2018中考数学找规律试卷
2018年全国中考数学真题汇编:规律探索
规律探索一、选择题1.(2018·重庆(A)·4 分)把三角形按如图所示的规律拼图案,其中第①个图案中有 4 个三角形,第②个图案中有 6 个三角形,第③个图案中有 8 个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【考点】图形的变化规律【解析】∵第 1个图案中的三角形个数为:2+2=2×2=4;第 2个图案中的三角形个数为:2+2+2=2×3=6;第 3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第 7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
2(2018·台湾·分)若小舒从 1~50的整数中挑选 4个数,使其由小到大排序后形成一等差数列,且 4个数中最小的是 7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出 7,20、33、46为等差数列,进而可得出 20可以出现,选项 A不符合题意;B、找出 7、16、25、34为等差数列,进而可得出 25可以出现,选项 B不符合题意;C、由 30﹣7=23,23为质数,30+23>50,进而可得出 30不可能出现,选项 C符合题意;D、找出 7、21、35、49为等差数列,进而可得出 35可以出现,选项 D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项 A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项 B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项 C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项 D不符合题意.故选:C.。
2018中考数学《规律探索》专题复习试题含解析
规律探索一、选择题1. 如图,将一张等边三角形纸片沿中位线剪成4 个小三角形,称为第一次操作;然后,将其中的一 个三角形按同样方式再剪成 4 个小三角形,共得到7 个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成 4 个小三角形, 共得到 10 个小三角形, 称为第三次操作; , 根据以上操作, 若要得到 100 个小三角形,则需要操作的次数是( )A .25B .33C .34D . 50 【考点】 规律型:图形的变化类.【分析】 由第一次操作后三角形共有 4 个、第二次操作后三角形共有( 4+3)个、第三次操作后三角 形共有( 4+3+3)个,可得第n 次操作后三角形共有4+3( n ﹣ 1)=3n+1 个,根据题意得 3n+1=100, 求得 n 的值即可.【解答】 解:∵第一次操作后,三角形共有 4 个; 第二次操作后,三角形共有 4+3=7 个; 第三次操作后,三角形共有 4+3+3=10 个;,∴第 n 次操作后,三角形共有 4+3( n ﹣ 1) =3n+1 个; 当 3n+1=100 时,解得: n=33, 故选: B .2. 观察图中正方形四个顶点所标的数字规律,可知,数 2016 应标在( )A .第 C .第504 个正方形的左下角 505 个正方形的左上角B.第D.第504 个正方形的右下角505 个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数 2016 在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵ 2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0 在右下角,然后按逆时针由小变大,∴第 504 个正方形中最大的数是2015,∴数 2016 在第 505 个正方形的右下角,故选 D.3 .( 2016. 山东省临沂市, 3 分)用大小相等的小正方形按一定规律拼成下列图形,则第 n 个图形中小正方形的个数是()22A. 2n+1 B . n ﹣ 1 C . n +2n D . 5n ﹣ 2【分析】由第 1 个图形中小正方形的个数是 2 2﹣ 1、第 2 个图形中小正方形的个数是 3 2﹣ 1 、第 3 个图形中小正方形的个数是 4 2﹣ 1,可知第 n 个图形中小正方形的个数是( n+1 )2﹣ 1 ,化简可得答案.【解答】解:∵第 1 个图形中,小正方形的个数是: 22﹣ 1=3 ;第2 个图形中,小正方形的个数是: 3 2﹣ 1=8 ;第3 个图形中,小正方形的个数是: 4 2﹣ 1=15 ;,∴第 n 个图形中,小正方形的个数是:( n+1 )2﹣ 1=n 2+2n+1 ﹣ 1=n 2 +2n ;故选: C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n 个图形中共有三角形的个数为4n﹣ 3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的 4 倍少 3 个三角形,即可得出结果.【解答】解:第①是 1 个三角形, 1=4×1﹣ 3;第②是 5 个三角形, 5=4×2﹣ 3;第③是 9 个三角形, 9=4×3﹣ 3;∴第 n 个图形中共有三角形的个数是4n﹣3;故答案为: 4n﹣ 3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l : y=-43 x,点 A1 坐标为(- 3,0) . 过点 A1 作 x 轴的垂线交直线l 于点 B1,以原点 O为圆心, OB1 长为半径画弧交x 轴负半轴于点A2,再过点A2 作 x 轴的垂线交直线l 于点 B2,以原点 O为圆心, OB2 长为半径画弧交x 轴负半轴于点A3,, ,按此做法进行下去,点A2016 的坐标为.【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】 由直线 l : y=- 4 x 的解析式求出 A1B1 的长,再根据勾股定理,求出 OB1 的长,从而得出 A23的坐标;再把 A 的横坐标代入 y= - 4 x 的解析式求出 A B 的长,再根据勾股定理,求出 OB 的长,从3 2 2 2 2 而得出 A3 的坐标; , ,由此得出一般规律.【解答】 解:∵点 A 1 坐标为(- 3,0),知 O A1=3,把 x=- 3 代入直线 y=- 4 x 中,得y=4 ,即A1B1=4. 3根据勾股定理,OB= 2 1 22 21 1 = 3 4 =5, 1 OA A B∴ A 坐标为(- 5, 0), O A=5;2 24 x 中,得 y=20 ,即 A B = 2把 x=- 5 代入直线 y=- 3 3 3 .2 22 2 2 2 2 根据勾股定理, OB2= A 2 B = ( 20 ) = 253 = 51,2 2 5 OA3 3 2 2∴A3 坐标为(-51 , 0),O A3= 51 ; 3 32把 x=- 51 代入直线 y=- 4x 中,得 y= 100 ,即 A3B3= 100.3 3 9 92 2 25 2 100 23 ( ) ( ) 125 5根据勾股定理, OB = OA A B = = ,3 9 9 = 233 3 3 3 3∴ A4 坐标为(-52, 0), OA4= 52;3 3,,n 1n 1同理可得 An 坐标为(-52, 0), OAn=52 ;n n3 32015∴ A2016 坐标为(-52014, 0)32015故答案为:( - 52014 , 0)3【点评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征 . 解题时,要注意数形结合思想的运用,总结规律是解题的关键 . 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
2018届中考数学专题4 规律探索题 (共28张PPT)
考点·梳理自清
考题·体验感悟
考法·互动研析
类型一
类型二
解:(1)4 17 (2)猜想:(2n+1)2-4n2=2(2n+1)-1.证明如下: 左边=(2n+1)2-4n2=4n2+4n+1-4n2=4n+1, 右边=2(2n+1)-1=4n+2-1=4n+1. 左边=右边, 故(2n+1)2-4n2=2(2n+1)-1.
考点·梳理自清
考题·体验感悟
考法·互动研析
类型一
类型二
例4(2012· 安徽,17)在由m×n(m×n>1)个小正方形组成的矩形网 格中,研究它的一条对角线所穿过的小正方形个数f, (1)当m,n互质(m,n除1外无其他公因数)时,观察下列图形并完成 下表:
考点·梳理自清考题·Fra bibliotek验感悟考法·互动研析
类型一
类型二
解析:(1)1+3+5+7=16=42, 设第n幅图中球的个数为an, 观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…, 故an-1=1+3+5+…+(2n-1)=n2. (2)观察图形发现: 图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行, 即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n1)+…+5+3+1=1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=an2 2 2 1+(2n+1)+an-1=n +2n+1+n =2n +2n+1. 答案:(1)4 n2 (2)2n+1 2n2+2n+1
2018中考数学找规律试卷
中考数学——找规律班级________姓名___________座号_____________一、棋牌游戏问题1.(2017年绍兴)4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张2.(2017年河北省)小明背对小亮,让小亮按下列四个步骤操作:第一步 分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步 从左边一堆拿出两张,放入中间一堆; 第三步 从右边一堆拿出一张,放入中间一堆;第四步 左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是 .3.(2017年泸州)如图(3)所示的象棋盘上,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( )A .(-1,1)B .(-1,2)C .(-2,1)D .(-2,2)4.(2017年江西南昌)图(4)是跳棋盘,其中格点上的黑色点为棋子, 剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为已方一枚棋子,欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步 二、空间想象问题1. (2017年泸州)把正方体摆放成如图(5)的形状,若从上至下依次为第1层,第2层,第3层,……,则第n 层有___个正方体.2.(2017年山东日照)如图(6),都是由边长为1的正方体叠成的图形。
例如第①个图形的表面积为6个平方单位,第②个图形的表面积为18个平方单位,第③个图形的表面积是36个平方单位。
依此规律,则第⑤个图形的表面积 个平方单位。
3.(2017年山东潍坊)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图(7),是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的 .4.(2017年山东青岛).观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图(8)①中:共有1个小立方体,其中1个看得见,0个看不见;如图(8)②中:共有8个小立方体,其中7个看得见,1个看不见;如图(8)③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见...的小立方体有 个. 5. 图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。
2018年 中考数学总复习 规律探究问题 专题综合训练题 含答案和解析
2018年中考数学总复习规律探究问题专题综合训练题含答案和解析依照此规律,第11个数据是.7. 观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24在上述数字宝塔中,从上往下数,2019在第____层.8. 观察下列等式:第1个等式: a1=11+2=2-1,第2个等式:a2=12+3=3-2,第3个等式:a3=13+2=2-3,第4个等式:a4=12+5=5-2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=;(2)a1+a2+a3+…+a n=.9. 观察下列各式:1+13=213,2+14=314,3+15=415,……请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是.10. 如图,在数轴上,点A表示1,现将点A沿轴做如下移动:第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,……按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是____.11. 如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,……依次进行下去,则点A2019的坐标为.12. 在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是.13. 甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,……依次循环反复下去,当报出的数为2019时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是____分.14. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.15. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,试求第2019秒时点P 的坐标. 参考答案: 1. B2. B 【解析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n 个图案中白色纸片数,从而可得关于n 的方程,解方程可得.∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;……∴第n 个图案中白色纸片有1+n ×3=3n +1(张),根据题意得3n +1=2019,解得n =672,故选B.3. D 【解析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为(n +1)(n +2)2+n 2,根据规律求解.通过观察,得到小圆圈的个数分别是:第一个图形为:(1+2)×22 +12=4,第二个图形为:(1+3)×32 +22=6,第三个图形为:(1+4)×42+32=10,第四个图形为:(1+5)×52+42=15,…,所以第n 个图形为:(n +2)(n +1)2 +n 2,当n =7时,(7+2)(7+1)2+72=85,故选D.4. C 【解析】设图形n 中星星的颗数是a n (n 为自然数),观察,发现规律:a 1=1+1,a 2=(1+2)+3,a 3=(1+2+3)+5,a 4=(1+2+3+4)+7,…,∴a n =(1+2+…+n )+(2n -1)=n (n +1)2+2n -1,当n =8时,a 8=8(8+1)2+2×8-1=51,故选C.5. C6. -12211 【解析】根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.∵-2=-21,52,-103,174,-265,…,∴第11个数据是:-112+111=-12211.7. 44 【解析】第一层:第一个数为12=1,最后一个数为22-1=3,第二层:第一个数为22=4,最后一个数为32-1=8,第三层:第一个数为32=9,最后一个数为42-1=15,∵442=1936,452=2025,又∵1936<2019<2025,∴在上述数字宝塔中,从上往下数,2019在第44层. 8. (1)1n +n +1=n +1-n(2) n +1-1【解析】(1)根据题意可知,a 1=11+2=2-1,a 2=12+3=3-2,a 3=13+2=2-3,a 4=12+5=5-2,……由此得出第n 个等式:a n =1n +n +1=n +1-n ;(2) 将每一个等式化简即可求得答案.解:(1)∵第1个等式:a 1=11+2=2-1,第2个等式:a 2=12+3=3-2,第3个等式:a 3=13+2=2-3,第4个等式a 4=12+5=5-2,∴第n 个等式:a n =1n +n +1=n +1-n (2)a 1+a 2+a 3+…+a n =(2-1)+(3-2)+(2-3)+(5-2)+…+(n+1-n)=n+1-19. n+1n+2=(n+1)1n+210. 13【解析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为-17-3=-20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.11. (21008,21009)【解析】写出部分A n点的坐标,根据坐标的变化找出变化规律“A2n+1((-2)n,2(-2)n)(n为自然数)”,依此规律即可得出结论.观察,发现规律:A1(1,2),A2(-2,2),A3(-2,-4),A4(4,-4),A5(4,8),…,∴A2n+1((-2)n,2(-2)n)(n为自然数).∵2019=1008×2+1,∴A2019的坐标为((-2)1008,2(-2)1008)=(21008,21009).12. (2n-1,2n-1)【解析】∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(13. 33614. (63,32)15. 解:∵半圆的半径r=1,∴半圆长度=π,∴第2019秒点P运动的路径长为π2×2019,∵π2×2019÷π=1007…1,∴点P位于第1008个半圆的中点上,且这个半圆在x轴的下方,∴此时点P的横坐标为1008×2-1=2019,纵坐标为-1,∴点P(2019,-1)。
2018中考数学规律探索题(中考找规律题目-有答案)
中考规律探索1以下为全部整理类型,规律探索共两套试题,供参考学习使用•选择题(1) , (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27,A . (45, 77)B . (45, 39)C . ( 32, 46)D . ( 32, 23)3.下表中的数字是按一定规律填写的,表中 a 的值应是1 2 3 5 813a235813 21 344.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm 2,第(2)个图形的面积为8 cm 2,5. 如图,动点P 从(0, 3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点A 、(1 , 4)B 、(5, 0)C 、(6, 4)D 、( 8, 3)6.如图,下列各图形中的三个数之间均具有相同的规律 •根据此规律,图形中M 与m 、n 的关系是1.观察下列等式: 1 2 3 4 5 6 73 = 3, 3 = 9, 3 = 27, 3 = 81, 3 = 243, 3 = 729, 3 = 2187…解答下列冋题: 3 + 32 + 33+ 34…+ 32013的末位数字是()A . 0B . 1C . 3D . 7 29, 31),…,现用等式 A M = (i , j )表示正奇数M 是第i 组第j 个数(从左往右数) ,如 A 7= ( 2 , 3),贝U A 2013=() 2.把所有正奇数从小到大排列,并按如下规律分组:2D . 256 cm第(3)个图形的面积为18 cm 2,,第(10)个图形的面积为()2013次碰到矩形的边时,点 P 的坐标为(A. M=mnB. M=n (m+1)C. M=mn+1D. M=m(n+1)7.我们知道,一元二次方程 x ^-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”使其满足i ^-1(即方程x ^-1有一个根为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则.填空题2.如图,在直角坐标系中,已知点 A (- 3, 0 )、B( 0,4),对厶OAB 连续作旋转变换,依次得到 △ 1、△ 2、△ 3、△4…,3.如图,正方形 ABCD 的边长为1,顺次连接正方形 ABCD 四边的中点得到第一个正方形 A 1B 1C 1D 1,由顺次连接正方 形A 1B 1C 1D 1四边的中点得到第二个正方形A 2B 2C 2D 2…,以此类推,则第六个正方形A 6B 6C 6D 6周长是 _____1.观察下列图形中点的个数, 若按其规律再画下去,可以得到第 n 个图形中所有的个数为 (用含n 的代数式表示). 则△ 2013仍然成立,于是有 i 1=i, i 2- -1.3.2 42、2i i i = ( -1).1 - -I, i (i )=(_ 1)2 = 1.从而对任意正整数 n ,我们可得到i4n 1=i 4n.i =(i4)n.i =i,同理可得4 n 4 n 4 ni 二 1,1=1,1 =1,那么,23420122013i i - i • i • •• i - i 的值为C . -18下列图形都是由同样大小的棋子按 定的规律组成,其中第①个图形有 1颗棋子,第②个图形一共有 6颗棋子,第③个图形一共有 16颗棋子,…,则第⑥个图形中棋子的颗数为(图① 图② 图③(第 8题图)A . 5170 C . 76 814•直线上有2013个点,我们进行如下操作:在每相邻两点间插入 1个点,经过3次这样的操作后,直线上共有个占I 八、、•个五边形数是10.观察下列各式的计算过程:5X 5=0X 1X 100+25 , 15X 15=1 X 2X 100+25 , 25X 25=2 X 3X 100+25 , 35X 35=3 X 4X 100+25 ,请猜测,第 n 个算式(n 为正整数)应表示为 _________________________________ 11 •将连续的正整数按以下规律排列,则位于第7行、第7列的数x 是 _________5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数•例如:称图中的数1, 5, 12, 22…为五边形数, 则第 68 如图 12, 一段抛物线:y = — x(x — 3) (0$<3),记为 C1,将C1绕点A1旋转180°得C2,交x 轴于点A2; 将C2绕点A2旋转180°得C3,交x 轴于点A3;如此进行下去,直至得 C13.若P (37, m )在第13段抛物线C13上,贝U m = _________9•直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个占I6 •如图,是用火柴棒拼成的图形,则第 n 个图形需 _____________ 根火柴棒._______ 个正方形;13•将一些半径相同的小圆按如图所示的规律摆放:第 1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆,……,依次规律,第 6个图形有 __________ 个小圆.0 O OOG O ooo0 Q0000 0 0090040 OO044^0 Q QO Q 0 06000 OOOOO第1个團形 第2个图形 第3个图形 第4个图形14.已知一组数 2, 4, 8, 16, 32,-• •,按此规律,则第 n 个数是15、我们知道, 经过原点的抛物线的解析式可以是 y = 2ax + bx (a 丰0)(1) 对于这样的抛物线:当顶点坐标为(1, 1)时,a = ________________ ;当顶点坐标为(m , m ), m ^ 0时,a 与m 之间的关系式是 _______________ ;(2)继续探究,如果0,且过原点的抛物线顶点在直线 y = kx(k z 0)上,请用含k 的代数式表示b ;(3)现有一组过原点的抛物线,顶点 A 1, A 2,…,A n 在直线y = x 上,横坐标依次为1, 2,…,n(为正整数,且n W 12),分别过每个顶点作x 轴的垂线,垂足记为B 1, B 2,…,B n ,以线段A n B n 为边向右作正方形 A n B nC nD n ,若这组抛物线中有一条经过D n ,求所有满足条件的正方形边长. 16.如图,所有正三角形的一边平行于 x 轴,一顶点在y 轴上,从内到外,它们的边长依次为2, 4, 6, 8,…,顶点依第一列第二列第S 第]行 1 3 6 第2行 2 5 9第3行 4 3 13 第4行 7 U 18 第5行 11 17 24第6行 16 23第7行 22……第四列 第五列 第六列 第七列10 15 21 281420 2719262512、如下图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有 5个正方形;……按这样的规律下去,则第( 6)幅图中含有次用A、A、A、A、…表示,其中AA2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A 的坐标是, A22的坐标是___________ .17. 如图,已知直线I : y=——x ,过点A (0, 1)作y 轴的垂线交直线I 于点B ,过点B 作直线I 的垂线交y 轴于点A 仁3过点A i 作y 轴的垂线交直线I 于点B i ,过点B i 作直线I 的垂线交y 轴于点A ?;……按此作法继续下去,则点 A 2013的坐标为 _______________ .18、如图,在平面直角坐标系中,一动点从原点 0出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 119.当白色小正方形个数 n 等于1, 2, 3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第 n 个图形中白色小正方形和黑色小正方形的个数总和等于 __________________ •(用n 表示,n 是正整数)20. (2013?衢州4分)如图,在菱形ABCD 中,边长为10, Z A=60 °顺次连结菱形 ABCD 各边中点,可得四边形 A 1B 1C 1D 1; 顺次连结四边形 A 1B 1C 1D 1各边中点,可得四边形 A 2B 2C 2D 2;顺次连结四边(0, 1), A 2 ( 1, 1), A 3 (1, 0), A 4 (2, 0),…那么点A 4n +1 (n 为自然数)的坐标为(用n 表示)J ------ ----------11 '---------—1i---------------------------(第17题圏)A形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是A 2013B 2013C2013D 2013 的周长是21. 一组按规律排列的式子:a4 6 82,a,—,—,…则第n个式子是_________________3 5 722.观察下面的单项式:a, 2a2, 4a3,- 8a4, ••根据你发现的规律,第8个式子是23.如图,已知直线I: y ';x,过点M (2, 0)作x轴的垂线交直线I于点N,过点N作直线I的垂线交过点M i作x轴的垂线交直线I于N i,过点N i作直线I的垂线交x轴于点M2,…;按此作法继续下去,则. x轴于点M1;' M io的坐标24.为庆祝六?一”儿童节,某幼儿园举行用火柴棒摆金鱼”比赛•如图所示:按照上面的规律,摆第(的根数为n) 图,需用火柴棒(1)(2)T 四边形A n B n C n D n 是正方形5+皿2na2n-1 ( n 为正整数)选择题: 1、C 2、 C 3、 21 4、 B 5、 D6、D7、 D8、 C 填空题: 1、 (n+1) 22、(8052,0)3、0.54160975、516、2n+17、10140498、 29、 16097 10、[10(n-1)+5]2=100 n(n-1)+2511、 8512、 91 13、 4614、 2n15、(1) —1; a =— 1—(或 am +1 = 0);m(2)解: •/ 0• b = 2k•••点D n 的坐标为(2n ,n )答案(3)解:•••顶点A n 在直线y = x 上£4a—1 (2n)2+ 2x 2n = n ty = ax 2+ bx = a(x + —)22a 顶点坐标为b 2) 4a•••可设A n 的坐标为(n , n ),点D n 所在的抛物线顶点坐标为(t ,t ) 4n = 3t•••顶点在直线 y = kx 上4a由(1) ( 2)可得,点D n 所在的抛物线解析式为y =— 1 x 2 + 2xt■/ t 、n 是正整数,且 t < 12, n W 12n = 3, 6 或 9.满足条件的正方形边长为 3, 6或••• 016、(0,爲 ), (一 8, —8).17、0,42013 或 0,24026(注:以上两答案任选一个都对)18、 (2n , 1)19、n 2+4n20、 20; 2打T21、22、 -128a 823、 (884736,0)24、 6n+2规律探索21、我们平常用的数是十进制数, 如26 39=2X 103+6X 102+3X 101+9X 100,表示十进制的数要用 10个数码(又叫数字):0,1、2, 3,4, 5, 6, 7,8, 9。
2018年九年级数学中考专题--探索规律题 精炼卷(含答案)
九年级数学中考专题--探索规律题精炼卷一、选择题:1.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是()A.2015 B.1036 C.518 D.2592.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处3.观察下列关于x的单项式,探究其规律:2x,-4x2,6x3,-8x4,10x5,-12x6,…,按照上述规律,第2016个单项式是()A.2016x2016B.-2016x2016C.-4032x2016D.4032x20164.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:按照上述规律排下去,那么第100行从左边数第5个数是( )A.-4955 B.4955 C.-4950 D.49505.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2016次得到的结果为( )A.1 B.2 C.3 D.46.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3 B.6 C.4 D.27.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2016B2016C2016D2016的边长是( )A.()2015B.()2016C.()2016D.()20158.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A.43 B.45 C.51 D.539.如图,已知Rt△ABC的面积为1,D是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD11于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n等于( )A.B.C.D.10.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85二、填空题:11.如图,在平面直角坐标系中有一菱形OABC且∠A=120°,点O、B在y轴上,OA=1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3……,连续翻转2017次,则B2017的坐标为__ ______.12.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.13.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2015个正方形的边长 .14.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数,-2017应排在A.B、C、D、E中的位置.15.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3┅按如图放置,其中点A 1、A 2、A 3┅在x 轴的正半轴上,点B 1、B 2、B 3┅在直线y=﹣x+2上,则点A 3的坐标为 ,则点A n 的坐标为 .16.观察下列等式:在上述数字宝塔中,从上往下数,2016在第 层.17.如图,依次以三角形、四边形、…、n 边形的各顶点为圆心画半径为1的圆,且圆与圆之间两两不相交.把三角形与各圆重叠部分面积之和记为S 3,四边形与各圆重叠部分面积之和记为S 4,….n 边形与各圆重叠部分面积之和记为S n .则S 2017的值为 .(结果保留π)18.如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C=1,tan ∠BA 2C=31, tan ∠BA 3C=71,计算tan ∠BA 4C=________,…按此规律,写出tan ∠BA n C=________(用含n 的代数式表示).19.按一定的规律排列的一列数为则第n 个数为 .20.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=+1;将位置②的三角形绕点P2顺时针旋转到位置③可得到点P3时,AP3=+2…按此规律继续旋转,直至得到点P2026为止,则AP2016= .参考答案1.答案为:C.2.答案为:C.3.答案为:C4.答案为:B5.答案为:B6.答案为:D7.答案为:D8.答案为:C9.答案为:A.10.答案为:D11.答案为:(1345.5,)12.答案为:.13.答案为:2.14.答案为:-29,A;15.答案是:(,0),(,0)16.答案为:4417.答案为:1007.5π18.答案为:,.19.答案为:20.答案为:1344+672.。
2018中考数学《规律探索》专题复习试题含解析
2018中考数学《规律探索》专题复习试题含解析D故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.【解答】解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-34x,点A1坐标为(-3,0).过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-34x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-34x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解答】解:∵点A1坐标为(-3,0),知O A1=3,把x=-3代入直线y=-34x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1=BAOA11122+=4322+=5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-34x中,得y=320,即A2B2=320.根据勾股定理,OB2=BAOA22222+=)(532022+=325=3512,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-34x中,得y=9100,即A3B3=9100.根据勾股定理,OB3=BAOA33322+=)()(910032522+=9125=3523,∴A4坐标为(-3523,0),O A4=3523;……同理可得An坐标为(-3521--nn,0),O A n=3521--nn;∴A2016坐标为(-3520142015,0)故答案为:(−3520142015,0)【点评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
2018中考数学题----找规律
-4-
21、下面的图形是由边长为 l 的正方形按照某种规律排列而组成的. (1)观察图形,填写下表: 图形 正方形的个数 图形的周长 ① 8 18 ② ③
(2)推测第 n 个图形中, 正方形的个数为________, 周长为______(都用含 n 的代数式表示). 22、观察下图,我们可以发现:图⑴中有 1 个正方形;图⑵中有 5 个正方形,图⑶中共有 14 个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
15、图 1 是棱长为 a 的小正方体,图 2、图 3 由这样的小正方体摆放而成.按照这样的方 法继续摆放,由上而下分别叫第一层、第二层、…、第 n 层,第 n 层的小正方体的个数 为 s.解答下列问题:
图1
图2
-3-
图3
(1)按照要求填表:
n s
1 1
2 3
3 6
4
… …
(2)写出当 n=10 时,s=
)
-5-
A. <1>和<2>
B. <2>和<3>
C. <2>和<4>
D. <1>和<4>
26、某体育馆用大小相同的长方形木块镶嵌地面,第 1 次铺 2 块,如图 1;第 2 次把第 1 次铺的完全围起来,如图 2;第 3 次把第 2 次铺的完全围起来,如图 3;…依此方法, 第 n 次铺完后,用字母 n 表示第 n 次镶嵌所使用的木块块数为 正整数) . (n 为
……
①1=12; ②1+3=22; ③1+3+5=32
④
;
⑤
;
;
……
(2)通过猜想写出与第 n 个点阵相对应的等式_____________________。
2018年中考数学真题分类汇编第一期专题36规律探索试题含解析
规律探索一、选择题1.(2018·重庆(A)·4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【考点】图形的变化规律【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
2(2018·台湾·分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.3(2018·广东广州·3分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C.D.【答案】A【考点】探索图形规律【解析】【解答】解:依题可得:A2(1,1),A4(2,0),A8(4,0),A12(6,0)……∴A4n(2n,0),∴A2016=A4×504(1008,0),∴A2018(1009,1),∴A2A2018=1009-1=1008,∴S△=×1×1008=504().故答案为:A.【分析】根据图中规律可得A4n(2n,0),即A2016=A4×504(1008,0),从而得A2018(1009,1),再根据坐标性质可得A2A2018=1008,由三角形面积公式即可得出答案.4 (2018四川省绵阳市)将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29… … … … … …根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633【答案】A【考点】探索数与式的规律【解析】【解答】解:依题可得:第25行的第一个数为:1+2+4+6+8+……+2×24=1+2× =601,∴第25行的第第20个数为:601+2×19=639.故答案为:A.【分析】根据规律可得第25行的第一个数为,再由规律得第25行的第第20个数.5.(2018年湖北省宜昌市3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题1(2018年四川省内江市)如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1=﹣.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,推出=××=,S1=,S2=,可得S1+S2+S3+…+S n﹣1=(S△AOB﹣n).【解答】解:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴=××=,S1=,S2=,∴S1+S2+S3+…+S n﹣1=(S△AOB﹣n)=×(﹣n×)=﹣.故答案为﹣.【点评】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.2(2018•广西桂林•3分)将从1开始的连续自然数按右图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)【解析】分析:由表格数据排列可知,4个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用2018除以4,商确定所在的行数,余数确定所在行的序数,然后解答即可.详解:2018÷4=504⋯⋯2.∴2018在第505行,第2列,∴自然数2018记为(505,2).故答案为:(505,2).点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.3(2018•河北•6分)如图,作平分线的反向延长线,现要分别以,,为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以为内角,可作出一个边长为1的正方形,此时,而是(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图所示.图中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.4(2018·广东·3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.5(2018·浙江临安·3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= 109 .【考点】等式的变化规律【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.6(2018·浙江衢州·4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【考点】坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.7(2018·四川自贡·4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055 个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.8(2018•湖北荆门•3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018= 63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.9(2018•甘肃白银,定西,武威•3分)如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【答案】1【解析】【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】当x=625时,当x=125时,=25,当x=25时,=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,…(2018−3)÷2=1007…1,即输出的结果是1,故答案为:1.【点评】考查代数式的求值,找出其中的规律是解题的关键.10. (2018•山东滨州•5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.11.(2018·山东泰安·3分)观察“田”字中各数之间的关系:则c的值为270或28+14 .【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8 数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.12.(2018·山东威海·3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a, a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.13.(2018·山东潍坊·3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.14. (2018•山东枣庄•4分)将从1开始的连续自然数按以下规律排列:则2018在第45 行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.15. (2018•山东淄博•4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018 .【考点】37:规律型:数字的变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.16(2018•四川成都•3分)已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,________.【答案】【考点】探索数与式的规律【解析】【解答】解:∵,∴S2=- -1=∵,∴S3=1÷()=∵,∴S4=-()-1=∴S5=-a-1、S6=a、S7= 、S8= …∴2018÷4=54 (2)∴S2018=故答案为:【分析】根据已知求出S2= ,S3= ,S4= 、S5=-a-1、S6=a、S7= 、S8= …可得出规律,按此规律可求出答案。
2018年全国中考数学真题汇编:规律探索
规律探索一、选择题1.(2018·重庆(A)·4 分)把三角形按如图所示的规律拼图案,其中第①个图案中有 4 个三角形,第②个图案中有 6 个三角形,第③个图案中有 8 个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【考点】图形的变化规律【解析】∵第 1个图案中的三角形个数为:2+2=2×2=4;第 2个图案中的三角形个数为:2+2+2=2×3=6;第 3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第 7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
2(2018·台湾·分)若小舒从 1~50的整数中挑选 4个数,使其由小到大排序后形成一等差数列,且 4个数中最小的是 7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出 7,20、33、46为等差数列,进而可得出 20可以出现,选项 A不符合题意;B、找出 7、16、25、34为等差数列,进而可得出 25可以出现,选项 B不符合题意;C、由 30﹣7=23,23为质数,30+23>50,进而可得出 30不可能出现,选项 C符合题意;D、找出 7、21、35、49为等差数列,进而可得出 35可以出现,选项 D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项 A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项 B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项 C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项 D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.3(2018·广东广州·3分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n 次移动到,则△的面积是()A.504B.C.D.【答案】A【考点】探索图形规律【解析】【解答】解:依题可得:A2(1,1),A4(2,0),A8(4,0),A12(6,0)……∴A2n,0),4n(∴A(1008,0),2016=A4×504∴A1009,1),2018(=1009-1=1008,∴A2A2018∴S△= ×1×1008=504().故答案为:A.2n,0),即A2016=A4×504(1008,0),从而得A2018(1009,1),再根据坐标性质【分析】根据图中规律可得A4n(可得A=1008,由三角形面积公式即可得出答案.2A20184 (2018四川省绵阳市)将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29………………根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633【答案】A【考点】探索数与式的规律【解析】【解答】解:依题可得:第25行的第一个数为:1+2+4+6+8+……+2×24=1+2×=601,∴第25行的第第20个数为:601+2×19=639.故答案为:A.【分析】根据规律可得第25行的第一个数为,再由规律得第25行的第第20个数.5.(2018年湖北省宜昌市3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题1(2018年四川省内江市)如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点分别为 PP2,P3,…,P n﹣1,过每个分点作 x轴的垂线分别交直线 AB于点 T1,T2,T3,…,T n﹣1,用 S1,1,S2,S3,…,S n﹣1分别表示 Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则 S1+S2+S3+…+S n﹣1= ﹣.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.⊥OB于 M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形 OMT1P1是矩形,【分析】如图,作 T1M四边形 PP2是矩形,推出= ××= ,S1= ,S2= ,1NT2+S3+…+S n﹣1= (S△AOB﹣n ).可得 S1+S2【解答】解:如图,作 T⊥OB于 M,T2N⊥P1T1.1M≌△T1T2N≌△T n﹣1A,四边形 OMT1P1是矩形,四边形 P1NT2P2是矩形,由题意可知:△BT1M,S2= ,∴= ××= ,S1=∴S+S3+…+S n﹣1= (S△AOB﹣n )= ×(﹣n×)= ﹣.1+S2故答案为﹣.【点评】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积2(2018•广西桂林•3分)将从 1开始的连续自然数按右图规律排列:规定位于第 m行,第 n列的自然数 10记为(3,2),自然数 15记为(4,2)......按此规律,自然数 2018记为__________【答案】(505,2)【解析】分析:由表格数据排列可知,4个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用 2018除以 4,商确定所在的行数,余数确定所在行的序数,然后解答即可.详解:2018÷4=504⋯⋯2.∴2018在第 505行,第 2列,∴自然数 2018记为(505,2).故答案为:(505,2).点睛:本题是对数字变化规律的考查,观察出实际有 4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.3(2018•河北•6分)如图10 1,作BPC 平分线的反向延长线PA ,现要分别以APB ,APC ,BPC 为内角作正多边形,且边长均为 1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC 为内角,可作出一个边长为 1的正方形,此时BPC 90,而90 452 是360(多边形外角和)的18,这样就恰好可作出两个边长均为 1的正八边形,填充花纹后得到一个符合要求的图案,如图10 2 所示.图10 2 中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.4(2018·广东·3分)如图,已知等边△OA1B1,顶点 A1在双曲线 y= (x>0)上,点 B1的坐标为(2,0).过B1作 B1A2∥OA1交双曲线于点 A2,过A2作 A2B2∥A1B1交 x轴于点 B2,得到第二个等边△B1A2B2;过B2作 B2A3∥B1A2交双曲线于点 A3,过A3作 A3B3∥A2B2交 x 轴于点 B3,得到第三个等边△B2A3B3;以此类推,…,则点 B6的坐标为(2 ,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出 B2、B3、B4的坐标,得出规律,进而求出点 B6的坐标.【解答】解:如图,作 A2C⊥x轴于点 C,设 B1C=a,则 A2C= a,OC=OB1+B1C=2+a,A2(2+a,a).∵点 Ay= (x>0)上,2在双曲线∴(2+a)•a= ,解得 a= ﹣1,或 a=﹣﹣1(舍去),∴OB+2B1C=2+2 ﹣2=2 ,2=OB12 ,0);∴点 B2的坐标为(作 A⊥x轴于点 D,设 B2D=b,则 A3D= b,3DOD=OB2+B2D=2 +b,A2(2 +b,b).y= (x>0)上,∵点 A3在双曲线∴(2 +b)•b= ,解得 b=﹣+ ,或 b=﹣﹣(舍去),+2B2D=2 ﹣2 +2 =2 ,∴OB3=OB2∴点 B2 ,0);3的坐标为(2 ,0)即(4,0);同理可得点 B4的坐标为(…,∴点 B2 ,0),n的坐标为(2 ,0).∴点 B6的坐标为(故答案为(2 ,0).B3、B4的坐标进而【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出 B2、得出点 Bn的规律是解题的关键.5(2018·浙江临安·3分)已知:2+ =22×,3+ =32×,4+ =42×,5+ =52×,…,若10+ =102 ×符合前面式子的规律,则 a+b= 109 .【考点】等式的变化规律【分析】要求 a+b的值,首先应该认真仔细地观察题目给出的 4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知= ,∵10+ =102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.6(2018·浙江衢州·4 分)定义:在平面直角坐标系中,一个图形先向右平移 a 个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.C1就是如图,等边△ABC的边长为 1,点 A在第一象限,点 B与原点 O重合,点 C在 x轴的正半轴上.△A1B1△ABC经γ(1,180°)变换后所得的图形.C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,若△ABC经γ(1,180°)变换后得△A1B1180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△AC n,则点 A1的坐标是(﹣,﹣),点 A2018的坐标n B n是(﹣,)【考点】坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移 n个单位变换,再进行关于原点作中心对称变换.向右平移 n个单位变换就是横坐标加 n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移 n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△AC2,A2坐标(﹣,)2B2△A2B2C2经γ(3,180°)变换后得△AC3,A3坐标(﹣,﹣)3B3△A3B3C3经γ(3,180°)变换后得△AC4,A4坐标(﹣,)4B4依此类推……3次变换为一个周期,纵坐标为可以发现规律:An横坐标存在周期性,每当 n=2018时,有 2018÷3=672余 2所以,A,纵坐标为2018横坐标是﹣故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.7(2018·四川自贡·4 分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055 个○.【分析】每个图形的最下面一排都是 1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第 1个图形共有:1+1×3,第 2个图形共有:1+2×3,第 3个图形共有:1+3×3,…,第 n个图形共有:1+3n,∴第 2018个图形共有 1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.8(2018•湖北荆门•3分)将数1 个1,2 个,3 个,…,n 个(n 为正整数)顺次排成一列:1,,a2= ,a3= ,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,,…,记 a1=1S n=a1+a2+…+a n,则 S2018= 63 .【分析】由 1+2+3+…+n= 结合+2=2018,可得出前 2018 个数里面包含:1 个 1,2 个,31+2×+3×+…+63×+2×=63 ,此题得解.个,…,63个,2个,进而可得出 S2018=1×【解答】解:∵1+2+3+…+n=,+2=2018,∴前 2018个数里面包含:1个 1,2个,3个,…,63个,2个,1+2×+3×+…+63×+2×=1+1+…+1+ =63 .∴S2018=1×故答案为:63 .【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前 2018 个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.9(2018•甘肃白银,定西,武威•3分)如图是一个运算程序的示意图,若开始输入的值为 625,则第 2018 次输出的结果为__________.【答案】1【解析】【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】当 x=625时,当 x=125时, =25,当 x=25时, =5,当 x=5时, =1,当 x=1时,x+4=5,当 x=5时, =1,当 x=1时,x+4=5,当 x=5时, =1,…(2018−3)÷2=1007…1,即输出的结果是 1,故答案为:1.【点评】考查代数式的求值,找出其中的规律是解题的关键.10. (2018•山东滨州•5分)观察下列各式:=1+ ,=1+ ,=1+ ,……请利用你所发现的规律,计算+ + +…+ ,其结果为9 .【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+ + +…+=1+ +1+ +1+ + (1)=9+(1﹣+ ﹣+ ﹣+…+ ﹣)=9+=9 .故答案为:9 .【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.11.(2018·山东泰安·3分)观察“田”字中各数之间的关系:则 c的值为270或 28+14 .【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7 等奇数,此位置数为15 时,恰好是第8个奇数,即此“田”字为第 8 个.观察每个“田”字左下角数据,可以发现,规律是 2,22,23,24 等,则第 8 数为 28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大 0,2,4,6等,到第 8个图多 14.则 c=28+14=270故应填:270或 28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.12.(2018·山东威海·3分)如图,在平面直角坐标系中,点 A1的坐标为(1,2),以点 O为圆心,以 OA1B1点作 B1A2∥y轴,交直线 y=2x于点 A2,以 O为圆心,以 OA2长为长为半径画弧,交直线 y= x于点 B1.过半径画弧,交直线 y= x于点 BB2作 B2A3∥y轴,交直线 y=2x于点 A3,以点 O为圆心,以 OA3长为半2;过点B3点作 B3A4∥y轴,交直线 y=2x于点 A4,以点 O为圆心,以 OA4长为半径径画弧,交直线 y= x于点 B3;过…按照如此规律进行下去,点 B2018的坐标为(22018,22017).画弧,交直线 y= x于点 B4,【分析】根据题意可以求得点 BA2的坐标,点 B2的坐标,然后即可发现坐标变化的规律,从而1的坐标,点可以求得点 B2018的坐标.【解答】解:由题意可得,点 A1,2),1的坐标为(a,a),设点 B1的坐标为(,解得,a=2,2,1),∴点 B1的坐标为(2,4),点 B2的坐标为(4,2),同理可得,点 A2的坐标为(点 A4,8),点 B3的坐标为(8,4),3的坐标为(……22018,22017),∴点 B2018的坐标为(故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.13.(2018·山东潍坊·3 分)如图,点 A1的坐标为(2,0),过点A1作 x 轴的垂线交直线 l:y= x 于点B1,以原点 O为圆心,OB1的长为半径画弧交 x轴正半轴于点 A2;再过点 A2作 x轴的垂线交直线 l于点 B2,以原点 O 为圆心,以 OBx 轴正半轴于点 A3;….按此作法进行下去,则的2的长为半径画弧交长是.B1点的坐标求出 A2点的坐标,得出 B2的坐标,以【分析】先根据一次函数方程式求出 B1点的坐标,再根据此类推总结规律便可求出点 A2019的坐标,再根据弧长公式计算即可求解,.2,0),过点 A1作 x轴的垂线交直线于点 B1可知 B1点的坐标为(2,【解答】解:直线 y= x,点A1坐标为(2 ),以原 O为圆心,OBx轴于点 A2,OA2=OB1,1长为半径画弧OA2= =4,点 A2的坐标为(4,0),这种方法可求得 B4,4 ),故点A3的坐标为(8,0),B3(8,8 )2的坐标为(22019,0),以此类推便可求出点 A2019的坐标为(则的长是= .故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.14. (2018•山东枣庄•4分)将从 1开始的连续自然数按以下规律排列:第 1行 1第 2行 2 3 4第 3行9 8 7 6 5第 4行10 11 12 13 14 15 16第 5行25 24 23 22 21 20 19 18 17…则 2018在第45 行.【分析】通过观察可得第 n行最大一个数为 n2,由此估算 2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第 45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.15. (2018•山东淄博•4分)将从 1 开始的自然数按以下规律排列,例如位于第 3 行、第 4 列的数是 12,则位于第 45行、第 8列的数是2018 .【考点】37:规律型:数字的变化类.【分析】观察图表可知:第 n行第一个数是 n2,可得第 45行第一个数是 2025,推出第 45行、第 8列的数是 2025﹣7=2018;【解答】解:观察图表可知:第 n行第一个数是 n2,∴第 45行第一个数是 2025,∴第 45行、第 8列的数是 2025﹣7=2018,故答案为 2018.【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.1 6(2018•四川成都•3分)已知,,,,,,…(即当为大于 1 的奇数时,;当为大于 1 的偶数时,),按此规律,________.【答案】【考点】探索数与式的规律-1=【解析】【解答】解:∵,∴S2=-()=∵,∴S3=1÷()-1=∵,∴S4=-、S6=a、S7= 、S8= …∴S5=-a-1∴2018÷4=54 (2)∴S2018=故答案为:,S3= ,S4= 、S5=-a-1、S6=a、S7= 、S8= …可得出规【分析】根据已知求出 S2=律,按此规律可求出答案。
2018年中考数学真题分类汇编(第三期)专题36规律探索试题(含解析)
规律探索一.选择题1. (2018·广西贺州·3分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A.()n﹣1 B.2n﹣1C.()n D.2n【解答】解:第一个正方形的面积为1=20,第二个正方形的面积为()2=2=21,第三个正方形的边长为22,…第n个正方形的面积为2n﹣1,故选:B.2. (2018·广西梧州·3分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999 B.10000 C.10001 D.10002【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可.【解答】解:∵第奇数个数2=12+1,10=32+1,26=52+1,…,第偶数个数3=22﹣1,15=42﹣1,25=62﹣1,…,∴第100个数是1002﹣1=9999,故选:A.【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.3.(2018·重庆市B卷)(4.00分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.4.(2018·辽宁省阜新市)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=.∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),…,发现是8次一循环,所以2018÷8=252…余2,∴点B2018的坐标为(﹣1,1)故选D.二.填空题1. (2018·湖北江汉·3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1.P2.P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1.P2.P3作x轴的垂线段,垂足分别为点C.D.E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9.S2=×3×=、S3=××=、……∴S2018=,故答案为:.2. (2018·湖北荆州·3分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是5,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.3. (2018·湖北十堰·3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B. C.5 D.【分析】由图形可知,第n行最后一个数为=,据此可得答案.【解答】解:由图形可知,第n行最后一个数为=,∴第8行最后一个数为==6,则第9行从左至右第5个数是=,故选:B.【点评】本题主要考查数字的变化类,解题的关键是根据题意得出第n行最后一个数为.4.(2018·辽宁省葫芦岛市) 如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2.A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3.A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为()2n﹣2×.(用含正整数n的代数式表示)【解答】解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.5.(2018·辽宁省抚顺市)(3.00分)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为(21010﹣2,21009).【分析】由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,点O2018的纵坐标为21009,可得21009=x+1,同侧x=21010﹣2,可得点O2018的坐标为(21010﹣2,21009).【解答】解:由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,∵点O2018的纵坐标为21009,∴21009=x+1,∴x=21010﹣2,∴点O2018的坐标为(21010﹣2,21009).故答案为(21010﹣2,21009).【点评】本题考查规律型:点的坐标,一次函数的应用,解题的关键是学会探究规律的方法,灵活运用所学知识解决问题,属于中考常考题型.6. (2018•广安•3分)为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是1024 .【分析】根据题意可得每次挑选都是去掉偶数,进而得出需要挑选的总次数进而得出答案.【解答】解:∵将这些金蛋按1﹣2018的顺序进行标号,第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,∴剩余的数字都是偶数,是2的倍数,;∵他将剩下的金蛋在原来的位置上又按1﹣1009编了号,又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋,∴剩余的数字为4的倍数,以此类推:2018→1009→504→252→126→63→31→15→7→3→1共经历10次重新编号,故最后剩余的数字为:210=1024.故答案为:1024.【点评】此题主要考查了推理与论证,正确得出挑选金蛋的规律进而得出挑选的次数是解题关键.7. (2018·湖北咸宁·3分)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为_____.【答案】【解析】【分析】根据数列得出第n个数为,据此可得前2018个数的和为,再用裂项求和计算可得.【详解】由数列知第n个数为,则前2018个数的和为===1﹣=,故答案为:.【点睛】本题考查了规律题、有理数的加减混合运算等,熟练掌握有理数混合运算的法则以及得出第n个数为是解题的关键.8.(2018·江苏常州·2分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是15a16.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.三.解答题1.(2018·辽宁大连·9分)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为:625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为:a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为:900.。
初三数学中考复习:规律探究(含答案)
探究数字或算式的变化规律1.(2018·云南)按一定规律排列的单项式:a ,-a 2,a 3,-a 4,a 5,-a 6…第n个单项式是 ( C ) A .a n B .-a n C .(-1)n+1a n D .(-1)n a n 2.(2018·武汉)D ) A .2 019 B .2 018 C .2 016 D .2 0133.(2018·德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图 的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )8的展开式中从左起第四项的系数为 ( B ) A .84 B .56 C .35 D .284.(2018·临安)已知2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524…若10+b a =102×ba 符合前面式子的规律,则a +b = 109 . 5.(2018·咸宁)按一定顺序排列的一列数叫做数列,如数列:12,16,112,120…则这个数列的前2 018个数的和为2 0182 019. 6.(2018·毕节)观察下列运算过程:11+2=12+1=2-1()2+1()2-1=2-1()22-12=2-1; 12+3=13+2=3-2()3+2()3-2=3-2()32-()22=3- 2…请运用上面的运算方法计算:11+3+13+5+15+7+…+12 015+ 2 017+12 017+ 2 019=2 019-12. 7.(2018·广西北部湾)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243…据其中规律可得30+31+32+…+32 018的结果的个位数字是 3 .则c 的值为 270(或28+14) .9.(2018·娄底)设a 1,a 2,a 3…是一列正整数,其中a 1表示第一个数,a 2表示第二个数,依此类推,a n 表示第n 个数(n 是正整数).已知a 1=1,4a n =(a n +1 -1)2-(a n -1)2,则a 2 018= 4 035 . 10.(2018·荆门)将数1个1,2个12,3个13,…,n 个1n(n 为正整数)顺次排成一列:1,12,12,13,13,13,…,n 1,n 1,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n , 则S 2 018=63132.11.(2018·黔东南州)根据下列各式的规律,在横线处填空:11+12-1=12,13+14-12=112,1 5+16-13=130,17+18-14=156…12 017+12 018-11 009=12 017×2 018.12.(2018·淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4 列的数是12,则位于第45行、第8列的数是 2 018 .13.(2018·乐山)已知直线l1:y=(k-1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1,l2与x轴围成的三角形的面积S2= 1 ;(2)当k=2,3,4,…,2 018时,设直线l1,l2与x轴围成的三角形的面积分别为S2,S3,S4,…,S2 018,则S2+S3+S4+…+S2 018=2 0171 009.探究图形的变化规律1.(2018·济宁)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是 ( C )2.(2018·烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为 (C)A.28 B.29 C.30 D.313.(2018·随州)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200 的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为 ( C )A.33 B.301 C.386 D.5714.(2018·贺州)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为 ( B )A.(2)n-1 B.2n-1C.(2)n D.2n5.(2017·达州)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,依此类推,这样连续旋转2 017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为 ( D )A.2 017π B.2 034πC.3 024π D.3 026π6.(2018·自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 018个图形共有 6 055 个○.7.(2018·遵义)每一层三角形的个数与层数的关系如图所示,则第2 018层的三角形个数为 4 035 .8.(2017·威海)某广场用同一种如图所示的地砖拼图案,第一次拼成形如图1所示的图案,第二次拼成形如图2所示的图案,第三次拼成形如图3所示的 图案,第四次拼成形如图4所示的图案……按照这样的规律进行下去,第n 次拼成的图案共用地砖 2n 2+2n 块.9.(2018·宁夏)如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁 16 张A8的纸.10. (2018·葫芦岛)如图,∠MON =30°,点B 1在边OM 上,且OB 1=2,过点B 1作B 1A 1⊥OM 交ON 于点A 1,以A 1B 1为边在A 1B 1右侧作等边三角形A 1B 1C 1; 过点C 1作OM 的垂线分别交OM ,ON 于点B 2,A 2,以A 2B 2为边在A 2B 2的右 侧作等边三角形A 2B 2C 2;过点C 2作OM 的垂 线分别交OM ,ON 于点B 3,A 3,以A 3B 3为边 在A 3B 3的右侧作等边三角形A 3B 3C 3…按此规 律进行下去,则△A n A n +1C n 的面积为33232-2⨯⎪⎭⎫ ⎝⎛n .(用含正整数n 的代数式表示)探究坐标的变化规律1.(2017·温州)我们把1,1,2,3,5,8,13,21…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P 1P 2︵,P 2P 3︵,P 3P 4︵…得到斐波那契螺旋线,然后顺次连接P1P2,P2P3,P3P4…得到螺旋折线(如图),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上的点P9的坐标为 ( B ) A.(-6,24) B.(-6,25)C.(-5,24) D.(-5,25) 2.(2018·广州)在平面直角坐标系中,一个智能机器人接到如下指令.从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1 m,其行走路线如图所示,第1次移动到A1,第2次移动到A2……第n次移动到A n,则△OA2A2 018的面积是 ( A )A. 504 m2B. 1 00 92m2 C.1 0112m2 D. 1 009 m23.(2017·广西北部湾)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置……则正方形铁片连续旋转2 017次后,点P的坐标为(6 053,2).4.(2017·广安)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1,A2,A3…在直线y=x+1上,点C1,C2,C3…在x轴上,则A n的坐标是 (2n-1-1,2n-1) .5.(2018·衡阳)如图,在平面直角坐标系中,函数y=x和y=-12x的图象分别为直线l1,l2,过点⎪⎭⎫⎝⎛21-,11A作x轴的垂线交l1于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5……依次进行下去,则点A2 018的横坐标为21 008 .6.(2017·赤峰)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n,…,若点P1的坐标为(2,0),则点P2 017的坐标为 (2,0) .7.(2018·威海)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=12x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以点O为圆心,以OA2长为半径画弧,交直线y=12x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=12x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=12x于点B4……按照如此规律进行下去,点B2 018的坐标为 (22 018,22 017) .8.(2018·内江)如图,直线y=-x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点分别为P 1,P2,P3…P n-1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3…T n-1,用S1,S2,S3…S n-1分别表示Rt△T1OP1,Rt△T2P1P2…Rt△T n-1P n-2P n-1的面积,则S1+S2+S3+…+S n-1=14-14n.9.(2018·广东)如图,已知等边△OA1B1,顶点A1在双曲线y=x3(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;依此类推,则点B6的坐标为 (26,0) .10.(2018·潍坊)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=3x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3……按此作法进行下去,则A2 019B2 018的长是22 0193π.11.(2018·东营)如图,在平面直角坐标系中,点A1,A2,A3…和B1,B2,B3…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3…都是等腰直角三角形.如果点A1(1,1),那么点A2 018的纵坐标是201723⎪⎭⎫⎝⎛.12.(2018·淮安)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3……按此规律操作下去,所得到的正方形A n B n C n D n的面积是-129n⎪⎭⎫⎝⎛.。
2018年中考数学专题复习卷 探索规律专题
探索规律专题练习卷1.观察下列一组数:32,1,710,917,1126,…,它们是按一定规律排列的,那么这组数的第n 个数是________. (n为正整数)2.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得3S =3+32+33+34+35+36+37+38+39②,②-①,得3S -S =39-1,即2S =39-1,所以S =39-12.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m2 016的值?如能求出,其正确答案是________.3.如图是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)4.如图在平面直角坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2 014次,点B 的落点依次为B 1,B 2,B 3,…,则B 2 014的坐标为________.5.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m ,n 的关系是( )A .M =mnB .M =n (m +1)C .M =mn +1D .M =m (n +1)017个格子中的数为( )A .3B .2C .0D .-17.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )……A .y =2n +1B .y =2n+n C .y =2n +1+n D .y =2n+n +18.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2 017个白色纸片,则n 的值为( )A .671B .672C .673D .6749.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,……设碳原子的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示( )A .C n H 2n +2B .C n H 2n C .C n H 2n -2D .C n H n +310.观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为( )A.2531 B.3635C.47D.626311.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( ) A .135 B .170 C .209 D .25212.下列图形都是按照一定规律组成的,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形……依此规律,第五个图形中三角形的个数是( )A.22 B.24C.26 D.2813.观察下列关于自然数的等式:(1)32-4×12=5,(2)52-4×22=9,(3)72-4×32=13,…根据上述规律解决下列问题:(1)完成第四个等式:92-4×()2=( );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.14.将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余):第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形再分割成一个正六边形和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形再分割成一个正六边形和两个全等的正三角形;按上述分割方法进行下去……(1)请你在下图中画出第一次分割的示意图;(2)若原正六边形的面积为a,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填入下表:(3)观察所填表格,并结合操作,请你猜想:分割后所得的正六边形的面积S与分割次数n之间有何关系?(S 用含a和n的代数式表示,不需要写出推理过程)参考答案1.2n+1n2+12.m2 017-1m-13. 2n2+2n或2n(n+1)解析:方法一,根据图形的变化规律,得出结果.方法二,依题意,得n=1,根数为4=2×1×(1+1);n=2,根数为12=2×2×(2+1);n=3,根数为24=2×3×(3+1);……n=n时,根数为2n(n+1).4. (1 342,0)5.D6.A7.B8.B 9.A 10.C 11.C 12.C 13.解:(1)4 17(2)第n个等式为(2n+1)2-4n2=4n+1.∵左边=4n2+4n+1-4n2=4n+1=右边,∴第n个等式成立.14.解:(1)如图所示:(2)(3)S =a4n .。
2018年初三年级中考数学《规律探索》精选
2018年初三年级中考数学《规律探索》精选一.选择题1. 我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3,6,10…)和“正方形数”(如 1,4,9,16…),在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为()A .33B .301C .386D .5712.如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为()A .28B .29C .30D .313.如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是()A .B . B.C .D .4. 观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则 2+22+23+24+25+…+21018 的末位数字是( ) A .8B .6C .4D .0二 填空题1. 如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P (13,3),P 2,P 3,…均在直线 y =﹣13x+4 上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为 S 1,S 2,S 3,…,依据图形所反映的规律,S 2018= .2.如图,在平面直角坐标系中,直线 l 为正比例函数 y =x 的图象,点 A 1 的坐标为(1,0),过点 A 1作 x 轴的垂线交直线 l 于点 D 1,以 A 1D 1为边作正方形 A 1B 1C 1D 1;过点 C 1 作直线 l 的垂线,垂足为 A 2,交 x 轴于点 B 2,以 A 2B 2 为边作正方形 A 2B 2C 2D 2;过点 C 2 作 x 轴的垂线,垂足为 A 3,交直线 l 于点 D 3,以 A 3 D 3 为边作正方形 A 3 B 3 C 3 D 3 ,…,按此规律操作下所得到的正方形 A n B n C n D n 的面积是________ .3. 如图,在平面直角坐标系中,点 A 1,A 2,A 3,…和 B 1,B 2,B 3,…分别在直线 y =15x+b 和 x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点 A 1(1,1),那么点 A 2018 的纵坐标是4.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若 10+b a =102×b a符合前面式子的规律,则 a +b= .4. 将从 1 开始的连续自然数按如图规律排列:规定位于第 m 行,第 n 列的自然数 10 记为(3,2),自然数 15 记为(4,2)......按此规律,自然数 2018 记为5. 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可 得 30+31+32+…+32018的结果的个位数字是 .6. 如图,已知等边△A BC 的边长是 2,以 B C 边上的高 A B 1 为边作等边三角 形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1 的 B 1C 1边上的高 A B 2 为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△A B 2C 2 的B 2C 2边上的高 A B 3 为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2 的面积为 S 1, △B 2C 1B 3 的面积为 S 2,△B 3C 2B 4 的面积为 S 3,如此下去,则 S n =_______.7. 在平面直角坐标系中,点 A ,1)在射线 OM 上,点 B 3)在 射线 ON 上,以 AB 为直角边作 Rt △A BA 1,以 BA 1 为直角边作第二个 Rt △BA 1B 1,以A 1B 1 为直角边作第三个 Rt△A 1B 1A 2,…,依次规律,得到 R t △B 2017A 2018B 2018,则点 B 2018 的纵坐标为 .8.如图,已知等边△OA 1B 1,顶点 A 1 在双曲线 y (x >0)上,点 B 1 的坐标为(2,0).过B 1 作 B 1A 2∥OA 1 交双曲线于点 A 2,过 A 2 作 A 2B 2∥A 1B 1 交 x 轴于点 B 2,得到第二个等边△B 1A 2B 2;过 B 2 作 B 2A 3∥B 1A 2 交双曲线于点 A 3,过 A 3 作 A 3B 3∥A 2B 2 交 x 轴于点 B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点 B 6 的坐标 为 ________ .n2n20189. 观察下列等式: 30 = 1, 31 = 3, 32 = 9 , 33 = 27 , 34 = 81, 35= 243,…,根据其中规律可得01220183+3+3+...3+的结果的个位数字是 。
【人教版】2018-2019年中考数学:题型(3)规律探索题(含答案解析)
题型三 规律探索题类型一 数式规律针对演练1. (2018新疆)如图,下面每个图形中的四个数都是按相同规律填写的,根据此规律确定x 的值为________.第1题图2. (2018绥化)古希腊数学家把数1,3,6,10,15,21…叫三角数,它有一定的规律.若把第一个三角数记为a 1,第二个三角数记为a 2,…,第n 个三角数记为a n ,计算a 1+a 2,a 2+a 3,a 3+a 4,…,由此推算a 399+a 400=________.3. (2018济宁)按一定规律排列的一列数:12,1,1, ,911,1113,1317,…,请你仔细观察,按照此规律方框内的数字应为________.4. (2018郴州)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,….试猜想,32018的个位数字是________.5. (2018百色)观察下列各式的规律:(a -b )(a +b )=a 2-b 2;(a -b )(a 2+ab +b 2)=a 3-b 3;(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4;…;可得到(a -b )(a 2018+a 2018b +…+ab 2018+b 2018)=________.6. 请观察下列等式的规律:11×3=12(1-13),13×5=12(13-15),15×7=12(15-17),17×9=12(17-19),…,则11×3+13×5+15×7+…+199×101=________. 7. (2018滨州)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2018个式子为______________.8. (2018黄石)观察下列等式:第1个等式:a1=11+2=2-1,第2个等式a2=12+3=3-2,第3个等式:a3=13+2=2-3,第4个等式:a4=12+5=5-2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=__________________;(2)a1+a2+a3+…+a n=__________.9. (2011省卷20,9分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是________,它是自然数________的平方,第8行共有________个数;(2)用含n的代数式表示:第n行的第一个数是________,最后一个数是________,第n行共有________个数;(3)求第n行各数之和.。
2018年中考数学专题训练—探索规律(含详细答案)
2018年中考数学专题训练—探索规律1.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.852.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A.43 B.45 C.51 D.533.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84 B.81 C.78 D.764.如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6cm2,第②个图形的面积为18cm2,第③个图形的面积为36cm2,…,那么第⑥个图形的面积为()A.84cm2B.90cm2C.126cm2D.168cm25.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图象含有正方形的个数是()A.102 B.91 C.55 D.316.观察下列一组图形,其中图1中共有6个小黑点,图2中共有16个小黑点,图3中共有31个小黑点,…,按此规律,图5中小黑点的个数是()A.46 B.51 C.61 D.767.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.728.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3)…,则第6个图形的周长是()A.32 B.64 C.128 D.2569.下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50 B.60 C.64 D.7210.观察下列一组图形中点的个数,其中第1个图形中共有3个点,第2个图形中共有8个点,第3个图形中共有15个点,按此规律第6个图形中共有点的个数是()A.42 B.48 C.56 D.7211.如图,下列图案均是长度相同的火柴并按一定的规律拼接而成:第1个图案需7根火柴,第2个图案需13根火柴,第3个图案需21根火柴,…,依此规律,第8个图案需火柴()A.90根B.91根C.92根D.93根12.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依此规律拼成第6个图案需小木棒()根.A.53 B.54 C.55 D.5613.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为()A.30 B.25 C.28 D.3114.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为()A.57 B.73 C.91 D.11115.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.7216.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.7817.如图,每个图形都由同样大小的“”按照一定的规律组成,其中第1个图形有1个“”,第2个图形有2个“”,第3个图形有5个“”,…,则第6个图形中“”的个数为()A.23 B.24 C.25 D.2618.土家传统建筑的窗户上常有一些精致花纹、小辰对土家传统建筑非常感兴趣,他观察发现窗格的花纹排列呈现有一定规律,如图.其中“O”代表的就是精致的花纹,第1个图有5个花纹,第2个图有8个花纹,第3个图有11个花纹…,请问第7个图的精致花纹有()A.26个B.23个C.20个D.17个19.观察图中菱形四个顶点所标的数字规律,可知数2015应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边20.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70 B.71 C.72 D.7321.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑧个图案中“●”的个数为()A.73 B.87 C.91 D.10322.用火柴棒按如图方式搭图形,按照这种方式搭下去,搭第8个图形需火柴棒的根数是()A.48根B.50根C.52根D.54根23.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第8个图案用多少根火柴棒()A.33 B.32 C.31 D.3024.下列图形都是由同样大小的“◆”按一定的规律组成,其中第①个图形一共有2个“◆”,第②个图形一共有7个“◆”,第③个图形一共有14个“◆”,…,则第⑦个图形中“◆”的个数为()A.47 B.49 C.62 D.6425.用棋子按下列方式摆图形,第一个图形有1个棋子,第二个图形有5个棋子,第三个图形有12个棋子,依次规律,第六个有()枚棋子.A.49 B.50 C.51 D.5226.如图,用菱形纸片按规律依次拼成如图图案.由图知,第1个图案中有5个菱形纸片;第2个图案中有9个菱形纸片;第3个图形中有13个菱形纸片.按此规律,第6个图案中有()个菱形纸片.A.21 B.23 C.25 D.2927.如图图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(9)个图形中面积为1的正方形的个数为()A.49 B.45 C.54 D.5028.已知四边形ABCD对角线相交于点O,若在线段BD上任意取一点(不与点B,O,D重合),并与A、C连接,如图1,则三角形个数为15个;若在线段BD上任意取两点(不与点B、O、D重合)如图2,则三角形个数为24个;若在线段BD上任意取三点(不与点B、O、D重合)如图3,则三角形个数为35个…以此规律,则图5中三角形的个数为()A.48 B.56 C.61 D.6329.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第6个图案中有()根小棒.A.36 B.35 C.31 D.3030.如图,是用棋子摆成的“上”字:如果按照此规律继续摆下去,那么通过观察,可以发现:第10个“上”字需用多少枚棋子()A.36 B.38 C.42 D.50初三针对性练习—探索规律参考答案与试题解析一.选择题(共30小题)1.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85【考点】规律型:图形的变化类.【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为+n2,根据规律求解.【解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=10,第三个图形为:+32=19,第四个图形为:+42=31,…,所以第n个图形为:+n2,当n=7时,+72=85,故选D.【点评】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.2.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A.43 B.45 C.51 D.53【考点】规律型:图形的变化类.【分析】设图形n中星星的颗数是a n(n为自然数),列出部分图形中星星的个数,根据数据的变化找出第5到第8个图形中五角星的个数,此题得解.【解答】解:设图形n中星星的颗数是a n(n为自然数),∵a1=2,a2=6=a1+4,a3=11=a2+5,a4=17=a3+6,∴a5=a4+7=24,a6=a5+8=32,a7=a6+9=41,a8=a7+10=51,故选C.【点评】本题考查了规律型中的图形的变化类,解题的关键是根据变化依次找出a5、a6、a7、a8的值.3.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84 B.81 C.78 D.76【考点】规律型:图形的变化类.【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【解答】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点评】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n(n+1).4.如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6cm2,第②个图形的面积为18cm2,第③个图形的面积为36cm2,…,那么第⑥个图形的面积为()A.84cm2B.90cm2C.126cm2D.168cm2【考点】规律型:图形的变化类.【分析】观察图形,小正方形方形的个数是相应序数乘以下一个数,每一个小正方形的面积是3,然后求解即可.【解答】解:第(1)个图形有2个小长方形,面积为1×2×3=6cm2,第(2)个图形有2×3=6个小正方形,面积为2×3×3=18cm2,第(3)个图形有3×4=12个小正方形,面积为3×4×3=36cm2,…,第(6)个图形有10×11=110个小正方形,面积为6×7×3=126cm2.故选C.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形,并找到图形的变化规律.5.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图象含有正方形的个数是()A.102 B.91 C.55 D.31【考点】规律型:图形的变化类.【分析】根据图形的变化规律可以得知每个图形比前一个图形多它序号的平方数个正方形,从而得出结论.【解答】解:结合图形可知,第②个图形比第①分图形多22个正方形,第③个比第②个多32个正方形,…,即多的个数为序号的平方数,∴第⑥个图象含有正方形的个数是1+22+32+42+52+62=91.故选B.【点评】本题考查了图形的变化,解题的关键是发现“每个图形比前一个图形多它序号的平方数个正方形”.本题难度中等,如果一个个画出来去数,太耽误时间,这就需要在图形中寻找规律,解决此类型的题目就需要学生有良好的数列常识,能够及时发现变化规律才能快速的解决问题.6.观察下列一组图形,其中图1中共有6个小黑点,图2中共有16个小黑点,图3中共有31个小黑点,…,按此规律,图5中小黑点的个数是()A.46 B.51 C.61 D.76【考点】规律型:图形的变化类.【分析】第1个图形小黑点的个数:5×1+1=6;第2个图形小黑点的个数:5×(1+2)+1=16;第3个图形小黑点的个数:5×(1+2+3)+1=31;找出规律即可得到图5中小黑点的个数.【解答】解:由图形1、2、3可以看出,第1个图形小黑点的个数:5×1+1=6;第2个图形小黑点的个数:5×(1+2)+1=16;第3个图形小黑点的个数:5×(1+2+3)+1=31;所以第5个图形小黑点的个数:5×(1+2+3+4+5)+1=76.故选:D.【点评】本题考查了探索图形规律问题,解决此类问题的关键是由图形到算式,采用特殊到一般的数学思想方法,归纳出一般规律.7.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.72【考点】规律型:图形的变化类.【分析】通过观察图形得到第①个图形中五角星的个数为2=2×12;第②个图形中五角星的个数为2+4+2=8=2×4=2×22;第③个图形中五角星的个数为2+4+6+4+2=18=2×32;…,所以第n个图形中五角星的个数为2×n2,然后把n=6代入计算即可.【解答】解:∵第①个图形中五角星的个数为2=2×12;第②个图形中五角星的个数为2+4+2=8=2×4=2×22;第③个图形中五角星的个数为2+4+6+4+2=18=2×32;…∴第⑥个图形中五角星的个数为2×62=2×36=72.故选:D.【点评】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.8.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3)…,则第6个图形的周长是()A.32 B.64 C.128 D.256【考点】规律型:图形的变化类.【分析】图1周长为1+=4=22,图2周长为2+3+1+1+1=2(1+)=8=23,图3周长为4+6+2+2+2=2(2+3+1+1+1)=16=24,…,由此得出一般规律.【解答】解:观察图形周长变化规律可知,图1周长为1+=4=22,图2周长为2+3+1+1+1=2(1+)=8=23,图3周长为4+6+2+2+2=2(2+3+1+1+1)=16=24,…,第6个图形的周长是26+1=128,故选C.【点评】考查了规律型:图形的变化,本题是一道找规律的题目,关键是把各周长和的结果写成2的指数次方,得出指数与图形序号的关系.9.下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50 B.60 C.64 D.72【考点】规律型:图形的变化类.【分析】观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,以此类推,得到通项公式代入求解即可.【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选C.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并发现图形变化的通项公式,利用通项公式进行求解即可.10.观察下列一组图形中点的个数,其中第1个图形中共有3个点,第2个图形中共有8个点,第3个图形中共有15个点,按此规律第6个图形中共有点的个数是()A.42 B.48 C.56 D.72【考点】规律型:图形的变化类.【分析】由已知四个图形中点的个数可知,第n个图形中点的数量为n(n+2)个,据此解答可得.【解答】解:∵第1个图形中点的个数为:3×1=3个,第2个图形中点的个数为:4×2=8个,第3个图形中点的个数为:5×3=15个,第4个图形中点的个数为:6×4=24个,…∴第6个图形中点的个数为:8×6=48个,故选:B.【点评】此题主要考查了图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.11.如图,下列图案均是长度相同的火柴并按一定的规律拼接而成:第1个图案需7根火柴,第2个图案需13根火柴,第3个图案需21根火柴,…,依此规律,第8个图案需火柴()A.90根B.91根C.92根D.93根【考点】规律型:图形的变化类.【分析】根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把8代入即可求出答案.【解答】解:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…第n个图案需n(n+3)+3根火柴,则第8个图案需:8×(8+3)+3=91(根);故选:B.【点评】此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题.12.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依此规律拼成第6个图案需小木棒()根.A.53 B.54 C.55 D.56【考点】规律型:图形的变化类.【分析】根据第1个图案需4根火柴,4=1×(1+3),第2个图案需10根火柴,10=2×(2+3),第3个图案需18根火柴,18=3×(3+3),得出规律第n个图案需n(n+3)根火柴,再把n=6代入即可求出答案.【解答】解:∵拼搭第1个图案需4根火柴:4=1×(1+3),拼搭第2个图案需10根火柴:10=2×(2+3),拼搭第3个图案需18根火柴,18=3×(3+3),拼搭第4个图案需28根火柴,28=4×(4+3),…,第n个图案需n(n+3)根火柴,则第6个图案需:6×(6+3)=54(根);故选:B.【点评】本题考查规律型:图形的变化,解题的关键是从一般到特殊,找出规律,然后根据规律解决问题,属于中考常考题型.13.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为()A.30 B.25 C.28 D.31【考点】规律型:图形的变化类.【分析】由于图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,第n个图形矩形的个数是5n+1把n=6代入求出即可.【解答】解:∵图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,…∴第n个图形矩形的个数是5n+1当n=6时,5×6+1=31个,故选:D.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.14.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为()A.57 B.73 C.91 D.111【考点】规律型:图形的变化类.【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【解答】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,【点评】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.15.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.72【考点】规律型:图形的变化类.【分析】由题意可知:第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆…由此得出,第7个图形的小圆个数为2+7×8=58,由此得出答案即可.【解答】解:∵第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆,…∴第七个图形的小圆个数为2+7×8=58,故选B.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题是解答此题的关键.16.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.78【考点】规律型:图形的变化类.【分析】由已知图形中空心小圆圈个数,知第n个图形中空心小圆圈个数为4n﹣(n+2)+n(n﹣1),据此可得答案.【解答】解:∵第①个图形中空心小圆圈个数为:4×1﹣3+1×0=1个;第②个图形中空心小圆圈个数为:4×2﹣4+2×1=6个;第③个图形中空心小圆圈个数为:4×3﹣5+3×2=13个;…∴第⑦个图形中空心圆圈的个数为:4×7﹣9+7×6=61个;【点评】本题考查了规律型﹣图形变化类:先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.17.如图,每个图形都由同样大小的“”按照一定的规律组成,其中第1个图形有1个“”,第2个图形有2个“”,第3个图形有5个“”,…,则第6个图形中“”的个数为()A.23 B.24 C.25 D.26【考点】规律型:图形的变化类.【分析】根据题意总结出一般规律,然后把6代入进行计算即可.【解答】解:∵第1个图形有1个“”,第2个图形有2个“”,第3个图形有5个“”,…,∴第n个图形中共有(2n﹣1+n﹣2)(n≥2)个“”,∴第6个图形中“”的个数为25+4=36.故选:D.【点评】本题考查的是图形的变化规律问题,根据给出的数据总结出规律是解题的关键.18.土家传统建筑的窗户上常有一些精致花纹、小辰对土家传统建筑非常感兴趣,他观察发现窗格的花纹排列呈现有一定规律,如图.其中“O”代表的就是精致的花纹,第1个图有5个花纹,第2个图有8个花纹,第3个图有11个花纹…,请问第7个图的精致花纹有()A.26个B.23个C.20个D.17个【考点】规律型:图形的变化类.【分析】观察图形可知从第二个图案开始,第加一扇窗户,就增加3个花纹.照此规律便可计算出第n个图形中花纹的个数,继而可得第7个图中花纹的个数.【解答】解:∵第一个图中有3+2=5个花纹;第二个图中有2×3+2=8个花纹;第三个图中有3×3+2=11个花纹;…∴第n个中有花纹(3n+2)个.则第7个图中花纹的个数为3×7+2=23.故选:B.【点评】本题考查的是图形变化的规律,解题的关键是明白没往后一幅图增加3个花纹.19.观察图中菱形四个顶点所标的数字规律,可知数2015应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边【考点】规律型:图形的变化类.【分析】由题意可知:四个数字以下、左、上、右的顺序依次循环,由此用2015除以4根据余数判定得出答案即可.【解答】解:由已知图形可知,每四个数字一循环,∵2015÷4=503…3,∴在第504个图形上,余数是3,则与第一个图形中3的位置相同,即在左边.故选:C.【点评】此题考查图形的变化规律,找出数字循环的规律,利用规律解决问题.20.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70 B.71 C.72 D.73【考点】规律型:图形的变化类.【分析】①先计算每个图形中单个矩形的个数:图(1):12=1,图2:22=4,则图(6):62=36;②由1个矩形中含“○”有2个,由2个矩形中含“○”有:2+2=4个(发现与2的因数有关系),由3个矩形中含“○”有:2+2=4个,…,由36个矩形中含“○”有1个,最后相加为71个.【解答】解:图(6)中,62=36,1个矩形:1×2=2个,2个矩形:1×2:2个,2×1:2个,3个矩形:1×3:2个3×1:2个4个矩形:1×4:2个4×1:2个2×2:2个5个矩形:1×5:2个5×1:2个6个矩形:1×6:2个6×1:2个2×3:2个3×2:2个8个矩形:2×4:2个4×2:2个9个矩形:3×3:2个10个矩形:2×5:2个5×2:2个12个矩形:2×6:2个6×2:2个3×4:2个4×3:2个15个矩形:3×5:2个5×3:2个16个矩形:4×4:2个18个矩形;3×6:2个6×3:2个20个矩形:4×5:2个5×4:2个24个矩形:4×6:2个6×4:2个25个矩形:5×5:2个30个矩形:5×6:2个6×5:2个36个矩形:6×6:1个,总计和为71个;故选B.【点评】这是一个图形变化类的规律题,这类题属于常考题型,但分值都不高;做好此类题要从第一个图形入手,分析第一个图形结论的得出,此题不是完全数字的变化,还有图形的变化,相结合才能得出结论,最后发现与矩形个数的因数有关,依次计算即可.21.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑧个图案中“●”的个数为()A.73 B.87 C.91 D.103【考点】规律型:图形的变化类.【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑧个图案中“●”的个数.【解答】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第⑧个图案中“●”有:1+10×(7+2)=91个.故选:C.【点评】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.22.用火柴棒按如图方式搭图形,按照这种方式搭下去,搭第8个图形需火柴棒的根数是()A.48根B.50根C.52根D.54根【考点】规律型:图形的变化类.【分析】由图形可知:第一个图形用了2×2+3×2+2=12根火柴,第二个图形用了2×2+5×2+2×2=18根火柴,第三个图形用了2×2+7×2+2×3=24根火柴,…由此得出搭第n个图形需2×2+2(2n+1)+2n=6n+6根火柴,进一步代入求得答案即可.【解答】解:∵第一个图形用了2×2+3×2+2=12根火柴,第二个图形用了2×2+5×2+2×2=18根火柴,第三个图形用了2×2+7×2+2×3=24根火柴,…∴搭第n个图形需2×2+2(2n+1)+2n=6n+6根火柴,则搭第8个图形需火柴棒的根数是6×8+6=54.故选:D.【点评】此题考查图形的变化规律,找出图形的排列规律,得出运算的方法,利用一般性的结论解决问题.23.(2016春•重庆校级月考)下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第8个图案用多少根火柴棒()A.33 B.32 C.31 D.30【考点】规律型:图形的变化类.【分析】根据观察,可发现规律:第n个图形是4n+1,可得答案.【解答】解:由图形得出规律:第n个图形是4n+1,得第8个图形是4×8+1=33,故选:A.【点评】本题考查了图形的变化,观察发现规律:第n个图形是4n+1解题关键.24.下列图形都是由同样大小的“◆”按一定的规律组成,其中第①个图形一共有2个“◆”,第②个图形一共有7个“◆”,第③个图形一共有14个“◆”,…,则第⑦个图形中“◆”的个数为()A.47 B.49 C.62 D.64【考点】规律型:图形的变化类.【分析】先根据题意求找出其中的规律,即可求出第⑦个图形中五角星的个数.【解答】解:第①个图形一共有2个◆,第②个图形一共有:3+2×2=7个◆,第③个图形一共有4+(3+2)×2=14个◆,第④个图形一共有5+(4+3+2)×2=23个◆,…第⑦个图形一共有:8+(7+6+5+4+3+2)×2=62个◆.故选:C.【点评】此题考查图形的变化规律,找出图形之间的数字运算规律,得出规律,解决问题.25.(2016春•重庆校级月考)用棋子按下列方式摆图形,第一个图形有1个棋子,第二个图形有5个棋子,第三个图形有12个棋子,依次规律,第六个有()枚棋子.A.49 B.50 C.51 D.52【考点】规律型:图形的变化类.【分析】由图形可知:第一个图形有1个棋子,第二个图形有1+4=5个棋子,第三个图形有1+4+7=12个棋子,…由此得出第n个图形有1+4+7+…+(3n﹣2)=n(3n﹣1)个棋子,进一步代入求得答案即可.【解答】解:∵第一个图形有1个棋子,第二个图形有1+4=5个棋子,第三个图形有1+4+7=12个棋子,…∴第n个图形有1+4+7+…+(3n﹣2)=n(3n﹣1)个棋子,∴第六个有×6×(3×6﹣1)=51枚棋子.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律解决问题.。
2018年中考数学规律探索题(中考找规律题目_有答案解析)(最新整理)
中考规律探索1以下为全部整理类型.规律探索共两套试题.供参考学习使用一.选择题1.观察下列等式:31=3.32=9.33=27.34=81.35=243.36=729.37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A.0 B.1 C.3 D.72.把所有正奇数从小到大排列.并按如下规律分组:(1).(3.5.7).(9.11.13.15.17).(19.21.23.25.27.29.31).….现用等式A M=(i.j)表示正奇数M是第i组第j个数(从左往右数).如A7=(2.3).则A2013=()A.(45.77) B.(45.39) C.(32.46) D.(32.23)3.下表中的数字是按一定规律填写的.表中a的值应是.1235813a…2358132134…4.下列图形都是由同样大小的矩形按一定的规律组成.其中第(1)个图形的面积为2cm2.第(2)个图形的面积为8 cm2.第(3)个图形的面积为18 cm2.…….第(10)个图形的面积为()A.196 cm2B.200 cm2C.216 cm2D. 256 cm25.如图.动点P从(0.3)出发.沿所示的方向运动.每当碰到矩形的边时反弹.反弹时反射角等于入射角.当点P第2013次碰到矩形的边时.点P 的坐标为()A、(1.4)B、(5.0)C、(6.4)D、(8.3)6.如图.下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是A. M=mn B. M=n(m+1) C.M=mn+1 D.M=m(n+1)7.我们知道.一元二次方程12-=x 没有实数根.即不存在一个实数的平方等于-1.若我们规定一个新数“”.使其满足12-=i (即方程12-=x 有一个根为).并且进一步规定: 一切实数可以与新数进行四则运算.且原有的运算律和运算法则仍然成立.于是有,1i i =12-=i .,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n.我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么.20132012432i i i i i i +⋅⋅⋅++++的值为A .0B .1C .-1D .8.下列图形都是由同样大小的棋子按一定的规律组成.其中第①个图形有1颗棋子.第②个图形一共有6颗棋子.第③个图形一共有16颗棋子.….则第⑥个图形中棋子的颗数为()图①图②图③··(第8题图)A .51B .70C .76D .81二.填空题1.观察下列图形中点的个数.若按其规律再画下去.可以得到第n 个图形中所有的个数为 (用含n 的代数式表示).2.如图.在直角坐标系中.已知点A (﹣3.0)、B (0.4).对△OAB 连续作旋转变换.依次得到△1、△2、△3、△4….则△2013的直角顶点的坐标为.3.如图.正方形ABCD 的边长为1.顺次连接正方形ABCD 四边的中点得到第一个正方形A 1B 1C 1D 1.由顺次连接正方形A 1B 1C 1D 1四边的中点得到第二个正方形A 2B 2C 2D 2….以此类推.则第六个正方形A 6B 6C 6D 6周长是 .4.直线上有2013个点.我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后.直线上共有个点.5.如图.古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1.5.12.22…为五边形数.则第6个五边形数是 .6 .如图.是用火柴棒拼成的图形.则第n个图形需 根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;….则1+3+5+…+2013的值是 .8.如图12.一段抛物线:y=-x(x-3)(0≤x≤3).记为C1.它与x轴交于点O.A1;将C1绕点A1旋转180°得C2.交x 轴于点A2;将C2绕点A2旋转180°得C3.交x 轴于点A3;……如此进行下去.直至得C13.若P(37.m)在第13段抛物线C13上.则m =_________.9.直线上有2013个点.我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后.直线上共有个点. 10.观察下列各式的计算过程:5×5=0×1×100+25.15×15=1×2×100+25.25×25=2×3×100+25.35×35=3×4×100+25.…… ……请猜测.第n个算式(n为正整数)应表示为____________________________.11.将连续的正整数按以下规律排列.则位于第7行、第7列的数x是__ __.12、如下图.每一幅图中均含有若干个正方形.第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去.则第(6)幅图中含有个正方形;••••••①②③13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆. 第2个图形有10个小圆. 第3个图形有16个小圆. 第4个图形有24个小圆. …….依次规律.第6个图形有 个小圆.14.已知一组数2.4.8.16.32.….按此规律.则第n个数是 .15、我们知道.经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1.1)时.a=__________;当顶点坐标为(m.m).m≠0时.a与m之间的关系式是__________;(2)继续探究.如果b≠0.且过原点的抛物线顶点在直线y=kx(k≠0)上.请用含k的代数式表示b;(3)现有一组过原点的抛物线.顶点A1.A2.….A n在直线y=x上.横坐标依次为1.2.….n(为正整数.且n≤12).分别过每个顶点作x轴的垂线.垂足记为B1.B2.….B n.以线段A n B n为边向右作正方形A n B n C n D n.若这组抛物线中有一条经过D n.求所有满足条件的正方形边长.16.如图.所有正三角形的一边平行于x轴.一顶点在y轴上.从内到外.它们的边长依次为2.4.6.8.….顶点依次用1A、2A、3A、4A、…表示.其中12A A与x轴、底边12A A与45A A、45A A与78A A、…均相距一个单位.则顶点3A的坐标是 .22A的坐标是.第16题图17.如图.已知直线l :y=33x .过点A (0.1)作y 轴的垂线交直线l 于点B .过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1.过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去.则点A 2013的坐标为 .18、如图.在平面直角坐标系中.一动点从原点O 出发.按向上.向右.向下.向右的方向不断地移动.每移动一个单位.得到点A 1(0.1).A 2(1.1).A 3(1.0).A 4(2.0).…那么点A 4n +1(n 为自然数)的坐标为 (用n 表示)19.当白色小正方形个数n 等于1.2.3…时.由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示.n 是正整数)20. (2013•衢州4分)如图.在菱形ABCD 中.边长为10.∠A=60°.顺次连结菱形ABCD 各边中点.可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点.可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点.可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .21.一组按规律排列的式子:a2.43a .65a ,87a,….则第n 个式子是________22.观察下面的单项式:a.﹣2a 2.4a 3.﹣8a 4.…根据你发现的规律.第8个式子是 .23.如图.已知直线l:y=x.过点M(2.0)作x轴的垂线交直线l于点N.过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1.过点N1作直线l的垂线交x轴于点M2.…;按此作法继续下去.则点M10的坐标为 .24.为庆祝“六•一”儿童节.某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律.摆第(n)图.需用火柴棒的根数为 .答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、(n+1)2 2、(8052,0) 3、0.5 4、16097 5、51 6、2n+1 7、1014049 8、 2 9、16097 10、[10(n-1)+5]2=100n(n-1)+25 11、85 12、91 13、46 14、2n 15、(1)-1;a =-1m(或am +1=0);(2)解:∵a ≠0∴y =ax 2+bx =a (x +2b a)2-24b a ∴顶点坐标为(-2ba .-24b a )∵顶点在直线y =kx 上∴k (-2ba )=-24b a ∵b ≠0∴b =2k(3)解:∵顶点A n 在直线y =x 上∴可设A n 的坐标为(n .n ).点D n 所在的抛物线顶点坐标为(t .t )由(1)(2)可得.点D n 所在的抛物线解析式为y =-1tx 2+2x∵四边形A n B n C n D n 是正方形∴点D n 的坐标为(2n .n )∴-1t(2n )2+2×2n =n∴4n =3t∵t 、n 是正整数.且t ≤12.n ≤12∴n =3.6或9∴满足条件的正方形边长为3.6或916、(1).(-8.-8). 17、()()201340260,40,2或(注:以上两答案任选一个都对)18、(2n.1) 19、n 2+4n 20、20;21、221na n -(n 为正整数)22、-128a 8 23、(884736,0) 24、6n+2规律探索21、 我们平常用的数是十进制数.如2639=2×103+6×102+3×101+9×100.表示十进制的数要用10个数码(又叫数字):0.1.2.3.4.5.6.7.8.9。
2018中考数学规律探索题(中考找规律题目-有答案)
2018中考数学规律探索题(中考找规律题⽬-有答案)中考规律探索1以下为全部整理类型,规律探索共两套试题,供参考学习使⽤⼀.选择题1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A .0B .1C .3D .72. 把所有正奇数从⼩到⼤排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现⽤等式(i ,j )表⽰正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2013=() A .(45,77) B .(45,39) C .(32,46) D .(32,23)3.下表中的数字是按⼀定规律填写的,表中a 的值应是.4.下列图形都是由同样⼤⼩的矩形按⼀定的规律组成,其中第(1)个图形的⾯积为22,第(2)个图形的⾯积为8 2,第(3)个图形的⾯积为18 2,……,第(10)个图形的⾯积为()A .196 2B .200 2C .216 2D . 256 25.如图,动点P 从(0,3)出发,沿所⽰的⽅向运动,每当碰到矩形的边时反弹,反弹时反射⾓等于⼊射⾓,当点P 第2013次碰到矩形的边时,点P 的坐标为()A 、(1,4)B 、(5,0)C 、(6,4)D 、(8,3)6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A .B . (1)C .1D .(1) 7.我们知道,⼀元⼆次⽅程12-=x 没有实数根,即不存在⼀个实数的平⽅等于-1,若我们规定⼀个新数“”,使其满⾜12-=i (即⽅程12-=x 有⼀个根为),并且进⼀步规定: ⼀切实数可以与新数进⾏四则运算,且原有的运算律和运算法则仍然成⽴,于是有,1i i =12-=i ,,).1(23i i i i i -=-=?=.1)1()(2224=-==i i 从⽽对任意正整数n ,我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么,20132012432i i i i i i +++++的值为A .0B .1C .-1D .8.下列图形都是由同样⼤⼩的棋⼦按⼀定的规律组成,其中第①个图形有1颗棋⼦,第②个图形⼀共有6颗棋⼦,第③个图形⼀共有16颗棋⼦,…,则第⑥个图形中棋⼦的颗数为()A .51B .70C .76D .81 ⼆.填空题图①图②图③···(第8题1.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为(⽤含n的代数式表⽰).2.如图,在直⾓坐标系中,已知点A(﹣3,0)、B(0,4),对△连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直⾓顶点的坐标为.3.如图,正⽅形的边长为1,顺次连接正⽅形四边的中点得到第⼀个正⽅形A1B1C1D1,由顺次连接正⽅形A1B1C1D1四边的中点得到第⼆个正⽅形A2B2C2D2…,以此类推,则第六个正⽅形A6B6C6D6周长是.4.直线上有2013个点,我们进⾏如下操作:在每相邻两点间插⼊1个点,经过3次这样的操作后,直线上共有个点.5.如图,古希腊⼈常⽤⼩⽯⼦在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.6 .如图,是⽤⽕柴棒拼成的图形,则第n个图形需根⽕柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是.8.如图12,⼀段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进⾏下去,直⾄得C13.若P(37,m)在第13段抛物线C13上,则m .9.直线上有2013个点,我们进⾏如下操作:在每相邻两点间插⼊1个点,经过3次这样的操作后,直线上共有个点.10.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式(n为正整数)应表⽰为.11.将连续的正整数按以下规律排列,则位于第7⾏、第7列的数x是.12、如下图,每⼀幅图中均含有若⼲个正⽅形,第①幅图中含有1个正⽅形;第②幅图中含有5个正⽅形;……按这样的规律下去,则第(6)幅图中含有个正⽅形;13.将⼀些半径相同的⼩圆按如图所⽰的规律摆放:第1个图形有6个⼩圆,第2个图形有10个⼩圆,第3个图形有16个⼩圆,第4个图形有24个⼩圆, ……,依次规律,第6个图形有个⼩圆.14.已知⼀组数2,4,8,16,32,…,按此规律,则第n 个数是. 15、我们知道,经过原点的抛物线的解析式可以是y =2+(a ≠0) (1)对于这样的抛物线:当顶点坐标为(1,1)时,a =;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =(k ≠0)上,请⽤含k 的代数式表⽰b ;(3)现有⼀组过原点的抛物线,顶点A 1,A 2,…,在直线y =x 上,横坐标依次为1,2,…,n (为正整数,且n ≤12),分别过每个顶点作x 轴的垂线,垂⾜记为B 1,B 2,…,,以线段为边向右作正⽅形,若这组抛物线中有⼀条经过,求所有满⾜条件的正⽅形边长.16.如图,所有正三⾓形的⼀边平⾏于x 轴,⼀顶点在y 轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次⽤1A 、2A 、3A 、4A 、…表⽰,其中12A A 与x轴、①②③底边12A A 与45A A 、45A A 与78A A 、…均相距⼀个单位,则顶点3A 的坐标是,22A 的坐标是.第16题图17.如图,已知直线l :33,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2013的坐标为.18、如图,在平⾯直⾓坐标系中,⼀动点从原点O 出发,按向上,向右,向下,向右的⽅向不断地移动,每移动⼀个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n +1(n 为⾃然数)的坐标为(⽤n 表⽰)19.当⽩⾊⼩正⽅形个数n 等于1,2,3…时,由⽩⾊⼩正⽅形和和⿊⾊⼩正⽅形组成的图形分别如图所⽰.则第n 个图形中⽩⾊⼩正⽅形和⿊⾊⼩正⽅形的个数总和等于.(⽤n 表⽰,n 是正整数)20. (2013?衢州4分)如图,在菱形中,边长为10,∠60°.顺次连结菱形各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是;四边形A 2013B 2013C 2013D 2013的周长是.21.⼀组按规律排列的式⼦:a2,43a ,65a ,87a ,….则第n 个式⼦是22.观察下⾯的单项式:a ,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式⼦是.23.如图,已知直线l :,过点M (2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 10的坐标为.24.为庆祝“六?⼀”⼉童节,某幼⼉园举⾏⽤⽕柴棒摆“⾦鱼”⽐赛.如图所⽰:按照上⾯的规律,摆第(n )图,需⽤⽕柴棒的根数为.答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、(1)22、(8052,0)3、0.54、160975、516、217、10140498、 29、16097 10、[10(1)+5]2=100n(1)+25 11、85 12、91 13、46 14、2n15、(1)-1;a =-1m(或+1=0);(2)解:∵a ≠0 ∴y =2+=a (x +2b a)2-24b a∴顶点坐标为(-2b a,-24b a)∵顶点在直线y =上∴k (-2ba)=-24b a∵b ≠0 ∴b =2k(3)解:∵顶点在直线y =x 上∴可设的坐标为(n ,n ),点所在的抛物线顶点坐标为(t ,t )由(1)(2)可得,点所在的抛物线解析式为y =-1tx 2+2x∵四边形是正⽅形∴点的坐标为(2n ,n )∴-1t(2n )2+2×2n =n∴4n =3t∵t 、n 是正整数,且t ≤12,n ≤12∴n =3,6或9 ∴满⾜条件的正⽅形边长为3,6或9[中国教*育^@出版⽹] 16、(01-),(-8,-8). 17、()()201340260,40,2或(注:以上两答案任选⼀个都对)18、(2n ,1) 19、n 2+4n 20、20;21、221na n -(n为正整数)22、-128a 8 23、(884736,0) 24、62规律探索21、我们平常⽤的数是⼗进制数,如2639=2×103+6×102+3×101+9×100,表⽰⼗进制的数要⽤10个数码(⼜叫数字):0,1,2,3,4,5,6,7,8,9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学——找规律班级________姓名___________座号_____________一、棋牌游戏问题1.(2019年绍兴)4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张 2.(2019年河北省)小明背对小亮,让小亮按下列四个步骤操作:第一步 分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步 从左边一堆拿出两张,放入中间一堆; 第三步 从右边一堆拿出一张,放入中间一堆;第四步 左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是 .3.(2019年泸州)如图(3)所示的象棋盘上,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( )A .(-1,1)B .(-1,2)C .(-2,1)D .(-2,2)4.(2019年江西南昌)图(4)是跳棋盘,其中格点上的黑色点为棋子, 剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为已方一枚棋子,欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步 二、空间想象问题1. (2019年泸州)把正方体摆放成如图(5)的形状,若从上至下依次为第1层,第2层,第3层,……,则第n 层有___个正方体.2.(2019年山东日照)如图(6),都是由边长为1的正方体叠成的图形。
例如第①个图形的表面积为6个平方单位,第②个图形的表面积为18个平方单位,第③个图形的表面积是36个平方单位。
依此规律,则第⑤个图形的表面积 个平方单位。
3.(2019年山东潍坊)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图(7),是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的4.(2019年山东青岛).观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图(8)①中:共有1个小立方体,其中1个看得见,0个看不见;如图(8)②中:共有8个小立方体,其中7个看得见,1个看不见;如图(8)③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见...的小立方体有 个. 5. 图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。
如此继续作下去,则在得到的第6个图形中,白色的正三角形的个数是6. 木材加工厂堆放木料的方式如图所示:依此规律可得出第6堆木料的根数是 。
7. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A 1B 1C 1D 1、A 2B 2C 2D 2、A 3B 3C 3D 3……每个正方形四条边上的整点的个数,推算出正方形A 10B 10C 10D 10四条边上的整点共有个.8、 如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n =20)根时,需要的火柴棍总数为 根。
9. 用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n 个三角形需要S 支火柴棒,那么S 关于n 的函数关系式是 (n 为正整数). 10. 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成。
11. 一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图1中该正方体A 、B 、C 三种状态所显示的数字,可推出“?”处的数字是 .12. 下面是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用 和 枚棋子;(2分) (2)第n 个“上”字需用 枚棋子.(1分)13. 将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线).续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕.如果对折n 次,可以得到 条折痕.14. 下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n 个小房子用了 块石子.15. 为庆祝“六g 一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示: 按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .26n + B .86n + C .44n + D .8n 16. 下面是按照一定规律画出的一列“树型”图:经观察可以发现:图⑵比图⑴多出2个“树枝”,图⑶比图⑵多出5个“树枝”,图⑷比图⑶多出10个“树枝”,照此规律,图⑺比图⑹多出_________个“树枝”.程 前 你 祝似 锦图(7)① ② ③ 图(8)……(第10题图)……第17题图n=1 n=2 n=3 H H H H H H HH H HHHH HC C C C C H H H HC 17. 柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23⨯听罐头, 第二层有34⨯听罐头,第三层有45⨯听罐头,根据这堆罐头排列的规律,第n (n 为正整数)层有 听罐头(用含n 的式子表示). 18. 按如下规律摆放三角形:则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________. 19. 一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图4),则这串珠子被盒子遮住的部分有____颗.……是用围棋棋子摆成的一列具有一定规律的“山”字.则第20. 如图,图①,图②,图n 个“山”字中的棋子个数是 .21. 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。
依次规律,第5个图案中白色正方形的个数为 。
22. 用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n 个图案中正方形的个数是 。
24. 在边长为l 的正方形网格中,按下列方式得到“L ”形图形第1个“L ”形图形的周长是8,第2个“L ”形图形的周长是12, 则第n 个“L ”形图形的周长是 .25. 观察下列图形,按规律填空: 1 1+3 4+5 9+7 16+___ … 36+____ 26. 用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:(1)第4个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张. 27. 观察下表中三角形个数变化规律,填表并回答下面问题。
问题:如果图中三角形的个数是102个,则图中应有___________条横截线。
28. 如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第 n 个几何体中只有两个面...涂色的小立方体共有 ________________个.29. 下列是三种化合物的结构式及分子式,如果按其规律,则后一种化合物的分子式应该是 .14。
三、剪纸问题 1. (2019年河南)如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是( ) 2. (2019年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )3. (2019年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,……,根据以上操作方法,请你填写下表:四、对称问题1. (2019年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。
3. (2019年资阳市)分析图(14)①,②,④中阴影部分的分布规律,按此规律在图(14)③中画出其中的阴影部分.鲁L80808 、鲁L22222、鲁L12321等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照。
如果让你负责制作只以8和9开头且有五个数字的“数字对称”牌照,那么最多可制作 ( )A .2019个B .1000个C .200个D .100个 5. 已知n (n ≥2)个点P 1,P 2,P 3,…,P n 在同一平面内,且其中没有任何三点在同一直线上. 设S n 表示过这n个点中的任意2个点所作的所有直线的条数,显然,S 2=1,S 3=3,S 4=6,S 5=10,…,由此推断,S n =____________________6.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两上数的和。
现以这组数中的各个数作为正方形的长度构造如下正方形:再分别依次从左到右取2个、3个、4个、5个,正方形拼成如下矩形并记为①、②、③、④.相应矩形的周长如下表所示:若按此规律继续作矩形,则序号为⑩的矩形周长是_______。
五.1. (2019年河北省课程改革实验区)观察图(13)的点阵图和相应的等式,探究其中的规律: (1(2)通过猜想写出与第n 个点阵相对应的等式______________.2. 观察下列顺序排列的等式:99×1+2=11,9×2+3=21, 9×3+4=31, 9×4+5=41,猜想:第n 个等式(n 为正整数)应为____________________________.3. 观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,通过观察,用你所发现的规律确定272的个位数字是 ( ) A . 2 B . 4 C .6 D . 8 4. 观察下列各式:1×3=21+2×1,操作次数N1 2 34 5 … N …正方形的个数 4 7 10……序号①②③④周长 6 10 16 26 ……图①图②图③图④(第20题)第16题图(图4…第1个第2个第3个第09题图● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 图①图② 图③ … ………… ①1=12; ②1+3=22; ③1+2+5=32; ④ ; ⑤ ;图(13)2×4=22+2×2, 3×5=23+2×3,请你将猜想到的规律用自然数n (n ≥1)表示出来: 。