高中数学第一章立体几何初步1.4.1空间图形基本关系的认识笔记北师大版必修

合集下载

高中数学 第一章 立体几何初步 4.1 空间图形基本关系的认识 4.2 空间图形的公理(一)学案 北师大版必修21

高中数学 第一章 立体几何初步 4.1 空间图形基本关系的认识 4.2 空间图形的公理(一)学案 北师大版必修21

4.1 空间图形基本关系的认识 4.2 空间图形的公理(一)学习目标 1.通过长方体这一常见的空间图形,体会点、直线、平面之间的位置关系.2.会用符号表达点、线、面的位置关系.3.掌握空间图形的三个公理及其推论.知识点一空间图形的基本位置关系对于长方体有12条棱和6个面.思考1 12条棱中,棱与棱有几种位置关系?答案相交,平行,既不平行也不相交.思考2 棱所在直线与面之间有几种位置关系?答案棱在平面内,棱所在直线与平面平行和棱所在直线与平面相交.思考3 六个面之间有哪几种位置关系.答案平行和相交.梳理位置关系图形表示符号表示空间点与直线的位置关系点A在直线a外A∉a 点B在直线a上B∈a空间点与平面的位置关系点A在平面α内A∈α点B在平面α外B∉α空间两条直线的位置关系平行a∥b相交a∩b=O 异面a与b异面空间直线与平面的位置关系线在面内aα线面相交a∩α=A 线面平行a∥α空间平面与平面的位置关系面面平行α∥β面面相交α∩β=a异面直线不同在任何一个平面内的两条直线,叫作异面直线知识点二空间图形的公理思考1 照相机支架只有三个脚支撑说明什么?答案不在同一直线上的三点确定一个平面.思考2 一把直尺两端放在桌面上,直尺在桌面上吗?答案直尺在桌面上.思考3 教室的墙面与地面有公共点,这些公共点有什么规律?答案这些公共点在同一直线上.梳理(1)空间图形的公理公理内容图形符号作用公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内)A∈l,B∈l,且A∈α,B∈α⇒lα用来证明直线在平面内公理2过不在一条直线上的三点,有且只有一个平面(即可以确定一个平面)A,B,C三点不共线⇒存在唯一的α使A,B,C∈α用来确定一个平面公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线P∈α,P∈β⇒α∩β=l,且P∈l用来证明空间的点共线和线共点(2)公理2的推论推论1:一条直线和直线外一点确定一个平面(图①).推论2:两条相交直线确定一个平面(图②).推论3:两条平行直线确定一个平面(图③).1.8个平面重叠起来要比6个平面重叠起来厚.( ×)2.空间不同三点确定一个平面.( ×)3.一条直线和一个点确定一个平面.( ×)类型一文字语言、图形语言、符号语言的相互转化例1 根据图形用符号表示下列点、直线、平面之间的关系.(1)点P与直线AB;(2)点C与直线AB;(3)点M与平面AC;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化解(1)点P∈直线AB.(2)点C∉直线AB.(3)点M∈平面AC.(4)点A1∉平面AC.(5)直线AB∩直线BC=点B.(6)直线AB平面AC.(7)平面A1B∩平面AC=直线AB.反思与感悟(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.跟踪训练1 用符号语言表示下列语句,并画成图形.(1)直线l经过平面α内两点A,B;(2)直线l在平面α外,且过平面α内一点P;(3)直线l既在平面α内,又在平面β内;(4)直线l是平面α与β的交线,平面α内有一条直线m与l平行.考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化解(1)A∈α,B∈α,A∈l,B∈l,如图.(2)l⊈α,P∈l,P∈α.如图(3)lα,lβ.如图.(4)α∩β=l,mα,m∥l.如图.类型二平面的基本性质的应用命题角度1 点线共面问题例2 如图,已知:aα,bα,a∩b=A,P∈b,PQ∥a,求证:PQα.考点平面的基本性质题点线共面问题证明因为PQ∥a,所以PQ与a确定一个平面β,所以直线aβ,点P∈β.因为P∈b,bα,所以P∈α.又因为aα,P∉a,所以α与β重合,所以PQα.引申探究将本例中的两条平行线改为三条,即求证:和同一条直线相交的三条平行直线一定在同一平面内.解已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:a,b,c和l共面.证明:如图,∵a∥b,∴a与b确定一个平面α.∵l∩a=A,l∩b=B,∴A∈α,B∈α.又∵A∈l,B∈l,∴lα.∵b∥c,∴b与c确定一个平面β,同理lβ.∵平面α与β都包含l和b,且b∩l=B,由公理2的推论知:经过两条相交直线有且只有一个平面,∴平面α与平面β重合,∴a,b,c和l共面.反思与感悟在证明多线共面时,可用下面的两种方法来证明:(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.(2)重合法:先说明一些直线在一个平面内,另一些直线也在另一个平面内,再证明两个平面重合.跟踪训练2 如图,已知l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1,l2,l3在同一平面内.考点平面的基本性质题点线共面问题证明方法一(纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2α,∴B∈α.同理可证C∈α.∵B∈l3,C∈l3,∴l3α.∴直线l1,l2,l3在同一平面内.方法二(重合法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴l2,l3确定一个平面β.∵A∈l2,l2α,∴A∈α.∵A∈l2,l2β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A,B,C既在平面α内,又在平面β内.∴平面α和β重合,即直线l 1,l 2,l 3在同一平面内. 命题角度2 点共线、线共点问题例3 如图所示,已知E ,F ,G ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱AB ,BC ,CC 1,C 1D 1的中点.求证:FE ,HG ,DC 三线共点.考点 平面的基本性质题点 点共线、线共点、点在线上问题 证明 如图所示,连接C 1B ,GF ,HE ,由题意知HC 1∥EB ,且HC 1=EB ,∴四边形HC 1BE 是平行四边形, ∴HE ∥C 1B .又C 1G =GC ,CF =BF , ∴GF ∥C 1B ,且GF =12C 1B .∴GF ∥HE ,且GF ≠HE , ∴HG 与EF 相交.设交点为K , ∴K ∈HG ,HG 平面D 1C 1CD , ∴K ∈平面D 1C 1CD .∵K ∈EF ,EF 平面ABCD ,∴K ∈平面ABCD , ∴K ∈(平面D 1C 1CD ∩平面ABCD )=DC , ∴EF ,HG ,DC 三线共点.反思与感悟 (1)点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.(2)三线共点:证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.跟踪训练3 已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示,求证:P,Q,R三点共线.考点平面的基本性质题点点共线、线共点、点在线上问题证明方法一∵AB∩α=P,∴P∈AB,P∈平面α.又AB平面ABC,∴P∈平面ABC.∴由公理3可知:点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC与平面α的交线上.∴P,Q,R三点共线.方法二∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC 平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.1.用符号表示“点A在直线l上,l在平面α外”,正确的是( )A.A∈l,l∉αB.A∈l,l⊈αC.A l,l∉αD.A l,l⊈α考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化答案 B解析∵点A在直线l上,∴A∈l.∵l在平面α外,∴l⊈α.故选B.2.满足下列条件,平面α∩平面β=AB,直线aα,直线bβ且a∥AB,b∥AB的图形是( )考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化答案 D3.下列推理错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒lαB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊈α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合考点平面的基本性质题点点共线、线共点、点在线上问题答案 C解析当l⊈α,A∈l时,也有可能A∈α,如l∩α=A,故C错.4.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )A.点A B.点BC.点C但不过点M D.点C和点M考点平面的基本性质题点点共线、线共点、点在线上问题答案 D解析因为平面γ过A,B,C三点,M在直线AB上,所以γ与β的交线必通过点C和点M.5.如图,已知D,E是△ABC的边AC,BC上的点,平面α经过D,E两点,若直线AB与平面α的交点是P,则点P与直线DE的位置关系是________.考点平面的基本性质题点点共线、线共点、点在线上问题答案P∈直线DE解析因为P∈AB,AB平面ABC,所以P∈平面ABC.又P∈α,平面ABC∩平面α=DE,所以P∈直线DE.1.解决立体几何问题首先应过好三大语言关,即实现这三种语言的相互转换,正确理解集合符号所表示的几何图形的实际意义,恰当地用符号语言描述图形语言,将图形语言用文字语言描述出来,再转换为符号语言.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,作直观图时,要注意线的实虚.2.在处理点线共面、三点共线及三线共点问题时初步体会三个公理的作用,突出先部分再整体的思想.一、选择题1.下列有关平面的说法正确的是( )A.平行四边形是一个平面B.任何一个平面图形都是一个平面C.平静的太平洋面就是一个平面D.圆和平行四边形都可以表示平面考点平面的概念、画法及表示题点平面概念的应用答案 D解析我们用平行四边形表示平面,但不能说平行四边形就是一个平面,故A项不正确;平面图形和平面是两个概念,平面图形是有大小的,而平面无法度量,故B项不正确;太平洋面是有边界的,不是无限延展的,故C项不正确;在需要时,除用平行四边形表示平面外,还可用三角形、梯形、圆等来表示平面,故D项正确.2.如图所示,用符号语言可表示为( )A.α∩β=m,nα,m∩n=AB.α∩β=m,n∈α,m∩n=AC.α∩β=m,nα,A m,A nD.α∩β=m,n∈α,A∈m,A∈n考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化答案 A解析α与β交于m,n在α内,m与n交于点A,注意符号语言的正确运用,故选A. 3.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行考点平面的基本性质题点点共线、线共点、点在线上问题答案 B解析两条平行直线、两条相交直线、直线及直线外一点都分别确定一个平面.4.空间中四点可确定的平面有( )A.1个B.3个C.4个D.1个或4个或无数个考点平面的基本性质题点确定平面问题答案 D解析当这四点共线时,可确定无数个平面;当这四点不共线且共面时,可确定一个平面;当这四点不共面时,其中任意三点可确定一个平面,此时可确定4个平面.5.已知平面α与平面β,γ都相交,则这三个平面可能的交线有( )A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条考点平面的基本性质题点点共线、线共点、点在线上问题答案 D解析当三个平面两两相交且过同一直线时,它们有1条交线;当平面β和γ平行时,它们的交线有2条;当这三个平面两两相交且不过同一条直线时,它们有3条交线.6.空间四点A,B,C,D共面而不共线,那么这四点中( )A.必有三点共线B.可能有三点共线C.至少有三点共线D.不可能有三点共线考点平面的基本性质题点点共线、线共点、点在线上问题答案 B解析如图(1)(2)所示,A,C,D均不正确,只有B正确.7.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则( )A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上考点平面的基本性质题点点共线、线共点、点在线上问题答案 B解析由题意知GH平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P∈平面ABC.因为平面ABC∩平面ADC=AC,由公理3可知点P一定在直线AC上.8.如图所示,在正方体ABCD-A1B1C1D1中,O为DB的中点,直线A1C交平面C1BD于点M,则下列结论错误的是( )A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,A,M四点共面D.D1,D,O,M四点共面考点平面的基本性质题点点共线、线共点、点在线上问题答案 D解析如图所示,连接A1C1,AC,则AC∩BD=O,A1C∩平面C1BD=M,∴三点C1,M,O在平面C1BD与平面ACC1A1的交线上,即C1,M,O三点共线,∴选项A,B,C均正确,D不正确.二、填空题9.已知点A,直线a,平面α.①A∈a,a∈α⇒A∈α;②A∉a,aα⇒A∉α;③A∈a,aα⇒Aα.其中说法正确的个数是________.考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化答案0解析①中“a∈α”符号不对;②中A可以在α内,也可在α外,故不正确;③中“Aα”符号错.10.若直线l上有两个点在平面α内,则下列说法中正确的序号为________.①直线l上至少有一个点在平面α外;②直线l上有无穷多个点在平面α外;③直线l上所有点都在平面α内;④直线l上至多有两个点在平面α内考点平面的基本性质题点线共面问题答案③11.空间两两相交的三条直线,可以确定的平面数是______.考点平面的基本性质题点确定平面问题答案1或3解析若三条直线两两相交共有三个交点,则确定1个平面;若三条直线两两相交且交于同一点时,可以确定3个平面或1个平面.12.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D三点的位置关系是________.考点平面的基本性质题点点共线、线共点、点在线上问题答案三点共线解析∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=CD.∵l∩α=O,∴O∈α,又∵O∈AB,ABβ,∴O∈β,∴O∈直线CD,∴O,C,D三点共线.三、解答题13.已知a,b,c,d是两两相交且不共点的四条直线,求证:直线a,b,c,d共面.考点平面的基本性质题点线共面问题证明(1)无三线共点情况,如图所示,设a∩d=M,b∩d=N,c∩d=P,a∩b=Q,a∩c=R,b∩c=S,∵a∩d=M,∴a,d可以确定一个平面α,∵N∈d,Q∈a,∴N∈α,Q∈α,∴NQα,即bα,同理cα,∴a,b,c,d共面.(2)有三线共点的情况,如图所示,设b,c,d三线相交于点K,与直线a分别相交于点N,P,M且K∉a,∵K∉a,∴K和a确定一个平面,设为β.∵N∈a,aβ,∴N∈β,∴NKβ,即bβ,同理cβ,dβ,∴a,b,c,d共面,由(1)(2)可知a,b,c,d共面.四、探究与拓展14.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.考点平面的基本性质题点平面基本性质的其他简单应用答案36解析正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个.15.已知在正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于点R,则P,Q,R三点共线.考点平面的基本性质题点点共线、线共点、点在线上问题证明如图.(1)因为EF是△D1B1C1的中位线,所以EF∥B1D1,在正方体AC1中,B1D1∥BD,所以EF∥BD,所以EF,BD确定一个平面,即D,B,F,E四点共面.(2)在正方体AC1中,设平面A1ACC1为α,平面BDEF为β.因为Q∈A1C1,所以Q∈α,又Q∈EF,所以Q∈β,则Q是α与β的公共点,同理,P点也是α与β的公共点,所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,所以R∈α,且R∈β,故R∈PQ.所以P,Q,R三点共线.。

北师版高中数学教材目录

北师版高中数学教材目录

北师大版高中教材目录第一章 集合§1 集合的含义与表示 §2 集合的基本关系 §3 集合的基本运算 3.1 交集与并集3.2 全集与补集第二章 函数§1 生活中的变量关系 §2 对函数的进一步认识 2.1 函数概念2.2 函数的表示法 2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像 4.2 二次函数的性质§5 简单的幂函数第三章 指数函数和对数函数 §1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充 2.2 指数运算的性质§3 指数函数3.1 指数函数的概念3.2 指数函数x y 2= 和xy ⎪⎭⎫ ⎝⎛=21 的图像和 性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算 4.2 换底公式§5 对数函数5.1 对数函数的概念 5.2 对数函数x y 2log =的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章 函数应用 §1 函数与方程1.1 利用函数性质判断方程解的存在 1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画 2.2 用函数模型解决实际问题 2.3 函数建模案例第一章 立体几何初步 §1 简单几何体1.1 简单旋转体 1.2 简单多面体§2 直观图 §3 三视图3.1 简单组合体的三视图 3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识 4.2 空间图形的公理§5 平行关系5.1 平行关系的判定 5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定 6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积§8 面积公式和体积公式的简单应用第二章 解析几何初步 §1 直线与直线的方程1.1 直线的倾斜角和斜率 1.2 直线的方程 1.3 两条直线的位置关系 1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程 2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差 4.2 标准差§5 用样本估计总体5.1 估计总体的分别5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2 变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3模拟方法——概率的应用第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义 4.2 单位圆与周期性4.3 单位圆与诱导公式§5 余弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3 正弦函数的性质§6 余弦函数的图像与性质6.1 余弦函数的图像6.2 余弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像和性质7.3 正切函数的诱导公式§8 函数)sin(ϕ+ω=xAy的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表述4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数 2.3 两角和与差的正切函数§3 二倍角的三角函数第一章数列§1 数列1.1 数列的概念1.2 数列的函数特性§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大小值§4 简单线性规划4.1 二元一次不等式组与平面区域 4.2 简单线性规划4.3 简单线性规划的应用第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1 空间向量的标准正交分解与坐标表示 3.2 空间向量基本定理3.3 空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1 直线间的夹角5.2 平面间的夹角5.3 直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征4.3 直线与圆锥曲线的交点第一章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 综合法与分析法2.1 综合法2.2 分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.3 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用2.2 最大值、最小值问题第四章定积分§1 定积分的概念1.1 定积分背景——面积和路程问题 1.2 定积分§2 微积分基本定理§3 定积分的简单应用3.1 平面图形的面积3.2 简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法第一章计数原理§1 分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理1.2 分类乘法计数原理§2 排列§3 组合§4 简单计数问题§5 二项式定理5.1 二项式定理5.2 二项式系数的性质第二章概率§1 离散型随机变量及其分布列§2 超几何分布§3 条件概率与独立事件§4 二项分布§5 离散型随机变量的均值与方差§6 正态分布6.1 连续型随机变量6.2 正态分布第三章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 独立性检验2.2 独立性检验的基本思想2.3 独立性检验的应用第一章直线、多边形、圆§1 全等与相似§2 圆与直线§3 圆与四边形第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系§3 柱面与平面的截面§4 平面截圆锥面§5 圆锥曲线的几何性质第一章平面向量与二阶方阵§1平面向量及向量的运算§2向量的坐标表示及直线的向量方程§3二阶方阵与平面向量的乘法第二章几何变换与矩阵§1几种特殊的矩阵变换§2矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2矩阵乘法的性质第四章逆变换与逆矩阵§1逆变换与逆矩阵§2初等变换与逆矩阵§3二阶行列式与逆矩阵§4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1矩阵变换的特征值与特征向量§2特征向量在生态模型中的简单应用第一章坐标系§1 平面直角坐标系§2 极坐标系§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线§5 圆锥曲线的几何性质第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的不等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利不等式第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质第三章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则第四章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.2 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用 2.2 最大值、最小值问题第一章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 条件概率与独立事件2.2 独立性检验2.3 独立性检验的基本思想2.4 独立性检验的应用第二章框图§1 流程图§2 结构图第三章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 数学证明§3 综合法与分析法3.1 综合法3.2 分析法§4 反证法第四章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法。

高中数学第一章立体几何初步1.4空间图形的基本关系与公理1.4.1空间图形的基本关系与公理1公理3课

高中数学第一章立体几何初步1.4空间图形的基本关系与公理1.4.1空间图形的基本关系与公理1公理3课
与平面的位置关系. 如果一条直线和一个平面有无数个公共点,则称这条直线在这个 平面内.直线 l 在平面 α 内,记作 l⫋α. 如果一条直线和一个平面只有一个公共点,则称这条直线和这个 平面相交.直线 l 与平面 α 相交于点 P,记作 l∩α=P. 如果一条直线和一个平面没有公共点,则称这条直线和这个平面 平行.直线 l 与平面 α 平行,记作 l∥α. (5)空间平面与平面的位置关系. 如果两个平面没有公共点,则称这两个平面互相平行.平面 α 与平 面 β 平行,记作 α∥β. 如果两个平面不重合但有公共点,则称这两个平面相交.
问题导学
当堂检测
1.公理 1 的应用 活动与探究 例 1 已知 a∥b,a∩c=A,b∩c=B,求证:a,b,c 三条直线在同一 平面内. 思路分析:依题意,可先证 a 与 b 确定一个平面,再证明 c 在这个平 面内,从而可证 a,b,c 在同一平面内. 证明:∵ a ∥b , ∴ a 与 b 确定一个平面 α, ∵ a∩c=A,∴ A∈a,从而 A∈α; ∵ b∩c=B,∴ B∈b,从而 B∈α. 于是 AB⫋α,即 c⫋α,故 a,b,c 三条直线在同一平面内.
若 A∈α,A∈β,且 α,β 不重 合,则 α∩β=l,且 A∈l
目标导航
预习引导
预习交流 3
公理 1 的三个推论是什么? 提示:推论 1:一条直线和直线外一点确定一个平面. 推论 2:两条相交直线确定一个平面. 推论 3:两条平行直线确定一个平面.
预习交流 4
公理 1 中的“有且只有一个”的含义是什么? 提示:“有”是说图形存在,“只有一个”是说图形唯一.“有且只有”强 调的是存在性和唯一性两个方面,确定一个平面中的“确定”是“有且只 有”的同义词,也是指存在性和唯一性这两个方面.

高中数学第一章立体几何初步1.4.1空间图形基本关系的认识笔记全国公开课一等奖百校联赛微课赛课特等奖

高中数学第一章立体几何初步1.4.1空间图形基本关系的认识笔记全国公开课一等奖百校联赛微课赛课特等奖

是异面直线. D
A c
a
C B
D
c
A
C
b
B
8/10
练习3.在正方体ABCD-A1B1C1D1棱所在直线中, (1)与直线AB成异面直线有____4_条;
(2)与直线AB1成异面直线有____6_条; (3)与直线BD1成异面直线有____6_条;
D1 A1
C1 B1
D A
C
B
9/10
二、课堂小结
1.4.1 空间图形基本 关系与公理
1/10
引入新知
一、平面画法: (1)水平放置平面:(2)垂直放置平面:
ß
通常把表示平面平行四边形锐角画成450.
2/10
引入新知
(3)在画图时,假如图形一部分被另 一部分遮住,能够把遮住部分画成虚线, 也能够不画.
3/10
二、平面表示方法:
平面能够用希腊字母表示,也能够用代 表表示平面平行四边形四个顶点或相正确两 个顶点字母表示.
D
C
A
B
如:平面α,平面β,平面ABCD,平面
AC,平面BD等.
4/10
一、探索研究 1.实例分析:
观察下列图中长方体, 得到长方体是由__8__个顶点, __1_2_ 条棱, _6__个面组成.
D A
C B
D A
C B
5/10
2.抽象概括:
D
C
(1)空间点与直线位置关系有__种2 : A a
6/10
(5)空间平面与平平面与平面没有公共点---
A
C B
平面与平面平行. //
②两个平面不重合, 但有公共点---
平面与平面相交. BC
D

高中数学第一章立体几何初步1.4空间图形的基本关系与公理题型整理素材北师大版必修2

高中数学第一章立体几何初步1.4空间图形的基本关系与公理题型整理素材北师大版必修2

高中数学第一章立体几何初步1.4空间图形的基本关系与公理题型整理素材北师大版必修2题型整理题组一共面问题1.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为 ( )A.3 B.4 C.5 D.62.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中,使三条直线共面的充分条件有________.题组二共线问题3.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是 ( )A.A、M、O三点共线 B.A、M、O、A1不共面C.A、M、C、O不共面 D.B、B1、O、M共面4.如图,在四边形ABCD中,已知AB∥CD,直线AB、BC、AD、DC分别与平面α相交于点E、G、H、F.求证:E、F、G、H四点共线(在同一条直线上).题组三(文)点线、平面之间的位置关系5.l1、l2是两条异面直线,直线m1、m2与l1、l2都相交,则m1、m2的位置关系是( )A.异面或平行 B.相交 C.异面 D.相交或异面6.给出下列四个命题:①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若M∈α,M∈β,α∩β=l,则M∈l;④空间中,相交于同一点的三条直线在同一平面内.其中真命题的个数为 ( )A.1 B.2 C.3 D.47.如图是一几何体的平面展开图,其中ABCD为正方形,E、F分别为PA、PD的中点.在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确的序号有________.题组三异面直线及其所成角5.在四棱台ABCD-A1B1C1D1中,上下底面均为正方形,则DD1与BB1所在直线是( )A.相交直线 B.平行直线C. 不垂直的异面直线 D.互相垂直的异面直线6.正方体AC1中,E、F分别是线段BC、C1D的中点,则直线A1B与直线EF的位置关系是( )A.相交 B.异面 C.平行 D.垂直7.如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.8.如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点.求异面直线A1E与GF所成角的大小.参考答案题组一共面问题1.(2009·湖南高考)如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为 ( )A.3 B.4 C.5 D.6解析:根据两条平行直线、两条相交直线确定一个平面,可得CD、BC、BB1、AA1、C1D1符合条件.答案:C2.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中,使三条直线共面的充分条件有________.解析:①中两直线相交确定平面,则第三条直线在这个平面内.②中可能有直线和平面平行.③中直线最多可确定3个平面.④同①.答案:①④题组二共线问题3.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是 ( )A.A、M、O三点共线B.A、M、O、A1不共面C.A、M、C、O不共面D.B、B1、O、M共面解析:连结A1C1,AC,则A1C1∥AC,∴A1、C1、C、A四点共面,∴A1C平面ACC1A1,∵M在A1C上,∴M在平面ACC1A1内,又M在平面AB1D1内,∴M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,∴A、M、O三点共线.答案:A4.如图,在四边形ABCD中,已知AB∥CD,直线AB、BC、AD、DC分别与平面α相交于点E、G、H、F.求证:E、F、G、H四点共线(在同一条直线上).证明:∵AB∥CD,∴AB、CD确定一个平面β.又∵AB∩α=E,ABβ,∴E在α内,E在β内,即E为平面α与β的一个公共点.同理可证F、G、H均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴E、F、G、H四点必定共线.题组三(文)点线、平面之间的位置关系5.l1、l2m1m2l1l2m1m2( )A.异面或平行 B.相交 C.异面 D.相交或异面答案:D6.给出下列四个命题:①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若M∈α,M∈β,α∩β=l,则M∈l;④空间中,相交于同一点的三条直线在同一平面内.其中真命题的个数为 ( )A.1 B.2 C.3 D.4答案:A7.如图是一几何体的平面展开图,其中ABCD为正方形,E、F分别为PA、PD的中点.在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确的序号有________.解析:①∵E、F分别是PA、PD的中点,∴EF∥AD.又∵AD∥BC,∴EF∥BC,∴BE与CF共面,故①不正确.②∵BE是平面APD的斜线,AF是平面APD内与BE不相交的直线,∴BE与AF不共面,故②正确.③由①知EF∥BC,∴EF∥平面PBC.故③正确.④条件不足,无法判断两平面垂直.答案:②③题组三(理)异面直线及其所成角5.在四棱台ABCD-A1B1C1D1中,上下底面均为正方形,则DD1与BB1所在直线是( )A.相交直线 B.平行直线C. 不垂直的异面直线 D.互相垂直的异面直线解析:四棱台可看作是由四棱锥截得的,因此DD1与BB1所在直线是相交的.答案:A 6.(2010·辽宁模拟)正方体AC1中,E、F分别是线段BC、C1D的中点,则直线A1B与直线EF的位置关系是 ( )A.相交 B.异面 C.平行 D.垂直解析:如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF平面A1BCD1,且两直线不平行,故两直线相交.答案:A7.(2010·淮南模拟)如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB =2∶1,则异面直线AB1与BD所成的角为________.解析:取A1C1的中点D1,连结B1D1,由于D是AC的中点,∴B1D1∥BD,∴∠AB1D1即为异面直线AB1与BD所成的角.连结AD1,设AB=a,则AA1=2a,∴AB1=3a,B1D1=32a,AD1=14a2+2a2=32a.∴cos∠AB1D1=3a2+34a2-94a22×3a×32a=12,∴∠AB1D1=60°.答案:60°8.如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点.求异面直线A1E与GF所成角的大小.解:连结B1G,EG,由于E、G分别是DD1和CC1的中点,∴EG綊C1D1,而C1D1綊A1B1,∴EG綊A1B1,∴四边形EGB1A1是平行四边形.∴A1E∥B1G,从而∠B1GF为异面直线所成角,连结B1F,则FG =3,B1G=2,B1F =5,由FG2+B1G2=B1F2,∴∠B1GF=90°,即异面直线A1E与GF所成的角为90°.题组四综合问题9.(理)(文8)(2010·淄博模拟)在正方体ABCD-A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为 ( )解析:到定点B的距离等于到直线A1B1的距离,所以动点P的轨迹是以B为焦点,以A1B1为准线的过A的抛物线的一部分.答案:C9.(文)如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,M为AB的中点,N为BB1的中点,O 为面BCC1B1的中心.(1)过O作一直线与AN交于P,与CM交于Q(只写作法,不必证明);(2)求PQ的长.解:(1)由ON∥AD知,AD与ON确定一个平面α.又O、C、M三点确定一个平面β(如图所示).∵三个平面α,β和ABCD两两相交,有三条交线OP、CM、DA,其中交线DA与交线CM不平行且共面.∴DA与CM必相交,记交点为Q,连结OQ与AN交于P,与CM交于Q,∴OQ是α与β的交线.故直线OPQ即为所求作的直线.(2)由Rt△AMQ≌Rt△BMC,得AQ=CB=1,又∵△OPN∽△QPA,ON=12BC=12AQ.∴PN∶PA=1∶2.AP=23AN=53.解Rt△APQ可得PQ=143.10.(理)(2010·大连模拟)如图所示,三棱锥P-ABC中,PA⊥平面ABC,∠BAC =60°,PA=AB=AC=2,E是PC的中点.(1)求异面直线AE和PB所成角的余弦值;(2)求三棱锥A-EBC的体积.解:(1)取BC的中点F,连结EF、AF,则EF∥PB,所以∠AEF或其补角就是异面直线AE和PB所成角.∵∠BAC=60°,PA=AB=AC=2,PA⊥平面ABC,∴AF=3,AE=2,EF=2;cos∠AEF=22314222+-=⨯⨯,所以异面直线AE和PB所成角的余弦值为14.(2)因为E是PC中点,1 2PA=1,VA-EBC=VE-ABC=13×(12.所以E到平面ABC的距离为。

高中数学第一章立体几何初步1.4.1空间图形基本关系的认识1.4.2空间图形的公理一课件北师大版必修2

高中数学第一章立体几何初步1.4.1空间图形基本关系的认识1.4.2空间图形的公理一课件北师大版必修2
§4 空间图形的基本关系与公理
4.1 空间图形基本关系的认识 4.2 空间图形的公理(一)
•学习目标 1.理解空间中点、线、面的位置关系(重 点);2.理解空间中平行直线、相交直线、异面直线、 平行平面、相交平面等概念(重点);3.掌握三个公理 及推论,并能运用它们去解决有关问题(重、难 点).
• 知识点一 点、线、面之间的位置关系 • 一些文字语言与数学符号的对应关系:
的位置关系 面面相交
α∥β α∩β=a
异面直线 不同在 任何一个平面内 的两条直线,叫作异面直线
• 【预习评价】
• (1)若A∈a,a α,是否可以推出A∈α?
• 提示 根据直线在平面内定义可知,若A∈a,a α,则A∈α.
• (2)长方体的一个顶点与12条棱和6个面分别有哪 些位置关系?
• 提示 顶点与12条棱所在直线的关系是在棱上,或 不在棱上;顶点和6个面的关系是在面内,或在面 外.
•∴不共线的三个点A、B、C既在平面α内,又在平 面β内.
•∴平面α和β重合,即直线l1、l2、l3在同一平面内.
• 方向2 点共线问题
• 【例3-2】 如图,在正方体ABCD-A1B1C1D1 • 中,点M、N、E、F分别是棱CD、AB、
• DD1、AA1上的点,若MN与EF交于点Q, • 求证:D、A、Q三点共线.
•解析 与AC1异面的棱是A1B1,DC,BC,A1D1, BB1,DD1. •答案 C
考查 方向
题型三 平面性质的应用
• 方向1 共面问题
• 【例3-1】 已知:如图所示,l1∩l2=A,

l2∩l3=B,l1∩l3=C.求证:直线l1、
• l2、l3在同一平面内.
• 证明 方法一 (纳入平面法)

高中数学 第一章 立体几何初步 1.4 空间图形的基本关系与公理 第一课时 空间图形基本关系的认识及

高中数学 第一章 立体几何初步 1.4 空间图形的基本关系与公理 第一课时 空间图形基本关系的认识及

公理第一课时空间图形基本关系的认识及公理1、2、3高效测评北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第一章立体几何初步1.4 空间图形的基本关系与公理第一课时空间图形基本关系的认识及公理1、2、3高效测评北师大版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第一章立体几何初步1.4 空间图形的基本关系与公理第一课时空间图形基本关系的认识及公理1、2、3高效测评北师大版必修2的全部内容。

系与公理第一课时空间图形基本关系的认识及公理1、2、3高效测评北师大版必修2一、选择题(每小题5分,共20分)1.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不在同一条直线上的三个交点解析:不共线的三点可以确定一个平面,排除A;四边形可以是空间四边形,排除B;根据公理3可以知道D不正确,故选C。

答案: C2.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线解析: 公理是不用证明的,定理是要求证明的.选项A是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.答案:A3.两个不重合的平面可把空间分成( )A.3部分B.4部分C.3或4部分D.2或3部分解析:当两个平面平行时把空间分成3部分;当两个平面相交时把空间分成4部分.答案: C4.有下列说法:①梯形的四个顶点在同一平面内;②三条平行直线必共面;③有三个公共点的两个平面必重合;④平面外的一条直线和平面没有公共点.其中,正确的个数是()A.0个B.1个C.2个D.3个解析: 梯形是一个平面图形,所以其四个顶点在同一个平面内,则①正确;两条平行直线确定1个平面,三条平行直线确定1个或3个平面,则②错;三个公共点可以同在两个相交平面的公共直线上,则③错;平面外的直线可能和平面相交,故④错.答案:B二、填空题(每小题5分,共10分)5.如果三个平面把空间分成六部分,那么这三个平面的位置关系是________.解析:由于三个平面把空间分成六部分,那么结合空间中面面的位置关系可知要么是三个平面相交于同一直线,要么是一个平面与另两个平行平面相交.答案: 三个平面相交于同一条直线或一个平面与另两个平行平面相交6.如图,在这个正方体中:①BM与ED平行;②CN与BM是异面直线;③CN与BE是异面直线;④DN与BM是异面直线.以上四个命题中,正确命题的序号是________.解析:观察图形,可知①③错误,②④正确.答案:②④三、解答题(每小题10分,共20分)7.已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解析:直线a与直线c的位置关系可以是平行、相交、异面,如图(1)(2)(3).8.如图所示,△ABC与△A1B1C1不在同一个平面内,如果三条直线AA1,BB1,CC1两两相交,求证:三条直线AA1,BB1,CC1交于一点.证明:设BB1与CC1,CC1与AA1,AA1与BB1分别确定平面α,β,γ,AA1与BB1的交点为P,因为P∈AA1,P∈BB1,AA1平面β,BB1平面α,所以P∈平面α,P∈平面β,即P∈α∩β。

高中数学 第一章立体几何初步 1.4.1 空间图形的基本关系与公理课件 北师大版必修2

高中数学 第一章立体几何初步 1.4.1 空间图形的基本关系与公理课件 北师大版必修2

(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上, 如图所示.
K12课件
9
如果两个不重合的 公 平面有一个公共点, 理 那么它们有且只有 3 一条过该点的公共
直线
公 理
平行于同一条直线 的两条直线平行
4
给定点 P 以及平面 α,β, 若点 P∈α,且 P∈β,则 存在直线 l,使得 α∩β=l,且 P∈l
已知直线 a,b,c,且 a∥ b,b∥c⇒a∥c
K12பைடு நூலகம்件
K12课件
13
做一做 3 如图所示,点 A 在平面 α 内,点 B 也在平面 α 内,点 C 在直 线 AB 上.
(1)用符号语言表示上述位置关系; (2)判定点 C 与平面 α 的关系. 分析:点 C 与平面 α 的位置关系,可以是点在平面外,也可以是点 在平面内,由公理 2 可知 AB 在平面内,而点 C 在直线 AB 上,所以点 C 在平面 α 内.
10
K12课件
11
K12课件
12
做一做2 下列说法正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.三角形一定是平面图形 D.平面α和平面β有不同在一条直线上的三个交点 解析:本题考查平面的基本知识.A选项,当三点共线时有无数多个 平面.B选项,四边形有空间四边形与平面四边形之分.C选项,三角形 的三个顶点不共线,根据公理1可知此三个顶点确定一个平面.D选 项,若具有这个条件,则α与β重合.故选C. 答案:C

但有公共点,我们称平面 α
相交 与平面 β 是相交平面
符号语 言 α∥β
α∩β=l
K12课件
15
5.空间两条直线的位置关系
位置关 系

高中数学第一章立体几何初步141空间图形基本关系的认识课件北师大版必修2

高中数学第一章立体几何初步141空间图形基本关系的认识课件北师大版必修2
∴由公理3可知,点P在平面ABC与平面α的交线上. 同理可证Q,R也在平面ABC与平面α的交线上. ∴P,Q,R三点共线. 方法二:∵AP∩AR=A, ∴直线AP与直线AR确定平面APR. 又∵AB∩α=P,AC∩α=R, ∴平面APR∩平面α=PR, ∵B∈平面APR,C∈平面APR, ∴BC 平面APR,又∵Q∈直线BC,
复习课件
高中数学第一章立体几何初步1.4.1空间图形基本关系的认识课件北师大版 必修2
2021/4/17
高中数学第一章立体几何初步141空间图形基本关系的认
1
识课件北师大版必修2
【课标要求】 1.通过长方体这一常见的空间图形,体会点、直线、平面之间 的位置关系,并能用图形语言和符号语言表示. 2.理解空间图形的三个公理,并能用符号表示. 3.能应用公理进行简单的证明.
点在一个平面内,那 么这条直线在此平面
内(即直线在平面内)
图形语言
符号语言 若A、B、C三点不共 线,则存在唯一一个
平面α使A∈α, B∈α,C∈α
若A∈l,B∈l, A∈α,B∈α,则l α
如果两个不重合的平
公理3
面有一个公共点,那 么它们有且只有一条
过该点的公共直线
若A∈α,A∈β,且α 与β不重合,则α∩β
跟踪训练 3 如图所示,在正方体ABCD-A1B1C1D1中,记 B1D与平面A1BCD1交于点Q,证明:B,Q,D1三点必共线.
证明:连接B1D1,BD.
∵B1D1∥BD,∴B1D1,BD确定平面B1BDD1,交平面A1BCD1 于BD1.
∵Q∈B1D,∴Q∈平面B1BDD1. 又∵Q∈平面A1BCD1,而平面A1BCD1∩平面B1BDD1=BD1, ∴点Q必在BD1上, ∴B,Q,D1三点必共线.

高中数学第一章立体几何初步4空间图形的基本关系与公理第1课时空间图形基本关系的认识与公理1_3北师大必修2

高中数学第一章立体几何初步4空间图形的基本关系与公理第1课时空间图形基本关系的认识与公理1_3北师大必修2
第1课时 空间图形基本关系的认识与公理1~3
[核心必知] 一、空间图形的基本位置关系
二、空间图形的3条公理
4.集合中元素的性质 集合中的元素具有确定性、互异性和无序性.
4.集合中元素的性质 集合中的元素具有确定性、互异性和无序性.
[问题思考] 1.三点确定一个平面吗? 提示:当三点在一条直线上时,不能确定一个平面,当
法二:∵AP∩AR=A, ∴直线 AP 与直线 AR 确定平面 APR. 又∵AB∩α=P,AC∩α=R, ∴平面 APR∩平面 α=PR. ∴B∈平面 APR,C∈平面 APR,∴BC 又∵Q∈直线 BC, ∴Q∈平面 APR.又 Q∈α,∴Q∈PR. ∴P,Q,R 三点共线. 平面 APR.
证明点共线问题的常用方法有:法一是首先找出两个平
则A,B,C,D,E五点可能不共面.
综上所述,在题设条件下,A,B,C,D,E五点不一定 共面.
1.下列图形中不一定是平面图形的是( A.三角形 B.菱形
)
C.梯形
D.四边相等的四边形
解析:四边相等不具有共面的条件,这样的四 庆 高 考 )设 四面 体 的六 条棱 的 长分 别 为 1,1,1,1, 2和 a,且长为 a 的棱与长为 2的棱异面,则 a 的取值范围是 A.(0, 2) C.(1, 2) ( ) B.(0, 3) D.(1, 3)
解析:如图所示的四面体 ABCD 中,
设 AB=a,则由题意可得 CD= 2,其他边的长都为 1, 故三角形 ACD 及三角形 BCD 都是以 CD 为斜边的等腰直 角三角形,显然 a>0.取 CD 中点 E,
连接 AE,BE,则 AE⊥CD,BE⊥CD 且 AE=BE=
1-
2 2 2 = ,显然 A、B、E 三点能构成三角形,应 2 2

高中数学第一章立体几何初步1.4.12空间图形基本关系的认识空间图形的公理课件北师大版必修2

高中数学第一章立体几何初步1.4.12空间图形基本关系的认识空间图形的公理课件北师大版必修2
同理在 a 上任取一点作 b 的平行线,都与 a、b 共面,所以 这些平行线都共面.
公理 1、公理 2、公理 3 的意义和作用 1.公理 1 说明了平面与曲面的本质区别.通过直线的“直” 来刻画平面的“平”,通过直线的“无限延伸”来描述平面的 “无限延展性”,它既是判断直线在平面内,又是检验平面的方 法.
提示:因为点可看作元素,则直线与平面都可看作是点的集合, 所以,点与线、点与面之间的关系就是元素与集合的关系,线与面 之间的关系就是集合与集合之间的关系,所以用集合的符号表示点、 线、面之间的关系正好与集合中元素、集合的关系一致.
知识点二 空间图形的公理 [填一填]
[答一答] 2.你对公理 2 及课本思考交流中的三个问题是怎样理解 的?
第一章
立体几何初步
§4 空间图形的基本关系与公理
4.1 空间图形基本关系的认识
4.2 空间图形的公理
01 预习篇
02课堂篇
03提高篇
04 巩固篇
课时作业
知识点一 点、直线、平面之间位置关系的三种语言表示 [填一填]
[答一答] 1.点、线、面之间的关系为什么可借助于集合的符号来表 示?
提示:它们都可作为确定平面的依据,还可作为判定两个平 面重合的依据.“确定”和“有且只有一个”是同义词.“有” 说明存在性,“只有一个”说明唯一性.数学中的“只有一个” 并不保证符合条件的图形一定存在,所以不能用“只有一个”来 代替“有且只有一个”.符合某一条件的图形既存在,而且只能 有一个,就说明这个图形是完全确定的.
4.已知两条直线相交,过其中任意一条直线上的一点作另 一条直线的平行线,这些平行线是否都共面?为什么?
提示:都共面,如图所示,a∩b=A,过 b 上任意一点 B 作 c∥a,则 a、c 可确定一个平面 α,因为 A∈a,所以 A∈α.又因 为 B∈c,所以 B∈α,所以 AB α,即 b α.所以 a、b、c 共面.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C


A
B
如:平面α,平面β,平面ABCD,平面
AC,平面BD等.
一、探索研究 1.实例分析:
观察下图中的长方体, 得到长方体是由__8__个顶点, __1_2_ 条棱, _6__个面组成的.
D A
C B
D A
C B
2.抽象概括:
D
C
(1)空间点与直线的位置关系有_2_种:A a
D1 A1
C1 B1
D A
C
B
二、课堂小结
空间中点、线、面之间的位置关系:
Pa
(1)空间点与直线的位置关系有__种: P a
P
(2)空间点与平面的位置关系有__种: P
平行直线. 共面直线
(3)空间两直线的位置关系有__种: 相交直线.
异面直线.
a
(4)空间直线与平面的位置关系有__种: c A
(4)若直线a与b是异面直线, 直线b//c, 则直线a与c也
是异面直线. D
A c
a
C B
D
c
A
C
b
B
练习3.在正方体ABCD-A1B1C1D1的棱所在直线中, (1)与直线AB成异面直线的有__4___条;
(2)与直线AB1成异面直线的有__6___条; (3)与直线BD1成异面直线的有__6___条;
1.4.1 空间图形的基本 关系与ቤተ መጻሕፍቲ ባይዱ理
引入新知
一、平面的画法: (1)水平放置的平面:(2)垂直放置的平面:
ß

通常把表示平面的平行四边形的锐角画 成450.
引入新知
(3)在画图时,如果图形的一部分被 另一部分遮住,可以把遮住部分画成虚线, 也可以不画.




二、平面的表示方法:
平面可以用希腊字母表示,也可以用代 表表示平面的平行四边形的四个顶点或相对 的两个顶点字母表示.
B A
b
a C D
B A
C B
D

A
c
C D
b
BA

C

D

C
BA
B
练习2.判断下列命题是否正确:
(1)若a , b . 则直线a与b是异面直线; (2)若直线a、b不同在 内, 则直线a与b是异面直线;
(3)若直线a与b是异面直线, 直线b与c是异面直线,
则直线a与c也是异面直线;
a //
//
(5)空间平面与平面的位置关系有__种: // BC
①点P在直线a上, 记作: P a
c
P
b B
②点P不在直线a上, 记作: P a
D
α
(2)空间点与平面的位置关系有_2_种: A
C
bB
①点P在平面α内, 记作: P ②点P在平面α外, 记作:P
(3)空间两直线的位置关系有_3_种:
①直线a与b在同一平面内且没有公共点--- 平行直线. a // b
②直线a与b只有一个公共点--- 相交直线. a b B
③直线a与b不同在任何一个平面内--- 异面直线.
(4)空间直线与平面的位置关系有_3_种:
①直线a与平面β有无数公共点--- 直线在平面内. a ②直线c与平面β只有一个公共点---直线与平面相交.c A ③直线a与平面α没有公共点--- 直线与平面平行. a //
(5)空间平面与平面的位置关系有_2_种:
D

①平面与平面没有公共点---
A
C B
平面与平面平行. //
②两个平面不重合, 但有公共点---
平面与平面相交. BC
D

A
C
B
3.练习1. 观察下图所示的长方体, 再举出一些点、线、面的位置
关系的例子.
D A
a C D
相关文档
最新文档