有限元单元刚度矩阵单元方程推导

合集下载

有限元分析基础(推荐完整)

有限元分析基础(推荐完整)

图1-5 驾驶室受侧向力应力云图
图1-6 接触问题结构件应力云图
10
第一章 概述
图1-7 液压管路速度场分布云图
图1-8 磨片热应力云图
图1-9 支架自由振动云图
11
第二章 结构几何构造分析
2.1 结构几何构造的必要性 2.2 结构计算基本知识 2.3 结构几何构造分析的自由度与约束 2.4 自由度计算公式
(1)结点: ① 铰结点;② 刚结点;③ 混合结点。 (2)支座: ① 活动铰支座;② 固定铰支座 ;
③ 固定支座 ;④ 定向支座
15
第二章 结构几何构造分析
2.2.2 结构的分类与基本特征
(1) 按结构在空间的位置分 结构可分为平面结构和空间结构两大类
(2) 按结构元件的几何特征分 ① 杆系结构: 梁、拱、桁架、刚架、桁构结构等 。 ② 板壳结构 ③ 实体结构实体结构的长、宽、高三个尺寸都很 大,具有同一量级。 ④ 混合结构
d. 超静定结构中的多余约束破坏后,结构仍然保持 几何不变性,因而仍有一定的承载能力, 不致整个结构 遭受破坏。
e. 超静定结构由于具有多余的约束,因而比相应的 静定结构具有较大的刚度和稳定性, 在载荷作用下,内 力分布也较均匀,且内力峰值也较静定结构为小。
18
第二章 结构几何构造分析
2.2.3 结构对称性的利用
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。 (1) 具有奇数跨的刚架
① 正对称载荷作用
(a) 对称刚架
(b) 变形状态分析
(c) 对称性利用
图2-22对称性利用示意图
19

有限元分析 第三讲

有限元分析 第三讲
Q1l 2 θ = 2 EJ
m1 l 2 2 EJ
θ =+
1
l
1 2
m1 l EJ
m1
2
l
1节点桡度 节点桡度 1节点转角 节点转角
Q1l 3 m1l 2 f1 = 1 = 3EJ 2 EJ m1l Q1l 2 θ1 = 0 = EJ 2 EJ
解得
Q1 =
12 EJ = k11 3 l 6 EJ m 1 = 2 = k 21 l
局部坐标下梁 单元刚度矩阵
[ ]
12 EJ k e = 3 6l l 12 6l
6l 4l 2 6l 2l 2
12 6l 12 6l
6l 2l 2 6l 4l 2
对称矩阵
上述由几何关系, 物理方程, 上述由几何关系 物理方程 受力和位移的关系求出单元刚度矩阵 的方法——直接刚度法 的方法 直接刚度法
整体座标下的单元刚度矩阵换算通式
[ K e ] = [T ]T [ K e ][T ]
思考: 整体刚度矩阵如何迭加? 思考 整体刚度矩阵如何迭加
§3.3 位移函数—虚功原理推导单元有限元格式 位移函数—
基本原理 将单元内任一点的位移表示成节点位移的某种函数——位 将单元内任一点的位移表示成节点位移的某种函数 位 移函数, 利用虚功原理, 推导单元的刚度矩阵. 移函数 利用虚功原理 推导单元的刚度矩阵.
对方程加" 项 扩展为: 对方程加"0"项,扩展为:
N1 EA 1 11 N = 2 l 1 1 2
N1 1 0 0 0 EA 0 N = 1 1 l 0 0 0 0
6l f1 2l 2 θ1 6l f 2 4l 2 θ 2
0 0 0 0 0 0

[工学]第4章 平面问题的有限元法-3刚度矩阵

[工学]第4章 平面问题的有限元法-3刚度矩阵
* 1 1 * 2 * 3 3
* T
F
T
* * * * * x x y * * y z z xy xy yz yz zx zx
({ } )
T
e T
R
e
(f)
而单元内的应力在虚应变上所做的功为
tdxdy
(g)
这里我们假定单元的厚度t为常量。把(d)式及(4-16) 式代入上式,并将提到积分号的前面,则有
({ } )
e T
B D B
T
e
tdxdy
根据虚位移原理,由(f)和(h)式可得到单元的虚功方程 即 e T e e T e T ({ } ) R ({ } ) B D B tdxdy 注意到虚位移是任意的,所以等式两边与相乘的项应该相等, 即得
R
e
B D Btdxdy
T
e

k B D B tdxdy
e T
(4-24) (4-25)
则有
R k
e e
e
上式就是表征单元的节点力和节点位移之间关系的刚 度方程,[k]e就是单元刚度矩阵。如果单元的材料是均质的 ,那么矩阵 [D] 中的元素就是常量,并且对于三角形常应 变单元,[B]矩阵中的元素也是常量。当单元的厚度也是常 量时,因 dxdy ,所以式(4-24)可简写为
1 2 4 7 11 3 5 8 6 9 10 15
12
13
14
图 4-6 a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 15
2
3
4
5

计算结构力学第四章 单元刚度矩阵

计算结构力学第四章 单元刚度矩阵
首页 上页
(4)
2 l 1 2 l
(5)
下页
返回
由(4)式 {a} [G]1{ } 将(6)代入(1), 便得v( x)的结点位移插值式为
1 v( x) { X }T [ G ] } 14 44 {
(6) (7)
这里 [ N ( x)] [ N1 ( x)
2 3 x x 1 3 2 l l
计算结构力学
第四章 单元刚度矩阵
4-1


形成单元刚度矩阵是整个结构分析中的 一个重要环节。 静力法推导利用了结构力学中的转角位 移方程,也是采用了Euler梁理论的结果。 Euler梁:简单梁
有限元分析的计算精度在很大程度上取 决于单元刚度矩阵,也就是取决于 单元形状 函数(位移函数)的选择。
首页 上页 下页 返回
d 2 [ N ( x)] ( x) z ( x) v( x) 2 dx 4 6 x 6 12 x 2 6x 6 12 x 2 3 2 3 2 2 l l l l l l l l [ B] (9)
2.在单元内点, Ni ( x)按u ( x)形式变化, 如(8)式又 称为Lagrange型插值(线性, 仅函数本身的边界 作内插函数).
1
y
N1 ( x)
N2 ( x)
0 i
j
x
首页 上页 下页 返回
3.应变插值形式(用结点位移表示(x)) du (x) dx d (x) [ N ( X )]{ } dx 1 1 [ ]{ } [ B]{ } l l 上式中[ B]矩阵称为应变矩阵。
首页
上页
下页

有限元法的基本原理

有限元法的基本原理

第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。

经过半个过世纪的发展,它的数学基础已经比较完善。

从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。

它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。

通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。

在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。

尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。

通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。

2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。

3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。

4)有限元的收敛性和误差估计。

由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。

另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。

§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。

2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。

单元类型及单元刚度矩阵课件

单元类型及单元刚度矩阵课件

面积单元的刚度矩阵可以通过解析方 法或数值方法计算得到。
它具有四个节点,每个节点具有三个 自由度:x、y和z方向的位移。
体积单元
体积单元是一种几何 形状,通常用于模拟 结构中的三维实体或 区域。
体积单元的刚度矩阵 可以通过解析方法或 数值方法计算得到。
它具有八个节点,每 个节点具有三个自由 度:x、y、z方向的 位移。
移。
线性单元的刚度矩阵可以通过解 析方法或数值方法计算得到。
角点单元
角点单元是一种特殊类型的线 性单元,通常用于模拟结构中 的角点或连接两个线性单元的 节点。
它具有三个自由度:x、y和z方 向的位移。
角点单元的刚度矩阵可以通过 解析方法或数值方法计算得到。
面积单元
面积单元是一种几何形状,通常用于 模拟结构中的平面区域或曲面上的小 区域。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文, 单击此处添加正文,文字是您思想的提炼,为了最终 呈现发布的良好效果单击此4*25}
通过稳定性分析,可以评估结构的承载安全性和预防 失稳的措施。
PART 04
单元类型选择与注意事项
选择依据
计算精度
根据模型精度要求选择合适的单 元类型,例如,对于复杂形状或 精细结构,应选择高阶单元以提
2023 WORK SUMMARY
单元类型及单元刚度 矩阵课件
REPORTING
CATALOGUE
• 单元类型介绍 • 单元刚度矩阵
PART 01
单元类型介绍
线性单元
线性单元是一种简单的几何形状, 通常用于模拟结构中的直线段或 平面区域。
它具有两个节点,每个节点具有 三个自由度:x、y和z方向的位

c3d8有限元单元方程推导过程

c3d8有限元单元方程推导过程

有限元单元方程推导过程1.引言有限元分析是一种数值计算方法,用于求解结构力学、流体动力学等领域的物理问题。

在有限元分析中,有限元单元是构成整个有限元模型的基本单元,通过推导有限元单元的方程,可以实现对结构或系统的精确分析和计算。

本文将从有限元方法的基本原理出发,详细介绍有限元单元方程的推导过程。

2.有限元方法基本原理有限元方法是将连续的物理问题离散化,转化为有限个代表性元素的集合,通过对每个元素施加适当的边界条件和力学方程,最终得到整个系统的解。

有限元方法通过有限元单元之间的相互作用,从而模拟整个系统的行为。

3.有限元单元的概念有限元单元是有限元模型中最小的离散单元,它是对实际的结构或系统进行离散化的结果。

不同的物理问题和结构,可以采用不同类型的有限元单元进行离散化,如梁单元、壳单元、板单元等。

4.有限元单元方程的一般形式有限元单元方程的一般形式可以表示为:\[K_{e}U_{e}=F_{e}\]其中\(K_{e}\)为有限元单元的刚度矩阵,\(U_{e}\)为有限元单元的位移矢量,\(F_{e}\)为有限元单元的荷载矢量。

5.有限元单元方程推导的基本步骤有限元单元方程的推导主要包括以下几个基本步骤:5.1 单元刚度矩阵的推导首先需要根据有限元单元的几何形状和材料性质,推导出单元刚度矩阵。

单元刚度矩阵可以通过对单元内部的应变能量或者应力-应变关系进行积分得到。

5.2 单元位移矢量的表示在推导单元方程过程中,需要选择合适的位移矢量表示方式,可以采用基函数展开的方法,将位移矢量表示为一组未知系数乘以基函数的线性组合形式。

5.3 单元荷载矢量的求解单元荷载矢量是由外部施加的荷载和边界条件共同决定的,在推导单元方程的过程中需要将这些荷载转化为局部坐标系下的形式,并利用位移矢量的表示方式,将荷载矢量表达为位移矢量和未知系数的线性组合。

5.4 单元方程的组装需要将单元刚度矩阵、位移矢量和荷载矢量组装成完整的单元方程,可以通过坐标变换或者有限元单元之间的关系对单元方程进行组装。

《有限元分析基础教程》(曾攀)笔记二-梁单元有限元方程推导

《有限元分析基础教程》(曾攀)笔记二-梁单元有限元方程推导

《有限元分析基础教程》(曾攀)笔记⼆-梁单元有限元⽅程推导不得不说,Mathematica 真是个好东西,以前学习有限元的时候,对于书中的⽅程推导,看到了就看过去了,从没有想过要⾃⼰推导⼀遍,原因是⼿⼯推导太复杂。

有了MM ,原来很复杂的东西突然变得简单了。

1.单元⼏何描述上图是纯弯梁单元,长度l ,弹模E ,⾯积A ,惯性矩I 。

两个节点1和2的位移列阵为q e =[v 1,θ1,v 2,θ2]Tv 是挠度(defection),或者叫位移;θ是转⾓(slope)。

需注意的是v 和θ的⽅向,⼀个是向上,⼀个是逆时针。

两个节点的节点⼒矩阵为P e =[P v 1,M 1,P v 2,M 2]T当然实际情况往往是在梁的长度⽅向上作⽤有荷载,⽽不是只在节点处有,这时就要进⾏荷载等效,后⾯会有说明。

注意这两个矩阵都是列矩阵。

需要注意的是,节点⼒矩阵表⽰的的是节点上的所有的⼒,不仅包括荷载引起的等效节点⼒,还包括节点的反⼒,反⼒矩等。

2.单元位移场表达由于有4个位移节点的已知条件,那么假设纯弯曲梁单元的位移挠度函数具有四个待定系数,如下形式v (x )=a 0+a 1x +a 2x 2+a 3x 3对于两端节点,位移和转⾓分别为v 1,θ1,v 2,θ2,注意挠曲线⽅程在⼀点出的导数值即为改点的转⾓,所以四个边界条件为v (0)=v 1v ′(0)=θ1v (L )=v 2v ′(L )=θ2使⽤MM 求解⽅程组将求得的待定系数带⼊原⽅程,可得将四个位移合并同类项,可以得到即最终的挠曲线⽅程vfea 为 vfea =θ1x 3L 2−2x 2L +x +θ2x 3L 2−x 2L +v12x 3L 3−3x 2L 2+1+v23x 2L 2−2x 3L 3如果令ζ=x L ,上式中位移前的系数组成的矩阵称之为形函数矩阵,也就是常说的形函数。

即v (x )=N (x )q e 3.单元应变场,应⼒场的表达应变的表达式为ε=−yv ″其中B(x)=-yN''(x),B(x)叫做单元的⼏何矩阵,表⽰应变与位移的⼏何关系。

第3章 有限元分析的数学求解原理-三大步骤

第3章 有限元分析的数学求解原理-三大步骤

U x x y y z z xy xy yz yz zx zx dV
X u Y v Z w dV X u Y v Z w d W
V V
用 * 表示;引起的虚 应变分量用 * 表示
j Vj
Ui
i Vi


0 X
y
¼ 1-9 Í

ui* * vi wi* * * u j , v* j w*j

x* * y * z * * xy *yz * 18 zx
19
7.间接解法:最小势能原理
20
最小势能原理
W U 0
最小势能原理就是说当一个体系的势能最小时,系统会处于稳定 平衡状态。或者说在所有几何可能位移中,真实位移使得总势能取最小值
0 表明在满足位移边界条件的所有可能位移 最小势能原理: 中,实际发生的位移使弹性体的势能最小。即对于稳定平衡状态,实 际发生的位移使弹性体总势能取极小值。显然,最小势能原理与虚功 原理完全等价。 n m
虚功原理的矩阵表示
在虚位移发生时,外力在虚位移上的虚功是:
* 式中

U i u i* V i v i* W i w i* U j u *j V j v *j W j w *j
* 是 的转置矩阵。
T

*
F
T
同样,在虚位移发生时,在弹性体单位体积内,应力在虚应变上的虚 功是: * * * * * * * T x x y y z z xy xy yz yz zx zx
27
⑴解析法

有限元计算原理与方法

有限元计算原理与方法

1.有限元计算原理与方法有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。

用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。

1.1. 有限元分析的基本理论有限元单元法的基本过程如下:1.1.1.连续体的离散化首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接而成为一个整体。

单元可采用各种类型,对于三维有限元分析,可采用四面体单元、五西体单元和六面体单元等。

在Plaxis 3D Foundation程序中,土体和桩体主要采用包含6个高斯点的15节点二次楔形体单元,该单元由水平面为6节点的三角形单元和竖直面为四边形8节点组成的,其局部坐标下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的8个成对节点四边形单元。

在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理;若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布荷载等效地移置到有关节点上去。

最后,还应建立一个适合所有单元的总体坐标系。

由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料的由众多单元以一定方式连接成的离散物体。

因此,用有限元法计算获得的结果只是近似的,单元划分越细且又合理,计算结果精度就越高。

与位移不同,应力和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通过对桩截面进行积分褥到。

1.1.2. 单元位移插值函数的选取在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]Tf u v w =。

有限元第4章刚度矩阵方程的处理知识交流

有限元第4章刚度矩阵方程的处理知识交流

(c )
单元内的节点最大编号差决定着刚度矩阵的带宽,而影响刚度 矩阵的存储量,这对于节点数较多的单元形式尤为重要。为进 一步减小刚度矩阵存储量以节省计算机资源,除了等带宽存储 刚度矩阵元素的方法外,还有一种更为经济的存储方式,称为 变带宽存储。如图4-3所示,刚度矩阵中每一行所具有的非零 元素数目不等,存储时可不必按最大带宽将带内元素全部存储 。因为解方程组时只用到每行第一个非零元素及其以后的诸元 素,因此只要将图4-3中折线到对角线间的元素存在计算机中 即可。这样一来又可以少存许多零元素。再采用一维数组存储 ,又可以进一步减小存储量。这称为一维变带宽压缩存储。
k91
k92
k93
k94
k95
k96
k97
k98
M
k9,10 d9
M
k10,1 k10,2 k10,3 k10,4 k10,5 k10,6 k10,7 k10,8 k10,9 k10,10 d10 F 10
总刚度平衡方程的求解
应用有限元法,最终都是归结为解总体刚度矩阵平衡方程, 它实际上是以总体刚度矩阵为系数矩阵的大型线性代数方程组。 通过对结构施加位移边界条件,消除了结构的刚体位移,从而消 除总体刚度矩阵的奇异性,解这个线性代数代数方程组可求出节 点位移。
可将总体刚度矩阵中相应的行列、删行删列划掉,然后将矩阵压缩即可 求解。这种方法的优点时道理简单。如果删去的行列很多,则总体刚度 矩阵的阶数可大大缩小。通常用人工计算时常采用该方法。若用计算机 算题,在程序编制上必带来麻烦,因为刚度矩阵压缩以后,刚度矩阵中 各元素的下标必全改变。因而一般计算机算题不太采用。
点位移,而其余各行保持不变。
1
5
3
2
4

有限元分析第二讲杆单元分析

有限元分析第二讲杆单元分析

引入边界位移约束和载荷:
则系统平衡方程化为:
2 2 0 0 F1 EA 2 3 1 u P 2 L 0 F 0 1 1 3
上述方程组中删除第1,3个方程,得到:
解得:
(四)举例
例1 求图示2段杆中的应力。
解:分2个杆单元,单元之间在节点2连接。 各单元的刚度矩阵分别为:
参考前面弹簧系统的方法,装配2杆系统的有限元方 程(平衡方程)如下:
2 2 0 u1 F1 EA 2 3 1 u 2 F2 L u F 0 1 1 3 3
2 杆单元

一、一维等截面杆单元及其刚度矩阵
考虑一个2节点一维等截面杆单元: L— 杆长 A— 截面积
E— 弹性模量
ui 单元节点位移:d u j
fi 单元节点力:f fj
u u ( x)
——杆单元位移
——杆单元应变 ——杆单元应力

du dx
( x) ( x)
应变—位移关系: 应力—应变关系:
E
(一)直接法导出单元特性 杆单元伸长量:
u j ui
应变:
应力:
L E E L
EA EA k 杆内力: F A L L
EA 杆的轴向刚度: k L
轴向拉压变形模式下,该杆单元的行为与弹簧单元相同, 因此杆单元的刚度矩阵为:
EA k L
比照弹簧元的刚度方程,写出杆单元的刚度方程为:
f i k k ui EA 1 1 ui f j k k u j L 1 1 u j

基础知识:有限元求解方法

基础知识:有限元求解方法

有限元分析的作用: 1、增加设计功能,减少设计成本; 2、缩短设计和分析的循环周期; 3、增加产品和工程的可靠性; 4、采用优化设计,降低材料的消耗或成本; 5、在产品制造或工程施工前预先发现潜在的问题; 6、模拟各种试验方案,减少试验时间和经费; 7、既年青又悠久的科技型企业。年青是因为她正处在战略重组 后的初创期,悠久是因为她秉承了中国科学院数学研究所在有限元和数值计算方面所开创的光荣 传统。元计算的目标是做强中国人自己的计算技术,做出中国人自己的CAE软件。
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域 中。 20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有 限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解 (往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简 单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的 复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推 导和运算求解不同。有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
有限元语言及编译器(Finite Element Language And it’s Compiler,以下简称FELAC) 是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平 台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年—2013 年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前 已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语 言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。 FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程劳动。

有限元法的基本思想及计算步骤

有限元法的基本思想及计算步骤

用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见 的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单 元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单 元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约 束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三 角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个 结点有两个位移分量u,v和两个结点力分量Fx,Fy。三个结点共六个结点位移分量可用列阵(δ)e 表示: ,δ-e=*ui vi uj vj um vm+T 同样,可把作用于结点处的六个结点力用列阵{F}e表示: {F}e=[Fix Fiy Fjx Fjy Fmx Fmy]T 应用弹性力学理论和虚功原理可得出结点位移与结点力之间的关系 ,F-e=*k+e,δ-e (1)式中 [k]e——单元刚度矩阵。
有限元语言及编译器finiteelementlanguagecompiler以下简称felac是中国科学院数学与系统科是具有国际独创性的有限元计算软件是pfepg系列软件三十年成果1983年2013年的总结与提升有限元语言语法比pfepg更加简练更加灵活功能更加强大
有限元法的基本思想及计算步骤
有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散 化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性 体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种 联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能 通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结 点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各 个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作 为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单 元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之 间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分 量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性 要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改 进,近似解最终将收敛于精确解。

20191214有限元讲稿第四章四面体单元rev2

20191214有限元讲稿第四章四面体单元rev2
式中,{}e=[ui, vi, wi, uj, vj, wj, um, vm, wm, up, vp, wp]T,为单 元节点位移列阵,[I]为三阶单位矩阵。
由于位移模式是线性函数,因此在相邻单元边界上满足位移连续条件。
2020/5/1
6
(2)单元应变和应力
由弹性力学可知,在三维空间问题中,每个节点有六个应变与应力分量。
13
(1)单元形函数
与基本单元相对应,以点、曲线、曲面为边界的不规则形状单元称为“实际单 元”,将固定的直角坐标系称为“整体坐标系”或“基本坐标系”。实际单元定
义在整体坐标系中,如图所示。
2 y
1 x
o
一维单元
8
3
7
6
5
7 6
4 y
2z
4
3
8
5
o x1
1 xo y
2
二维单元
三维单元
2020/5/1
V 1 1 xj 6 1 xm
yj ym
zj , zm
ijm的方向转动时,右手螺旋 应向节点p的方向前进。
1 xp yp zp
2020/5/1
5
(1)位移模式
三维四面体单元节点位移分量可表示为:
u {f} v [N ] {}e[[I]N i [I]Nj [I]N m [I]N p] {}e
w
kip
kjp
kkpmpp
2020/5/1
9
(3)单元刚度矩阵
其中,子矩阵[krs]由下式确定:
[krs][Br]T[D][Bs]V
36(1E(1)(1)2)Vbrbsg1cgrb2s(crcgs2brdcsrds)
g1drbs g2brds

单元刚度矩阵推导步骤

单元刚度矩阵推导步骤

单元刚度矩阵推导步骤单元刚度矩阵是在有限元分析中用于描述单元位移与力的关系的矩阵。

它是由单元的物理和几何性质计算得出的。

下面将详细介绍单元刚度矩阵的推导步骤。

1. 选择单元类型和材料模型首先,需要选择单元类型和材料模型。

不同的单元类型具有不同的形状和自由度,而材料模型则描述了材料的物理性质。

这些因素将影响最终的单元刚度矩阵。

2. 定义单元的几何形状和尺寸接下来,需要定义单元的几何形状和尺寸。

这通常涉及选择节点(或顶点)的位置,并确定单元的尺寸和形状。

这些信息将用于计算单元刚度矩阵。

3. 建立局部坐标系为了计算单元刚度矩阵,需要建立一个局部坐标系。

这个坐标系将用于描述单元内力和位移的关系。

通常,局部坐标系的原点设在单元的中心,x轴沿单元的长度方向,y轴沿宽度方向(对于矩形单元),z轴则垂直于xy平面。

4. 确定单元的物理性质单元刚度矩阵还取决于单元的物理性质,如弹性模量、泊松比、密度等。

这些性质将用于计算单元刚度矩阵中的元素。

5. 建立平衡方程根据弹性力学的平衡方程,可以建立单元的平衡方程。

对于一个三维单元,平衡方程可以表示为:[F] = [B] * [u]其中,[F]是作用在单元上的力向量,[u]是位移向量,[B]是应变-位移矩阵(或称为应变矩阵)。

该矩阵包含了由于位移引起的应变信息。

6. 计算应变-位移矩阵根据几何形状和尺寸,可以计算应变-位移矩阵[B]。

该矩阵描述了位移如何引起应变的变化。

对于三维单元,应变-位移矩阵通常具有以下形式:[B] = [B1 B2 B3; B4 B5 B6; B7 B8 B9]其中,B1-9是应变-位移矩阵的元素。

这些元素可以通过几何关系和物理性质计算得出。

7. 建立单元刚度矩阵使用弹性力学的公式,可以将平衡方程重写为:[K] * [u] = [F]其中,[K]是单元刚度矩阵,它描述了力和位移之间的关系。

通过将应变-位移矩阵[B]和弹性模量等物理性质代入公式中,可以计算出单元刚度矩阵[K]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档