大学物理_振动
振动基础必学知识点
振动基础必学知识点
以下是振动基础必学的知识点:
1. 振动的定义:振动是物体围绕某个平衡位置来回周期性地运动。
2. 振动的周期和频率:振动的周期是振动一个完整循环所需要的时间,单位是秒;频率是单位时间内振动的次数,单位是赫兹。
它们之间有
以下关系:频率 = 1/周期。
3. 振动的幅度:振动的幅度是指物体离开平衡位置的最大距离。
4. 简谐振动:简谐振动是指物体在没有阻力的情况下,围绕平衡位置
做匀速往复运动的振动。
简谐振动的特点是周期恒定、频率固定且幅
度不断变化。
5. 谐振:谐振是指当外力作用频率与物体固有频率相同时,物体容易
发生共振现象,振幅会明显增大的现象。
6. 弹簧振子:弹簧振子是指一个质点通过与弹簧连接,形成一个可以
进行振动的系统。
弹簧振子的运动方程可以用简谐振动的方程表示。
7. 摆钟:摆钟是指一个由质点与一个固定的绳或杆连接,形成可以进
行振动的系统。
摆钟的运动方程可以用简谐振动的方程表示。
8. 声音的传播和振动:声音是由物体的振动引起的机械波。
声音的传
播需要介质的存在,并且介质中的分子通过相互振动来传递能量。
9. 波动的特征:波动的特征包括传播速度、波长、频率和振幅。
10. 波的类型:根据波动传播介质的性质,波可以分为机械波和电磁波两种类型。
以上是振动基础必学的知识点,掌握这些知识可以帮助理解振动和波动以及它们在不同物理现象中的应用。
大物知识点总结振动
大物知识点总结振动振动是物体周围环境引起的周期性的运动。
它是自然界中普遍存在的物理现象,了解振动现象对于理解物质的性质和物理规律具有重要意义。
振动现象广泛存在于自然界和人类生活中,如大地的地震、声波的传播、机械振动、弹性体的振动等等。
本文将介绍大物知识点中与振动相关的内容,并做相应总结。
一、简谐振动简谐振动是指体系对于某个平衡位置附近作微幅振动,其回复力正比于位移的现象。
它是最基本的振动形式,也是在自然界中广泛存在的振动。
简谐振动的重要特征包括振幅、周期、频率、角频率、相位等。
简谐振动的数学描述是通过简谐振动的运动方程来完成的,对于弹簧振子来说,它的运动方程是x = Acos(ωt + φ),其中x为位移,A为振幅,ω为角频率,t为时间,φ为相位。
利用这个方程,我们可以得到简谐振动的各种运动参数,如速度、加速度、动能、势能以及总机械能。
对于简谐振动系统,我们可以利用牛顿第二定律与胡克定律来进行分析。
牛顿第二定律可以得出振动体的加速度与回复力的关系,而胡克定律则是描述了挠性介质的回复力与位移的关系。
利用这两个定律,我们可以得到简谐振动的运动参数和系统的动力学性质。
二、受迫振动和共振在实际中,许多振动都是在外力的驱动下进行的,这种振动被称为受迫振动。
受迫振动是振动中的另一个重要现象,它包括了临界阻尼和过阻尼等多种振动状态。
受迫振动系统的特点是具有固有振动频率以及外力频率,当外力频率与系统的固有振动频率相近时,就会出现共振现象。
共振是指系统受到外力作用后,振幅或能量急剧增大的现象。
共振现象在实际工程中有着重要应用,如建筑结构的抗震设计、桥梁的结构设计等。
三、波的传播波是另一种重要的振动形式,它在自然界和人类生活中都有着广泛的应用。
波的传播包括机械波、电磁波、物质波等多种形式,它的传播速度和传播方式与特定介质的性质密切相关。
波的传播是通过介质中的微小振动来实现的,振动的传递使得能量和信息得以传播。
在波的传播中,我们可以通过波动方程来描述波的传播规律,如弦上的横波传播可以通过波动方程来描述,光波的传播也可以通过麦克斯韦方程来描述。
《大学物理》第14章 振动
a = - 2A cos (t + ) = 2A cos (t + + )
加速度超前位移 amax = 2A = (k/m)A
上页 下页 返回 退出
相位和初相
相位 (t 0 ) :决定简谐运动状态的物理量。
其中v为物体 m 距平衡位置 x 处的速度。 忽略摩擦,总机械能 E 保持不变。随着 物体来回振动,势能和动能交替变化。
上页 下页 返回 退出
§ 14-3简谐振动的能量
在x = A 和 x = - A处,v = 0,
E = m(0)2/2 + kA2/2 = kA2/2 (14-10a) 简谐振子的总机械能正比于振幅的平方。
dx/dt = - A sin (t + ) d2x/dt2 = - 2 A cos (t + ) = - 2 x
0 = d2x/dt2 + (k/m) x = - 2 x + (k/m) x
(k/m - 2) x = 0 只有当 (k/m - 2) = 0 时,x不为零。因此
a = - (410 m/s2) cos(1650t). (c) 在t = 1.0010-3 s 时刻
x = A cos t
= (1.510-4 m) cos[(1650 rad/s)(1.0010-3 s)]
= (1.510-4 m) cos(1.650 rad/s) = -1.210-5 m.
上页 下页 返回 退出
§ 14-1 弹簧的振动
例题 14-1 汽车弹簧。当一个质量为200公斤的 一家四口步入一辆总质量为1200公斤的汽车 里,汽车的弹簧压缩了3厘米。(a) 假设汽车 里的弹簧可视为单个弹簧,弹簧劲度系数为 多少? (b) 如果承载了300公斤而不是200公 斤,则汽车将下降多少厘米?
大学物理振动的基本概念与波动定律
大学物理振动的基本概念与波动定律振动与波动是大学物理中重要的概念和定律,它们在自然界和工程领域中都有广泛的应用。
本文将从振动的基本概念入手,介绍振动的特点和相应的数学表达方式,然后探讨波动的基本特性和波动定律。
一、振动的基本概念振动是物体周期性的来回运动,其特点包括周期性、频率、振幅和相位等。
振动可以分为简谐振动和非简谐振动两种形式。
1. 简谐振动简谐振动是指物体受到一个恢复力作用,且恢复力与位移成正比的振动。
其运动满足胡克定律,即恢复力与位移的方向相反、大小与位移成正比。
简谐振动的数学描述为:x = A sin(ωt + φ),其中,A为振幅,ω为角频率,t为时间,φ为初相位。
2. 非简谐振动非简谐振动是指受到恢复力作用的振动,但恢复力与位移的关系不满足简谐振动的条件。
非简谐振动的运动规律通常无法用简洁的数学公式描述,需要通过实验或数值模拟等手段进行研究。
二、振动的特点和数学表达方式振动具有周期性和频率的特点,可以用物体的运动方程、受力分析和力的势能等方式进行数学表达。
1. 运动方程振动的运动方程描述了物体的位置随时间的变化规律。
在简谐振动中,位置随时间的变化可以通过正弦函数来表示,即x = A sin(ωt + φ)。
该方程揭示了振动位置与时间的关系。
2. 受力分析振动的实现需要有恢复力的作用,恢复力可以来自弹性力、重力或其他约束力。
通过对物体所受到的力进行分析,可以帮助我们理解振动的原因和性质。
3. 势能与能量转换振动过程中,物体在振动周期内会由动能转为势能,再由势能转回动能。
这种能量转换与物体的振动特性密切相关,通过势能和能量的变化可以更深入地理解振动的机制。
三、波动的基本特性和波动定律波动是一种能量传播的方式,其特点包括波长、频率、波速和干涉等。
波动可以分为机械波和电磁波两种形式。
1. 机械波机械波是需要介质作为媒介传播的波动,典型的机械波包括水波、声波等。
机械波传播的速度与介质的性质有关。
大学物理 振动
P
A
M
第三象限
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
A
第三象限 M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
A
第三象限
M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
第三象限
A
M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
第三象限
第一象限
P
A
x
M
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
P
A
x
M
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
A
M Px
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
A
M Px
第四象限
第二象限 第三象限
t=t
51
一、同方向同频率的简谐振动的合成
1、解析法
x1=A1cos( t+ 1) x2=A2cos( t+ 2)
合振动 :
x x1 x2 A1 cos( t 1) A2 cos( t 2 )
(A1 cos1 A2 cos2) cos t (A1 sin1 A2 sin2)sin t
Acos
d 2t l
令 g l 2 则有:
d 2 2 0
大学物理知识点总结:振动及波动
利用超声波的能量作用于人体组织,产生热效应、机械效应等,达到治疗目的,如超声碎石、超声刀 等。
地震监测和预测中振动分析
地震波监测
通过监测地震波在地球内部的传播情况和变化特征,研究地震的发生机制和震源性质。
振动传感器应用
在地震易发区域布置振动传感器,实时监测地面振动情况,为地震预警和应急救援提供 数据支持。
图像
简谐振动的图像是正弦或余弦曲线,表示了物体的位移随时间的变化关系。
能量守恒原理在简谐振动中应用
能量守恒
在简谐振动中,系统的机械能(动能 和势能之和)保持不变。
应用
利用能量守恒原理可以求解简谐振动 的振幅、角频率等物理量。
阻尼振动、受迫振动和共振现象
阻尼振动
当物体受到阻力作用时,其振动会逐渐减弱,直至停止。 这种振动称为阻尼振动。
惠更斯原理在波动传播中应用
01
惠更斯原理指出,波在传播过程中,每一点都可以看作是新的 波源,发出子波。
02
惠更斯原理可以解释波的反射、折射等现象,并推导出斯涅尔
定律等波动传播规律。
在实际应用中,惠更斯原理被为波动现象的研究提供了重要的理论基础。
04
干涉、衍射和偏振现象
误差分析
分析实验过程中可能出现的误差来源,如仪 器误差、操作误差等;对误差进行定量评估 ,了解误差对实验结果的影响程度;提出减 小误差的方法和措施,提高实验精度和可靠
性。
感谢您的观看
THANKS
实例
钟摆的摆动、琴弦的振动、地震波的传播等 。
振动量描述参数
振幅
描述振动大小的物理量,表示物体离开平衡 位置的最大距离。
频率
描述振动快慢的物理量,表示单位时间内振 动的次数。
大学物理(振动学)
)
(t 1
)
t
t
c) 利用位相差比较两个同方向、同频率简谐振动的步调
x1=A1cos(ωt+1) x2=A2cos(ωt+2)
2
1
当△ =±2kπ (k=0,1,2,…) 两振动步调一致,同相
当△ =±(2k+1)π (k=0,1,2,…) 两振动步调相反,反相
d) 位相也可以用来比较不同物理量的步调
转的矢量 A,在x 轴上的投 (或振动曲线)能画出振
影正好描述了一个简谐振动 幅矢量的位置,从而确定该 时刻位相
15
例1:
t
时刻
1
:
x1
A/
2 , 10t 方法:t时刻2
:
x2
0 , 2
0
(a) 取ox轴(沿振动方向)
1
1.
A 2
2
. o
3
2
3 2
Ax
(b)作参考圆:以o为圆心,振幅
A为半径作一圆周
定
判义
义
据式
式 x Acos(t )
6
二点说明
(1)特征方程成立的条件: 坐标原点取在平衡位置 (2)证明一种振动是简谐振动的一般步骤
a)确定研究对象,找平衡位置 b)建立以平衡位置为原点的坐标系 c)进行受力分析
d)利用牛顿定律或转动定律写出物体在任一位置 的动力学方程
e)根据判据判断该振动是否为简谐振动
m
T f
M
mg
sJddint22,Jgl mMl2,0lm gddt22
g 0 cos( t 0 )
l
f mg sin mg
a
l
l
d 2
大学物理-振动
中国国家管弦乐团在联合国总部的演出
引言
振动与波动是密切联系的物理现象。振动是 产生波动的根源,波动是振动在空间的传播。过 去,人们习惯于将振动与波动纳入力学的范畴, 实际上振动与波动的内容贯穿在力学、电磁学、 光学乃至量子力学之中。机械振动在介质中的传 播形成机械波,电磁振动在空间的传播形成电磁 波。虽然机械振动和机械波与电磁振动和电磁波 在本质上有所不同,但它们的变化规律是类似的。 因此,本章讨论机械振动和机械波的基本规律, 但这些规律的意义绝不局限于力学,它是研究光 学、量子力学乃至整个物理学的基础。
简谐运动方程中A、ω、φ分别被称为振幅、 圆频率和初相位.它们描述了振动的最大 位移、单位时间内的往返次数和振动点 的初始位置. 从简谐运动方程中可以看到:
简谐振动的振幅为一与时间和频率无关 的常数;而位移是按周期在有限区域内的 往复变化,并且和初始位置有关.
振幅、圆频率和初相位是决定振动具体 位移大小和速度大小的决定性参数,所以 称为振动三要素.
心坐标为x: 木L3g 水L2hg F 木L3g 水L2 (h x)g
水L2 gx kx 是简谐振动
2.简谐振动的数学模型
d2x 2x 0
dt 2
频率
2
F ma
a
d2x dt 2
F kx
角频率(angular frequency)
k
m
(1)模型的解——位移与时间的关系
d2x dt 2
解:选坐标系;分析受 力;列方程,
F mg vg
2x
d
2
g
2
1 d 2g x kx
2
是简谐振动
例题2。一立方体木块浮于静止的水面上, 其浸在水中部分的高度为h。现用手指将其 稍稍压下,使浸在水中部分的高度变为b.放 手后木块将在水面上下作振动,此振动是 否为简谐振动?
大学物理振动
3、周期与频率
4、应用:1)测重力加速度;
2)测转动惯量
第36页/共97页
五.电磁振荡
一、振荡电路 无阻尼自由电磁振荡
电磁振荡:
电荷和电流、电场和磁场随
时间作周期性变化的现象。
LC振荡回路:
L
C
K
第37页/共97页
+Q
L
C
-Q
(1)
i
L
C
(2)
-Q
L
C
L
C
+
i
Q
(3) LC回路的振荡过程 (4)
t 0.5
dt t0.5
3 t0.5
a dv 0.12 2 cos( t ) 0.103m / S 2
dt t0.5 t 0.5
3 t0.5
第15页/共97页
振动方程: x 0.12cos( t )
3
3、如果在某时刻质点位于x=-0.6cm,且向X 轴负方 向运动,求从该位置回到平衡位置所需的时间。
2
A
x0 2
v0
2
tan vo xo
第12页/共97页
例题1 一质点沿X轴作简谐振动,振幅为12cm,周期 为2s。当t=0时, 位移为6cm,且向X轴正方向运动。求 1、振动方程;2、t=0.5s 时,质点的位置、速度和加 速度;3、如果在某时刻质点位于x=-0.6cm,且向X 轴
负方向运动,求从该位置回到平衡位置所需的时间。
解: x0 0.04m , v0 0 , 6.0rad / s
振幅: A
x
2
v2 0
x
0.04m
0
2
0
arctan
大学物理振动归纳总结
大学物理振动归纳总结振动是物理学中一个重要的概念,指的是物体相对静止位置周围的周期性运动。
在大学物理中,学生们学习了振动的基本原理、振动的类型和特性以及振动在实际应用中的重要性。
本文将对大学物理学习中的振动内容进行归纳总结,以帮助读者更好地理解和掌握这一领域的知识。
一、振动的基本概念振动是指物体围绕平衡位置来回运动的现象。
它具有以下基本特征:1. 平衡位置:物体在振动中的位置称为平衡位置,当物体不受外力作用时停留在该位置。
2. 振幅:振动物体离开平衡位置最大的距离称为振幅,用符号A表示。
3. 周期:振动物体从一个极端位置到另一个极端位置所经历的时间称为周期,用符号T表示。
4. 频率:振动物体每秒钟完成的周期数称为频率,用符号f表示,单位是赫兹(Hz)。
二、简谐振动简谐振动是最基本的振动形式,具有以下特点:1. 恢复力与位移成正比:简谐振动的特点是恢复力与位移成正比,且恢复力的方向与位移方向相反。
2. 线性势能场:简谐振动的位能与振动物体的位移成正比。
3. 几何意义:简谐振动可以用圆周运动来解释,振动物体的位置可以看作是绕圆心做匀速圆周运动的点的投影。
三、振动的参数和公式1. 振动的周期和频率:周期T与频率f之间满足关系:T=1/f。
2. 振动的角频率和频率:角频率ω与频率f之间满足关系:ω=2πf。
3. 振动的位移公式:对于简谐振动,位移x可以表示为:x = A *sin(ωt + φ),其中A表示振幅,ω表示角频率,t表示时间,φ表示初相位。
4. 振动的速度公式:振动物体的速度v可以表示为:v = -Aω *cos(ωt + φ)。
5. 振动的加速度公式:振动物体的加速度a可以表示为:a = -Aω² * sin(ωt + φ)。
四、受迫振动受迫振动是在有外界驱动力的情况下发生的振动。
其特点是振动的频率等于外界驱动力的频率,导致振动物体发生共振现象。
1. 共振现象:当外力频率等于振动物体的固有频率时,振动物体受到的外力最大,称为共振现象。
振动学基础-大学物理
2
A cos (t
)
7
8
特征量:
x 位移
A 振幅
广义:振动的物理量 最大位移 由初始条件决定 表征了系统的能量
9
x Acos t
圆频率 角频率
频率
2π
T 周期 T 1
系统的周期性 固有的性质 称固有频率…
t 相位 位相
初相位
初位相
取决于时间零点的选择
10
小结
S. H. V. 的判据
= /4 = /2 = 3/4
P··Q
= = 5/4 = 3/2 = 7/4
(-3/4) (-/2) (-/4)
35
§3 平面简谐波 一 机械波产生的条件 1 机械波的基本概念
一、波的产生 二、横波和纵波 三、波长 波的周期和频率 波速
36
一、机械波的产生 1、机械波——机械振动在弹性介质(固体、液 体和气体)内的传播
45
因 t' x u
yP (t)
A cos
t
x u
0
波线上任一点的质点任一瞬时的位移由上式给出, 此即所求的沿x 轴方向前进的平面简谐波的波动方程。
如果波沿x轴负方向传播,则相应的波动方程为:
yP (t)
A c os
t
x u
0
利用关系式 2 T 和 2 ,并uT概括波的两种可能的
y
hSg mg
船在任一位置时,以水面为坐标原点,竖直 向下的坐标轴为y 轴,船的位移用y 表示。
12
船的位移为y 时船所受合力为:
f (h y)Sg mg ySg
船在竖直方向作简谐振动,其角频率和周期为:
Sg
m
因 m Sh,
大学物理学 机械振动
大学物理学中的机械振动是指物体在受到外力作用后,产生周期性的来回振动运动的现象。
以下是关于机械振动的一些基本概念和内容:
1. 振动的基本特征
-周期性:振动是一个周期性的过程,即物体在围绕平衡位置来回振动。
-频率:振动的频率指的是单位时间内振动的周期数,通常用赫兹(Hz)表示。
-振幅:振动的振幅是物体从平衡位置最大偏离的距离。
2. 单自由度振动系统
-弹簧振子:是一种经典的单自由度振动系统,由弹簧和质点组成,受到弹簧的恢复力驱使质点振动。
-简谐振动:在没有阻尼和外力干扰的情况下,弹簧振子的振动是简谐的,即振动周期固定,频率与系统的固有频率相关。
3. 振动的参数和描述
-角频率:振动描述中常用的参数之一,表示振动的快慢程度,与频率之间有一定的关系。
-相位:描述振动状态的参数,表示振动的相对位置或状态。
-能量:振动系统具有动能和势能,能量在振动过程中不断转换,影响着振动的特性。
4. 阻尼振动和受迫振动
-阻尼振动:在振动系统中存在阻尼,会导致振动逐渐减弱,最终趋于稳定。
-受迫振动:当振动系统受到外力周期性作用时,会产生受迫振动,其频率与外力频率相同或有关。
5. 振动的应用
-工程领域:振动理论在工程领域有着广泛的应用,如建筑结构的抗震设计、机械系统的振动分析等。
-科学研究:振动理论也在物理学、工程学、生物学等领域中发挥重要作用,帮助解释和研究各种现象和问题。
以上是关于大学物理学中机械振动的一些基本内容和相关概念,希望能帮助您更好地理解这一领域的知识。
大学物理——振动、波动与光学
大学物理——振动、波动与光学振动、波动与光学是物理学中非常重要的领域。
它们的研究不仅拓宽了我们对于自然界的认知,而且在很多领域中有着广泛的应用。
本文将一一介绍这三个方面的内容。
一、振动振动是指物体不断改变位置,并围绕平衡位置来回摆动的运动形式。
物体的振动可以是机械的,也可以是电磁的。
例如,钟摆的摆动就是一种常见的机械振动,而电子的震荡则是一种电磁振动。
振动的基本概念包括周期、频率、振幅和相位。
周期是指一个完整的振动所需要的时间;频率是指单位时间内振动的次数;振幅是指物体振动的最大位移,即它距离平衡位置的最大距离;相位是指一组振动中,两个振动之间的位置关系。
振动的重要性在于它的广泛应用。
例如,振动可用于精确计时,作为传感器对于机械振动的检测,改善音频和视频的质量,以及控制许多不同系统中的运动。
二、波动波动是指一组连续的、周期性的物理事件,其中能量在空间中传递,而非物质。
分类别波动的不同形式包括机械波、声波、电磁波等等。
波动的特点是传播速度、频率、波长和振幅。
根据他们的形式,波可以按照它们需要的介质区分为不同的类型。
例如,机械波需要介质,用于振动传递,大气、水和弹性材料都可以被看作机械波的传播介质。
而电磁波则不需要物质中介介质,可以通过真空中传播。
它们的能量传递是因为它们的磁场和电场的相互作用。
波动有着广泛的应用。
例如,在地震和海啸的研究中,波动是非常重要的。
在对于许多电磁波利用的实践中,例如无线电、电视和雷达,波动的性质帮助了我们对于这些技术的使用。
三、光学光学是研究光的行为和性质的学科。
光的本质是一种电磁波,它能够传递电磁能量。
我们所能感知的大部分信息来自于眼睛,眼睛通过眼球中的屈光系统将光线聚焦到视网膜上,使我们看到世界。
光学的基本概念包括折射、反射、散射和吸收。
折射是指入射角度不同时,光线通过介质界面时发生的偏折。
反射是指光线遇到物体跟踪原路线反弹回来。
散射是指光线遇到物体时发生方向相反的偏折,吸收则是指当光线与物体接触时能量被传递给物体。
大学物理物理学课件振动与波动
折射光线、入射光线和法线在同一平面内;折射光线和入射光线分 居法线两侧;折射角与入射角满足斯涅尔定律。
全反射规律
当光从光密介质射向光疏介质时,如果入射角大于或等于临界角,则 会发生全反射现象,即全部光线被反射回原介质中。
现代光学技术应用
激光技术
利用受激辐射原理产生高强度、单色性 好的激光束,广泛应用于科研、工业、 医疗等领域。
超声波的性质
超声波具有高频、高能量、方向性好、穿透力强 等特点。
超声波的应用
超声波在医学、工业、农业等领域有广泛应用, 如超声诊断、超声加工、超声育种等。
次声波简介和危害防范
01
次声波简介
次声波是指频率低于20Hz的声 波,人耳无法听到,但会对人体 产生危害。
02
次声波的危害
03
次声波的防范
次声波会对人体内脏器官产生共 振作用,导致头晕、恶心、呕吐 等症状,严重时甚至危及生命。
虑共振问题,并采取相应的防范措施。
03
波动基本概念与传播特性
波动定义及分类
波动是物质运动的一种形式,指振动在 介质中的传播过程。
机械波:机械振动在介质中的传播,如 声波、水波等。
波动可分为机械波和电磁波两大类。
电磁波:电磁场在空间的传播,如光波 、无线电波等。
机械波产生条件与传播过程
产生条件
波源(振动的物体)和介质(传播振动的媒质)。
04
干涉、衍射与多普勒效应
干涉现象及其条件
03
干涉现象
干涉条件
干涉类型
当两列或多列波的频率相同,振动方向一 致,相位差恒定时,它们在空间某些区域 振动加强,在另一些区域振动减弱,形成 稳定的强弱分布的现象。
大学物理 振动和波动
ox 0
x
为半径作圆周(参考圆)
c
3、过 x 0 点作o x 轴的垂线,与圆交点为 b 、c
4、从o到 b、c 分别作矢量
5、
v0
v0
0
0
,下方矢量为旋转矢量
,上方矢量为旋转矢量
(
t
t
)
0
20
o 画旋转矢量图:取坐标、画圆周、通过 x 0 作垂线
到交点画矢量,若 v0 0 ,在下 方; 反之在上方.
3
一、简谐振动(Simple Harmonic Vibration)
1. 特征
k FN
★ 动力学特征
m
x
o x
F合外力(矩)kx
p 运动物体相 对平衡位置 的位移或角
位移
合外力(矩)
坐标原点必须在平 衡位置的运动物体
(广义弹性力) 的广义坐标
(准弹性力)
平动:(线)坐标
转动:角坐标 4
★ 微分方程特征
结论:夹角 t0
② 写运动方程
xA co s(t )
A
x02
v0
2
夹角 t0
21
例2 两个物体作同方向、
同频率、同振幅的 谐振动,在振动过 程中,每当第一个 物体经过位移为 A / 2 的位置向平衡位 置运动时,第二个物体也经过此位置, 但向远离平衡位置的方向运动,试利用 旋转矢量法求它们的相位差。
旋转角速度 固有圆频率
t
A t 0
A
t
o
x
满足上述四个条件的矢量称为旋转矢量
17
结论:
◆ 相位 t
大学物理第九章振动
第9章振动本章要点:1. 简谐振动的定义及描述方法.2. 简谐振动的能量3. 简谐振动的合成物体在一定位置附近作周期性的往返运动,如钟摆的摆动,心脏的跳动,气缸活塞的往复运动,以及微风中树枝的摇曳等,这些都是振动。
振动是一种普遍而又特殊的运动形式,它的特殊性表现在作振动的物体总在某个位置附近,局限在一定的空间范围内往返运动,故这种振动又被称为机械振动。
除机械振动外,自然界中还存在着各式各样的振动。
今日的物理学中,振动已不再局限于机械运动的范畴,如交流电中电流和电压的周期性变化,电磁波通过的空间内,任意点电场强度和磁场强度的周期性变化,无线电接收天线中,电流强度的受迫振荡等,都属于振动的范畴。
广义地说,凡描述物质运动状态的物理量,在某个数值附近作周期性变化,都叫振动。
9.1 简谐振动9.1.1 简谐振动实例在振动中,最简单最基本的是简谐振动,一切复杂的振动都可以看作是由若干个简谐振动合成的结果。
在忽略阻力的情况下,弹簧振子的小幅度振动以及单摆的小角度振动都是简谐振动。
1. 弹簧振子质量为m的物体系于一端固定的轻弹簧(弹簧的质量相对于物体来说可以忽略不计)的自由端,这样的弹簧和物体系统就称为弹簧振子。
如将弹簧振子水平放置,如图9-1所示,当弹簧为原长时,物体所受的合力为零,处于平衡状态,此时物体所在的位置O就是其平衡位置。
在弹簧的弹性限度内,如果把物体从平衡位置向右拉开后释放,这时由于弹簧被拉长,产生了指向平衡位置的弹性力,在弹性力的作用下,物体便向左运动。
当通过平衡位置时,物体所受到的弹性力减小到零,由于物体的惯性,它将继续向左运动,致使弹簧被压缩。
弹簧因被压缩而出现向右的指向平衡位置的弹性力,该弹性力将阻碍物体向左运动,使物体的运动速度减小直到为零。
之后物体又将在弹性力的作用下向右运动。
在忽略一切阻力的情况下,物体便会以平衡位置O为中心,在与O点等距离的两边作往复运动。
图中,取物体的平衡位置O为坐标原点,物体的运动轨迹为x轴,向右为正方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变化慢 (起调制作用信息)
若 1, 2 均较大,而差值较小,则合振动 的˝振幅˝时而大(为 2A),时而小(为 0)
26
1 2 | 1 2 |
这种两个频率都较大但是相差又很小、同方向 简谐振动合成时,合振动有忽强忽弱的现象, 称为“拍”。 单位时间内振动加强(或减弱)的次数叫拍频。
2 π J 2 π mgb mgb J
思考:若一单摆的振动周期与此相同,单摆的 摆长应是多少? 11
例. 已知:U 形管内液体质量为m,密度为 ,
管的截面积为S 。 开始时,造成管两边液柱面 有一定的高度差,忽略管壁和液体间的摩擦。 试判断液体柱振动的性质。
0 -y
解法1. 分析能量 1 2 y Ep ( gSy ) y ky 2 y S k 2 gS SHM
(1)角(圆)频率 (2)振幅A
k m
2
由系统本身固 有情况决定
x0 2 或 A v0 (3)初相 tan x0 A 、 都可由初始条件和系统本身情况决定。 x “ 与何时开始计时有关!” A
2
v0
2 E0 k
相差与时间差的关系:
0
2 t T
2k π (k 0,1,2)
可得
A na
,
各分振动的初相差为
2k π ( k , 为 不 等 于 nk 的整数) n 可得 A 0 封闭多边形!
例. n4 时 k , (0),1,2,3, (4),5,6,7
k=2
k=1
k=3
24
(2)不同频率
利用付里叶分解,可将任意振动 分解成若干SHM 的叠加。 对周期性振动: T „„周期,
a0 x( t ) [Ak cos(k t k )] 2 k 1
旋转矢量法. 按题目的已知条件, 画出两个旋转矢量。 很易可以看出
0
A2
Δ
2π Δ 3
A1
A 2
x
21
若有 n 个SHM : 振幅相等,初相依次差常量,
x1 x2 x3 xn
a cos( t ) a cos( t ) a cos( t 2 ) a cos t ( n 1)
q
C mg
dq mgb sinq J 2 dt
对小幅度自由摆动
sinq q
10
dq mgb sinq J 2 dt 2 dq J 2 mgb q dt
2
sin q q
d x 2 x 2 dt
2
所以,偏角q 近似地按简谐振动变化。 振动周期为
T
1
2 π
v拍 | v1 v2 |
27
x1
1=7
t
x2
2=6
t
拍频
x
= 1 - 2
(可测频,或得到更低频的振动)
t
28
5. 相互垂直的 SHM 的合成
(1) 同频率
将两式联立,消去t,可得
x A1 cos ( t 1 ) y A2 cos ( t 2 )
0’ 0’’
t T
7
: 0 /2
例.
在匀加速上升的电梯中有一悬挂的摆, 角位 移很小时,在电梯里是否可看成是简谐振动? 【解】 直接在电梯(非惯性系)中 列牛顿方程。
a
q l
s m
mg ma
切向:
(应考虑惯性力-ma )
d S mg sin q ma sin q m 2 dt sin q q , S lq d2 q mq ( g a ) ml 2
EP = 0 无损耗
E const .
k m 2 gS m
12
角频率
解法2. 分析受力(压强差)
y y 0 -y S 恢复力 F 2gSy 令 ky
k 2gS const.
角频率
SHM
k m
2 gS m
13
作简谐振动的物体,其速度,加速度 也作简谐振动:
x A cos( t ) π v A cos( t ) 2 2 a A cos( t π)
π 3π 领先 或落后 2 2 领先 π 或落后 π
3. 表示法
(1)解析法 (2)振动曲线法
x = /2 = /4 = 0 A o
ωt
T 2 T 2
在半个周期 里看,谁先 达到最大值, 谁领先。
8 0 7 6 5 2 4 4 3 3 4 5 6 7
30
(y相位领先)
y
6 5 2 2
7 08 1
1
x
y 相位领先,则为右旋! x 相位领先,则为左旋!
3
1 08
x
Δ 2 1 不同,椭圆形状、旋向也不同。
= 0 y = /4
x1 A1 cos( 1 t 1 ) x2 A2 cos( 2 t 2 )
合成的旋转矢量在 x 轴上的投影不是SHM A 的大小在变化,
ω2 0
A2
ω
ω1
A
A1
x
A1,A2 同向时, A = Amax = A1+A2 A1,A2 反向时,
A Amin | A1 A2 |
例如. x Ax cos( x t x )
y Ay cos( y t y ) x 3 右图: y 2
y
Ay
x x x 达到最大值的次数 y y y 达到最大值的次数 -Ax
o
Ax - Ay
x
具体的图形与 x , y有关,可以画出
32
二.谐振分析
A A1 A2 反相 2 1 ( 2k 1) π ( k 0,1,2)
A A1 A2
19
例. 已知:两个质点平行于同一直线并排作简 谐运 动,它们的频率、振幅相同。在振动过程中,每当它 们经过振幅一半的地方时相遇,且运动方向相反。 求:它们的相差。
x y 2 xy 2 2 cos( 2 1 ) sin ( 2 1 ) 2 A1 A2 A1 A2
0, π 合振动为线振动。
π 2 1 合振动为正椭圆。 2
且当 A1=A2 时,即为圆 3) 一般情况下,合振动为斜椭圆
29
轨迹的旋转矢量作图法: 以 2 1 π 4 为例 y
蓝领先于红,红领先于绿。 -A
x A cos( t )
14
(3) 旋转矢量法 用旋转矢量法定 很方便。
A
v a 0 A
t
x0 t =0 x
t
x
x0 A 2 例:
v0 0
?
v0< 0
2A
0
x0
A/2
x
v 0> 0
答:
3
15
用旋转矢量法研究振动合成也 很方便。
0
x0 x
4
r
( x0 ) 0, EP ( x0 ) k 0 有 Ep
1 E P ( x ) E P ( x0 ) 0 k ( x x0 ) 2 2! d Ep 有 F ( x) k(x x0 ) dx 2 d x 2 (3) 动力学方程 x 2 dt (4) 能量特点 (弹性力是保守力)
x0 x
3
x
1. 定义(判据):
(1) 运动学方程
x A cos( t )
x 可作广义理解(位移、电流、场强、温度…) (2) 弹性力 F kx ( x 为弹簧伸长量) 为什么物体在其稳定平衡位置附近的 无阻尼微小振动,总可以看成是简谐振动? 按台劳级数展开
EP
( x0 )( x x0 ) E P ( x ) E P ( x0 ) E P 1 ( x0 )( x x0 ) 2 EP 2!
【解】
解析法.
-A
0
A
x
Δ π?
A A cos ( t 1 ) A cos ( t 2 ) 2
由
π π t 1 , t 2 3 3 2π Δ 2 1 0,
3
20
-A
∵运动方向相反
0
A
x
2π 取 Δ 2 1 3
(若 A1= A2 则 A=0)
25
当两个分振动的振幅相等而且在两个分振动矢量 重合的时刻开始计时
x1 A cos( 1 t ) x2 A cos( 2 t )
2 1
2
合成也是非简谐振动
x x1 x 2 2 A cos
2 1 t cos t 2
-A/2 o
5 需时 t T s 2 6
17
4. 同一方向上SHM 的合成
(1) 同频率 ω
A2
A
x1 A1 cos( t 1 ) x 2 A2 cos( t 2 )
合成仍为SHM
2
x2
1
A1
x1
x A cos( t )
dt
8
2
a
q l s m mg
d q mq ( g a ) ml 2 dt
2
d2 q g a 2 q 0 dt l
对比简谐振动动力学方程
ma
可知是简谐振动。
d x 2 x0 2 dt
2
而且知道振动角频率为
ga l
9
例. 如图所示,质量为m 的刚体可在重力的力矩 作用下绕水平固定轴o 来回摆动(复摆)。 已知刚体重心 C 到轴 o的距离为 b ,对轴 o的转 动惯量为J。 试证明:刚体作小幅度自由摆动时,偏角q 近似地按简谐振动变化。 【解】 设逆时针转动为正, 刚体所受的对轴的力矩为 -mg bsinq o 由转动定律 M J b 2