ch10 气体动理论 习题及答案

合集下载

《大学物理》第十章气体动理论习题参考答案

《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。

3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。

7、1:1;2:1;10:3。

8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。

已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。

质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。

大学物理学 习题十 气体动理论

大学物理学  习题十 气体动理论

一、选择题1.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7%. (B) 50%. (C) 25%. (D) 0. [ ]2. 温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:[ ] (A) ε和w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等. (D) ε和w 都不相等.3.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 同温,氦压强大于氮压强. (D) 同温,氦压强小于氮压强. [ ]4.设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H pv 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a表示氧气分子的速率分布曲线; ()2O pv /()2Hp v =4.(B) 图中a表示氧气分子的速率分布曲线; ()2Op v /()2Hp v =1/4. (C) 图中b表示氧气分子的速率分布曲线;()2Op v /()2Hp v =1/4. (C) 图中b表示氧气分子的速率分布曲线;()2Op v /()2Hp v = 4.5.在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:[ ](A) v =40v ,Z =40Z ,λ=40λ. (B) v =20v ,Z =20Z ,λ=0λ. (C) v =20v ,Z =20Z ,λ=40λ. (D) v =40v ,Z =20Z ,λ=0λ. 6.两种不同的理想气体,若它们的最概然速率相等,则它们的 [ ](A) 平均速率相等,方均根速率相等. (B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等. (D) 平均速率不相等,方均根速率不相等.7.已知氢气与氧气的温度相同,请判断下列说法哪个正确?[ D ](A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强. (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度. (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大. (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大.f (v )8.若f (v )为气体分子速率分布函数,N 为分子总数,m 为分子质量,则⎰21d )(212v v v v v Nf m 的物理意义是[ ] (A) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之差.(B) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之和. (C) 速率处在速率间隔1v ~2v 之内的分子的平均平动动能. (D) 速率处在速率间隔1v ~2v 之内的分子平动动能之和.二、填空题1.有一个电子管,其真空度(即电子管内气体压强)为 1.0×10-5 mmHg ,则27 ℃ 时管内单位体积的分子数为_________________ .(玻尔兹曼常量k =1.38×10-23 J/K , 1 atm=1.013×105 Pa =76 cmHg )2.在容积为10-2 m 3 的容器中,装有质量100 g 的气体,若气体分子的方均根速率为200 m • s -1,则气体的压强为________________ Pa3.储有某种刚性双原子分子理想气体的容器以速度v =100 m/s 运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升 6.74K,由此可知容器中气体的摩尔质量M mol =__________. (普适气体常量R =8.31 J ·mol -1·K -1)4.已知f (v )为麦克斯韦速率分布函数,v p 为分子的最概然速率.则()⎰p f v v v 0d 表示速率区间0 ~ v p 的_________________;速率v >v p 的分子的平均速率表达式为________________________.5.设气体分子服从麦克斯韦速率分布律,v 代表平均速率,v ∆为一固定的速率区间,则速率在 v 到 v +v ∆范围内的分子数占分子总数的百分率随气体的温度升高而________________ (增加、降低或保持不变).6.设容器内盛有质量为M 1和质量为M 2的两种不同单原子分子理想气体,并处于平衡态,其内能均为E .则此两种气体分子的平均速率之比为___________________________.7.图示的两条f (v )~v 曲线分别表示氢气和氧气在同一温度下的麦克斯韦速率分布曲线.由此可得氧气分子的最概然速率为________________ m/s .f (v ))率为___________ m/s . (1 atm = 1.013×105 Pa)9.在容积为10-2 m 3 的容器中,装有质量100 g 的气体,若气体分子的方均根速率为200 m • s -1,则气体的压强为_____________________ Pa .10在平衡状态下,已知理想气体分子的麦克斯韦速率分布函数为f (v )、试写出下列一句话所对应的物理公式: 分布在12v v 速率区间的分子数占总分子数的百分比.三、计算题1.设想每秒有2310个氧分子(质量为32原子质量单位)以-1500m s ⋅的速度沿着与器壁法线成45o 角的方向撞在面积为43210m -⨯的器壁上,求这群分子作用在器壁上的压强。

大学物理第十章气体的动理论习题答案

大学物理第十章气体的动理论习题答案

5. 一瓶氦气和一瓶氮气,两者密度相同,分子平均平动动能相等,而且都处于平衡状态, 则两者[ C ] (A)温度相同,压强相等; (B)温度,压强都不相同; (C)温度相同,但氦气的压强大于氮气压强; (D)温度相同,但氦气的压强小于氮气压强。
6. 1mol 刚性双原子分子理想气体, 当温度为 T 时, 其内能为
[
C
]
(A)
3 RT 2
3 (B) kT 2
(C)
5 RT 2
5 (D) kT 2
7. 在一容积不变的封闭容器内, 理想气体分子的平均速率若提高为原来的 2 倍, 则[ D ] (A)温度和压强都提高为原来的 2 倍。 (B)温度为原来的 2 倍,压强为原来的 4 倍。
(C)温度为原来的 4 倍,压强为原来的 2 倍。 (D)温度和压强都为原来的 4 倍。 8. 已知氢气与氧气的温度相同, 请判断下列说法哪个正确? (A)氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强。 (B)氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度。 (C)氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大。 (D) 氧分子的质量比氢分子大, 所以氢分子的方均根速率一定比氧分子的方均根速率大。 9.速率分布函数 f(v)的物理意义为: (A)具有速率 v 的分子占总分子数的百分比。 (B)速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比。 (C)具有速率 v 的分子数。 (D)速率分布在 v 附近的单位速率间隔中的分子数。
一.单项选择题: 1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度。 (2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (3)温度的高低反映物质内部分子运动剧烈程度的不同。 (4)从微观上看,气体的温度表示每个气体分子的冷热程度。 上述说法中正确的是 (A) (1) 、 (2) 、 (4);(B) (1) 、 (2) 、 (3);(C) (2) 、 (3) 、 (4);(D) (1) 、 (3) 、 (4) 。 2. 两 容 积 不 等 的 容 器 内 分 别 盛 有 He 和 N2 , 若 它 们 的 压 强 和 温 度 相 同 , 则 两 气 体 [ A ] [ B ]

气体动理论答案

气体动理论答案

第七章气体动理论答案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一. 选择题1、(基础训练1)[ C ]温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.【解】:分子的平均动能kT i2=ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气和氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 23=,仅与温度有关,所以温度、压强相同的氦气和氧气,它们分子的平均平动动能w 相等。

2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1.【解】:气体分子的方均根速率:MRTv 32=,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同,则其压强之比等于温度之比,即:1:4:16。

3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C) ⎰21d )(v v v v v f /⎰21d )(v v v v f . (D) ⎰21d )(v v v v v f /0()d f v v ∞⎰ .【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以⎰21d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而21()d v v Nf v v ⎰表示速率分布在v 1~v 2区间内的分子数总和,因此⎰21d )(v v v v v f /⎰21d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。

气体动、热练习题(含答案)

气体动、热练习题(含答案)

(温度、气体动理论及热力学基础)1.如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强为 。

2. 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于。

3.已知f (v )为麦克斯韦速率分布函数,v p 为分子的最概然速率.则()⎰p f v v v 0d 表示 ;速率v >v p 的分子的平均速率表达式为 .4. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J·mol -1·K -1 )5. 设以氮气(视为刚性分子理想气体)为工作物质进行卡诺循环,在绝热膨胀过程中气体的体积增大到原来的两倍,求循环的效率.6. 一瓶氦气和一瓶氮气分子数密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则氦气的温度 氮气的温度,氦气的压强 氮气的压强。

(选填:相等、大于、小于)7. 一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线(如图),则①、②两过程中外界对系统传递的热量Q 1、Q 2是(A) Q 1>0,Q 2>0. (B) Q 1<0,Q 2<0.(C) Q 1<0,Q 2>0. (D) Q 1>0,Q 2<0.8.给定理想气体(比热比为γ),从标准状态(p 0,V 0,T 0)开始作绝热膨胀,体积增大到2倍.膨胀后温度T 、压强p 与标准状态时T 0、p 0之关系为 (A) 021T T γ)(=; 0121p p -=γ)(. (B) 0121T T -=γ)(;021p p γ)(=. (C) 021T T γ-=)(;0121p p -=γ)( (D) 0121T T -=γ)(;021p p γ-=)(.9.对一定质量的理想气体进行等温压缩.若初始时每立方米体积内气体分子数为1.96×1024,则当压强升高到初始值的两倍时,每立方米体积内气体分子数应为__________.10.一定量的某种理想气体,先经过等体过程使其热力学温度升高为原来的4倍;再经过等温过程使其体积膨胀为原来的2倍,则分子的平均碰撞频率变为原来的__________倍.11.一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量是_____________________,而随时间不断变化的微观量是_______________________. 12.当氢气和氦气的压强、体积和温度都相等时,求它们的质量比()()e H H 2M M 和内能比()()e H H 2E E .(将氢气视为刚性双原子分子气体)13.计算下列一组粒子的平均速率和方均根速率.14.如果一定量的理想气体,其体积和压强依照2 p a V =的规律变化,其中a 为已知常量.试求: (1) 气体从体积V 1膨胀到V 2所作的功; (2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.15.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED 是任意过程,组成一个循环。

气体动理论习题解答

气体动理论习题解答

第六章 气体动理论一 选择题1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。

A. pV /mB. pV /(kT )C. pV /(RT )D. pV /(mT )解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kTpVN =。

故本题答案为B 。

2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。

A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( )A. 3p 1B. 4p 1C. 5p 1D. 6p 1 解 根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=故本题答案为D 。

3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B.25pV C. 3pV D.27pV解 理想气体的内能RT iU ν2=,物态方程RT pV ν=,刚性三原子分子自由度i =6,因此pV pV RT i U 3262===ν。

因此答案选C 。

4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同解:单位体积内的气体质量即为密度,气体密度RTMpV m ==ρ(式中m 是气体分子质量,M 是气体的摩尔质量),故两种气体的密度不等。

单位体积内的气体分子数即为分子数密度kTpn =,故两种气体的分子数密度相等。

氮气是双原子分子,氦气是单原子分子,故两种气体的单位体积内的原子数不同。

工科物理大作业10-气体动理论

工科物理大作业10-气体动理论

工科物理大作业10-气体动理论-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1010 气体动理论班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1. 两种摩尔质量不同的理想气体,它们的压强、温度相同,体积不同,则下列表述中正确的是:A. 单位体积内的分子数相同;B. 单位体积中气体的质量相同;C. 单位体积内气体的内能相同;D. 单位体积内气体分子的总平均平动动能相同。

(A 、D )[知识点] 理想气体状态方程nkT p =及内能公式RT iE 2=。

[分析与解答] 根据理想气体状态方程nkT p =,当气体的压强与温度相同时,单位体积内的分子数n 相同。

由理想气体状态方程RT M m pV =,得RTpMV m =,即当气体压强与温度相同,但摩尔质量不同时,单位体积中气体的质量不相同。

又由理想气体内能公式RT i M m E 2=,结合状态方程,得pV iE 2=,则有p iV E 2=,可见当压强相同的两种理想气体的自由度相同(即为同结构分子)时,单位体积内气体的内能才会相同。

理想气体分子的平均平动动能kT k 23=ε,则有p n E k k 23==ε,则当气体的压强相同时,单位体积内的气体分子的总平均平动动能相同。

2. 以a 代表气体分子的方均根速率,ρ 表示气体的质量体密度。

则由气体动理论可知,理想气体的压强p 为:A. 2a p ρ=; B. a p ρ31=; C. 231a p ρ=; (C )[知识点] RT MmpV =,M RT 32=v [分析与解答] 由方均根速率的定义和题意有 a MRT==32v (1) 由理想气体状态方程 RT MmpV = (2) 由题意 Vmρ=(3) 联立以上三式,则有 23ρa p =3. 对处于平衡状态下的一定量某种理想气体,在关于内能的下述表述中,正确的是:A. 内能是所有分子平均平动动能的总和;B. 气体处于一定状态,就相应有一定的内能;C. 当理想气体状态改变时,内能一定随着变化;D. 不同的理想气体,只要温度相同,其内能也相同。

大学物理第十一章 气体动理论习题详细答案

大学物理第十一章 气体动理论习题详细答案

第十一章气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v的统计意义即可得出。

()f v表示速率以v为中心的单位速率区间内的气体分子数占总分子数的比例,而dvvNf)(表示速率以v为中心的dv速率区间内的气体分子数,故本题答案为B。

2、答案:A解:根据()f v的统计意义和pv的定义知,后面三个选项的说法都是对的,而只有A不正确,气体分子可能具有的最大速率不是pv,而可能是趋于无穷大,所以答案A正确。

3、答案:Armsv=据题意得222222221,16H O H HH O O OT T T MM M T M===,所以答案A正确。

4、由理想气体分子的压强公式23kp nε=可得压强之比为:Ap∶Bp∶Cp=n A kAε∶n B kBε∶n C kCε=1∶1∶15、氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RTν=代入内能公式2iE RTν=可得2iE pV=,所以氧气和氦气的内能之比为5 : 6,故答案选C。

6、解:理想气体状态方程PV RTν=,内能2iU RTν=(0mMν=)。

由两式得2U iPV=,A、B两种容积两种气体的压强相同,A中,3i=;B中,5i=,所以答案A正确。

7、由理想气体物态方程'mpV RTM=可知正确答案选D。

8、由理想气体物态方程pV NkT=可得气体的分子总数可以表示为PVNkT=,故答案选C。

9、理想气体温度公式21322k m kTευ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。

温度越高,分子的平均平动动能越大,分子热运动越剧烈。

因此,温度反映的是气体分子无规则热运动的剧烈程度。

由于k ε是统计平均值,因而温度具有统计意义,是大量分子无规则热运动的集体表现,对个别分子或少数分子是没有意义的。

故答案选B 。

10、因摩尔数相同的氢气和氦气自由度数不同,所以由理想气体的内能公式2i E RT ν=可知内能不相等;又由理想气体温度公式21322k m kT ευ==可知分子的平均平动动能必然相同,故答案选C 。

气体动理论习习题解答

气体动理论习习题解答

欢迎阅读习题8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。

若此理想气体的压强为1.35×1014 Pa 。

试估计太阳的温度。

(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(===ρ8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个解:8-3 (1∑t εn p i =∑8-4 气的解:8-5 温度从27 ℃上升到177 ℃,体积减少一半,则气体的压强变化多少?气体分子的平均平动动能变化多少?分子的方均根速率变化多少?解:已知 K 300atm 111==T p 、根据RT pV ν=⇒222111T V p T V p =⇒atm 3312==p p8-6 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1 eV ,气体的温度需多高?解:(1)J 1065.515.2731038.12323212311--⨯=⨯⨯⨯==kT t ε (2)kT 23J 101.6ev 1t 19-==⨯=ε 8-7 一容积为10 cm 3的电子管,当温度为300 K 时,用真空泵把管内空气抽成压强为5×10-4 mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气分子的平均平动动能的总和是多少?(3)平均转动动能的总和是多少?(4)平均动能的总和是多少?(将空气分子视为刚性解:(1(2(3(48-8 也就是解:8-9 3。

求:(1和转动动能各为多少?(4)容器单位体积内分子的总平动动能是多少?(5)若该气体有0.3 mol ,其内能是多少?解:(1)231v p ρ=⇒m/s 49432≈=ρp v (2)g 28333⇒322≈===ρμμpRT v RTRTv 所以此气体分子为CO 或N 2(3)J 1065.52321-⨯==kT t ε (4)J 1052.123233∑⨯===P kT n t ε (5)J 170125==RT E ν 8-10 一容器内储有氧气,其压强为1.01×105 Pa ,温度为27.0℃,求:(1)分子数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。

气体动理论一章习题解答

气体动理论一章习题解答

习题 6—6
若室内升起炉子后温度从 15℃升高到 27℃,而室内气压不变,则此 ] (B) 4%。 (C) 9%。 (D) 21%。
时室内的分子数减少了: [ (A)0.5%。
解:依题设条件并应用公式
P = nkT 可得
P1 = n1 kT1 = P2 = n2 kT2
所以
n2 T1 273 + 15 288 = = = n1 T2 273 + 27 300
NA
2 kT = N A kT = RT 2
习题 6─14
有 2×10-3m3 刚性双原子分子理想气体,其内能为 6.75×102J。(1)
试求气体的压强;(2) 设分子总数为 5.4×1022 个,求分子的平均平动动能及气体 的温度。
解:(1) 由于
E=
i PV 2
又刚性双原子分子理想气体的自由度 i = 5 ,则
习题 6—17
容积 V=1m3 的容器内混有 N1=1.0×1025 个氧分子和 N2=4.0×1025
个氮分子, 混合气体的压强为 2.67×105 Pa, 求: (1) 分子的平均平动动能; (2) 混 合气体的温度。 解:此题我们可先解第二问。 (2) 由压强公式
P = nkT =
混合气体的压强
M O2 = 2 32 = 1 4
所以应当选择答案(B)。
习题 6—4
三个容器 A、B、C 中装有同种理想气体,其分子密度 n 相同,而方
2 2 均根速率之比为 v 2 A : v B : v C = 1 : 2 : 4 ,则气体的压强之比 PA : PB : PC 为:

] (A) 1:2:4。 (B) 4:2:1。 (C) 1:4:16。 (D) 1:4:8。

气体动理论习题、答案及解法(2010.12.15)

气体动理论习题、答案及解法(2010.12.15)

气体动理论习题、答案及解法一、 选择题1. 一定量氢气(视为刚性分子的理想气体),若温度每升高1K ,其内能增加20.8J ,则该氢气的质量为 【 B 】 (A )1.0⨯10kg 3- (B)2.0⨯10kg 3-(C)3.0⨯10kg 3- (D)4.0⨯10kg 3-参考答案:T R i M E ∆⎪⎭⎫⎝⎛=∆2μ 5=i 刚性双原子的自由度为()kg 100.2131.851028.202233--⨯=⨯⨯⨯⨯⨯=∆⋅∆=T iR E M μ2. 有一瓶质量为m 的氢气(是作刚性双原子分子的理想气体),温度为T ,则氢分子的平均动能 【 B 】 (A )kT 23 (B )kT 25 (C ) RT 23 (D )RT 25参考答案:kT i2=ε 5=i 刚性双原子的自由度为 3. 有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的 【 C 】 (A )21倍 (B )32倍 (C )35倍 (D )2倍参考答案:T R i M E ⎪⎭⎫⎝⎛=2μ RT M pV μ= 3522222==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛=e e e H H H H H H i i T R i M T R i M E E μμ4. A 、B 、C3个容器中皆装有理想气体,它们的分子数密度之比为A n :Bn :C n =4:2:1,而分子的平均平动动能之比为4:2:1::=C B A εεε,则它们的压强之比C B A p p p :::为 【 A 】(A )1:1:1 (B)1:2;2 (C )1:2;3 (D )1:2;4参考答案:εn p 32=1:1:132:32:32:::==C C B B A A C B A n n n p p p εεε 5. 2g 氢气与2g 氦气分别装在两个容器相等的封闭容器内,温度也相同(氢气分子视为刚性双原子分子),氢气与氦气内能之比eH H E E 2为(A )31 (B )35 (C )310 (D)316 【 C 】参考答案:T R i M E ⎪⎭⎫⎝⎛=2μ31010231045223322222=⨯⨯⨯⨯==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=--H H H H H H H H H H e e e e e i i T R i M T R i M E E μμμμ 6.1mol 的单原子分子理想气体,在1atm 的恒定压强下,从c 0︒加热到c 100︒,则气体的内能改变了 【 D 】(A )0.25J 103⨯ (B )J 105.03⨯ (C )J 100.13⨯ (D )J 1025.13⨯ 参考答案:T R i M E ∆⎪⎭⎫⎝⎛=∆2μ ()()J 1025.127337331.82323⨯=-⨯⨯=∆⎪⎭⎫ ⎝⎛=∆T R i M E μ7. 在容积为3210m -的容器中,装有质量g 100的气体,若气体分子的方均根速率为1200-⋅s m ,则气体的压强为 【B 】 (A )Pa 1067.05⨯ (B )Pa 1033.15⨯ (C )Pa 1066.25⨯ (D )Pa 1099.35⨯参考答案:μRTv 32=RT MpV μ= ()Pa 1033.131522⨯=⎪⎭⎫ ⎝⎛⨯=v V M p8. 如图1所示的两条()v ~v f 曲线分别表示氢气和氧气在同一温度下的麦克斯)(1-韦速率分布曲线。

大学物理(气体动理论)习题答案

大学物理(气体动理论)习题答案

大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。

(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。

(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。

[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。

气体动理论习题解答

气体动理论习题解答

习题8-1 设想太阳就是由氢原子组成得理想气体,其密度可当成就是均匀得。

若此理想气体得压强为1、35×1014 Pa 。

试估计太阳得温度。

(已知氢原子得质量m = 1、67×10-27 kg ,太阳半径R = 6、96×108 m ,太阳质量M = 1、99×1030 kg )解:mR MVm M mn 3π)3/4(===ρK 1015.1)3/4(73⨯===Mkm R nk p T π8-2 目前已可获得1、013×10-10 Pa 得高真空,在此压强下温度为27℃得1cm 3体积内有多少个气体分子?解:3462310/cm 1045.2103001038.110013.1⨯=⨯⨯⨯⨯===---V kT p nV N 8-3 容积V =1 m 3得容器内混有N 1=1、0×1023个氢气分子与N 2=4、0×1023个氧气分子,混合气体得温度为 400 K ,求: (1) 气体分子得平动动能总与;(2)混合气体得压强。

解:(1)J1014.41054001038.123)(233232321⨯=⨯⨯⨯⨯⨯=+=-∑N N kT t ε (2)Pa kT n p i323231076.21054001038.1⨯=⨯⨯⨯⨯==-∑8-4 储有1mol 氧气、容积为1 m 3得容器以v =10 m/s 得速率运动。

设容器突然停止,其中氧气得80%得机械运动动能转化为气体分子热运动动能。

问气体得温度及压强各升高多少?(将氧气分子视为刚性分子)解:1mol 氧气得质量kg 10323-⨯=M ,5=i 由题意得T R Mv ∆=⋅ν25%80212K 102.62-⨯=∆⇒TT R V p RT pV ∆=⋅∆⇒=ννpa 52.0102.631.82=⨯⨯=∆=∆∴-VTR p 8-5 一个具有活塞得容器中盛有一定量得氧气,压强为1 atm 。

ch10 气体动理论 习题及答案

ch10 气体动理论 习题及答案

第10章 气体动理论 习题及答案1、什么是热力学系统的平衡态?气体在平衡态时有何特征?当气体处于平衡态时还有分子热运动吗?答:一个系统在不受外界影响的条件下,其宏观性质不随时间变化,则称该系统处于平衡态。

平衡态的特征:(1) 系统与外界在宏观上无能量和物质的交换。

(2) 系统的宏观性质不随时间改变。

气体处于平衡态时,气体分子仍然处于无规则的热运动。

2、何谓理想气体的内能?为什么理想气体的内能是温度的单值函数?解:在不涉及化学反应、核反应、电磁变化的情况下,内能是指分子的热运动能量和分子间相互作用势能之总和。

由于理想气体不考虑分子间相互作用能量,质量为m 的理想气体的所有分子的热运动能量称为理想气体的内能.由于理想气体不计分子间相互作用力,内能仅为热运动能量之总和.即RTi M m E 2是温度的单值函数.3、温度概念的适用条件是什么?温度微观本质是什么?答:温度是大量分子无规则热运动的集体表现,是一个统计概念,对个别分子无意义.温度的微观本质是分子平均平动动能的量度. 4、试说明下列各量的物理意义.(1)kT 21(2)kT 23(3)kT i2(4)RTi M m 2(5)RT i 2(6)RT 23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k21T .(2)在平衡态下,分子平均平动动能为kT 23.(3)在平衡态下,自由度为i 的分子平均总能量为kT i2.(4)由质量为m ,摩尔质量为M ,自由度为i 的分子组成的系统的内能为RTi M m 2.(5) 1摩尔自由度为i 的分子组成的系统内能为RT i2.(6) 1摩尔自由度为3的分子组成的系统的内能RT 23,或者说热力学体系内,1摩尔分子的平均平动动能之总和为RT 23.5、最概然速率的物理意义是什么?方均根速率、最概然速率和平均速率各有何用处?答:气体分子速率分布曲线有个极大值,与这个极大值对应的速率叫做气体分子的最概然速率.物理意义是:对所有的相等速率区间而言,在含有P v 的那个速率区间内的分子数占总分子数的百分比最大.分布函数的特征用最概然速率P v 表示;讨论分子的平均平动动能用方均根速率,讨论平均自由程用平均速率.6、速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N为系统总分子数).(1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)⎰vv v f 0d )( (5)⎰∞d )(v v f (6)⎰21d )(v v v v Nf解:)(v f :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间内的分子数占总分子数的百分比.(1) v v f d )(:表示分布在速率v 附近,速率区间v d 内的分子数占总分子数的百分比. (2) v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度. (3) v v Nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数.(4)⎰vv v f 0d )(:表示分布在21~v v 区间内的分子数占总分子数的百分比.(5)⎰∞d )(v v f :表示分布在∞~0的速率区间内所有分子,其与总分子数的比值是1.(6)⎰21d )(v v v v Nf :表示分布在21~v v 区间内的分子数.7、在同一温度下,不同气体分子的平均平动动能相等。

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。

对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。

当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。

由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。

换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。

2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。

3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。

答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。

(2)微观量:描述个别分子运动状态的物理量。

(3)宏观量:表示大量分子集体特征的物理量。

4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。

其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。

可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章 气体动理论 习题及答案1、什么是热力学系统的平衡态?气体在平衡态时有何特征?当气体处于平衡态时还有分子热运动吗?答:一个系统在不受外界影响的条件下,其宏观性质不随时间变化,则称该系统处于平衡态。

平衡态的特征:(1) 系统与外界在宏观上无能量和物质的交换。

(2) 系统的宏观性质不随时间改变。

气体处于平衡态时,气体分子仍然处于无规则的热运动。

2、何谓理想气体的内能?为什么理想气体的内能是温度的单值函数?解:在不涉及化学反应、核反应、电磁变化的情况下,内能是指分子的热运动能量和分子间相互作用势能之总和。

由于理想气体不考虑分子间相互作用能量,质量为m 的理想气体的所有分子的热运动能量称为理想气体的内能.由于理想气体不计分子间相互作用力,内能仅为热运动能量之总和.即RTi M m E 2是温度的单值函数.3、温度概念的适用条件是什么?温度微观本质是什么?答:温度是大量分子无规则热运动的集体表现,是一个统计概念,对个别分子无意义.温度的微观本质是分子平均平动动能的量度. 4、试说明下列各量的物理意义.(1)kT 21(2)kT 23(3)kT i2(4)RTi M m 2(5)RT i 2(6)RT 23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k21T .(2)在平衡态下,分子平均平动动能为kT 23.(3)在平衡态下,自由度为i 的分子平均总能量为kT i2.(4)由质量为m ,摩尔质量为M ,自由度为i 的分子组成的系统的内能为RTi M m 2.(5) 1摩尔自由度为i 的分子组成的系统内能为RT i2.(6) 1摩尔自由度为3的分子组成的系统的内能RT 23,或者说热力学体系内,1摩尔分子的平均平动动能之总和为RT 23.5、最概然速率的物理意义是什么?方均根速率、最概然速率和平均速率各有何用处?答:气体分子速率分布曲线有个极大值,与这个极大值对应的速率叫做气体分子的最概然速率.物理意义是:对所有的相等速率区间而言,在含有P v 的那个速率区间内的分子数占总分子数的百分比最大.分布函数的特征用最概然速率P v 表示;讨论分子的平均平动动能用方均根速率,讨论平均自由程用平均速率.6、速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N为系统总分子数).(1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)⎰vv v f 0d )( (5)⎰∞d )(v v f (6)⎰21d )(v v v v Nf解:)(v f :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间内的分子数占总分子数的百分比.(1) v v f d )(:表示分布在速率v 附近,速率区间v d 内的分子数占总分子数的百分比. (2) v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度. (3) v v Nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数.(4)⎰vv v f 0d )(:表示分布在21~v v 区间内的分子数占总分子数的百分比.(5)⎰∞d )(v v f :表示分布在∞~0的速率区间内所有分子,其与总分子数的比值是1.(6)⎰21d )(v v v v Nf :表示分布在21~v v 区间内的分子数.7、在同一温度下,不同气体分子的平均平动动能相等。

就氢分子和氧分子比较,氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子大,对吗?答:不对,平均平动动能相等是统计平均的结果.分子速率由于不停地发生碰撞而发生变化,分子具有各种可能的速率,因此,一些氢分子的速率比氧分子速率大,也有一些氢分子的速率比氧分子速率小.8、如果盛有气体的容器相对某坐标系运动,容器内的分子速度相对这坐标系也增大了, 温度也因此而升高吗?答:宏观量温度是一个统计概念,是大量分子无规则热运动的集体表现,是分子平均平动动能的量度,分子热运动是相对质心参照系的,平动动能是系统的内动能.温度与系统的整体运动无关.只有当系统的整体运动的动能转变成无规则热运动时,系统温度才会变化.9、题图(a)是氢和氧在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢气? 题图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高?答:图(a)中(1)表示氧,(2)表示氢;图(b)中(2)温度高.题9图 10、下列系统各有多少个自由度: (1)在一平面上滑动的粒子;(2)可以在一平面上滑动并可围绕垂直于平面的轴转动的硬币; (3)一弯成三角形的金属棒在空间自由运动.解:(1) 2,(2)3,(3)611、如果氢和氦的摩尔数和温度相同,则下列各量是否相等,为什么?(1)分子的平均平动动能;(2)分子的平均动能;(3)内能. 解:(1)相等,分子的平均平动动能都为kT 23.(2)不相等,因为氢分子的平均动能kT 25,氦分子的平均动能kT 23.(3)不相等,因为氢分子的内能RT25υ,氦分子的内能RT23υ.12、某柴油机的气缸内充满了空气,压缩前其中空气的温度为47℃,压强为8.61×104Pa 。

当活塞急剧上升时,可把空气压缩到原体积的1/17,此时压强增大到4.25×106Pa ,求此时空气的温度(分别以K 和℃表示)。

解:设空气质量为m ,摩尔质量为M 。

空气被压缩前后均可视为理想气体,则有;111RT Mm V p =,222RT Mm V p =所以13、有一水银气压计,当水银柱为0.76 m 高时,管顶离水银柱液面0.12 m ,管的截面积为2.0×10-4m 2,当有少量氦(He)混入水银管内顶部时,水银柱高下降为0.6 m ,此时温度为27℃,试计算在管顶的氦气质量 (He 的摩尔质量为0.004kg·mol -1)?解:由理想气体状态方程RTMm pV =得RTpV M m =汞的重度 51033.1⨯=Hg d 3m N -⋅ 氦气的压强 Hg )60.076.0(d P ⨯-=氦气的体积 4100.2)60.088.0(-⨯⨯-=V 3m)27273()100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯-⨯=-R d m)27273(31.8)100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯⨯-⨯=-d61091.1-⨯=Kg14、设有N 个粒子的系统,其速率分布如图所示.求 (1)分布函数)(v f 的表达式; (2)a 与0v 之间的关系;(3)速度在1.50v 到2.00v 之间的粒子数. (4)粒子的平均速率.题14图解:(1)从图上可得分布函数表达式⎪⎩⎪⎨⎧≥=≤≤=≤≤=)2(0)()2()()0(/)(00000v v v Nf v v v a v Nf v v v av v Nf ⎪⎩⎪⎨⎧≥≤≤≤≤=)2(0)2(/)0(/)(00000v v v v v Na v v Nv av v f )(v f 满足归一化条件,但这里纵坐标是)(v Nf 而不是)(v f 故曲线下的总面积为N(2)由归一化条件可得⎰⎰==+02032d d v v v v N a N v a N v v av N(3)可通过面积计算 Nv v a N 31)5.12(00=-=∆(4) N 个粒子平均速率⎰⎰⎰⎰+===∞∞202d d d )(1d )(v v v vav v v av v v vNf N v v vf v02020911)2331(1v av av N v =+=15、容器中储有氧气,其压强为p =0.1 MPa( 即1atm ),温度为27℃,求(1)分子数密度n ;(2)氧分子的质量m ;(3)气体密度ρ;(4)分子间的平均距离e ;(5)平均速率v ;(6)方均根速率2v ;(7)分子的平均动能ε.解:(1)由气体状态方程nkT p =得252351045.23001038.110013.1⨯=⨯⨯⨯==-kTp n 3m-(2)氧分子的质量2623mol1032.51002.6032.0-⨯=⨯==N Mm kg(3)由气体状态方程RTM MpV mol=得3.130031.810013.1032.05mol=⨯⨯⨯==RTpMρ 3mkg -⋅(4)分子间的平均距离可近似计算932531044.31045.211-⨯=⨯==ne m(5)平均速率58.446032.030031.860.160.1mol=⨯≈=MRT v 1s m -⋅(6) 方均根速率87.48273.1mol2=≈M RT v1s m -⋅(7) 分子的平均动能20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ16、1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少?解:理想气体分子的能量 RTi E 2υ=平动动能 3=t 5.373930031.823=⨯⨯=t E J 转动动能 2=r 249330031.822=⨯⨯=r E J内能5=i 5.623230031.825=⨯⨯=i E J17、一瓶氧气和一瓶氢气等压、等温,氧气体积是氢气的2倍,求(1)氧气和氢气分子数密度之比;(2)氧分子和氢分子的平均速率之比.解:(1)因为 nkT p =,则1=HO n n(2) 由平均速率公式 mo l60.1M RT v =41mol mol ==OH HO MM v v18、一真空管的真空度约为1.38×10-3 Pa( 即1.0×10-5 mmHg),试 求在27℃时单位体积中的分子数及分子的平均自由程(设分子的有效直径d =3×10-10 m).解:由气体状态方程nkT p =得172331033.33001038.11038.1⨯=⨯⨯⨯==--kT p n 3m -由平均自由程公式 nd 221πλ=5.71033.3109211720=⨯⨯⨯⨯=-πλ m19、(1)求氮气在标准状态下的平均碰撞频率;(2)若温度不变,气压降到1.33×10-4Pa ,平均碰撞频率又为多少(设分子有效直径10-10 m)?解:(1)碰撞频率公式v n d z 22π= 对于理想气体有nkT p =,即 kTp n =所以有 kTp v d z 22π=而 mo l60.1M RT v ≈ 43.4552827331.860.1=⨯≈v 1s m -⋅氮气在标准状态下的平均碰撞频率805201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=-πz 1s-气压下降后的平均碰撞频率123420s714.02731038.11033.143.455102----=⨯⨯⨯⨯⨯⨯=πz20、1mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间(1)气体分子方均根速率之比; (2)分子平均自由程之比.解:由气体状态方程2211T p T p =及 3322V p V p =方均根速率公式m o l273.1MRT v=21212122===p p T T vv 末初对于理想气体,nkT p =,即 kTpn =所以有 pd kT 22πλ=12121==T p p T 末初λλ21、飞机起飞前机舱中的压力计指示为1.0 atm(1.013×105 Pa),温度为27 ℃;起飞后压力计指示为0.8 atm(0.8104×105 Pa),温度仍为27 ℃,试计算飞机距地面的高度.解:气体压强随高度变化的规律:由nkT p =及kTmgzen n 0= RTgz M kTmgz kTmgz ep ep kTen p mol 000---===pp gMRT z 0molln=31096.18.01ln8.90289.030031.8⨯=⨯⨯=z m22、上升到什么高度处大气压强减少为地面的75%(设空气的温度为0℃).解:压强随高度变化的规律 pp gMRT z 0molln=3103.275.01ln8.90289.027331.8⨯=⨯⨯=z m。

相关文档
最新文档