e9.5),(2.7,7.1)和(33,-7.7),单位:mm3 旋转视差法获取深度信息基于双目视觉的DR 定位技术可有两种:平移视差法和旋转视差法,平移视差定位的原理与胶片法类似,在某些场合下,平移距离难以精确控制,而转动试件更为方便 因此本文重点研究旋转视差法定位技术 其实现方法是,通过旋转试件两次成像,然后利用视差原理实现缺陷定位3.1 旋转视差法的原理根据旋转的方向和旋转前后缺陷是否在转轴同侧,视差法的几何关系可有四种情况 如图6和图7所示分别为试件顺时针旋转,缺陷在转轴同侧,以及试件逆时针旋转,缺陷在转轴异侧两种情况推导图6情况下的定位公式 S 为射线源,S 1是射线源在成像平面的投影;试件以点O 为转轴中心顺时针旋转 角度,旋转前后的缺陷位置在SS 1的同侧;K 1、K 2分别是试件旋转前后缺陷的位置,A 、B 分别旋转前后缺陷的投影 其中,转轴中心到成像平面的距离OS 1,射线源到成像平面的距离SS 1,缺陷投影A 、B 到S 1的距离AS 1、BS 1均可直接测得 令 = K 1OE,r =OK 1=OK 2,,利用图6中各参数的几何关系可得到如下方程组: r si n BS 1=1-OS 1SS 1-r cos SS 1r sin ( + )AS 1=1-OS 1SS 1-r cos ( + )SS 1(1)方程组(1)中,只有r 和 两个未知量,通过解方程组求出r 和 后,可进而得到:132应用基础与工程科学学报h 2=FS 1=r cos +OS 1h 1=ES 1=r cos ( + )+OS 1(2)h 1,h 2分别为旋转前和旋转后缺陷的深度 同理可推得图7情况下缺陷深度的计算公式:h 1=ES 1=r co s +OS 1h 2=FS 1=r co s ( - )+OS 13.2 实验与结果分析图8是将物体顺时针旋转5度后得到的图像,可以看到,三个气孔旋转前后的位置均在转轴的同侧 图9为旋转前后两幅图像相减的结果 为讨论的方便,把图中3个气孔从左到右编号为1、2、3本实验中,将气孔重心作为定位特征点 以毫米为距离的单位 对气孔1,各测量参数为:AS 1=33.8,BS 1=31.2,SS 1=1700,OS 1=204, =5 ,代入方程组(1)得到r =37.8, =45.5 ,再代入(2)得到旋转前后气孔1距离成像屏的高度为h 2=230.46,h 1=228.04,若以旋转中心O 为坐标原点,则旋转前后气孔1的Z 坐标分别为24.04和26.46 用同样的方法可以求得气孔2和3的坐标3.3 误差分析和校正方法由于测量现场条件的限制,各测量参数不可避免地存在误差,这就导致深度定位信息不准确 为此,首先讨论了各测量参数对结果的影响程度,然后提出用设置标识点的方法进行校正我们讨论图6所示的试件顺时针旋转,缺陷在转轴同侧的情况.由误差分析理论[5],间接测量参数的误差是由计算公式中各直接测量参数的测量误差导致的 在方程组(1)中,r 和 为待求未知量,其它五个参数都是可以直接测得且相互独立的 用 AS 1, BS 1, O S 1, SS 1分别表示AS 1,BS 1,OS 1,SS 1的测量误差, 表示转动角度 这里的误差, r , 分别表示r , 的计算误差,则r = r AS 1 AS 1+ r BS 1 BS 1+ r OS 1 OS 1+ r SS 1 SS 1+ r= AS 1 AS 1+ BS 1 BS 1+ OS 1 OS 1+ SS 1 SS 1+(3)以h 1为例分析计算误差,h 2与之类似 用 h 1表示h 1的计算误差,则133付丽琴等:基于立体视觉的DR 图像定位技术h1=h1rr+h1+h1+h1OS1OS1(4)综合式(1) 式(4),得到h1=1+1SS1AS1+1-1SS1BS1+2 AS1BS1a+1+SS1AS1+OS1OS1+AS1+BS1SS12SS1分析上式,由于射线源到成像屏的距离远大于成像屏尺寸及试件旋转轴到成像屏的距离,因此,SS1的测量精度对缺陷深度计算误差的影响最小,OS1, 对定位精度的影响最大,而AS1,SB1的影响居中 因此,为提高定位精度,最主要的是要保证试件转动角度和旋转轴到成像平面的距离的精度在旋转角度可精确控制的前提下,我们采用设置标志点的方法,实现对试件旋转轴到成像平面的距离的校正处理 例如,对前面的实验数据,设气孔3是人为设置的,其深度信息已知,将气孔3的实际深度h 1h 2代入方程组(1)、(2)得到OS1的修正值OS 1,然后利用修正后参数OS1重新计算气孔1的高度,则得到的深度信息更为精确 也可以设置多个标志点来同时校正多个测量参数 例如把气孔3和气孔2均作为标志点,设它们的深度信息已知,代入方程组(1)、(2),可同时校正旋转角度 和旋转轴到成像平面的距离OS1,然后用修正后参数 和OS 1计算气孔1的深度,将得到更高的定位精度4 结论本文讨论了基于立体视觉DR图像定位技术,对图像预处理、标定等技术进行了介绍 并重点讨论了旋转视差法,在旋转精度可以精确控制的情况下,可获得较高的定位精度,定位误差在2%左右,适合一般工件测量 在定位精度要求很严格的场合,也可采用设置标志点的方法校正测量参数,以得到更高的定位精度参考文献[1] L i u Fahong,Du Yu ji n.Desi gn and t est of stereoscop i c X-rad i ograph i c observi ng and m eas u ri ng i n strum ent[J].Int JPres V es P i p i ng,1990,44:353-364[2] Zhang Q i n jian,Zhang Ji anhua,L iM i n,et a.l m athe m ati c m odel for t h ree d i m ens i on al l ocati on of d efect i n rad i ography[J].NDT,2001,23(2):59-69[3] 韩焱.射线数字成像检测技术[J].无损检测,2003,25(9) 68-471H an Yan.D i gital radiograph ic technology[J].NDT,2003,25(9) 468-471[4] 陈树越,路宏年,杨巧宁.CCD射线噪声分析及滤波方法研究[J].光学技术.2005,26(5) 459-461Chen Shuyue,Lu H ongn i an,Yang Q i aon i ng.Study of CCD nois e fro m X ray rad i ation and its filteri ng m ethod[J].Op ticalT echn i que,2000,26(5) 459-461[5] Taylor,J ohn R.An i n troduction to error an al ysis:t he st udy of un certai n ties i f phys i calm eas ure m ents[M].Un i versityS ci ence B ook s,1982134应用基础与工程科学学报D igitalRadi ography Location Based on Stereo V isi onFU L iqi n , HAN Y an , C H EN Shuyue(Dep t .of E lectron ic In f or m ati on Engi n eeri ng ,Nort h Un i versity of Ch i na ,T ai yuan 030051,Ch i na)Abst ractThe dig ita l radiog raphy (DR)l o cation techn i q ue based on stereo v isi o n ,whose detection effic i e ncy is higher t h an t h at o f fil m ,is brought for w ar d.The key techn i q ues o fDR locati o n are discussed.Depth location o f de fect based on ro tation para llax is studied e m pha tica lly .It has m ore advantages t h an location based sh ift parallax .Than the source o f error i n depth locating is analyzed i n de tail and the so l u ti o n is prov ided.The high locati o n prec ision can be obtained usi n g these techniques .K eywords :d i g ital rad i o graphy(DR );stereo v isi o n ;parallax ;defect l o cation ;m easure m ent para m eter 135付丽琴等:基于立体视觉的DR 图像定位技术。
近点光源照射下球面坐标PSFS三维形貌重建方法
近点光源照射下球面坐标 PSFS三维形貌重建方法
王国珲,谢 倩
(西安工业大学 光电工程学院,西安 710021)
摘 要: 为了解决基于三维笛卡尔坐标系建立的透视投 影 SFS 重建方 法中 图像辐 照度方程
复杂等问题,文中提出了基于球面坐标的近点光源 PSFS三维形貌重建 方法.在透视投 影和球
面 坐 标 系 下 ,构 建 了 近 点 光 源 照 射 下 物 体 三 维 形 貌 与 图 像 灰 度 相 对 应 的 偏 微 分 辐 照 度 方 程 .将
第 38 卷 第 1 2018 年 2 月
期
Jour西na lo安f Xi工’an T业ec hn大ol ogi学ca lU学ni ve报rsity
Vol.38 No.1 Feb.2018
DOI:10.16185/j.jxatu.edu.cn.2018.01.003
irradianceding,SFS)是 计算机 视 觉 中 三 维 形 貌 重 建 问 题 的 关 键 技 术 之
收稿日 期:20171106 基金资 助:陕西省自然科学 基 础 研 究 计 划 项 目 (2016JM6041);西 安 工 业 大 学 陕 西 省 光 电 测 试 与 仪 器 技 术 重 点 实 验 室 开 放 基 金 (2016SZSJ?60?1);国 家 自 然 科 学 基 金 (61102144) 第 一 作 者 简 介 :王 国 珲 (1980- ),男 ,西 安 工 业 大 学 副 教 授 ,主 要 研 究 方 向 为 视 觉 测 量 技 术 、图 像 理 解 、光 电 测 试 技 术 等 . E?mail:wangguohui95@163.com.
犠犃犖犌 犌狌狅犺狌犻,犡犐犈犙犻犪狀
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3D PHYSICS-BASED RECONSTUCTION OF SERIALLY ACQUIRED SLICES Stelios Krinidis,Christophoros Nikou and Ioannis PitasAristotle University of ThessalonikiDepartment of InformaticsArtificial Intelligence&Information Analysis LabBox451,54006ThessalonikiGreeceABSTRACTThis paper presents an accurate,computationally efficient,fast and fully-automated algorithm for the alignment of2D serially ac-quired sections forming a3D volume.The method accounts for the main shortcomings of3D image alignment:corrupted data (cuts and tears),dissimilarities or discontinuities between slices and missing slices.The approach relies on the determination of inter-slice correspondences.The features used for correspondence, are extracted by a2D physics-based deformable model parame-terizing the object shape.Correspondence affinities and global constrains render the method efficient and reliable.The method was evaluated on real images and the experimental results demon-strated its accuracy,as reconstruction errors were smaller than1 degree in rotation and smaller than1pixel in translation.1.INTRODUCTIONThree-dimensional reconstruction of medical images(tissue sec-tions,CT and autoradiographic slices)is now an integral part of biomedical research.Reconstruction of such data sets into3D vol-umes,via the registrations of2D sections,has gained an increasing interest and the registration of multiple slices is of utmost impor-tance for the correct3D visualization and morphometric analysis (e.g.surface and volume representation)of the structures of in-terest.Several alignment algorithms have been proposed in that framework.A review of general medical image registration meth-ods is presented in[1].The3D alignment(reconstruction from2D images)methods may be classified in the following categories:fiducial marker-based methods,feature-based methods using contours,crest lines or characteristic points extracted from the images[2],and gray level-based registration techniques using the intensities of the whole image[3,4].Most of the above mentioned techniques do not si-multaneously consider the two major difficulties involved in med-ical image registration.Atfirst,consecutive slices may differ significantly due to dis-tortions,discontinuities in anatomical structures,cuts and tears. Thus,from this point of view,a registration method must be ro-bust to missing data or outliers[4].Also,registering the slices sequentially(the second with re-spect to thefirst,the third with respect to the second,etc.)leads to different types of misregistration.If an error occurs in the regis-tration of a slice with respect to the preceding slice,this error will propagate through the entire volume[3].In this paper,a solution to the above mentioned shortcomings is presented.A method determining correspondences between se-rially acquired slices is proposed.The features used for correspon-dence,are extracted by afinite element-based model parameteriz-ing the object shape.Although,finite elements are a powerful tool in computer vision applications,they have not yet been extensively considered for the registration of serially acquired slices.Our approach was motivated by the technique presented in [5],which consists in determining correspondences between ob-jects for recognition using eigen-decomposition analysis.How-ever,our method determines correspondences between slices ex-ploiting contour information obtained by the free vibrations of a initial circular chain(physics-based modeling)[6,7].Modal matching using physics-based models assist our method to be ro-bust to missing data.Furthermore,global affinities between cor-respondences and theirfiltering render our method more efficient and reliable,overcoming major alignment problems such as dis-tortions.The remainder of the paper is organized as follows.The physics-based deformable model used as the feature generator is presented in Section2.In Section3,the determination of the correspon-dences between slices is introduced.Experimental results are pre-sented in Section4and conclusions are drawn in Section5.2.2D PHYSICS-BASED DEFORMABLE MODELINGEach slice was separately parameterized by the amplitudes of the vibration modes of a physics-based deformable model[6,7].The model consists of2D points sampled on a circular structure,fol-lowing a circular chain topology[Figure1.a].Each modelnode(a)(b)Figure1:Parameterization of a2D slice of a3D tooth germ vol-ume.(a)The initial circular chain initialized around the object to be parameterized.(b)The deformable model at equilibrium(25% of the vibration modes are kept).has a mass and is connected to its two neighbors with springs of stiffness.The nodes coordinates are stacked in vector(1)where is the number of points of the chain.This physical model is characterized by its mass matrix,its stiffness matrix andits dumping matrix,and its governing equation may be written as[8]:(2) where stands for the nodal displacements of the initial circular chain.The image force vector is based on the Euclidean distance between the chain nodes and their nearest contour points [9].Since equation(2)is of order,where is the total num-ber of nodes,it is solved in a subspace corresponding to the truncated vibration modes of the deformable structure[6,10,7]. The number of vibration modes retained in the object description, was chosen so as to obtain a compact but adequately accurate rep-resentation.A typical a priori value for covering many types of standard deformations is the quarter of the number of degrees of freedom of the system(i.e.of the modes were kept).To solve equation(2)in the subspace corresponding to the truncated vibration modes,the following change of basis is ap-plied:(3) where is a matrix and is a vector,is the column of, is the scalar component of and is the truncated number of degrees of freedom.By choosing as the matrix whose columns are the eigenvectors of the eigenproblem:(4) and using the standard Rayleigh hypothesis[6],matrices, and are simultaneously diagonalized:(5)where is a diagonal matrix whose elements are the eigenvalues and is the identity matrix.An important advantage of this formulation is that the eigen-vectors and the eigenvalues of a chain with circular topology have an explicit expression[6]and they do not have to be computed by slow eigendecomposition techniques(due to the dimensions of matrices K and M).The eigenvalues are given by:(6) and the eigenvectors are obtained by:(7)where.Substituting(3)into(2)and premultiplying by yields:(8) where and.In many computer vision applications[7],when the initial and thefinal state are known,it is assumed that a constant load is applied to the body.Thus,equation(2)is called the equilibrium governing equation and corresponds to the static problem:(9) In the new basis,equation(9)is thus simplified to scalar equa-tions:(10)In equation(10),designates the eigenvalue and the scalar is the amplitude of the corresponding vibration mode(corre-sponding to eigenvector).Equation(10),indicates that instead of computing the displacements vector from equation(9),we can compute its decomposition in terms of the vibration modes of the original chain.Figure1illustrates the vibration modes based parameteriza-tion of the2D slices of a tooth germ volume.The25%lowest frequency modes were retained for this representation as this trun-cated description provides a satisfactory compromise between ac-curacy and complexity of the representation.The circular chain is initialized around each slice[Fig.1(a)]and the vibration ampli-tudes are explicitly computed by equation(10),where rigid body modes()are discarded and the nodal displacement may be recovered using equation(3).The physical representationisfinally given by applying the deformations to the initial circular chain:(11)Thus,each slice of the3D volume is described in terms of vibrations of an initial chain(Fig.1(b)).3.MODAL CORRESPONDENCESHaving approached the object contours using the physics-based deformable model(eq.11)the next step is to determine inter-slice correspondences between the model parameters.To determine correspondences,we use vector(eq.3),ex-pressed as:(12) where denotes the number of retained modes and de-scribes the displacement of the feature point at and axis respectively.Thus,in order to determine the correspondences between two slices and,we build vectors and respectively and compare these parameterized displacement vectors.The compari-son is based on the following criteria:3.1.Affinity MatrixWe now compute what are referred to as the affinities between the two sets of parameterized displacement vectors(eq.12).These are stored in an affinity matrix,where:(13) where denotes the norm and and are the slices under examination.The affinity measure for the and points (of slices and respectively),is zero for a perfect match and increases as the match ing that affinity measure,we can easily identify which features correspond to each other in the two slices by looking for a minimum entry in each column and row of.Because of the reduced basis matching,similarity of the generalized features is required in both directions instead of one direction only.In other words,a match between the feature in a certain slice and the feature in a candidate slice can only be valid if is the minimum value for its row,and the minimum for its column.3.2.Outliers RejectionA measure expressing the continuity of correspondences(be-longing to slices and),is also computed:(14)where denotes the point of slice,its correspon-dent point on slice and the norm.is a func-tion measuring the position of a point with respect to a reference (starting)point.Having computed(eq.14)for all cor-respondences between slices and,our method accepts only correspondences verifying[11]:(15)3.3.Global AffinitiesLet us define a set of functions of type:if point corresponds toif there is no correspondence(16) where is the point of slice and is the point of slice.Let us also consider the set of correspondences between slices and as the the union:(17)where is the total number of the physics-based deformable model points.Finally,we define the set of correspondences between equidistant slices:(18)where is the total number of slices and is the distance be-tween the slices under examination.If is equal to1then point correspondences are restricted to successive slice pairs.Global affinities exploit and combine information from all point correspondence sets,in successive pairs,triplets,etc.By these means any remaining fault correspondences are discarded.More practically,assume that we have the correspondence sets and.A correspondence between point of the slice and of slice is valid only if:(19)where is a point belonging to the(n-1)slice,and is used for the completion of the chain.If expression(19)is verified the ini-tial correspondence between points and is accepted,oth-erwise it is discarded.The overall correspondence establishment algorithm is sum-marized as follows:deform the initial circular physics-based model on each sliceseparately(eq.9-11).compute correspondence affinities(eq.13).eliminate outliers(eq.14).determine the correspondences between successive slices(,,etc),(eq.18).for each correspondence do–find the necessary points satisfying the global costfunction(eq.16)and calculate expression(19)forthese points.–if(19)is equal to zero,discard the correspondence.–else accept the correspondence.end doThe next step is to determine the rigid transformation param-eters(2D rotation and translation)aligning the respective slices. The rotation matrix and the translation vector are estimated for each slice,in order to minimize the mean square error between the remaining corresponding points using the method described in [12].4.EXPERIMENTAL RESULTSTo evaluate our method,we applied the proposed algorithm to the reconstruction of an artificially misaligned3D human skull(Figure 2).The slices of the original256256140CT volume wereAlignment error statisticsmedian0.190.230.13maximum 1.18 1.07 1.42mean s.dev0.290.260.310.260.330.34 Table1:A set of140slices of a3D CT human skull volume were artificially transformed using different rigid transformation parameters.Each slice was randomly transformed using transla-tions varying from-10to+10pixels and rotations varying from -40to+40degrees.Different statistics on the errors for the rigid transformation parameters are presented.Translation errors are expressed in pixels and rotation errors in degrees.transformed using translations varying from-10to+10pixels and rotations varying from-40to+40degrees.The transformations for each slice were random following a uniform distribution in or-der not to privilege any slice[Fig.2(a)and2(b)].Human skull volume presents discontinuities,and consecutive slices may dif-fer significantly due to anatomy but the correspondence evaluation was proved robust to these shortcomings.Table1presentsstatis-abc d Figure2:Reconstruction of a3D human skull volume of140slices.(a)Multiplanar view of the volume before registration.(b)Three-dimensional view of the volume before registration.(c)Multipla-nar view of the volume after registration.(d)Three-dimensional view of the volume after registration.tics on the alignment errors.As it can be seen,median and mean translation and rotation errors are less than1pixel and1degreerespectively.Also maximum errors are slightly larger than1pixel and1degree respectively,showing the robustness of the proposed technique.Fig.2(c)and2(d)present the reconstructed volume.Furthermore,the algorithm was applied to the reconstruction of volumes(tooth germs)with unknown ground truth.The perfor-mance of our method was compared with the manual alignment accomplished by an expert physician-researcher.Figure3shows the reconstruction of a tooth germ by an expert dentist-researcher [Fig.3(a)and3(b)]and by our method[Fig.3(c)and3(d)].It is illustrated that human intervention fails to correctly align the slices,whilst our method is efficient and can achieve alignment with higher accuracy,as confirmed by dentist specialists-researchers. In the example,the smoothness and the low curvature of the teethsurface aligned by our algorithm is of better visualquality.abc d Figure3:Reconstruction of a3D tooth germ volume of265slices.(a)Multiplanar and(b)3D view of the volume after manual align-ment by an expert dentist.(c)Multiplanar and(d)3D view of the volume after registration.Finally,let us notice that the algorithm has a computational complexity,where is the number of slices and is the number of nodes of the deformable model.It requires approx-imately1min.to reconstruct a256256140volume on a Pentium III(700MHz)workstation under Windows2000Profes-sional without any particular code optimization.5.CONCLUSIONSA fast and robust algorithm for the alignment of2D serially ac-quired slices was presented.The contours of the slices to be reg-istered were parameterized by a physics-based deformable model and the model parameters were forwarded to several alignment cri-teria.Local and global constrains were applied to make the tech-nique efficient.Atfirst,alignment was obtained by the computa-tion of an affinity matrix associated with a correspondence conti-nuity measure.The obtained results werefine-tuned by a global affinity metric.Furthermore,no particular registration direction is privileged by the proposed approach and the use of a global affinity measure eliminates error propagation.Also,the low frequency modal pa-rameterization of the object contours makes the technique robust to missing data or outliers.The low computation time and the good quality of the align-ment with respect to manual techniques makes the method a promis-ing tool for the reconstruction of3D anatomical structures.6.REFERENCES[1]J.B.A.Maintz and M.A.Viergever,“A survey of medi-cal image registration techniques.,”Medical Image Analysis, vol.2,no.1,pp.1–36,1998.[2] A.Rangarajan,H.Chui,E.Mjolsness,S.Pappu,L.Davachi,P.Goldman-Rakic,and J.Duncan,“A robust point-matchingalgorithm for autoradiograph alignment.,”Medical Image Analysis,vol.1,no.4,pp.379–398,1997.[3] A.Andreasen, A.M.Drewes,J.E.Assentoft,and N.E.Larsen,“Computer-assisted alignment of standard serial sections without use of artificial landmarks.A practical ap-proach to the utilization of incomplete information of3D re-construction of the hippocampal region.,”Journal of Neuro-science Methods,vol.45,pp.199–207,1992.[4]S.Ourselin,A.Roche,G.Subsol,X.Pennec,and C.Satton-net,“Automatic alignment of histological sections for3D re-construction and analysis.,”Tech.Rep.3595,INRIA,SophiaAntipolis,France,1998.[5]S.Sclaroff and A.Pentland,“Modal matching for correspon-dence and recognition.,”IEEE Transactions on Pattern Anal-ysis and Machine Intelligence,vol.17,no.6,pp.545–561, June1995.[6] C.Nastar and N.Ayache,“Frequency-based nonrigid motionanalysis:Application to four dimensional medical images.,”IEEE Transactions on Pattern Analysis and Machine Intelli-gence,vol.18,no.11,pp.1069–1079,1996.[7] C.Nikou,G.Bueno,F.Heitz,and J.P.Armspach,“A jointphysics-based statistical deformable model for multimodalbrain image analysis.,”IEEE Transactions on Medical Imag-ing,vol.20,no.10,pp.1026–1037,2001.[8]K.J.Bathe,Finite Element Procedure,Prentice Hall,Engle-wood Cliffs,New Jersey,1996.[9]G.Borgefors,“On digital distance transforms in three dimen-sions.,”Computer Vision and Image Understanding,vol.64, no.3,pp.368–376,1996.[10] A.Pentland and S.Sclaroff,“Closed-form solutions forphysically-based shape modeling and recognition.,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13,no.7,pp.730–742,1991.[11]M.J.Black and A.Rangarajan,“On the unification of lineprocesses,outlier rejection,and robust statistics with appli-cations in early vision.,”International Journal of Computer Vision,vol.19,no.1,pp.57–91,1996.[12]S.Umeyama,“Least-squares estimation of transformationparameters between two point patterns.,”IEEE Transactionson Pattern Analysis and Machine Intelligence,vol.13,no.4, pp.376–380,April1991.。