2019届湖北省武汉市部分市级示范高中高三十月联考文科数学试题(解析版)

合集下载

湖北省四地七校考试联盟2019届高三上学期10月联考文科数学试卷(带答案)

湖北省四地七校考试联盟2019届高三上学期10月联考文科数学试卷(带答案)

绝密★启用前2019届“荆、荆、襄、宜四地七校考试联盟”高三10月联考 文科数学试题总分:150分 时间:120分钟注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的答案填涂在答题卡上. 1.已知集合{}1,0,1A =-,{}=1B x x =,则A B =UA .{}1B .{}1-C .{}1,1-D .{}1,0,1- 2.函数()13xf x =-的定义域是A .(,2)(0,)-∞-+∞UB .(,2)(2,0)-∞--UC .(2,0)-D .(2,0]-3.下列命题中错误..的是 A .命题“若x y =,则sin sin x y =”的逆否命题是真命题B .命题“()0000,,ln 1x x x ∃∈+∞=-”的否定是“()0,,ln 1x x x ∀∈+∞≠-”C .若p q ∨为真命题,则p q ∧为真命题D .在ABC ∆中,“A B >”是“sin sin A B >”的充要条件4.已知向量(2,2)a =r ,(,1)b n =r,若向量a b -r r 与a r 是平行向量,则n =A.1B.1-C.3D.3- 5.为了得到函数sin(2)3y x π=+的图象,只需把函数()sin 2f x x =的图象上所有点A .向右平移6π个单位长度 B .向左平移6π个单位长度 C .向右平移3π个单位长度D .向左平移3π个单位长度6.设函数()f x 是定义在R 上的奇函数,且当0x ≥时3()log (1)f x x =+,则[(8)]f f -=A.2-B.1-C.1D.2 7.函数2sin()([0,])3y x x ππ=-∈的增区间为A. [0,]6πB. [0,]2πC. 5[0,]6π D. 5[,]6ππ 8.已知11617a =,16log 17b =,17log 16c =,则a ,b ,c 的大小关系为A .a b c >>B .a c b >>C .b a c >>D .c b a >> 9.已知函数2()(1)xf x e x =-+(e 为自然对数的底),则()f x 的大致图象是A B C D 10.平面直角坐标系xOy 中,点00(,)P x y 在单位圆O 上,设xOP α∠=,若5()36ππα∈,,且3sin()65πα+=,则0x 的值为 A 343- B 343+ C 433- D 433--11.已知函数⎩⎨⎧>≤+=0|,log |0|,2|)(2x x x x x f ,若关于x 的方程()()f x a a R =∈有四个不同实数解4321,,,x x x x ,且4321x x x x <<<,则1234x x x x +++的取值范围为A .1[2,]4- B .1(2,]4- C .[2,)-+∞ D .(2,)-+∞ 12.设函数()1ln f x ax b x x=---,若1x =是()f x 的极小值点,则a 的取值范围为 A .()1,0- B .()1,-+∞C .(),1-∞-D .(),0-∞二、填空题(本大题共4小题,每小题5分,共20分)13.若点(2,4)P 在幂函数()y f x =的图象上,则(3)f = ;14.已知函数2()f x x ax b =-+在点(1,(1))f 处的切线方程为32y x =+,则a b += ;15.在边长为2的正ABC ∆中,设3BC BD =u u u r u u u r ,2CA CE =u u u r u u u r ,则AD BE ⋅=u u u r u u u r;16. 已知1()2sin() (,)64f x x x R πωω=+>∈,若()f x 的任何一条对称轴与x 轴交点的横坐标都不属于区间(,2)ππ,则ω的取值范围是 .三.解答题:共70分。

湖北省部分重点高中2019届高三十月联考数学(文)试题(Word版含答案))

湖北省部分重点高中2019届高三十月联考数学(文)试题(Word版含答案))

(第6题图)湖北省部分重点高中2019届高三十月联考文科数学试题考试时间2019年10月27日15:00-17:00 满分150分一、选择题:本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}4,3,2,1=U ,{}052=+-=p x x x M ,若{}3,2=M C U ,则实数p 的值为( )A .-6B .-4C .4D .62.若复数z 与其共轭复数z 满足:i z z 2+=,则复数z 的虚部为 ( )A .1B .iC .2D .-13.已知21,e e 是夹角为32π的两个单位向量,若向量2123e e -=,则=⋅1e ( ) A .2B .4C .5D .74.教师想从52个学生中,利用简单随机抽样的方法,抽取10名谈谈学习社会主义核心价值观的体会,一小孩在旁边随手拿了两个号签,教师没在意,在余下的50个号签中抽了10名学生,则其中的李明同学的签被小孩拿去和被教师抽到的概率分别为 ( )A.51,261 B.265,261 C.0,261D.51,251 5.下列选项中,说法正确的是 ( ) A.命题“0,2≤-∈∃x x R x ”的否定是“0,2>-∈∃x x R x ” B.命题“q p ∨为真”是命题“q p ∧为真” 的充分不必要条件C.命题“若22bm am ≤,则b a ≤”是假命题D.命题“在ABC ∆中,若21sin <A ,则6π<A ”的逆否6.如图,四面体ABCD 的四个顶点是由长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD 的三视图是(用①、②、③、④、⑤、⑥代表图形) ( )7.下列A .平行于同一平面的两个不同平面平行B .一条直线与两个平行平面中的一个相交,则必与另一个平面相交C .如果两个平面不垂直,那么其中一个平面内一定不存在直线与另一个平面垂直D .若直线不平行于平面,则此直线与这个平面内的直线都不平行 8.定义某种运算b a S ⊗=,运算原理如图所示,则式子:12511sin ln ()lg10033πe -⊗+⊗的值是 ( ) AB.C . 3 D .49.将函数)2)(2sin()(πϕϕ<+=x x f 的图象向左平移6π个单位长度后,所得函数)(x g 为奇函数,则函数)(x f 在⎥⎦⎤⎢⎣⎡2,0π上的最小值( ) A .23- B .21- C .21 D .2310.已知数列{}n a ,若点*(,)()n n a n N ∈在经过点(5,3)的定直线l 上,则数列{}n a 的前9项和9S =( )A .9B .10C .18D .27gkstk11.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如左图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h 与注水时间t 之间关系的大致图象是 ( )A. B. C. D.12.若以曲线)(x f y =上任意一点),(111y x M 为切点作切线1l ,曲线上总存在异于M 的点),(22y x N ,以点N 为切点做切线2l ,且21//l l ,则称曲线)(x f y =具有“可平行性”,现有下列命题:①偶函数的图象都具有“可平行性”;②函数x y sin =的图象具有“可平行性”;③三次函数b ax x x x f ++-=23)(具有“可平行性”,且对应的两切点),(),,(2211y x N y x M 的横坐标满足3221=+x x ;④要使得分段函数⎪⎩⎪⎨⎧<->+=)0(1)(1)(x e m x x x x f x的图象具有“可平行性”,当且仅当实数1=m . 以上四个 A .1 B .2C .3D .4二、填空题:本大题共4小题,每小题5分。

湖北省七校2019届高三数学10月联考试题 文

湖北省七校2019届高三数学10月联考试题 文

湖北省七校2019届高三数学10月联考试题 文本试卷共2页,全卷满分150分,考试用时120分钟。

注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合},5{*N x x x U ∈<=,}065{2=+-=x x x M ,则=M C U ( )A .}3,2{B .}5,1{C .}4,1{D .}4,3{ 2.下列判断错误..的是( ) A .“22bm am <”是“b a <”的充分不必要条件B .命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ” C .若,p q 均为假命题,则q p ∧为假命题D .命题“若21x =,则1x =或1x =-”的逆否命题为“若1x ≠或1x ≠-,则21x ≠” 3.已知扇形的弧长是4cm ,面积是22cm ,则扇形的圆心角的弧度数是( )A .1B .2C .4D .1或4 4.若幂函数122)12()(-+-=m xm m x f 在),0(+∞上为增函数,则实数m 的值为( )A .0B .1C .2D .0或25.若函数()()()sin 22f x x x ϕϕ=++为奇函数,则ϕ的一个值为( )A .3π-B .3πC .6π D .43π 6.已知函数1)(+-=mx e x f x的图像为曲线C ,若曲线C 存在与直线ex y =垂直的切线,则实数m 的取值范围是( )A .)1,(e -∞ B .),1(+∞e C .),1(e eD .),(+∞e7.已知α、β均为锐角, 3sin 5α=, ()1tan 3βα-=,则tan β=( ) A .139 B . 913 C . 3 D . 138.设函数,)1)(ln()1()(⎩⎨⎧≥+<-=x a x x a e x f x 其中1->a .若)(x f 在R 上是增函数,则实数a 的取值范围是( )A .),1[+∞+eB .),1(+∞+eC .),1[+∞-eD .),1(+∞-e9.在钝角..三角形ABC 中,内角,,A B C 的对边分别为,,a b c .若ABC ∆的面积是1,2,2==a c ,则=b ( )A .10B .10C .2D .210.函数()21xy x e =-的图象大致为( )A .B .C .D .11.已知函数,0,log 0,1)(3⎪⎩⎪⎨⎧>≤+=x x x x x f 若方程a x f =)(有四个不同的解4321,,,x x x x ,且4321x x x x <<<,则432111x x x x +++的取值范围是( )A . ]34,0[B . )34,0[C . ]34,0( D . )1,0[12.已知函数)(x f y =的定义域为),(ππ-,且函数)1(-=x f y 的图像关于直线1=x 对称,当),0(π∈x 时,x x f x f ln sin )2()('ππ+-= (其中)('x f 是)(x f 的导函数).若0.3(8),a f =(log 3),b f π=)81(log 2f c =,则c b a ,,的大小关系是( )A .c b a >>B .c a b >>C .a b c >>D .b a c >>第Ⅱ卷二、填空题: 本题共4小题,每小题5分,共20分. 13.函数xx x f )1ln()(-=的定义域为_______________.(结果用区间表示)14.已知函数)(x f 是定义在R 上的周期为2的奇函数,当10<<x 时,xx f 9)(=,则=+-)2()25(f f _____________.15.已知:p 关于x 的方程012=+-ax x 有实根;:q 关于x 的函数422++=ax x y 在),0[+∞上是增函数.若“p 或q ”是真命题,“p 且q ”是假命题,则实数a 的取值范围是_________________.16.设函数)(x f 的定义域为R ,其图像是连续不断的光滑曲线,设其导函数为)('x f .若对R x ∈∀,有x x f x f 2)()(=--,且在),0(+∞上,恒有1)('<x f 成立.若t t f t f 22)()2(-≥--,则实数t 的取值范围是_________________.M三、解答题: 共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知数列{}n a 的前n 项和122n n S +=-,数列{}n b 满足()*n n b S n N =∈.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T . 18.(本题满分12分)如图,在四棱锥中ABCD P -中,底面ABCD 为菱形,60BAD ∠=o ,Q 为AD 的中点. (1)若PD PA =,求证:平面PQB ⊥平面PAD ;(2)若平面PAD ⊥平面A B CD ,且2PA PD AD ===,点M 在线段PC 上,且MP CM 2=,求三棱锥QBM P -的体积.19.(本题满分12分)经市场调查:生产某产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为()W x 万元,在年产量不足8万件时,()W x 213x x =+(万元),在年产量不小于8万件时,100()638W x x x=+-(万元).通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.(1)写出年利润()L x (万元)关于年产量x (万件)的函数解析式; (2)当产量为多少时利润最大?并求出最大值.20.(本题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且满足cos2cos22sin sin 33C A C C ππ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭.(1)求角A 的大小;(2)若a =b a ≥,求2b c -的取值范围.21.(本题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 经过)23,22(),22,1(-B A 两点,O 为坐标原点.(1)求椭圆C 的标准方程;(2)设动直线l 与椭圆C 有且仅有一个公共点,且与圆3:22=+y x O 相交于N M ,两点,试问直线OM 与ON 的斜率之积ON OM k k ⋅是否为定值?若是,求出该定值;若不是,说明理由. 22.(本题满分12分)已知).,0()(R b a b ax e x f x∈>--= (1)当1==b a 时,求函数)(x f 的极值;(2)若)(x f 有两个零点,,21x x 求证:.ln 221a x x <+2019届“荆、荆、襄、宜四地七校考试联盟”高三10月联考文科数学(参考答案)1.【答案】C 【解析】由集合U={x|x<5,x ∈N ∗}={1,2,3,4},M={x ∣x 2−5x+6=0}={2,3},则∁U M={1,4}.本题选择C 选项. 2.【答案】D 【解析】 对于,由知,不等式两边同乘以得,,反之,若,则取时,不能得到,故是的充分不必要条件,故正确;对于,因为“”是全称命题,故其否定是特称命题,为“”,故正确;对于,若均为假命题,则为假命题,故正确;对于,若,则或的逆否命题为,若且则,D 错,故选D.3. 【答案】C 【解析】因为扇形的弧长为4,面积为2,所以扇形的半径为: ×4×r=2,解得:r=1,则扇形的圆心角的弧度数为=4.故选:C .4.【答案】C 【解析】因为是幂函数,所以可得或,又当时在上为减函数,所以不合题意,时,在上为增函数,合题意,故选C. 5.【答案】A 【解析】为奇函数,所以,本题选择A 选项.6. 【答案】 B 【解析】 由题意知,方程f′(x)=-e jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(1有解,即e x-m =-e \* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(1有解,即e x=m-e \* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(1有解,故只要m-e \* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(1>0,即m>e 21 \o(\s\up 9(1即可,选B. 7.【答案】A 【解析】∵,∵α为锐角∴,∴,∴.故选A.8. 【答案】C 【解析】 根据指数函数、对数函数性质知,显然在(-∞,1)和[1,+∞)上函数f(x)均为增函数,若f(x)在R 上是增函数,则只需满足ln(1+a)≥e-a 即可.构造函数g(a)=ln(1+a)-e +a,显然在(-1,+∞)上g(a)单调递增,且g(e -1)=0,故由g(a)≥0,得a≥e-1,即实数a 的取值范围是[e -1,+∞).9. 【答案】 B 【解析】根据三角形面积公式,得2,EQ \* jc0 \* "Font:Calibri" \* hps21 \o(\s\up 9(1,2EQ \* jc0 \* "Font:Calibri" \* hps21 \o(\s\up 9(1c·a·sin B=1,即得sin B =2,p 9(2,2p 9(2,其中C<A.若B 为锐角,则B =4,EQ \* jc0 \* "Font:Calibri" \* hps21 \o(\s\up 9(π,4EQ \* jc0 \* "Font:Calibri" \* hps21 \o(\s\up 9(π,所以b ==a,易知A 为直角,此时△ABC 为直角三角形,所以B 为钝角,即B =4,EQ \* jc0 \* "Font:Calibri" \* hps21 \o(\s\up 9(3π,4EQ \* jc0 \* "Font:Calibri" \* hps21 \o(\s\up 9(3π,所以b =.10.【答案】A 【解析】由函数的解析式可得函数为偶函数,排除B 选项,且时:,排除C选项;当时,,当 时,只有一个根,函数只有一个极值点,排除D 选项,本题选择A 选项.11. 【答案】C 【解析】作出f(x)的图像可知,,且,进而.12. 【答案】D 【解析】 函数y =f(x)的图像可由函数y =f(x-1)的图像向左平移一个单位长度得到,由函数y =f(x-1)的图像关于直线x =1对称,可得函数y =f(x)的图像关于y 轴对称,即函数y =f(x)是偶函数.f′(x)=-f′2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(πcos x+x \* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π,令x =2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π可得f′2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π=2,所以当x ∈(0,π)时,f(x)=-2sinx+πln x,f′(x)=-2cos x+x \* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π.当0<x<2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π时,x \* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π>2,2cos x<2,此时f′(x)>0;当2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π≤x<π时,cos x≤0,此时f′(x)>0.故x∈(0,π)时,f′(x)>0,又f(x)的图像连续不断,即函数f(x)在(0,π)上单调递增.由于,所以c =f(-3)=f(3),又0<log π3<1<80.3<80.5=<3,所以b<a<c.13.【答案】【解析】要使函数有意义,需满足,解得,故答案为. 14. 【答案】-3【解析】 因为f(x)是周期为2的函数,所以f(x)=f(x +2).因为f(x)是奇函数,所以f(0)=0,所以f(2)=f(0)=0.又f 2 \* "Font:宋体" \* hps21 \o(\s\up 9(5=f 2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(1=-f 2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(1,f2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(1==3,所以f 2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(5=-3,从而f2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(5+f(2)=-3. 15. 【答案】(-∞,-2∪2) 【解析】 若p 为真,则Δ=a 2-4≥0,解得a≤-2或a≥2;若q 为真,则-4\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(a≤0,解得,a≥,0.p或q 是真命题, p 且q 是假命题,则p 和q 一真一假.当p 真q 假时,a ;当q 真p 假时,.故实数a 的取值范围是(-∞,-2∪2).16.【答案】【解析】设则,为偶函数,又依题意,,即表明在是减函数,结合g(x)是偶函数以及其图像连续可得在上是增函数.又g(x)为偶函数,进而17.【解析】(1)∵, ∴当时,; ……(2分) 当时,, ……(4分)又∵, ∴. ……(5分) (2)由已知,,∴……(10分)18.【解析】(1),为的中点,, ……(2分) 又底面为菱形,,, ……(4分)又平面,又 平面,平面平面. ……(6分) (2)平面平面,平面平面,,平面,平面,, ……(8分)又,,平面, ……(10分)又,. … (12分)19.【解析】(1); ……(6分)(2)当时,,∴当时,, ……(8分)当时,,当且仅当,即时等号成立,∴. ……(11分)综上,当总产量达到万件时利润最大,且最大利润为15万元. ……(12分)20.【解析】(1)由已知得.……(2分)化简得, ……(4分) 故或.……(6分)(2)由正弦定理,得, , ……(8分)故.…(10分)因为,所以, ,所以.(12分)21.【解析】(1)依题意,解得进而可得椭圆方程:……(4分)(2)当直线的斜率存在时,可设直线,与椭圆方程联立可得,由相切可得……(6分)又,设则……(9分)进而,将带入可得恒成立,故为定值且定值为……(11分)当直线的斜率不存在时,直线的方程为.若直线的方程为,则的坐标为此时满足若直线的方程为,则的坐标为此时也满足综上,为定值且定值为……(12分)22.【解析】(1).当时当时进而在单调递减,在单调递增,所以有极小值无极大值. ……(4分)(2)易得在单调递减,在单调递增.依题意,不妨设. ……(6分)方法一:要证即证,又,所以,而在单调递减,即证,又即证. ……(9分)构造函数,在单调递增,所以进而所以,即得结论. ……(12分)方法二:依题意,也即可得要证即证即证,即证设,则即证…(9分)构造函数再设则在单调递减,即在单调递增,进而,进而即得结论. ……(12分)。

【数学】湖北省武汉市部分市级示范高中2019届高三十月联考试题(文)(解析版)

【数学】湖北省武汉市部分市级示范高中2019届高三十月联考试题(文)(解析版)

湖北省武汉市部分市级示范高中2019届高三十月联考数学试题(文)一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集I=R,集合A=,B=,则A∩B等于( )A. {x|0≤x≤2 }B. {x|x≥-2 }C. {x|-2≤x≤2}D. {x|x≥2}【答案】A【解析】根据二次函数值域得集合A,解一元二次不等式得集合B,即可求得A∩B。

集合A=集合B={x|0≤x≤2}所以A∩B={x|0≤x≤2 }所以选A2.命题:“x>1, x2>l”的否定为( )A. x>1, x2<1B. x<1, x2<1C. x>l, x2 1D. x<1, x2≤1【答案】C【解析】含有一个量词的否定形式,将任意改成存在,结论改成否定形式即可。

全称命题的否定形式为特称命题:x>l, x2 1所以选C3.函数f(x)= ln|x+1|的图像大致是( )A. B. C. D.【答案】A【解析】根据特殊值,代入检验,排除不合要求的选项即可。

当x=0时,f(x)=0,排除D选项当时,排除C选项根据定义域可排除B选项所以A选项为正确选项所以选A4.已知函数y= 4cos x的定义域为,值域为[a,b],则b-a的值是( )A. 4B.C. 6D.【答案】C【解析】根据定义域,结合余弦函数的图像,即可求得值域,进而求得b-a的值。

当定义域为时,函数y=cos x的值域结合图像可知为所以y= 4cos x的值域为所以b-a=6所以选C5.已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+2,则f(1)+g(1)=( )A. -2B. -1C. 1D. 2【答案】D【解析】根据函数奇偶性及f(x),g(x)的关系,求得各自的解析式,进而将1代入求得f(1)+g(1)的值。

武汉部分2019届高三十月联考文科数学

武汉部分2019届高三十月联考文科数学

2018武汉部分高三十月联考数学文科」■选择题: 1•设全集I=R ,集合A=.. , B=”|.「-C 三「,则A QB 等于()A. {x|0 < x w 2 }B. {x|x -2 }C. {x|-2 < x < 2}D. {x|x > 2} 2•命题:“;x>l, x 2>l ”的否定为() 2 2 2 2A. x>l, x <1B. x<l, x <1C. x>l, x 1D. x<l, x <1 3•函数f(x)= ln|x+1|的图像大致是()A. 4B. 4 烏一;C. 6D.325.已知函数f (x ) , g (x )分别是定义在 R 上的偶函数和奇函数,且 f (x )-g (x ) =x +x +2,则f (1)+g (1)=(A. -2B. -1C. 1D. 2326. 己知函数f (x ) =x -ax +x+l 在(-g, + a )是单调函数,则实数 a 的取值范围是() A.沁 B.C. •点 层—拓D. -7. 要得到函数=:- d '的图像,只需将 f (x )= cos2x 的图像()兀IA. 向右平移 个单位,再把各点的纵坐标缩短到原来的 :(横坐标不变)B. 向左平移 个单位,再把各点的纵坐标伸长到原来的3倍(横坐标不变)7UIC. 向右平移.个单位,再把各点的纵坐标缩短到原来的 :(横坐标不变)D. 向左平移.个单位,再把各点的纵坐标伸长到原来的3倍(横坐标不变)y= 4cosx 的定义域为 「]值域为[a , b ],则b-a 的值是(4•已知函数 B.8. 设a,b都是不等于I的正数,则“ a>b>l”是“ Iog a3<log b3”的()条件A.充分必要B. 充分不必要C. 必要不充分D. 既不充分也不必要9•化简• hdm,「=( )A. sin2+cos2B. sin2-cos2C. cos2-sin2D. 土(cos2-sin2)10. 如图,己知函数- : ,: ,I的图象关于点M(2, 0)对称,且f(x)的图象上相邻的最高点与最低点之间的距离为4,将f(x)的图象向右平移个单位长度,得到函数g(x)的图象;则下列是二■填空题:a b —13. 若2 =5 =100,则・I .= a bx14. _____________________________________________________________ 己知函数f(x)= 2e sinx,则曲线f(x)在点(0, 0)处的切线方程为____________________________________________________15. 函数y= sinx+cosx+2sinxcosx 的最大值为__________ 。

2019届高三10月月考数学(文)试题(3).docx

2019届高三10月月考数学(文)试题(3).docx

一. 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的)1•已知集合A={0, 1,2},则集合B={x-y|xeA,yEA}中元素的个数是(2.命题 3x ()eR, sin的否定为()4. 一个扇形的面积为2,周长为6则扇形的圆屮角的弧度数为(是奇函数7T 17T6. 已知 sin(cr-—)=-,贝!|cos(a + —)的值是(A. 1B. -1C.空3337. sin 7° cos37° - sin 83° cos307 =(1 B. -2A. (-1,0) U (2, +8)B. (一8, -2) U (0, 2)9. 为了得到函数y=sin (2兀一申)的图象,只需把函数y=cos 加的图象上所有的点()5 77S TTA.向左平行移动莎个单位长度B.向右平行移动石个单位长度且在(_8,0)上是减函数,若f ( —2)=0,则 xf{x ) <0的解集为)•C. (―°°, —2) U (2, +°°)D. (-2,0) U (0, 2)A.1B.3C.5D.9A. 3%oR, sinxo=£()B. D.17T3.已知sin(^-S) = log 8—,且Qw(■—,0),则tan (2^-5)的值为(A.-M5C•普D.752B.1 或 4 5.设fd )是R 上的任意函数,则下列叙述正确的是A.1C.4D.2 或 4c. gn 是偶函数 D. f{x)+f{-x)是偶函数D.V32、兀Syr C. 向左平行移动「个单位长度 D.向右平行移动「个单位长度66T[7T10. 函数…沖(巧―逅)的图象是()(A) (B) (C) (D)11・某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌新的墙壁所用的材料最省时,堆料场的长和宽分别为(JA. 40 米,20 米B. 30 米,15 米C. 32 米,16 米D. 36 米,18 米 12.若函数/W 二log 2(tz-2v )+x-2有零点,则d 的取值范围为( )A. (-oc, -2]B. (-co, 4]C. [2, +oo)D. [4, +oo)二、填空题(木大题共4小题,每小题5分,共20分.)13. 函数/(兀)=J2cosx-1的定义域是 _____________ ・14. 已知函数夬力=x(x~m)2在兀=1处取得极小值,则实数加 _____________ 15. 曲线y=xe+2x~l 在点(0, —1)处的切线方程为 _______________ ..16. 已知函数 沧)=¥—1+111 x,若存在x 0>0,使得/(AO )<0有解,则实数a 的取值范围•/V是 _______ .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤”)17. (本小题满分10分)己知角u 终边上一点卩(一4, 3),⑴求sin 2a 的值; ⑵求tan 書―的值.19. (本小题满分12分).己知aWR,函数/(x)=(-?+ar)e x (xeR,e 为自然对数的底数).⑴当a=2时,求函数fg 的•单调递增区间…18.cos (号+«jsin( ~71~a) cos (■导- Jsin 伴 + J的值(本小题满分12分)已知cos (彳+a)cos(^—幺丿=—£ «e.| Z3, 2/⑵函数/U)是否为R上的单调递减函数,若是,求出a的取值范围;若不是,请说明理由.20.(本小题满分12分)已知函数fix)=x3— 3ax—}, dHO.(1)求/U)的单调区间;(2)若/(兀)在兀=—1处収得极值,直线y=m与y=/U)的图象有三个不同的交点,求加的収值范围.若人兀)的极大值为1,求a的值.21.(本小题满分12分) 已知函数几v) =(X2—Zv)ln x+ax1+2.(1)当G=—1时,求7W在点(1,川))处的切线方程;⑵若°=1,证明:当x$l时,g(x)=/U)—x—2M0成立22.(本小题满分12分)已知函数几。

武汉市部分中学2019届高三十月联考文数

武汉市部分中学2019届高三十月联考文数

武汉市部分中学高三年级十月联考文科数学(试题)一、选择题1.已知R 为实数集,集合A ={x|x 2-2x≥0},B ={x|x >1},则()R A B =ð()A .(0,1)B .(0,1]C .(1,2)D .(1,2]2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,回归直线l 的方程为y bx a =+,则下列说法正确的是( )A .0a >,0b <B .0a >,0b >C .0a <,0b <D .0a <,0b >3.复数z 1=3+2i ,z 1+z 2=1+i ,则复数z 1·z 2=( ) A .-4-7iB.-2-iC.1+iD.14+5i4.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()A.B.C.D.5.若双曲线C:2221yxb-=(b>0)的离心率为2,则b=()A.1BCD.26.如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为()A.1︰1B.2︰1C.2︰3D.3︰27.设x,y满足约束条件10103x yx yx-+⎧⎪+-⎨⎪⎩≥≥≤,则z=2x-3y的最小值是()A.-7B .-6C .-5D .-38.函数||xxa y x(a >1)的图象的大致形状是( )A .B .C .D.9.定义在R上的奇函数f(x)满足f(x+2)=f(x-2),且f (1)=1,则f(2016)+f(2015)=()A.-2B.1C.0D.-110.执行如图所示的程序框图,输出S的值为()A.6B.2log23+1C .2log 23+3D .log 23+111.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos 3C =,bcosA +acosB =2,则△ABC 的外接圆面积为( ) A .4π B .8π C .9π D .36π12.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( ) A .[-1,1] B .[12-,12] C .[]D .[2-,2]二、填空题13.已知向量(cos ,sin )a θθ=,向量(3,1)b =,且a b ⊥,则tanθ的值是________.14.曲线f (x )=lnx -3x 在点(1,f (1))处的切线方程为________. 15.已知α∈(0,π2),tanα=2,则πcos()________4α-=. 16.已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为________. 三、解答题17.已知数列{a n }是等比数列,数列{b n }满足b 1=-3,b 2=-6,a n +1+b n =n (n ∈N *).(1)求a 2和a 3的值以及{a n }的通项公式; (2)求数列{b n }的前n 项和为S n .18.如图,在四棱锥P -ABCD 中,平面PBC ⊥平面ABCD ,PB PC ==E是PB 的中点,AD ∥BC ,AD ⊥CD ,BC =2CD=2AD =2.(1)求证:AE ∥平面PCD ;(2)设F 是线段CD 上的点,若13CF CD =,求三棱锥F -PAB 的体积.19.某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.表1:(1)根据图1,估计乙流水线生产产品该质量指标值的众数、中位数;(2)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?(3)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?附:22()()()()()n ad bc K a b c d a c b d -=++++(其中n =a +b +c +d 为样本容量)20.已知椭圆C :22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,点M 在椭圆上,有|MF 1|+|MF 2|=4,椭圆的离心率为12e =; (1)求椭圆C 的标准方程;(2)己知N (4,0),过点N 且斜率为k (k >0)的直线l 与椭圆交于A ,B 不同两点,线段AB 的中垂线为l′,记l′的纵截距为m ,求m 的取值范围.21.已知函数f (x )=2e x -(x -a )2+3,a ∈R .(1)若函数y =f (x )的图象在x =0处的切线与x 轴平行,求a 的值;(2)若x≥0时,f (x )≥0恒成立,求a 的取值范围.22.在直角坐标系xOy 中,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(其中α为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为πcos()4ρθ+=(Ⅰ)将曲线C的参数方程与直线l的极坐标方程化为普通方程;(Ⅱ)过曲线C上一点作平行于直线l的直线m,求直线m与直线l之间的最大距离.武汉市部分中学高三年级十月联考文科数学参考答案一、选择题:共12小题,每小题5分,共60分.13. 14.210x y++=15.1016.三、解答题:解答应写出文字说明,证明过程或演算步骤。

【精品解析】湖北省部分重点中学2019届高三第二次联考数学(文科)试题(附解析)

【精品解析】湖北省部分重点中学2019届高三第二次联考数学(文科)试题(附解析)

湖北省部分重点中学2019届高三第二次联考高三数学(文科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则以下正确的结论是()A. B. C. D.【答案】B【解析】【分析】解不等式得到集合,然后对每个选项分别进行判断即可得到正确的结论.【详解】由题意得,.所以,.故选B.【点睛】本题考查集合的交集和并集运算,解题的关键是通过解不等式得到集合,考查计算能力,属于基础题.2.已知复数满足为虚数单位),则A. B. C. D.【答案】C【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由题意可得:,则:.本题选择C选项.点睛:本题主要考查复数的模的求解,复数的运算法则等知识,意在考查学生的转化能力和计算求解能力.3. (2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A. 2,5B. 5,5C. 5,8D. 8,8【答案】C【解析】试题分析:由题意得,,选C.考点:茎叶图4. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.【答案】B【解析】试题分析:如图为等腰直角三角形旋转而成的旋转体,,故选B.考点:圆锥的体积公式.5.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角终边过点,则的值为()A. B. C. D.【答案】D【解析】【分析】根据三角函数的定义求出和,然后再根据两角和的余弦公式求解即可.【详解】∵角终边过点,∴,∴.故选D.【点睛】解答本题的关键是根据三角函数的定义求出和,容易出现的问题是运用公式时符号出现错误,属于简单题.6.设双曲线的右焦点与抛物线的焦点相同,双曲线的一条渐近线方程为,则双曲线的方程为()A. B. C. D.【答案】B【解析】【分析】由题意得双曲线的渐近线方程为,于是可得,故,从而双曲线方程为,然后再根据双曲线的右焦点与抛物线的焦点相同得到,进而可得所求方程.【详解】由题意得双曲线的渐近线方程为,又双曲线的一条渐近线方程为,∴,故,∴双曲线方程为,∴双曲线的右焦点坐标为.又抛物线的焦点坐标为,双曲线的右焦点与抛物线的焦点相同,∴,∴双曲线的方程为.故选B.【点睛】已知双曲线的标准方程求渐近线方程时,只需把标准方程中等号右边的1换为零,再求出y与x间的关系即可.解答本题的关键是根据题中的关系得到方程中的待定系数,考查对双曲线基本性质的理解和运用,属于基础题.7.一个三棱锥的三视图如图所示,其中正视图、侧视图、俯视图都是直角三角形,则该三棱锥最长的棱长为()A. 7B.C. 3D.【答案】B【解析】【分析】根据三视图画出三棱锥的直观图,再根据题中的数据求出三棱锥的所有的棱长后可得结论.【详解】由三视图可得三棱锥为如图所示的三棱锥,其中底面三角形是直角三角形,两直角边分别为,底面,且.结合图形可得最长的棱为.故选B.【点睛】解答类似问题的关键是根据三视图得到几何体的直观图,解题时要综合三个视图进行考虑,熟记常见几何体的三视图是解题的关键,考查空间想象能力和计算能力,属于基础题.8.已知函数,若函数是奇函数,则曲线在点处的切线方程是()A. B. C. D.【答案】B【解析】【分析】根据函数是奇函数可求得,所以,然后根据导数的几何意义求出切线的斜率,进而得到切线的方程.【详解】由题意得,∴函数为奇函数,∴,∴.∴,∴,∴,又,∴所求切线方程为,即.故选B.【点睛】本题考查导数的几何意义,解答本题的关键是求出函数的解析式,解题时注意“曲线在点P处的切线”和“曲线过点P的切线”两种说法的区别,其中“曲线在点P处的切线”说明点P在曲线上且点P为切点,此时可根据导函数的函数值及直线的点斜式方程求出切线方程即可.9.将函数的图像向左平移个单位,得到函数的图像,则下列关于函数的说法正确的是()A. 是奇函数B. 的周期是C. 的图像关于直线对称D. 的图像关于点对称【答案】D【解析】函数的图象向左平移个单位,得到函数的图象,可得函数是偶函数且周期为,所以选项A、B错误,又,所以选项D正确,故选D. 10.在长方体中,,为底面矩形两条对角线的交点,若异面直线与所成的角为,则长方体的体积为()A. B. C. D.【答案】A【解析】【分析】根据题意画出图形,取的中点,由题意得异面直线与所成的角为,结合题中的数据求出长方体的高,然后可求出长方体的体积.【详解】如图,取的中点,连,则有∥,且,所以即为异面直线与所成的角,所以.在直角三角形中,,故在直角三角形中,,所以长方体的体积为.故选A.【点睛】本题考查长方体体积的求法,解题的关键是求出长方体的高,在求高的过程中,通过异面直线所成角的定义作出两直线所成的角,再通过解三角形的知识求解,考查转化和计算能力,属于基础题.11.已知边长为2的等边中,向量满足,,则下列式子错误的是()A. B. C. D.【答案】C【解析】【分析】由题意可得,在等边中,,然后对给出的四个选项分别进行验证后可得错误的结论.【详解】画出图形如图所示,由题意可得.对于A,由于,所以A正确.对于B,由题意得,所以B正确.对于C,由图形可得,所以C不正确.对于D,由选项C可得,所以,所以D正确.故选C.【点睛】用定义进行向量的数量积运算时一定要结合图形进行求解,容易出现的问题是把向量的夹角判断错误,考查数形结合在解题中的应用及计算能力,属于中档题.12.已知的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为()A. B. C. D.【答案】A【解析】【分析】设三角形的三边分别为,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到的值,于是可得最小角的余弦值.【详解】由题意,设的三边长分别为,对应的三角分别为,由正弦定理得,所以.又根据余弦定理的推论得.所以,解得,所以,即最小角的余弦值为.故选A.【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数的定义域为__________.【答案】【解析】【分析】根据被开方式为非负数得到对数不等式,解对数不等式可得定义域.【详解】要使函数有意义,需满足,即,解得,所以函数的定义域为.故答案为.【点睛】本题考查函数定义域的求法,解题的关键是正确解对数不等式,属于容易题.14.已知满足约束条件,则的最大值为__________.【答案】10【解析】【分析】画出不等式组表示的可行域,由得,平移直线,根据的几何意义求出最优解,进而得到所求的最大值.【详解】画出不等式组表示的可行域,如图阴影部分所示.由得.平移直线,结合图形可得,当直线经过可行域内的点A时,直线在y轴上的截距最大,此时z取得最大值.由,解得,故点A的坐标为,所以.故答案为.【点睛】用线性规划求目标函数的最值体现了数形结合在数学中的应用,解题时要先判断出目标函数中的几何意义,然后再结合图形求解,常见的类型有截距型、斜率型和距离型三种,其中解题的关键是正确画出不等式组表示的可行域.15.已知函数,若关于的方程有两个不相同的实数根,则实数的取值范围是__________.【答案】【解析】【分析】由题意得方程有两个不同的实数根,从而得到函数的图象与函数的图象有两个不同的交点,画出函数的图象后结合图象求解即可.【详解】由题意得方程有两个不同的实数根,从而函数的图象与函数的图象有两个不同的交点.画出函数的图象,如图所示.结合图象可得,要使函数的图象与函数的图象有两个不同的交点,则需满足,所以实数的取值范围是.故答案为.【点睛】本题考查根据方程根的个数求参数的取值范围,解题时注意将问题转化为两函数图象公共点个数的问题求解,解题的关键是画出函数的图象,然后再借助图象求解,体现了数形结合的应用.16.已知为原点,过点的直线与圆相交于两点,若的面积为2,则直线的方程为__________.【答案】x=1或5x+12y+13=0【解析】【分析】分直线的斜率存在与不存在两种情况,求出弦长和圆心到直线的距离,再结合三角形的面积可求出直线的方程.【详解】①当直线的斜率不存在时,直线方程为,则圆心到直线的距离为1,所以,故,所以直线满足题意.②当直线的斜率存在时,设直线的方程为,即,所以圆心到直线的距离,故,因为,所以,整理得,解得或.当时,则,解得;当时,则,此方程无解.故直线方程为,即.综上可得所求直线方程为或.故答案为或.【点睛】本题考查直线和圆的位置关系及圆的弦长的求法,解题时容易出现的错误是忽视过点P的直线斜率不存在的情况,另外本题中由于涉及到大量的计算,所以在解题中要注意计算的合理性和准确性.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列的前项和,满足,记.(1)求;(2)判断数列是否为等比数列,并说明理由;(3)求数列的通项公式.【答案】(1);(2)见解析;(3) .【解析】【分析】(1)由可求出,然后根据得到,进而可得,于是可得.(2)根据等比数列的定义进行证明即可得到答案.(3)先求出数列的通项公式,然后根据可得数列的通项公式.【详解】(1)令,则,故.∵,∴,∴,∴.∴,∴.(2)数列是等比数列.证明如下:∵,∴,又,∴数列是首项为2,公比为2的等比数列.(3)由(2)知,又,∴.【点睛】(1)证明数列为等比数列时,不要忘了说明数列中不存在零项,为解决这一问题,只需验证数列的首项不为零即可.(2)数列的有关运算时一般需要化为数列的基本量(首项和公差或首项和公比)的问题来处理,解题时注意通项公式和前n项和公式的灵活利用.18.如图,在四棱锥中,已知是等边三角形,平面,,,点为棱的中点.(1)求证:平面;(2)求三棱锥的体积.【答案】(1)证明见解析;(2) .【解析】【分析】(1)取BC的中点Q,连MQ与DQ,可证得四边形为平行四边形,故,根据线面平行的判定定理可得结论成立.(2)取AB的中点N,连接AN,根据条件可得到平面,且四边形为直角梯形,即确定了三棱锥的高和底面,然后利用可得所求体积.【详解】(1)证明:取PC的中点Q,连接MQ与DQ,∵为的中位线,∴,且.又,∴,且.∴四边形为平行四边形,∴.又平面,平面,∴平面.(2)取AB的中点N,连接AN,∵为等边三角形,∴.∵平面,平面,∴平面平面.又平面平面,∴平面.∵∴四边形为直角梯形,∵,∴.【点睛】在证明空间中的线面关系时,要注意证明过程的完整性,对于判定、性质定理中的关键词语,在解题过程中要用符号加以表示,这是解题中容易出现的问题.另外,求三棱锥的体积时往往要结合等积法求解,即转化为便于求体积的三棱锥的体积求解.19.2018年11月21日,意大利奢侈品牌“﹠”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:,,,,,,得到如图所示的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如下表.(1)在答题卡上补全列联表中数据;并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?(2)现已从“强烈关注”的网友中按性别分层抽样选取了5人,再从这5人中选取2人,求这2人中至少有1名女性的概率.参考公式及数据:,【答案】(1)没有的把握认为网友对此事件是否为“强烈关注”与性别有关;(2) .【解析】【分析】(1)根据题意得到列联表,然后根据题中数据求出的值,最后根据临界值表中的数据得到结论.(2)由题意得到所选的5人中的男性、女性的个数,然后通过列举法得到所有的基本事件个数及至少有一名女性包含的事件的个数,最后根据古典概型概率公式求解即可.【详解】(1)由题意得列联表如下:由表中数据可得,所以没有95%的把握认为网友对此事件是否为“强烈关注”与性别有关.(2)从“强烈关注”的网友所选的5人中,男性人数为人,分别记为,女性人数为人,分别记为.从这5人中任选2人的所有结果为:,共10种,且它们是等可能的,其中至少有一名女性网友的结果为:,共7种,所以所求概率为.即这2人中至少有1名女性的概率.【点睛】解题时注意临界值表中数据的意义及其用法:①查表时不是查最大允许值,而是先根据题目要求的百分比找到第一行对应的数值,再将该数值对应的k值与求得的K2相比较.②表中第一行数据表示两个变量没有关联的可能性p,所以其有关联的可能性为1-p.20.已知椭圆的左、右焦点为,离心率为,点在椭圆上,且的面积的最大值为.(1)求椭圆的方程;(2)已知直线与椭圆交于不同的两点,若在轴上存在点,使得,求实数的取值范围.【答案】(1) ;(2).【解析】【分析】(1)根据离心率得到,由的面积的最大值为得到,再结合椭圆中求出参数的值后可得方程.(2)将直线方程代入椭圆方程消去y得到关于x的二次方程,结合根据系数的关系求出线段的中点的坐标,由得,进而有,并由此得到,最后根据基本不等式得到所求范围.【详解】(1)由题意得,解得.∴椭圆的方程为.(2)由消去y整理得,且.设,线段的中点为,则.∴,∴.∵在轴上存在点,使得,∴,∴,即,∴.∵,∴,当且仅当且,即时等号成立.∴,故.∴实数的取值范围为.【点睛】(1)在解决圆锥曲线的有关问题时要注意平面几何图形性质的运用,如在本题中根据得到,即将等腰三角形的问题转化为垂直问题.(2)解决最值或范围问题时,常用的方法是将所求量表示成某个参数的代数式,然后再结合基本不等式或函数的知识求出这个式子的最值或范围即可.由于此类问题一般要涉及到大量的计算,所以在解题时要注意计算的合理性,注意变形、换元等方法的利用.21.设函数.(1)当时,求函数的极值;(2)若不等式对任意恒成立,求实数的取值范围.【答案】(1)的极大值为,无极小值;(2).【解析】【分析】(1)求出函数的导数,进而得到函数的单调性,然后可得函数的极值.(2)通过对参数的讨论得到函数的单调性,进而得到函数的最大值,然后将恒成立问题转化为,解不等式可得所求范围.【详解】(1)当时,,∴.由得.当变化时,的变化情况如下表:由表知,当时,函数取得极大值,且极大值为,无极小值.(2)由题意得.①当时,则,∴函数在上单调递增,又,∴对任意,不恒成立.②当时,则当时,单调递增;当时,单调递减.∴当时,函数取得极大值,也为最大值,且.∵不等式对任意恒成立,∴,解得.综上可得实数的取值范围为.【点睛】(1)用导数研究函数的性质时,单调性是解题的工具,由单调性可得函数的极值、最值,进而得到函数的大体图象,为解决问题提供了直观性.(2)解决函数中的恒成立问题时,可转化为函数的最值问题求解,解题时首先得到函数的最值,再结合题意求解即可.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在极坐标系中,曲线的极坐标方程为,点的极坐标为,以极点为极点,以轴正半轴为极轴建立极坐标系.(1)曲线的直角坐标方程和点的直角坐标;(2)若过点且倾斜角为的直线,点为曲线上任意一点,求点到直线的最小距离.【答案】(1);(2) .【解析】【分析】(1)根据极坐标和直角坐标间的互化公式求解即可得到结论.(2)转化为直角坐标求解,设点的坐标,然后根据点到直线的距离求解,再结合二次函数得到所求最小值.【详解】(1)由得,把代入上式得,∴曲线的直角坐标方程为.设点的直角坐标为,则,∴点的直角坐标为.(2)由题意得直线的方程为,即.设点,则点到直线的距离为,故当时,有最小值,且.∴点到直线的最小距离为.【点睛】解答本题的关键是根据极坐标和直角坐标间的互化公式求解,在解决与极坐标或参数方程有关的问题时,常用的方法是转化为直角坐标求解,考查转化和计算能力,属于基础题.23.选修4-5:不等式选讲已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含集合,求实数的取值范围.【答案】(1);(2)-1【解析】【详解】(1)当时,,所以不等式即为,等价于或或,即或或,解得或或,∴,∴原不等式的解集为.(2)∵不等式的解集包含集合,∴当时,不等式恒成立,即对恒成立,∴对恒成立,∴对恒成立.又当时,∴.∴实数的取值范围为.【点睛】解含有两个绝对值号的不等式时,常用的方法是利用零点分区间法去掉绝对值号,转化为不等式组求解.解答第二问的关键是将问题转化为不等式恒成立求解,然后通过分离参数再转化为求函数最值的问题处理.- 21 -。

湖北省“荆、荆、襄、宜四地七校考试联盟”2019届高三上学期10月联考试题数学(文)(含答案)

湖北省“荆、荆、襄、宜四地七校考试联盟”2019届高三上学期10月联考试题数学(文)(含答案)

绝密★启用前2019届“荆、荆、襄、宜四地七校考试联盟”高三10月联考 文科数学试题总分:150分 时间:120分钟注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的答案填涂在答题卡上. 1.已知集合{}1,0,1A =-,{}=1B x x =,则A B =UA .{}1B .{}1-C .{}1,1-D .{}1,0,1- 2.函数()f x =的定义域是A .(,2)(0,)-∞-+∞B .(,2)(2,0)-∞--C .(2,0)-D .(2,0]-3.下列命题中错误..的是 A .命题“若x y =,则sin sin x y =”的逆否命题是真命题B .命题“()0000,,ln 1x x x ∃∈+∞=-”的否定是“()0,,ln 1x x x ∀∈+∞≠-”C .若p q ∨为真命题,则p q ∧为真命题D .在ABC ∆中,“A B >”是“sin sin A B >”的充要条件4.已知向量(2,2)a =,(,1)b n =,若向量a b -与a 是平行向量,则n =A.1B.1-C.3D.3- 5.为了得到函数sin(2)3y x π=+的图象,只需把函数()sin 2f x x =的图象上所有点A .向右平移6π个单位长度 B .向左平移6π个单位长度 C .向右平移3π个单位长度D .向左平移3π个单位长度6.设函数()f x 是定义在R 上的奇函数,且当0x ≥时3()log (1)f x x =+,则[(8)]f f -=A.2-B.1-C.1D.2 7.函数2sin()([0,])3y x x ππ=-∈的增区间为A. [0,]6πB. [0,]2πC. 5[0,]6π D. 5[,]6ππ 8.已知11617a =,16log 17b =17log c =,则a ,b ,c 的大小关系为A .a b c >>B .a c b >>C .b a c >>D .c b a >> 9.已知函数2()(1)xf x e x =-+(e 为自然对数的底),则()f x 的大致图象是A B C D 10.平面直角坐标系xOy 中,点00(,)P x y 在单位圆O 上,设xOP α∠=,若5()36ππα∈,,且3sin()65πα+=,则0x 的值为A .3310- B.310+ C.310 D.310-11.已知函数⎩⎨⎧>≤+=0|,log |0|,2|)(2x x x x x f ,若关于x 的方程()()f x a a R =∈有四个不同实数解4321,,,x x x x ,且4321x x x x <<<,则1234x x x x +++的取值范围为A .1[2,]4-B .1(2,]4- C .[2,)-+∞ D .(2,)-+∞12.设函数()1ln f x ax b x x=---,若1x =是()f x 的极小值点,则a 的取值范围为A .()1,0-B .()1,-+∞C .(),1-∞-D .(),0-∞二、填空题(本大题共4小题,每小题5分,共20分)13.若点(2,4)P 在幂函数()y f x =的图象上,则(3)f = ;14.已知函数2()f x x ax b =-+在点(1,(1))f 处的切线方程为32y x =+,则a b += ;15.在边长为2的正ABC ∆中,设3BC BD =,2CA CE =,则AD BE ⋅= ; 16. 已知1()2sin() (,)64f x x x R πωω=+>∈,若()f x 的任何一条对称轴与x 轴交点的横坐标都不属于区间(,2)ππ,则ω的取值范围是 .三.解答题:共70分。

2019届高三10月月考数学(文)试题(7).docx

2019届高三10月月考数学(文)试题(7).docx

一.选择题(本大题共12个小题,每小题5分,共60分)1.设集合/1 = {刎无 >一1}, B = {x\-2<x<2\,则A B =(A)[x\x>-2](B) {兀|兀>一1} (C) |x|-2<x<—1} (D) [x\-l<x<2]2.已知命题对任意x w R,总有X2 -x+l>0 ;则卜列命题为真命题的是4•已知函数f(x) = lnx + ln(2-x),则y = f(x)的图像关于点(1, 0)对称3', x<r则/(/(2))=一兀,X > 16•设兀wR,贝9 “Ovxv3” 是“F_4X +3<0”的7.设a = 60,7, b = 0.76 , c = logQ7 6 ,则a, b , c 的大小关系为(A) b> c> a(B) b> a> c(C) c> a> b(D) a> b> c&若Z^=lo»(2v+l)>则/(x)的定义域为2(\ \ ( 1 A ( i A ( i A(A) 一一,0 (B) 一一,+oo (C) 一一,0 u(0,+oo) (D) 一一,29 9 9 ' 丿9g:若a2 < b29贝>J 6/ < Z?.(A) Wq(C) -i/7 A -\C[(D) P"3.设集合A={x X2-4X+3^0}, B二{x|2x - 3W0},A. ( - g, 1]U[3, +8)B. [1, 3]C. 23则AUB=(一8,才U [3, + 00D.A. f(x)在(0, 2)单调递增B. f(x)在(0, 2)单调递减C. y = f(x)的图像关于直线x=l对称D.5.函数fM =(A) 9 (B) 6 (c)?(D) -2(A)充分不必要条件(B)必要不充分条件(D)既不充分也不必要条(A) (B) (C)(D)10. 已知函数/*(兀)在R 上是奇函数,且满足/(%)= /(X+4),当X G (0,2)时, f(x) = 2x\ 则/(7)=(A) -2(B) 212•己知定义在只上的函数f(x),若f(x)是奇函数,f(x+l)是偶函数,当OSxG 时, /(x) = X 2,贝i"(2(H5) =A. -1B. 1C. 0D. 20152二.填空题(本大题共4小题,每小题5分,共20分)13. _________________________________________ 命题“X/;cvl,lgx>2”的否定是 ______________________________________________ ・14. 函数y = lg(x-3) + ~^=的定义域为 _______ ・ V4-x15. 已知f(x) = ax 2+ bx+2015满足f(-l) = f(3),贝ljf(2) = ____ .16 •已知/(X )= l-|lgx|,则函数丿=2[/(x)]2 - 3/(%) 4-1的零点个数为 _________ 三•解答题(17题10分,18-22题每题12分,共70分) 17. 计算下列各式的值:] 了 ]、-2 了 7()(I ) (0.027)'5—— + 2- _(血-1); 17丿I 9丿(II) log s 25 + lg-^ + lnV^ + 2,o§23. 10018. 已矢nA={x|a+l<x<2a-l}, B= {x|xs3或x>5}・(1 )若a = 4,求ADB ;(2)若ACB,求的取值范围.19. 已知函数(其中爲,方为常量且日>0, aHl)的图象经过点J(l, 6),5(3, 24),(C) -98 (D) 98 11. 设定义在上的奇函数/(x)满足, 对任意X p X 2 G (0,+8), 口兀[H %都有 .心)-/(花) >0,且 /⑵=0,则不等式3疋土2/(叭。

2019年高三上学期10月月考数学试卷(文科)含解析

2019年高三上学期10月月考数学试卷(文科)含解析

2019年高三上学期10月月考数学试卷(文科)含解析一、选择题(共8小题,每小题5分,满分40分)1.已知全集U=R,集合A={x|x≤﹣2或x≥3},B={x|x<﹣1或x>4},那么集合(∁UA)∩B等于()A.{x|﹣2≤x<4} B.{x|﹣2<x<3}C.{x|﹣2<x<﹣1} D.{x|﹣2<x<﹣1或3<x<4}2.已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题3.在等差数列{an }中,首项a1=0,公差d≠0,若am=a1+a2+…+a9,则m的值为()A.37 B.36 C.20 D.194.若点P在曲线y=x3﹣3x2+(3﹣)x+上移动,经过点P的切线的倾斜角为α,则角α的取值范围是()A.[0,)B.[0,)∪[,π)C.[,π)D.[0,)∪(,]5.i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.36.已知m、n为两条不同的直线α、β为两个不同的平面,给出下列四个命题①若m⊂α,n∥α,则m∥n;②若m⊥α,n∥α,则m⊥n;③若m⊥α,m⊥β,则α∥β;④若m∥α,n∥α,则m∥n.其中真命题的序号是()A.①②B.③④C.①④D.②③7.已知函数f(x)满足:4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R)且,则fA. B. C. D.8.在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M 满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0二、填空题:(本大题共6小题;每小题5分,共30分.)9.设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=.10.已知等差数列{a n}的前n项和为S n,若a3=4,S3=3,则公差d=.11.若cosxcosy+sinxsiny=,则cos(2x﹣2y)=.12.已知函数若直线y=m与函数f(x)的图象只有一个交点,则实数m的取值范围是.13.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,20,则输出的a=.14.已知A、B为函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b,λ∈[0,1],又已知向量=λ+(1﹣λ),若不等式||≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数f(x)=x﹣在[1,2]上“k阶线性近似”,则实数k的取值范围为.三、解答题:(本大题6小题,共80分.解答写出文字说明,证明过程或演算步骤.)15.已知数列{a n}的前n项和S n=n﹣5a n﹣85,(Ⅰ)求{a n}的通项公式;(Ⅱ)令b n=log+log+…+log,求数列{}的前n项和T n.16.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.17.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)等比数列{b n}满足:b1=a1,b2=a2﹣1,若数列c n=a n•b n,求数列{c n}的前n项和S n.18.在△ABC中,2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.(1)求cosA的值;(2)若a=4,b=5,求在方向上的投影.19.已知函数f(x)=x3﹣bx+c(b,c∈R)(Ⅰ)若函数f(x)在点(1,f(1))处的切线方程为y=2x+1,求b,c的值;(Ⅱ)若b=1,函数f(x)在区间(0,2)内有唯一零点,求c的取值范围;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|≤,求b的取值范围.20.对于一组向量,,,…,(n∈N*),令=+++…+,如果存在(p∈{1,2,3,…,n},使得||≥|﹣|,那么称是该向量组的“h向量”.(1)设=(n,x+n)(n∈N*),若是向量组,,的“h向量”,求实数x的取值范围;(2)若=(()n﹣1•(﹣1)n(n∈N*),向量组,,,…,是否存在“h向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“h向量”,其中=(sinx,cosx),=(2cosx,2sinx).设在平面直角坐标系中有一点列Q1.Q2,Q3,…,Q n满足:Q1为坐标原点,Q2为的位置向量的终点,且Q2k+1与Q2k关于点Q1对称,Q2k+2与Q2k+1(k∈N*)关于点Q2对称,求||的最小值.参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.已知全集U=R,集合A={x|x≤﹣2或x≥3},B={x|x<﹣1或x>4},那么集合(∁U A)∩B等于()A.{x|﹣2≤x<4}B.{x|﹣2<x<3}C.{x|﹣2<x<﹣1}D.{x|﹣2<x<﹣1或3<x<4}【考点】交、并、补集的混合运算.【分析】求出集合A的补集,从而求出其和B的交集即可.【解答】解:集合A={x|x≤﹣2或x≥3},∴∁U A={x|﹣2<x<3},B={x|x<﹣1或x>4},∴(∁U A)∩B={x|﹣2<x<﹣1},故选:C.2.已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题【考点】全称命题;复合命题的真假.【分析】先判断出命题p与q的真假,再由复合命题真假性的判断法则,即可得到正确结论.【解答】解:由于x=10时,x﹣2=8,lgx=lg10=1,故命题p为真命题,令x=0,则x2=0,故命题q为假命题,依据复合命题真假性的判断法则,得到命题p∨q是真命题,命题p∧q是假命题,¬q是真命题,进而得到命题p∧(¬q)是真命题,命题p∨(¬q)是真命题.故答案为C.3.在等差数列{a n}中,首项a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为()A.37 B.36 C.20 D.19【考点】数列的求和;等差数列.【分析】利用等差数列的通项公式可得a m=0+(m﹣1)d,利用等差数列前9项和的性质可得a1+a2+…+a9=9a5=36d,二式相等即可求得m的值.【解答】解:∵{a n}为等差数列,首项a1=0,a m=a1+a2+…+a9,∴0+(m﹣1)d=9a5=36d,又公差d≠0,∴m=37,故选A.4.若点P在曲线y=x3﹣3x2+(3﹣)x+上移动,经过点P的切线的倾斜角为α,则角α的取值范围是()A.[0,)B.[0,)∪[,π)C.[,π)D.[0,)∪(,]【考点】导数的几何意义;直线的倾斜角.【分析】先求出函数的导数y′的解析式,通过导数的解析式确定导数的取值范围,再根据函数的导数就是函数在此点的切线的斜率,来求出倾斜角的取值范围.【解答】解:∵函数的导数y′=3x2﹣6x+3﹣=3(x﹣1)2﹣≥﹣,∴tanα≥﹣,又0≤α<π,∴0≤α<或≤α<π,故选B.5.i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.3【考点】复数的基本概念;复数代数形式的乘除运算.【分析】利用复数的乘法求出复数z,然后求解结果即可.【解答】解:复数z满足zi=﹣1+i,可得z===1+i.复数z的实部与虚部的和是:1+1=2.故选:C.6.已知m、n为两条不同的直线α、β为两个不同的平面,给出下列四个命题①若m⊂α,n∥α,则m∥n;②若m⊥α,n∥α,则m⊥n;③若m⊥α,m⊥β,则α∥β;④若m∥α,n∥α,则m∥n.其中真命题的序号是()A.①②B.③④C.①④D.②③【考点】平面的基本性质及推论.【分析】m⊂α,n∥α,则m∥n或m与n是异面直线;若m⊥α,则m垂直于α中所有的直线,n∥α,则n平行于α中的一条直线l,故m⊥l,m⊥n;若m⊥α,m⊥β,则α∥β;m∥α,n∥α,则m∥n,或m,n相交,或m,n异面.【解答】解:m⊂α,n∥α,则m∥n或m与n是异面直线,故①不正确;若m⊥α,则m垂直于α中所有的直线,n∥α,则n平行于α中的一条直线l,∴m⊥l,故m⊥n.故②正确;若m⊥α,m⊥β,则α∥β.这是直线和平面垂直的一个性质定理,故③成立;m∥α,n∥α,则m∥n,或m,n相交,或m,n异面.故④不正确,综上可知②③正确,故答案为:②③.7.已知函数f(x)满足:4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R)且,则fA. B. C. D.【考点】抽象函数及其应用.【分析】由,令y=1代入题中等式得f(x)=f(x+1)+f(x﹣1),由此证出f(x+6)=f(x),可得函数f(x)是周期T=6的周期函数.令y=0代入题中等式解出f(0)=,再令x=y=1代入解出f(2)=﹣,同理得到f(4)=﹣.从而算出f=f(4)=﹣.【解答】解:∵,∴令y=1,得4f(x)f(1)=f(x+1)+f(x﹣1),即f(x)=f(x+1)+f(x﹣1),即f(x+1)=f(x)﹣f(x﹣1)…①用x+1替换x,得f(x+2)=f(x+1)﹣f(x),…②①+②得:f(x+2)=﹣f(x﹣1),再用x+1替换x,得f(x+3)=﹣f(x).∴f(x+6)=f[(x+3)+3]=﹣f(x+3)=﹣[﹣f(x)]=f(x),函数f(x)是周期T=6的周期函数.因此,f=f(4).∵4f(x)f(y)=f(x+y)+f(x﹣y)∴令y=0,得4f(x)f(0)=2f(x),可得f(0)=.在4f(x)f(y)=f(x+y)+f(x﹣y)中令x=y=1,得4f2(1)=f(2)+f(0),∴4×=f(2)+,解之得f(2)=﹣同理在4f(x)f(y)=f(x+y)+f(x﹣y)中令x=y=2,解得f(4)=﹣.∴f=﹣.故选:A8.在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M 满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0【考点】平面向量数量积的运算;进行简单的合情推理.【分析】利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.【解答】解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为(++)•(++)的最小值、最大值,∴m<0,M<0故选D.二、填空题:(本大题共6小题;每小题5分,共30分.)9.设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.【考点】复数的基本概念.【分析】根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.【解答】解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.10.已知等差数列{a n}的前n项和为S n,若a3=4,S3=3,则公差d=3.【考点】等差数列的前n项和.【分析】由等差数列的性质可得S3=3a2=3,解得a2的值,由公差的定义可得.【解答】解:由等差数列的性质可得S3===3,解得a2=1,故公差d=a3﹣a2=4﹣1=3故答案为:311.若cosxcosy+sinxsiny=,则cos(2x﹣2y)=﹣.【考点】两角和与差的余弦函数;二倍角的余弦.【分析】已知等式左边利用两角和与差的余弦函数公式化简,求出cos(x﹣y)的值,所求式子利用二倍角的余弦函数公式化简后,将cos(x﹣y)的值代入计算即可求出值.【解答】解:∵cosxcosy+sinxsiny=cos(x﹣y)=,∴cos(2x﹣2y)=cos2(x﹣y)=2cos2(x﹣y)﹣1=﹣.故答案为:﹣.12.已知函数若直线y=m与函数f(x)的图象只有一个交点,则实数m的取值范围是m≥2或m=0.【考点】分段函数的应用.【分析】作出函数f(x)的图象,判断函数的单调性和取值范围,利用数形结合进行判断即可.【解答】解:作出函数f(x)的图象如图,则当x<1时,f(x)∈(0,2),当x≥1时,f(x)≥0,则若直线y=m与函数f(x)的图象只有一个交点,则m≥2或m=0,故答案为:m≥2或m=013.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,20,则输出的a=2.【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当a=14,b=20时,满足a≠b,但不满足a>b,执行b=b﹣a后,a=14,b=6,当a=14,b=6时,满足a≠b,且满足a>b,执行a=a﹣b后,a=8,b=6,当a=8,b=6时,满足a≠b,且满足a>b,执行a=a﹣b后,a=2,b=6,当a=2,b=6时,满足a≠b,但不满足a>b,执行b=b﹣a后,a=2,b=4,当a=2,b=4时,满足a≠b,但不满足a>b,执行b=b﹣a后,a=2,b=2,当a=2,b=2时,不满足a≠b,故输出的a值为2,故答案为:214.已知A、B为函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b,λ∈[0,1],又已知向量=λ+(1﹣λ),若不等式||≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数f(x)=x﹣在[1,2]上“k阶线性近似”,则实数k的取值范围为.【考点】平面向量的综合题.【分析】先得出M、N横坐标相等,再将恒成立问题转化为求函数的最值问题.【解答】解:由题意,M、N横坐标相等,恒成立,即,由N在AB线段上,得A(1,0),B(2,),∴直线AB方程为y=(x﹣1)∴=y1﹣y2=﹣(x﹣1)=﹣(+)≤(当且仅当x=时,取等号)∵x∈[1,2],∴x=时,∴故答案为:三、解答题:(本大题6小题,共80分.解答写出文字说明,证明过程或演算步骤.)15.已知数列{a n}的前n项和S n=n﹣5a n﹣85,(Ⅰ)求{a n}的通项公式;(Ⅱ)令b n=log+log+…+log,求数列{}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)利用S n=n﹣5a n﹣85,S n+1=(n+1)﹣5a n+1﹣85,两式相减得a n+1=1﹣5a n+1+5a n,化为,再利用等比数列的通项公式即可得出.(2)利用对数的运算可得=n,利用等差数列的前n项和公式即可得出b n,再利用“裂项求和”即可得出T n.【解答】解:(Ⅰ)当n=1时,a1=S1=1﹣5a1﹣85,解得a1=﹣14.∵S n=n﹣5a n﹣85,S n+1=(n+1)﹣5a n+1﹣85,∴两式相减得a n+1=1﹣5a n+1+5a n,即,从而{a n﹣1}为等比数列,首项a1﹣1=﹣15,公比为.∴,即.∴{a n}的通项公式为.(Ⅱ)由(Ⅰ)知,∴=n,∴b n=1+2+3+…+n=.∴,∴T n==.16.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.【考点】两角和与差的正弦函数;正弦函数的单调性;正弦定理.【分析】(Ⅰ)利用两角和差的正弦公化简函数的解析式为sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可求得f(x)的单调递增区间.(Ⅱ)由已知,可得sin(2A+)=,求得A=,再利用正弦定理求得b的值,由三角形内角和公式求得C的值,再由S=ab•sinC,运算求得结果.【解答】解:(Ⅰ)=sin2xcos+cos2xsin+cos2x=sin2x+cos2x=(sin2x+cos2x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,函数f(x)的单调递增区间为[kπ﹣,kπ+],k∈z.(Ⅱ)由已知,可得sin(2A+)=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得sinC=,…∴S=ab•sinC==.17.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)等比数列{b n}满足:b1=a1,b2=a2﹣1,若数列c n=a n•b n,求数列{c n}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(Ⅰ)设等差数列{a n}的公差为d,d>0,利用等差数列的通项表示已知,求解出d,a1,结合等差数列的通项即可求解(Ⅱ)由b1=1,b2=2可求,,结合数列的特点,考虑利用错位相减求解数列的和【解答】解:(Ⅰ)设等差数列{a n}的公差为d,则依题设d>0由a2+a7=16.得2a1+7d=16 ①﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由a3a6=55得(a1+2d)(a1+5d)=55 ②﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由①得2a1=16﹣7d将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0∴d=2,代入①得a1=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴a n=1+(n﹣1)•2=2n﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)b1=1,b2=2∴∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣两式相减可得:=1+2×﹣(2n﹣1)•2n∴=2n+1﹣3﹣(2n ﹣1)•2n﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣18.在△ABC中,2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.(1)求cosA的值;(2)若a=4,b=5,求在方向上的投影.【考点】两角和与差的余弦函数;向量数乘的运算及其几何意义;二倍角的正弦;二倍角的余弦;余弦定理.【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B的值,利用余弦定理求出c 的大小.【解答】解:(Ⅰ)由可得,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.19.已知函数f(x)=x3﹣bx+c(b,c∈R)(Ⅰ)若函数f(x)在点(1,f(1))处的切线方程为y=2x+1,求b,c的值;(Ⅱ)若b=1,函数f(x)在区间(0,2)内有唯一零点,求c的取值范围;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|≤,求b的取值范围.【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理;利用导数求闭区间上函数的最值.【分析】(Ⅰ)先求导函数f′(x),根据f′(1)=2可求出b的值,再根据切点既在切线上又在函数图象上可求出c的值;(Ⅱ)先利用导数研究函数的单调性,从而得到f(x)在区间(0,2)内有唯一零点等价于f(1)=0或,解之即可求出c的取值范围;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|等价于f(x)在[﹣1,1]上的最大值与最小值之差M≤,讨论b的取值范围,求出f(x)在[﹣1,1]上的最大值与最小值之差M,建立关系式,解之即可.【解答】解:(Ⅰ)∵f(x)=x3﹣bx+c,∴f′(x)=x2﹣b,∴f′(1)=1﹣b=2,解得b=﹣1,又f(1)=2+1=3,∴﹣b+c=3,解得c=;(Ⅱ)∵b=1,∴f(x)=x3﹣x+c,则f′(x)=x2﹣1,当x∈(0,1)时,f′(x)<0,当x∈(1,2)时,f′(x)>0,∴f(x)在(0,1)上单调递减,在(1,2)上单调递增,又f(0)=c<f(2)=+c,可知f(x)在区间(0,2)内有唯一零点等价于f(1)=0或,解得c=或﹣<c≤0;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|等价于f(x)在[﹣1,1]上的最大值与最小值之差M≤,(ⅰ)当b≤0时,在[﹣1,1]上f′(x)≥0,f(x)在[﹣1,1]上单调递增,由M=f(1)﹣f(﹣1)=﹣2b≤,得b≥﹣,所以﹣≤b≤0,(ⅱ)当b>0时,由f′(x)=0得x=±,由f(x)=f(﹣)得x=2或x=﹣,∴f(2)=f(﹣),同理f(﹣2)=f(),①当>1,即b>1时,M=f(﹣1)﹣f(1)=2b﹣>,与题设矛盾,②当≤1≤2,即≤b≤1时,M=f(﹣2)﹣f()=﹣+2b=≤恒成立,③当2<1,即0<b<时,M=f(1)﹣f(﹣1)=﹣2b≤恒成立,综上所述,b的取值范围为[﹣,1].20.对于一组向量,,,…,(n∈N*),令=+++…+,如果存在(p∈{1,2,3,…,n},使得||≥|﹣|,那么称是该向量组的“h向量”.(1)设=(n,x+n)(n∈N*),若是向量组,,的“h向量”,求实数x的取值范围;(2)若=(()n﹣1•(﹣1)n(n∈N*),向量组,,,…,是否存在“h向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“h 向量”,其中=(sinx ,cosx ),=(2cosx ,2sinx ).设在平面直角坐标系中有一点列Q 1.Q 2,Q 3,…,Q n 满足:Q 1为坐标原点,Q 2为的位置向量的终点,且Q 2k +1与Q 2k 关于点Q 1对称,Q 2k +2与Q 2k +1(k ∈N *)关于点Q 2对称,求||的最小值.【考点】函数的最值及其几何意义.【分析】(1)由“h 向量”的定义可知:丨丨>丨+丨,可得≥,即可求得实数x 的取值范围;(2)由=(1,﹣1),丨丨=,当n 为奇数时, ++…+=(,0)=(﹣()n ﹣1,0),丨++…+丨=<<,同理当n 为偶数时, ++…+=(﹣•()n ﹣1,1),即可求得丨丨>丨++…+丨,因此是向量组,,,…,的“h 向量”;(3)由题意可得:丨丨2>丨丨2+丨丨2+2丨丨•丨丨,丨丨2>丨丨2+丨丨2+2丨丨•丨丨,丨丨2>丨丨2+丨丨2+2丨丨•丨丨,以上各式相加,整理可得:丨丨+丨丨+丨丨=0,设=(u ,v ),由丨丨+丨丨+丨丨=0,得:,根据向量相等可知:(x 2k +2,y 2k +2)=2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2),(x 2k +1,y 2k +1)=﹣2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2),可知:Q 2k +1•Q 2k +2=(x 2k +2﹣x 2k +1,y 2k +2﹣y 2k +1)=4k [(x 2,y 2)﹣(x 1,y 1)]=4kQ 1•Q 2,由向量的模长公式即可求得丨Q 1•Q 2丨最小值,即可求得||的最小值. 【解答】解:(1)由题意,得:丨丨>丨+丨,则≥…..2’解得:﹣2≤x ≤0; …..4’(2)是向量组,,,…,的“h 向量”,证明如下:=(1,﹣1),丨丨=,当n 为奇数时, ++…+=(,0)=(﹣()n ﹣1,0),…..6’ ∵0≤﹣()n ﹣1<,故丨++…+丨=<<,…8’即丨丨>丨++…+丨当n 为偶数时, ++…+=(﹣•()n ﹣1,1),故丨++…+丨=<<, 即丨丨>丨++…+丨综合得:是向量组,,,…,的“h 向量”,证明如下:”…..10’(3)由题意,得丨丨>丨+丨,丨丨2>丨+丨2,即(丨丨)2≥(丨+丨)2,即丨丨2>丨丨2+丨丨2+2丨丨•丨丨,同理丨丨2>丨丨2+丨丨2+2丨丨•丨丨,丨丨2>丨丨2+丨丨2+2丨丨•丨丨,三式相加并化简,得:0≥丨丨2+丨丨2+丨丨2+2丨丨•丨丨+2丨丨•丨丨+2丨丨•丨丨, 即(丨丨+丨丨+丨丨)2≤0,丨丨丨+丨丨+丨丨丨≤0,∴丨丨+丨丨+丨丨=0,…..13’设=(u ,v ),由丨丨+丨丨+丨丨=0,得:,设Q n (x n ,y n ),则依题意得:, 得(x 2k +2,y 2k +2)=2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2k ,y 2k ), 故(x 2k +2,y 2k +2)=2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2), (x 2k +1,y 2k +1)=﹣2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2), ∴Q 2k +1•Q 2k +2=(x 2k +2﹣x 2k +1,y 2k +2﹣y 2k +1)=4k [(x 2,y 2)﹣(x 1,y 1)]=4kQ 1•Q 2,…16’ 丨Q 1•Q 2丨2=丨丨2=(﹣sinx ﹣2cosx )2+(﹣cosx ﹣2sinx )2=5+8sinxcosx=5+4sin2x ≥1, 当且仅当x=k π﹣,(k ∈Z )时等号成立, 故||的最小值4024.xx1月2日25425 6351 捑31591 7B67 筧P~+ 39544 9A78 驸#36141 8D2D 购Pq38373 95E5 闥33824 8420 萠•。

湖北省武汉市部分市级示范高中高三十月联考文科数学---精校解析Word版

湖北省武汉市部分市级示范高中高三十月联考文科数学---精校解析Word版

武汉市部分市级示范高中高三年级秋季十月联考数学文科试卷一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集I=R,集合A=,B=,则A∩B等于( )A. {x|0≤x≤2 }B. {x|x≥-2 }C. {x|-2≤x≤2}D. {x|x≥2}【答案】A【解析】【分析】根据二次函数值域得集合A,解一元二次不等式得集合B,即可求得A∩B。

【详解】集合A=集合B={x|0≤x≤2}所以A∩B={x|0≤x≤2 }所以选A【点睛】本题考查了集合交集的简单运算,属于基础题。

2.命题:“x>l, x2>l”的否定为( )A. x>l, x2<1B. x<l, x2<1C. x>l, x2 1D. x<l, x2≤1【答案】C【解析】【分析】含有一个量词的否定形式,将任意改成存在,结论改成否定形式即可。

【详解】全称命题的否定形式为特称命题:x>l, x2 1所以选C【点睛】本题考查了含有量词的否定形式,属于基础题。

3.函数f(x)= ln|x+1|的图像大致是( )A. B. C. D.【答案】A【解析】【分析】根据特殊值,代入检验,排除不合要求的选项即可。

【详解】当x=0时,f(x)=0,排除D选项当时,排除C选项根据定义域可排除B选项所以A选项为正确选项所以选A【点睛】本题考查了根据解析式判断函数的图像,从特殊值、单调性、奇偶性等方面考虑,属于基础题。

4.已知函数y= 4cosx的定义域为,值域为[a,b],则b-a的值是( )A. 4B.C. 6D.【答案】C【解析】【分析】根据定义域,结合余弦函数的图像,即可求得值域,进而求得b-a的值。

【详解】当定义域为时,函数y=cosx的值域结合图像可知为所以y= 4cosx的值域为所以b-a=6所以选C【点睛】本题考查了三角函数图像及其简单的性质,属于基础题。

湖北省部分重点中学2019届高三第二次联考高三数学(文科)试题(解析版)

湖北省部分重点中学2019届高三第二次联考高三数学(文科)试题(解析版)

湖北省部分重点中学2019届高三第二次联考高三数学(文科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则以下正确的结论是()A. B. C. D.【答案】B【解析】【分析】解不等式得到集合,然后对每个选项分别进行判断即可得到正确的结论.【详解】由题意得,.所以,.故选B.【点睛】本题考查集合的交集和并集运算,解题的关键是通过解不等式得到集合,考查计算能力,属于基础题.2.已知复数满足为虚数单位),则A. B. C. D.【答案】C【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由题意可得:,则:.本题选择C选项.点睛:本题主要考查复数的模的求解,复数的运算法则等知识,意在考查学生的转化能力和计算求解能力.3.(2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A. 2,5B. 5,5C. 5,8D. 8,8【答案】C【解析】试题分析:由题意得,,选C.考点:茎叶图4. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.【答案】B【解析】试题分析:如图为等腰直角三角形旋转而成的旋转体,,故选B.考点:圆锥的体积公式.5.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角终边过点,则的值为()A. B. C. D.【答案】D【解析】【分析】根据三角函数的定义求出和,然后再根据两角和的余弦公式求解即可.【详解】∵角终边过点,∴,∴.故选D.【点睛】解答本题的关键是根据三角函数的定义求出和,容易出现的问题是运用公式时符号出现错误,属于简单题.6.设双曲线的右焦点与抛物线的焦点相同,双曲线的一条渐近线方程为,则双曲线的方程为()A. B. C. D.【答案】B【解析】【分析】由题意得双曲线的渐近线方程为,于是可得,故,从而双曲线方程为,然后再根据双曲线的右焦点与抛物线的焦点相同得到,进而可得所求方程.【详解】由题意得双曲线的渐近线方程为,又双曲线的一条渐近线方程为,∴,故,∴双曲线方程为,∴双曲线的右焦点坐标为.又抛物线的焦点坐标为,双曲线的右焦点与抛物线的焦点相同,∴,∴双曲线的方程为.故选B.【点睛】已知双曲线的标准方程求渐近线方程时,只需把标准方程中等号右边的1换为零,再求出y与x间的关系即可.解答本题的关键是根据题中的关系得到方程中的待定系数,考查对双曲线基本性质的理解和运用,属于基础题.7.一个三棱锥的三视图如图所示,其中正视图、侧视图、俯视图都是直角三角形,则该三棱锥最长的棱长为()A. 7B.C. 3D.【答案】B【解析】【分析】根据三视图画出三棱锥的直观图,再根据题中的数据求出三棱锥的所有的棱长后可得结论.【详解】由三视图可得三棱锥为如图所示的三棱锥,其中底面三角形是直角三角形,两直角边分别为,底面,且.结合图形可得最长的棱为.故选B.【点睛】解答类似问题的关键是根据三视图得到几何体的直观图,解题时要综合三个视图进行考虑,熟记常见几何体的三视图是解题的关键,考查空间想象能力和计算能力,属于基础题.8.已知函数,若函数是奇函数,则曲线在点处的切线方程是()A. B. C. D.【答案】B【解析】【分析】根据函数是奇函数可求得,所以,然后根据导数的几何意义求出切线的斜率,进而得到切线的方程.【详解】由题意得,∴函数为奇函数,∴,∴.∴,∴,∴,又,∴所求切线方程为,即.故选B.【点睛】本题考查导数的几何意义,解答本题的关键是求出函数的解析式,解题时注意“曲线在点P处的切线”和“曲线过点P的切线”两种说法的区别,其中“曲线在点P处的切线”说明点P在曲线上且点P为切点,此时可根据导函数的函数值及直线的点斜式方程求出切线方程即可.9.将函数的图像向左平移个单位,得到函数的图像,则下列关于函数的说法正确的是()A. 是奇函数B. 的周期是C. 的图像关于直线对称D. 的图像关于点对称【答案】D【解析】函数的图象向左平移个单位,得到函数的图象,可得函数是偶函数且周期为,所以选项A、B错误,又,所以选项D正确,故选D.10.在长方体中,,为底面矩形两条对角线的交点,若异面直线与所成的角为,则长方体的体积为()A. B. C. D.【答案】A【解析】【分析】根据题意画出图形,取的中点,由题意得异面直线与所成的角为,结合题中的数据求出长方体的高,然后可求出长方体的体积.【详解】如图,取的中点,连,则有∥,且,所以即为异面直线与所成的角,所以.在直角三角形中,,故在直角三角形中,,所以长方体的体积为.故选A.【点睛】本题考查长方体体积的求法,解题的关键是求出长方体的高,在求高的过程中,通过异面直线所成角的定义作出两直线所成的角,再通过解三角形的知识求解,考查转化和计算能力,属于基础题.11.已知边长为2的等边中,向量满足,,则下列式子错误的是()A. B. C. D.【答案】C【解析】【分析】由题意可得,在等边中,,然后对给出的四个选项分别进行验证后可得错误的结论.【详解】画出图形如图所示,由题意可得.对于A,由于,所以A正确.对于B,由题意得,所以B正确.对于C,由图形可得,所以C不正确.对于D,由选项C可得,所以,所以D正确.故选C.【点睛】用定义进行向量的数量积运算时一定要结合图形进行求解,容易出现的问题是把向量的夹角判断错误,考查数形结合在解题中的应用及计算能力,属于中档题.12.已知的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为()A. B. C. D.【答案】A【解析】【分析】设三角形的三边分别为,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到的值,于是可得最小角的余弦值.【详解】由题意,设的三边长分别为,对应的三角分别为,由正弦定理得,所以.又根据余弦定理的推论得.所以,解得,所以,即最小角的余弦值为.故选A.【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数的定义域为__________.【答案】【解析】【分析】根据被开方式为非负数得到对数不等式,解对数不等式可得定义域.【详解】要使函数有意义,需满足,即,解得,所以函数的定义域为.故答案为.【点睛】本题考查函数定义域的求法,解题的关键是正确解对数不等式,属于容易题.14.已知满足约束条件,则的最大值为__________.【答案】10【解析】【分析】画出不等式组表示的可行域,由得,平移直线,根据的几何意义求出最优解,进而得到所求的最大值.【详解】画出不等式组表示的可行域,如图阴影部分所示.由得.平移直线,结合图形可得,当直线经过可行域内的点A时,直线在y轴上的截距最大,此时z取得最大值.由,解得,故点A的坐标为,所以.故答案为.【点睛】用线性规划求目标函数的最值体现了数形结合在数学中的应用,解题时要先判断出目标函数中的几何意义,然后再结合图形求解,常见的类型有截距型、斜率型和距离型三种,其中解题的关键是正确画出不等式组表示的可行域.15.已知函数,若关于的方程有两个不相同的实数根,则实数的取值范围是__________.【答案】【解析】【分析】由题意得方程有两个不同的实数根,从而得到函数的图象与函数的图象有两个不同的交点,画出函数的图象后结合图象求解即可.【详解】由题意得方程有两个不同的实数根,从而函数的图象与函数的图象有两个不同的交点.画出函数的图象,如图所示.结合图象可得,要使函数的图象与函数的图象有两个不同的交点,则需满足,所以实数的取值范围是.故答案为.【点睛】本题考查根据方程根的个数求参数的取值范围,解题时注意将问题转化为两函数图象公共点个数的问题求解,解题的关键是画出函数的图象,然后再借助图象求解,体现了数形结合的应用.16.已知为原点,过点的直线与圆相交于两点,若的面积为2,则直线的方程为__________.【答案】x=1或5x+12y+13=0【解析】【分析】分直线的斜率存在与不存在两种情况,求出弦长和圆心到直线的距离,再结合三角形的面积可求出直线的方程.【详解】①当直线的斜率不存在时,直线方程为,则圆心到直线的距离为1,所以,故,所以直线满足题意.②当直线的斜率存在时,设直线的方程为,即,所以圆心到直线的距离,故,因为,所以,整理得,解得或.当时,则,解得;当时,则,此方程无解.故直线方程为,即.综上可得所求直线方程为或.故答案为或.【点睛】本题考查直线和圆的位置关系及圆的弦长的求法,解题时容易出现的错误是忽视过点P的直线斜率不存在的情况,另外本题中由于涉及到大量的计算,所以在解题中要注意计算的合理性和准确性.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列的前项和,满足,记.(1)求;(2)判断数列是否为等比数列,并说明理由;(3)求数列的通项公式.【答案】(1);(2)见解析;(3) .【解析】【分析】(1)由可求出,然后根据得到,进而可得,于是可得.(2)根据等比数列的定义进行证明即可得到答案.(3)先求出数列的通项公式,然后根据可得数列的通项公式.【详解】(1)令,则,故.∵,∴,∴,∴.∴,∴.(2)数列是等比数列.证明如下:∵,∴,又,∴数列是首项为2,公比为2的等比数列.(3)由(2)知,又,∴.【点睛】(1)证明数列为等比数列时,不要忘了说明数列中不存在零项,为解决这一问题,只需验证数列的首项不为零即可.(2)数列的有关运算时一般需要化为数列的基本量(首项和公差或首项和公比)的问题来处理,解题时注意通项公式和前n项和公式的灵活利用.18.如图,在四棱锥中,已知是等边三角形,平面,,,点为棱的中点.(1)求证:平面;(2)求三棱锥的体积.【答案】(1)证明见解析;(2) .【解析】【分析】(1)取BC的中点Q,连MQ与DQ,可证得四边形为平行四边形,故,根据线面平行的判定定理可得结论成立.(2)取AB的中点N,连接AN,根据条件可得到平面,且四边形为直角梯形,即确定了三棱锥的高和底面,然后利用可得所求体积.【详解】(1)证明:取PC的中点Q,连接MQ与DQ,∵为的中位线,∴,且.又,∴,且.∴四边形为平行四边形,∴.又平面,平面,∴平面.(2)取AB的中点N,连接AN,∵为等边三角形,∴.∵平面,平面,∴平面平面.又平面平面,∴平面.∵∴四边形为直角梯形,∵,∴.【点睛】在证明空间中的线面关系时,要注意证明过程的完整性,对于判定、性质定理中的关键词语,在解题过程中要用符号加以表示,这是解题中容易出现的问题.另外,求三棱锥的体积时往往要结合等积法求解,即转化为便于求体积的三棱锥的体积求解.19.2018年11月21日,意大利奢侈品牌“﹠”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:,,,,,,得到如图所示的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如下表.(1)在答题卡上补全列联表中数据;并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?(2)现已从“强烈关注”的网友中按性别分层抽样选取了5人,再从这5人中选取2人,求这2人中至少有1名女性的概率.参考公式及数据:,【答案】(1)没有的把握认为网友对此事件是否为“强烈关注”与性别有关;(2) .【解析】【分析】(1)根据题意得到列联表,然后根据题中数据求出的值,最后根据临界值表中的数据得到结论.(2)由题意得到所选的5人中的男性、女性的个数,然后通过列举法得到所有的基本事件个数及至少有一名女性包含的事件的个数,最后根据古典概型概率公式求解即可.【详解】(1)由题意得列联表如下:由表中数据可得,所以没有95%的把握认为网友对此事件是否为“强烈关注”与性别有关.(2)从“强烈关注”的网友所选的5人中,男性人数为人,分别记为,女性人数为人,分别记为.从这5人中任选2人的所有结果为:,共10种,且它们是等可能的,其中至少有一名女性网友的结果为:,共7种,所以所求概率为.即这2人中至少有1名女性的概率.【点睛】解题时注意临界值表中数据的意义及其用法:①查表时不是查最大允许值,而是先根据题目要求的百分比找到第一行对应的数值,再将该数值对应的k值与求得的K2相比较.②表中第一行数据表示两个变量没有关联的可能性p,所以其有关联的可能性为1-p.20.已知椭圆的左、右焦点为,离心率为,点在椭圆上,且的面积的最大值为. (1)求椭圆的方程;(2)已知直线与椭圆交于不同的两点,若在轴上存在点,使得,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)根据离心率得到,由的面积的最大值为得到,再结合椭圆中求出参数的值后可得方程.(2)将直线方程代入椭圆方程消去y得到关于x的二次方程,结合根据系数的关系求出线段的中点的坐标,由得,进而有,并由此得到,最后根据基本不等式得到所求范围.【详解】(1)由题意得,解得.∴椭圆的方程为.(2)由消去y整理得,且.设,线段的中点为,则.∴,∴.∵在轴上存在点,使得,∴,∴,即,∴.∵,∴,当且仅当且,即时等号成立.∴,故.∴实数的取值范围为.【点睛】(1)在解决圆锥曲线的有关问题时要注意平面几何图形性质的运用,如在本题中根据得到,即将等腰三角形的问题转化为垂直问题.(2)解决最值或范围问题时,常用的方法是将所求量表示成某个参数的代数式,然后再结合基本不等式或函数的知识求出这个式子的最值或范围即可.由于此类问题一般要涉及到大量的计算,所以在解题时要注意计算的合理性,注意变形、换元等方法的利用.21.设函数.(1)当时,求函数的极值;(2)若不等式对任意恒成立,求实数的取值范围.【答案】(1)的极大值为,无极小值;(2).【解析】【分析】(1)求出函数的导数,进而得到函数的单调性,然后可得函数的极值.(2)通过对参数的讨论得到函数的单调性,进而得到函数的最大值,然后将恒成立问题转化为,解不等式可得所求范围.【详解】(1)当时,,∴.由得.当变化时,的变化情况如下表:由表知,当时,函数取得极大值,且极大值为,无极小值.(2)由题意得.①当时,则,∴函数在上单调递增,又,∴对任意,不恒成立.②当时,则当时,单调递增;当时,单调递减.∴当时,函数取得极大值,也为最大值,且.∵不等式对任意恒成立,∴,解得.综上可得实数的取值范围为.【点睛】(1)用导数研究函数的性质时,单调性是解题的工具,由单调性可得函数的极值、最值,进而得到函数的大体图象,为解决问题提供了直观性.(2)解决函数中的恒成立问题时,可转化为函数的最值问题求解,解题时首先得到函数的最值,再结合题意求解即可.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在极坐标系中,曲线的极坐标方程为,点的极坐标为,以极点为极点,以轴正半轴为极轴建立极坐标系.(1)曲线的直角坐标方程和点的直角坐标;(2)若过点且倾斜角为的直线,点为曲线上任意一点,求点到直线的最小距离.【答案】(1);(2) .【解析】【分析】(1)根据极坐标和直角坐标间的互化公式求解即可得到结论.(2)转化为直角坐标求解,设点的坐标,然后根据点到直线的距离求解,再结合二次函数得到所求最小值.【详解】(1)由得,把代入上式得,∴曲线的直角坐标方程为.设点的直角坐标为,则,∴点的直角坐标为.(2)由题意得直线的方程为,即.设点,则点到直线的距离为,故当时,有最小值,且.∴点到直线的最小距离为.【点睛】解答本题的关键是根据极坐标和直角坐标间的互化公式求解,在解决与极坐标或参数方程有关的问题时,常用的方法是转化为直角坐标求解,考查转化和计算能力,属于基础题.23.选修4-5:不等式选讲已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含集合,求实数的取值范围.【答案】(1);(2)-1【解析】【详解】(1)当时,,所以不等式即为,等价于或或,即或或,解得或或,∴,∴原不等式的解集为.(2)∵不等式的解集包含集合,∴当时,不等式恒成立,即对恒成立,∴对恒成立,∴对恒成立.又当时,∴.∴实数的取值范围为.【点睛】解含有两个绝对值号的不等式时,常用的方法是利用零点分区间法去掉绝对值号,转化为不等式组求解.解答第二问的关键是将问题转化为不等式恒成立求解,然后通过分离参数再转化为求函数最值的问题处理.。

文科数学答案

文科数学答案

2019年秋“荆、荆、襄、宜四地七校考试联盟”高三10月联考文科数学试题参考答案一、选择题1-5 ABBCC6-10 DCBAD 11-12 AD二、填空题13. 0 14. 115. 12-16.(]2,0,3⎡⎫-∞+∞⎪⎢⎣⎭解答题:17.解:(1)cos 2cos C c b Aaa+=由正弦定理可得:cos sin 2sin cos sin sin C C B A A A += s i n 2s i n c o s s i n s i nB B A A A ∴=1cos 2A ∴=,且(0,)A π∈,3A π∴=………………6分 (2)1sin ,122ABCS bc A bc ∆==∴=………………8分又2222cos a b c b A =+- 29()3b c bc ∴=+-b c ∴+=………………11分即ABC ∆的周长为3+………………12分 18.(1)ACEF 为矩形,M 是EF 中点设AC 和BD 的交点为O ,连EOABCD 为菱形,O ∴为AC 的中点 //EO AM ∴ 又EO ⊂平面,BDE AE ⊄平面BDE//AM ∴平面BDE ………………6分 (2)ABCD 为菱形,BD AC ∴⊥又平面ABCD ⊥平面ACEFBD ∴⊥平面ACEF13D EFBEFO V S BD -∆∴=⋅ 60,2ABC AB AF∠===12222EFOS BD ∆∴=⨯⨯==,………………11分123D EFB V -∴=⨯⨯= ………………12分19.(1)()()8050W x x G x x =⋅--………………2分2210050,020()9000101950,20x x x W x x x x ⎧-+-<≤⎪∴=⎨--+>⎪⎩………………6分 (2)当020x <≤时,22()2100502(25)1200W x x x x =-+-=--+,在(]0,20上单调递增20x ∴=时()W x 取最大值max ()W x =22512001150-⨯+=………………8分 当20x >时,9000()195010W x x x=--900195010()x x=-+195010≤-⋅1350= max ()1350(30W x x ∴==取“=”)………………10分综上所述 当年产量为30万台时,该公司获得最大利润1350万元………………12分 20.解:(1)22121(2)()()a x a x a f x x x a ax+-'=-+=………………2分 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ∴0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减………………6分(2)设1()()()ln 2a F x f x g x x x a=-=++-则221()(0)a x aF x x x x x -'=-=>0a > (0,)x a∴∈时,()0F x '<,()F x 递减 (,)x a ∈+∞,()0,F x '>()F x 递增 1()()l n 1F x F a a a∴≥=+-……………8分 设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时()0,h x '>时,()h x 递增, 01x <<()0h x '<,∴()h x 递减()(1)0h x h ∴≥= ()()0F a h a ∴=≥ ()0F x ∴≥,即()()f x g x ≥………………12分21.解:由已知得12(,0),(,0)F c F c -,设(0,)P b12PF F ∆是面积为1的等腰直角三角形1,b c a ∴===椭圆E 的方程为2212x y +=………………4分 (2)设1122(,),(,)M x y N x y22112x my x y =+⎧⎪⎨+=⎪⎩得22(2)210m y my ++-= 12122221,22m y y y y m m --∴+==++………………6分 直线HN 的方程:223()322y y x x =--………………7分令1y y =1221212222221313()2()()3222222m y y y y x y my y m x y y y --++--++=+==22222222m m y m m y -++++==………………11分 ∴NH 与2l 交点的横坐标为定值2. ………………12分22.解:由1222t x y ⎧=+⎪⎪⎨⎪=-⎪⎩得21)y x -=-∴l的普通方程为:2y =+2分C 的极坐标方程是4cos ρθ=24cos ρρθ∴= 224x y x ∴+=∴C 的直角坐标方程为:2240x y x +-=………………5分②将l 的参数方程代入C 的直角坐标方程22(1)(2)4(1)0222t t ++--+=21)10t t ∴-+=………………7分12121,1t t t t ∴=+= 12,t t ∴同号1212||||||||||1PA PB t t t t ∴+=+=+= ………………10分23.(1)由已知得13321()542334x x f x x x x x ⎧-+<-⎪⎪⎪=+-≤≤⎨⎪->⎪⎪⎩当12x <-时,3361x x -+≤⇒≥- 112x ∴-≤<- 当142x -≤≤时,561x x +≤⇒≤ 112x ∴-≤≤当4x >时,3363x x -≤⇒≤ 舍综上得()6f x ≤的解集为[]1,1-………………5分(2)()421289f x x x x +-=++-≥2()48f x x a a +-<-有解289a a ∴-> (9)(1)0a a -+>………………7分1a ∴<-或9a >a ∴的取值范围是(),1(9,)-∞-+∞.………………10分如另有解法,请酌情给分!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届湖北省武汉市部分市级示范高中高三十月联考文科数学试题(解析版)一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集I=R,集合A=,B=,则A∩B等于( )A. {x|0≤x≤2 }B. {x|x≥-2 }C. {x|-2≤x≤2}D. {x|x≥2}【答案】A【解析】【分析】根据二次函数值域得集合A,解一元二次不等式得集合B,即可求得A∩B。

【详解】集合A=集合B={x|0≤x≤2}所以A∩B={x|0≤x≤2 }所以选A【点睛】本题考查了集合交集的简单运算,属于基础题。

2.命题:“x>l, x2>l”的否定为( )A. x>l, x2<1B. x<l, x2<1C. x>l, x21D. x<l, x2≤1【答案】C【解析】【分析】含有一个量词的否定形式,将任意改成存在,结论改成否定形式即可。

【详解】全称命题的否定形式为x>l, x2 1所以选C【点睛】本题考查了含有量词的否定形式,属于基础题。

3.函数f(x)= ln|x+1|的图像大致是( )A. B. C. D.【答案】A【解析】【分析】根据特殊值,代入检验,排除不合要求的选项即可。

【详解】当x=0时,f(x)=0,排除D选项当时,排除C选项当x=1时,f(x)=ln2,排除B选项所以A选项为正确选项所以选A【点睛】本题考查了根据解析式判断函数的图像,从特殊值、单调性、奇偶性等方面考虑,属于基础题。

4.已知函数y= 4cosx的定义域为,值域为[a,b],则b-a的值是( )A. 4B.C. 6D.【答案】C【解析】【分析】根据定义域,结合余弦函数的图像,即可求得值域,进而求得b-a的值。

【详解】当定义域为时,函数y=cosx的值域结合图像可知为所以y= 4cosx的值域为所以b-a=6所以选C【点睛】本题考查了三角函数图像及其简单的性质,属于基础题。

5.已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+2,则f(1)+g(1)=( )A. -2B. -1C. 1D. 2【答案】D【解析】【分析】根据函数奇偶性及f(x),g(x)的关系,求得各自的解析式,进而将1代入求得f(1)+g(1)的值。

【详解】因为f(x)-g(x)=x3+x2+2令x=-x代入得f(-x)-g(-x)=-x3+x2+2因为函数f(x),g(x)分别是定义在R上的偶函数和奇函数所以f(x)+g(x)=-x3+x2+2联立,解方程组可得f(x) = x2+2g(x)=-x3所以f(1)+g(1)=1+2-1=2所以选D【点睛】本题考查了函数奇偶性的简单应用,解析式的求法,属于基础题。

6.己知函数f(x) =x3-ax2 +x+l在(-∞,+∞)是单调函数,则实数a的取值范围是( )A. B. C. D.【答案】D【解析】【分析】根据函数单调,可通过导函数大于0的关系,即可求得参数a的取值范围。

【详解】对函数求导得因为f(x)在(-∞,+∞)是单调函数所以解得所以选D【点睛】本题考查了导数在研究函数单调性中的简单应用,属于基础题。

7.要得到函数的图像,只需将f(x)= cos2x的图像( )A. 向右平移个单位,再把各点的纵坐标缩短到原来的(横坐标不变)B. 向左平移个单位,再把各点的纵坐标伸长到原来的3倍(横坐标不变)C. 向右平移个单位,再把各点的纵坐标缩短到原来的(横坐标不变)D. 向左平移个单位,再把各点的纵坐标伸长到原来的3倍(横坐标不变)【答案】B【解析】【分析】根据三角函数图像平移变化:先伸缩横坐标,再平移,再纵坐标。

即可判断选项。

【详解】根据三角函数图像平移变化需向左平移纵坐标伸长到原来的3倍所以选B【点睛】本题考查了三角函数图像平移变化的简单应用,注意左右平移时的平移量,属于基础题。

8.设a,b都是不等于l的正数,则“a>b>l”是“log a3<log b3”的( )条件A. 充分必要B. 充分不必要C. 必要不充分D. 既不充分也不必要【答案】B【解析】【分析】根据对数函数的性质求解即可,再利用充分必要条件的定义,即可判定,得到答案.【详解】因为都是不等于1的正数,因为,所以,即,所以或,解得或或,根据充分必要条件的定义,可得“”是“”的充分不必要条件,故选B.【点睛】本题主要考查了指数函数与对数函数的性质,以及充要条件的判定,试题有一定的综合性,解答的关键在于合理的分类讨论,着重考查了分类讨论思想,以及推理与运算能力.9.化简= ( )A. sin2+cos2B. sin2-cos2C. cos2-sin2D. ± (cos2-sin2)【答案】A【解析】【分析】利用诱导公式化简根式内的式子,再根据同角三角函数关系式及大小关系,即可化简。

【详解】根据诱导公式,化简得又因为所以选A【点睛】本题考查了三角函数式的化简,关键注意符号,属于中档题。

10.如图,己知函数的图象关于点M(2,0)对称,且f(x)的图象上相邻的最高点与最低点之间的距离为4,将f(x)的图象向右平移个单位长度,得到函数g(x)的图象;则下列是g(x)的单调递增区间的为( ).A. B. C. D.【答案】D【解析】【分析】根据条件结合三角函数的性质求出和的值,然后结合三角函数的单调性的性质,即可求解.【详解】由图象可知,因为的图象上相邻的最高点与最低点之间的距离为4,所以,解得,即,即,则,因为函数关于点对称,即,得,解得,所以,将的图象向右平移哥单位长度,得到的图象,即,由,得,当时,,即函数的单调增区间为,故选C.【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质的综合应用,其中根据三角函数的图象求得函数的解析式是解答的关键,着重考查了推理与计算能力,属于中档试题. 11.已知f(x)= 2sinx-cosx,f(x)的最大值为f(θ),则cosθ=( )A. B. C. D.【答案】C【解析】【分析】利用辅助角公式化简函数的解析式,再由题意可得,利用诱导公式,即可求解.【详解】由题意,函数,(其中)当时,即取得最大值,所以,即,所以,故选C.【点睛】本题主要考查了三角函数的辅助角公式的应用,以及三角函数的图象与性质,其中利用三角函数的辅助角公式,化简得到函数是解答的关键,着重考查了推理与运算能力.12.设定义在R上的函数f(x)是最小正周期为2π的偶函数,f'(x)是f(x)的导函数,当x∈[0,π]时,0≤f(x)≤1;当x∈(0,π)且x≠时,,则函数y=f(x)-|sinx|在区间上的零点个数为( )A. 4B. 6C. 7D. 8【答案】B【解析】【分析】根据导函数符号,判断函数单调性,结合周期性画出函数图像;根据函数图像的交点个数即可判断函数的零点个数。

【详解】当x∈(0,π)且x≠时,所以当时,,函数f(x)为单调递减函数当时,,函数f(x)为单调递增函数且当x∈[0,π]时,0≤f(x)≤1,且函数f(x)是最小正周期为2π的偶函数所以函数f(x)函数图像可用示意图表示如下(红色部分),黑色部分表示的函数图像由图像可知,函数f(x)与在上有6个交点,因而零点个数为6个所以选B【点睛】本题考查了函数的图像与性质,导数在研究函数单调性中的应用,函数零点的定义与判断,属于难题。

二.填空题:每题5分,满分20分,将答案填在答题纸上.13.若2a=5b =100,则________【答案】【解析】【分析】根据指数与对数的转化,利用对数表示出a、b,再利用换底公式换底,然后代入化简即可。

【详解】因为2a=5b =100所以由换底公式可知,所以【点睛】本题考查了对数的运算及换底公式的简单应用,属于基础题。

14.己知函数f(x)= 2e x sinx,则曲线f(x)在点(0,0)处的切线方程为________.【答案】【解析】【分析】先求导函数,求得在切点处的直线斜率;再根据点斜率求得切线方程。

【详解】对函数求导得所以又因为切点坐标为,且切点在函数图像上所以切线方程为【点睛】本题考查了导数的几何意义,过定点切线方程的求法,注意区分切点是否在曲线上,属于基础题。

15.函数y= sinx+cosx+2sinxcosx的最大值为__________。

【答案】【解析】【分析】利用换元法,将三角函数转化成二次函数式,依据参数的取值范围求得最值。

【详解】令且,所以则,所以所以对称轴为,因为所以当时取得最大值为【点睛】本题考查了换元法在求函数最值中的应用,这种三角形整体换元法不是很常见,需要特别注意,属于难题。

16.已知函数f(x)是上的减函数,若f(a2 -a)>f(a+3),则实数a的取值范围为____.【答案】【解析】【分析】根据函数单调性和定义域,列出不等式组,解不等式组即可求得a的取值范围。

【详解】因为f(x)是上的减函数,若f(a2 -a)>f(a+3)所以,解不等式组得【点睛】本题考查了函数的单调性及定义域,属于基础题。

三.解答题:本大题共6小题,满分70分,将答案填在答题纸上.17.化简下列各式并求值:(1)(2)已知tanx= ,求的值.【答案】(1);(2)(1)原式=(2)原式=【解析】【分析】(1)根据对数运算及指数运算,化简即可求值。

(2)根据诱导公式,判断符号与三角函数形式,代入化简即可。

【详解】(1)原式=(2)原式=【点睛】本题考查了指数、对数的基本运算,三角函数诱导公式的简单应用,属于基础题。

18.己知函数(1)求的值;(2)将f(x)的图象上所有点向左平移m(m>0)个长度单位,得到y=g(x)的图象,若y=g(x)的图象关于点对称,求当m取最小值时,函数y=g(x)的单调递增区间.【答案】(1);(2)【解析】【分析】(1)根据函数定义,直接代入求解即可。

(2)利用诱导公式及倍角公式,化简函数,再根据平移得到g(x);由对称点即可求得m的取值,进而求得g(x)的单调递增区间。

【详解】(1)(2)将向左平移个长度单位,得到∵的图象关于点对称,∴有,∴,∴,∵,∴当时,有最小值∵由得:.【点睛】本题考查了三角函数诱导公式、倍角公式的化简与应用,三角函数平移及其性质,三角函数单调区间的求法,综合性较强,属于中档题。

19.已知命题p:,ax2+ax+1>0,命题q:|2a-1|<3.(1)若命题p是真命题,求实数a的取值范围。

(2)若p∨q是真命题,p∧q是假命题,求实数a的取值范围.【答案】(1);(2)【解析】【分析】(1)根据命题为真命题,分类讨论a是否为0;再根据开口及判别式即可求得a的取值范围。

相关文档
最新文档