九年级数学上册 6.1《反比例函数》教案2 (新版)北师大版
九年级数学上册 第六章 反比例函数 1 反比例函数教案 (新版)北师大版
教学反思:
教师应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
《反Байду номын сангаас例函数》
课题
反比例函数
课时安排
共(1)课时
①求出这个反比例函数的表达式;
②根据函数表达式完成上表。
教师巡视,个别辅导,学生完毕教师给予评估。
指出:用待定系数法确定反比例函数表达式,只需代入一个已知点,可确定未知系数k的值。(由解析式可得,k=xy)
环
节
三
三、拓展应用,学科互联
例1:电流I、电阻R、电压U之间满足关系式U=IR。在照明电路中,正常电压U=220V。
例3:若是关于x的反比例函数,确定m的值,并求其函数关系式。
四、感悟收获,师生小结
通过本节课的学习,你有哪些收获?你还存在什么疑问?
课中作业
习题6.1 1-4题
课后作业设计:
《全品学练考》作业手册习题6.1
(修改人:)
板书设计:
反比例函数
反比例函数的定义
形如
其他形式:
自变量
用待定系数法确定反比例函数的表达式:
(1)求I与R之间的函数关系式?
(2)变量I是R的反比例函数吗?
(3)利用写出的关系式完成下表:
R(Ώ)
20
60
I(A)
2.2
例2:在某一电路中,保持电压U(伏)不变,电流I(安)是电阻R(欧)的反比例函数,当电阻R=5欧时,电流I=2安。
(1)求I与R之间的函数关系式。
(2)当电流I=0.5安时,求电阻R的值。
九年级数学上册 6.1 反比例函数教案 (新版)北师大版
反比例函数【教学目标】知识与技能记住反比例函数的概念,会求比例系数,能够列出实际问题中的反比例函数关系. 过程与方法1.从现实情境和已有知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。
情感、态度与价值观感受反比例函数是刻画世界数量关系的一种有效模型,函数与生活息息相关。
【教学重难点】教学重点:理解和领会反比例函数的概念教学难点:领悟反比例函数的概念【导学过程】【创设情景,引入新课】问题提出:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗?(2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?学生小组合作讨论。
【自主探究】京沪高铁(全程约为1318km ),全程所用的时间t(h)随速度v(km/h)的变化而变化(1)完成下表:随着速度在逐渐增加,所用的时间发生怎样的变化?.(2)你能用含有v 的代数式表示t 吗?(3)速度v 是时间t 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xk y 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
【课堂探究】做一做个矩形的面积为202cm ,相邻的两条边长分别为xcm 和ycm 。
那么变量y 是变量x 的函数吗?为什么?学生先独立思考,再进行全班交流。
2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么?3.y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。
【当堂训练】1.xk y = (k ≠0)叫__________函数.,x 的取值范围是__________; 2.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;3.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ______;4.如果函数222-+=k k kx y 是反比例函数,那么k =________,此函数的解析式是____ ____;5、若()2311m m y m x ++=+是反比例函数,求m 的值.6、已知y 与x 成反比例,当x=3时,y=7,求当y=2时,x 的值.7、已知函数k y x=(k ≠0)过点()1,3-,求函数解析式。
九年级数学上册第六章反比例函数2反比例函数的图象与性质教案新版北师大版
2反比例函数的图象与性质1.掌握画出反比例函数图象的基本步骤,会画反比例函数的图象.2.掌握反比例函数的主要性质.3.能利用反比例函数的图象及性质解决一些实际问题.重点画反比例函数的图象,理解反比例函数的性质.难点理解反比例函数的性质,并能灵活应用.一、复习导入1.什么是反比例函数?2.画出一次函数y=4x的图象,图象是什么形状?画一次函数图象的步骤是什么?学生自主思考后给出答案,教师点评.二、探究新知1.反比例函数的图象4教师:反比例函数y=的图象会是什么形状呢?我们可以用什么方法画这个反比例函x数的图象?学生独立画图象,指名板演.教师点评,引导学生归纳画反比例函数图象的基本步骤.教师:你以为画反比例函数图象时应注意哪些问题?引导学生总结:(1)反比例函数的图象是双曲线;(2)画反比例函数的图象要经过列表、描点、连线这三个步骤;(3)双曲线的两端是无限延伸的,画的时候要“出头”;(4)画双曲线时,取的点越密集,描出的图象就越准确,但计算量会越大,故一般在原点的两侧各取3~5个点即可;(5)连线时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接.注意:两个分支不连接.4教师:观察上面的函数图象,如果点P(x,y)在函数y=的图象上,那么与点P关于x004原点成中心对称的P′的坐标应是什么?这个点在函数y=的图象上吗?x学生思考回答后,教师进一步讲解:反比例函数的图象既是一个轴对称图形,又是一个中心对称图形.对称轴有两条,分别是直线y=x与直线y=-x;对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.2.反比例函数的性质课件出示:44画出反比例函数y=与y=-的的图象,探究下列问题:x x(1)这两个反比例函数的图象有什么相同点和不同点?(2)在每个象限内,随着x值的增大y的值是怎样变化的?引导学生思考,得出:表达式图象的位置y随x的变化情况4图象在第一、三象限内在每个象限内,y的值随着x值的增大而减小-4y=图象在第二、四象限内在每个象限内,y的值随着x值的增大而增大x三、举例分析k例1反比例函数y=的图象如图所示.x(1)判断k为正数还是负数.(2)如果A(-3,y)和B(-1,y)为这个函数图象上的两点,那么y与y的大小关系是1221怎样的?学生思考回答,教师讲评并进一步讲解根据反比例函数的增减性比较函数值大小的方法:利用反比例函数的增减性来比较函数值的大小时,如果给定的两点或几点能够确定在同一象限的分支上时,可以直接利用反比例函数的性质解答;如果给定的两点或几点不能够确定在同一象限的分支上时,则不能利用反比例函数的性质比较,需要根据函数的图象和点的位置用数形结合思想来比较或利用特殊值法通过求值来比较.42例2如图,两个反比例函数y=和y=在第一象限内的图象分别是G和G,设点Px x12在G上,PA⊥x轴于点A,交G于点B,则△POB的面积是多少?12学生分小组讨论后给出答案,教师点评,并提问:双曲线的几何特性是什么呢?引导学生总结双曲线的几何特性:k过双曲线y=上的任意一点向两坐标轴作垂线,与两坐标轴围成的矩形面积等于|k|,x||k连接该点与原点,还可得出两个直角三角形,这两个直角三角形的面积都等于.2四、练习巩固1.教材第153页“随堂练习”.2.教材第155页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.反比例函数图象的画法及步骤是什么?3.反比例函数图象与位置的关系是什么?4.反比例函数有哪些性质?六、课外作业1.教材第154页习题6.2第1,3题.2.教材第157页习题6.3第1,2题.本节课的内容主要有两点:一是画反比例函数的图象,二是由图象得出反比例函数的性质.在教学中,通过学生自由探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法.学生的学习往往从问题开始,因为这样的学习具有方向性与原动力,因此,我把教学设计的主体设计成又若干个有一定逻辑顺序的问题,即通过复习反比例函数的定义——画出反比例函数的图象——根据图象得出反比例函数的性质——利用函数性质解决问题.层层深入,逐步培养学生的问题意识及利用所学知识解决问题的能力.(2)在每个象限内,随着x值的增大y的值是怎样变化的?引导学生思考,得出:表达式图象的位置y随x的变化情况4图象在第一、三象限内在每个象限内,y的值随着x值的增大而减小-4y=图象在第二、四象限内在每个象限内,y的值随着x值的增大而增大x三、举例分析k例1反比例函数y=的图象如图所示.x(1)判断k为正数还是负数.(2)如果A(-3,y)和B(-1,y)为这个函数图象上的两点,那么y与y的大小关系是1221怎样的?学生思考回答,教师讲评并进一步讲解根据反比例函数的增减性比较函数值大小的方法:利用反比例函数的增减性来比较函数值的大小时,如果给定的两点或几点能够确定在同一象限的分支上时,可以直接利用反比例函数的性质解答;如果给定的两点或几点不能够确定在同一象限的分支上时,则不能利用反比例函数的性质比较,需要根据函数的图象和点的位置用数形结合思想来比较或利用特殊值法通过求值来比较.42例2如图,两个反比例函数y=和y=在第一象限内的图象分别是G和G,设点Px x12在G上,PA⊥x轴于点A,交G于点B,则△POB的面积是多少?12学生分小组讨论后给出答案,教师点评,并提问:双曲线的几何特性是什么呢?引导学生总结双曲线的几何特性:k过双曲线y=上的任意一点向两坐标轴作垂线,与两坐标轴围成的矩形面积等于|k|,x||k连接该点与原点,还可得出两个直角三角形,这两个直角三角形的面积都等于.2四、练习巩固1.教材第153页“随堂练习”.2.教材第155页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.反比例函数图象的画法及步骤是什么?3.反比例函数图象与位置的关系是什么?4.反比例函数有哪些性质?六、课外作业1.教材第154页习题6.2第1,3题.2.教材第157页习题6.3第1,2题.本节课的内容主要有两点:一是画反比例函数的图象,二是由图象得出反比例函数的性质.在教学中,通过学生自由探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法.学生的学习往往从问题开始,因为这样的学习具有方向性与原动力,因此,我把教学设计的主体设计成又若干个有一定逻辑顺序的问题,即通过复习反比例函数的定义——画出反比例函数的图象——根据图象得出反比例函数的性质——利用函数性质解决问题.层层深入,逐步培养学生的问题意识及利用所学知识解决问题的能力.(2)在每个象限内,随着x值的增大y的值是怎样变化的?引导学生思考,得出:表达式图象的位置y随x的变化情况4图象在第一、三象限内在每个象限内,y的值随着x值的增大而减小-4y=图象在第二、四象限内在每个象限内,y的值随着x值的增大而增大x三、举例分析k例1反比例函数y=的图象如图所示.x(1)判断k为正数还是负数.(2)如果A(-3,y)和B(-1,y)为这个函数图象上的两点,那么y与y的大小关系是1221怎样的?学生思考回答,教师讲评并进一步讲解根据反比例函数的增减性比较函数值大小的方法:利用反比例函数的增减性来比较函数值的大小时,如果给定的两点或几点能够确定在同一象限的分支上时,可以直接利用反比例函数的性质解答;如果给定的两点或几点不能够确定在同一象限的分支上时,则不能利用反比例函数的性质比较,需要根据函数的图象和点的位置用数形结合思想来比较或利用特殊值法通过求值来比较.42例2如图,两个反比例函数y=和y=在第一象限内的图象分别是G和G,设点Px x12在G上,PA⊥x轴于点A,交G于点B,则△POB的面积是多少?12学生分小组讨论后给出答案,教师点评,并提问:双曲线的几何特性是什么呢?引导学生总结双曲线的几何特性:k过双曲线y=上的任意一点向两坐标轴作垂线,与两坐标轴围成的矩形面积等于|k|,x||k连接该点与原点,还可得出两个直角三角形,这两个直角三角形的面积都等于.2四、练习巩固1.教材第153页“随堂练习”.2.教材第155页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.反比例函数图象的画法及步骤是什么?3.反比例函数图象与位置的关系是什么?4.反比例函数有哪些性质?六、课外作业1.教材第154页习题6.2第1,3题.2.教材第157页习题6.3第1,2题.本节课的内容主要有两点:一是画反比例函数的图象,二是由图象得出反比例函数的性质.在教学中,通过学生自由探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法.学生的学习往往从问题开始,因为这样的学习具有方向性与原动力,因此,我把教学设计的主体设计成又若干个有一定逻辑顺序的问题,即通过复习反比例函数的定义——画出反比例函数的图象——根据图象得出反比例函数的性质——利用函数性质解决问题.层层深入,逐步培养学生的问题意识及利用所学知识解决问题的能力.。
九年级数学上册(反比例函数)教案 北师大版 教案
《反比例函数》教案一、本章知识网络图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧反比例函数与实际问题三角形矩形问题反比例函数与面积有关对称性增减性位置形状图象和性质定义及表示形式二、知识点及考点: (一)反比例函数的概念: 知识要点:1、一般地,形如 y = x k( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式:(A )y = x k(k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx-1(k ≠0)例题讲解:有关反比例函数的解析式(1)下列函数,① 1)2(=+y x ②.11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x =;其中是y 关于x 的反比例函数的有:_________________。
(2)函数22)2(--=a x a y 是反比例函数,则a 的值是( )A .-1B .-2C .2D .2或-2(3)若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.(4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( )(2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( )(5)反比例函数(0ky k x =≠)的图象经过(—2,5, n ),求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.(7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.(二)反比例函数的图象和性质: 知识要点:1、形状:图象是双曲线。
九年级上册数学《 反比例函数的图象与性质(2)》教案-北师版
反比例函数的图象和性质(2)教学设计【学习目标】1、使学生进一步理解和掌握反比例函数及其图象与性质。
2、知道反比例函数中k的几何意义,并能运用它解决与面积有关的问题。
3、在熟悉反比例函数的图象和性质的基础上,能灵活运用函数图象和性质解决一些较综合的问题。
4、培养学生探究和解决数学问题的能力。
【学习重难点】理解并掌握反比例函数的图象和性质,探究k的几何意义,并能利用它们解决一些综合问题(重点);学会从图象上分析、解决问题(难点)。
【教学方法】讲练结合,小组内交流互助。
【教学思路】运用电教手段,通过问题引入,ppt展示回顾,引入本节学习目标,通过学生的自主学习和视频观看,让学生轻松学习和了解本节重点知识,极大地提高学生学习的积极性,再通过学生的小组交流展示、讨论,使学生在不断的参与中轻松掌握本节所学内容。
【教具准备】投影仪、课件、电子白板。
【教学课时】 1课时【教学过程】一、复习回顾,引入新课1、反比例函数的图象是什么?2.反比例函数有哪些性质?2、电子白板动态展示反比例函数的性质。
二、探究新知1、学生读本节学习目标。
2、通过观察已画图象探讨得出反比例函数的增减性;数形结合得出反比例函数参数k 的几何意义。
观察反比例函数x y x y x y 6,4,2===的图象,你能发现它们的共同特征吗?探索:(1)函数图象分别位于哪几个象限内?(2)在每一个象限内,随着x 值的增大,y 的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x 轴相交吗?可能与y 轴相交吗?为什么?学生观察,同桌交流,大胆发言,发表见解。
考察当k =-2,-4,-6时,反比例函数x ky =的图象,它们有哪些共同特征?学生通过相互交流、补充和修正。
性质:反比例函数x ky =的图象,当k>0时,在每个象限内,y 的值随x值的增大而减小;当k<0时,在每一象限内,y 的值随x 值的增大而增大。
3、在一个反比例函数图象上任取两点P 、Q ,过点P 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为1S ;过点Q 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为2S ,1S 和2S 有什么关系?为什么?学生分四人小组进行操作。
北师大版数学九年级上册《反比例函数》教案
北师大版数学九年级上册《反比例函数》教案一、教学目标1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解;3.能够应用反比例函数解决实际问题;4.发展学生的数学思维能力和解决问题的能力。
二、教学重点1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解。
三、教学难点1.能够应用反比例函数解决实际问题;2.发展学生的数学思维能力和解决问题的能力。
四、教学内容及教学方法教学内容1.反比例函数的定义及其特点;2.反比例函数的表格、图像、实例;3.反比例函数的应用。
教学方法1.归纳法和演绎法相结合;2.以实例为基础进行教学;3.组织学生进行小组讨论;4.利用多种教学手段,如讲解、展示、讨论等。
五、教学步骤第一步:引入介绍本课的主题:反比例函数,通过捕捉学生的注意力引入本课。
第二步:概念的讲解1.反比例函数的定义;2.反比例函数的图像及其特点;3.反比例函数的一般式及其性质。
第三步:小组讨论案例提供 5~10 个实际问题,组织学生分组讨论如何用反比例函数来解决这些问题。
第四步:作业辅导老师根据本课教学内容布置作业,并对学生作业进行辅导。
六、教学评价1.学生通过小组讨论和作业完成任务,能够较好的理解反比例函数的定义、特点和应用;2.学生在课堂上和小组中能积极表达,互相交流,并进行了有效合作;3.学生通过课堂练习和作业完成,能够掌握所学知识,较好的掌握了课堂所学内容。
七、教学反思通过本课的教学,学生在课堂上和小组中都能积极参与讨论,并且能够掌握反比例函数的基本概念和应用,达到了本课的预期教学目标。
同时也发现了一些问题:部分学生对于难度较大的问题理解困难,需要老师进一步解释;有些学生的知识储备较少,需要老师根据学生的情况进行差异化教学。
在以后的教学中,需要更注重学生的个性化需求,实现更有效的教学效果。
九年级数学上册6.1反比例函数教案2北师大版
第六章反比例函数6.1 反比例函数(1)从现实情境和学生已有的知识经验出发,讨论两个变量之间的相互关系,加深对函数概念的理解。
(2)经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。
(3)体会数学从实践中来又到实际中去的研究、应用过程。
培养学生的观察能力,及数学地发现问题,解决问题的能力。
三、重点、难点、关键(1)重点:理解和领会反比例函数的概念;(2)难点:领悟反比例函数的概念;(3)关键:从现实情境和所学的知识入手,探索两个变量之间的相依关系.四、教学方法:小组合作、探究式五、教学过程(一)创设情境,引入新课1、把一张100元换成50元的人民币,可换几张?换成10元的人民币可换几张?依次换成5元,2元,1元的人民币,各可换几张?换得的张数y 与面值x之间有怎样的关系呢?请同学们填表:换成的元数x(元)502010521换成的张数y(张)提问:学生你会用含有x的代数式表示y吗?并提出问题:当换成的元数x变化时,换成的张数y会怎样变化呢?变量y是x的函数吗?为什么?这就是我们今天要学习的反比例函数。
我们再看课本的例子:(二)互动探究,学习新课我们知道,电流I 、电阻R 、电压U 之间满足关系式U =IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗?;(2)利用你写出的关系式完成下表:R /Ω 20406080100I /A学生填表完成,提出当R 越来越大时,I 是怎样变化的?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?我们通过控制电阻的变化来实现舞台灯光的效果.在电压一定时,当R 变大时,电流I 变小,灯光就变暗,相反,当R 变小时,电流I 变大,灯光变亮。
引导学生看课本例子,京沪高速铁路全长约为1318km ,列车沿京沪高速铁路从上海驶往北京,列车行完成全程所需的时间t (h)与行驶的平均速度v (km/h )之间有怎样的关系?变量t 是v 的函数吗?为什么?(三)学生分组交流讨论提示学生:数学来源于生活,请同学在生活中找出类似的例子。
九年级数学上册6.2.1反比例函数的图象和性质教案(新版)北师大版
九年级数学上册6.2.1反比例函数的图象和性质教案(新版)北师大版课题:6.2反比例函数的图像与性质教学目标:1.经历探索反比例函数的性质的过程,体会函数的三种表示方法的相互转换,对函数进行认识上的整合.2.会作反比例函数的图象,进一步掌握画函数图象的主要步骤.3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质.教学重点与难点:重点:画反比例函数图象并认识图象的特点.难点:体会函数的三种表示方法的相互转换.课前准备:多媒体课件.教学过程:一、复习回顾,导入新课活动内容:(多媒体出示)创设问题情景.问题:1.什么叫做反比例函数?2.反比例函数的定义中需要注意什么?(此时老师板书反比例函数的表达式.)3.函数有几种表达形式?4.大家还记得一次函数图象是什么?那反比例函数的图象又会是什么样?处理方式:1.问题1,2由学生口答完成后,教师板书反比例函数的表达式.2.学生口答完函数的表达形式有列表法、图像法、关系式法之后,教师追问:如何用表格法和图像法表示反比例函数?接着教师引导学生根据反比例函数关系式可以列表格,再根据表格描点可以得到反比例函数的图像,体会函数三种表示方法可以相互转化.3. 最后老师继续追问:一次函数图象是什么?那反比例函数的图象又会是什么样?从而引出本节课课题,导入新课.设计意图:通过问题串引导学生回归复习反比例的定义,通过追问让学生回忆根据关系式可以列表格,根据表格描点可以得到反比例函数的图像,既复习了函数图像的定义,又让学生体会三种表示方法可以相互转化.二、探究学习,感悟新知活动内容1:例1.画出xy 4 的图象.处理方式:1.让学生独立思考、尝试,然后小组之间交流.学生充分交流后教师利用投影或者课件展示以下错例.2.教师逐步引导学生思考(1)他们做的对吗?为什么?同学会发现图一选取的自变量的值太少,导致图象不具代表性;图二,取自变量的值时,取值以偏带全导致只画出一支曲线.(2)教师追问怎样取值才全面?图三画成有明确端点,图像应是延伸的,连线时习惯用线段,导致出现“硬转弯”的折线图.(3)教师继续发问,为什么图像应是延伸的?适时点拨:我们根据函数图象的定义x 可取无数个值,相应函数值y 可得无数个值,所以图象不要画成如图三.(4)你认为作反比例函数图象时应注意哪些问题?设计意图:先让学生按自己的理解尝试画反比例函数xy 4=的图象,在作图过程中学生会出现各种各样的问题,通过学生的讨论、交流,和教师的点拨让学生理解错误的原因,通过问题串的形式,逐步引导学生思考探究画图象的步骤,并且对于其中出现的错误及时纠正,然后通过对比师生共同总结作反比例函数图象注意的问题.同时在这一过程中让学生积累数学活动经验.活动内容2:看老师如何画出xy 4=图象的(几何画板演示步骤)处理方式:1.教师利用几何画板本演示画图的步骤及过程.2.教师强调作图时应注意以下问题(1)列表时,选取的自变量的值,既要易于计算,又要便于描点,尽量多取一些数值(取互为相反数的一对一对的数),多描一些点,这样既可以方便连线,又可以使图象精确.(2)连线时必须用光滑的曲线连接各点,不能用折线连接.(3)图像是延伸的,注意不要画成有明确端点.(4)曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.(5)描点时一定要养成按自变量从小到大的顺序依次画线, 从中体会函数的增减性. 设计意图:教师利用几何画板本演示画图的步骤,体现步骤的严密性,规范性.三、由此及彼,应用新知活动内容1:现在我们已经知道当K 取正数时,我们画出了反比例函数的图像,当K 取负数时它的图像又是什么形状呢?请同学们继续下面的练习. 练习:大家用同样的方法作反比例函数xy 4-= 的图象. 处理方式:然后让学生试着自己作图.教师根据学生的作图情况,期间需要做出必要引导,多媒体出示正确的作图过程,让学生参考,让学生修改自己的解题过程.设计意图:让学生进一步熟悉画函数图像的主要步骤,并在巩固训练中积累素材,通过观察发现K 决定了图象所在的象限等性质做准备.活动内容2:议一议:(1)观察 x y 4=和x y 4-= 的图象,它们有什么相同点和不同点?(2)反比例函数图像是中心对称图形吗?如果是,请找出对称中心,反比例函数是轴对称图形吗?如果是请指出它的对称轴.处理方式:(1)让学生先独立思考后再与同桌交流答案,最后师生共同小结反比例函数的性质.(教师板书)反比例函数y = x k 有下列性质:反比例函数的图象y = xk 是由两支曲线组成的。
北师大版数 学九年级上册 6.1 反比例函数 教案
反比例函数一、目标:1、掌握反比例函数的三种表达式,并能根据定义识别反比例函数关系式,2、学会利用“变量积为非0的定值”来初步判断反比例函数及快速取值。
3、理解 (k ≠0) 与y 与x 成反比例说法等价。
二、重、难点:重点:掌握反比例函数的三种函数表达式。
难点:对这种式子的理解。
三、复习准备:函数概念:一般地,在某个变化过程中,有两个变量 x 和y,如果给定一个x值,相应地唯一确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量, y 是因变量。
过 程一、画一画,若图中方格的边长为1,你能画出一个面积为12的长方形吗?二、列一列1、若两地相距50km ,则汽车行驶的平均速度v (km/h )与行驶时间t (h )之间的关系式为 ;2、100元钱购买糖果的千克数y 与糖果单价x 之间的关系式为 ;3、体积为1000立方米的蓄水池的底面积S (平方米)与高h (米)之间的关系式为三、定义:反比例函数:一般地,若两个变量x 、y 之间的关系式可表示为 (k 为常数,k ≠0)的形式,那么称y 是x 的 。
也可以说: 。
本质是:注意事项:表达式四、认一认在下列函数中x 是自变量,哪些表示y 是x 的反比例函数,并指出其中的kx k y9、 (m 为常数)10、 (m 为常数)五、辩一辩◆ 是反比例函数吗?六、看一看若某函数两个变量x 、y 的几个取值如下你能判断y 与x 成什么函数关系吗?你判断的依据是什么?你还能举出其他学科中或是生活中类似的例子吗?七、聚焦考试你从哪里入手的?你能写出函数表达是吗?2、已知y=(m -1)x m2-2是反比例函数,求m 的值3、已知:y 与z 成正比例,z 与x 成反比例,试判断y 是x 的什么函数?并说明理由。
x m y 12+=x m y 2=31+=x y小结:九、测一测1、已知:y=(m-2)x∣m∣-3是反比例函数,则m的值= ,函数表达式为;2、= ,函数表达式为。
北师大版数学九年级上册的第六章第一节《反比例函数》教案
北师大版数学九年级上册的第六章第一节《反比例函数》教案一. 教材分析北师大版数学九年级上册的第六章第一节《反比例函数》是本章的第一节内容,也是学生继学习正比例函数后的又一函数类型。
本节课主要让学生了解反比例函数的概念、性质及其图象,培养学生运用函数观点解决实际问题的能力。
教材通过引入反比例函数的概念,让学生在已有的正比例函数知识基础上,进一步拓展对函数的理解。
二. 学情分析学生在学习本节课之前,已经学习了正比例函数的相关知识,对函数的概念、图象和性质有一定的了解。
但九年级学生的抽象思维能力仍需培养,对于反比例函数的理解可能仍存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,通过合适的教学方法,帮助学生更好地理解和掌握反比例函数。
三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。
2.能够绘制反比例函数的图象,并能分析实际问题中的反比例关系。
3.培养学生的抽象思维能力,提高学生运用函数观点解决问题的能力。
四. 教学重难点1.反比例函数的概念及其性质。
2.反比例函数图象的特点。
3.运用反比例函数解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,培养学生运用函数观点解决问题的能力。
2.启发式教学法:教师引导学生思考,通过提问、讨论等方式,帮助学生自主探索反比例函数的知识。
3.直观教学法:利用多媒体课件、板书等手段,展示反比例函数的图象和性质,增强学生的直观感受。
六. 教学准备1.多媒体课件:制作反比例函数的图象、性质等相关内容的多媒体课件。
2.教学板书:准备反比例函数的定义、性质等相关内容的板书。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体课件展示反比例函数在实际生活中的应用,如商场打折、比例尺等,引导学生关注反比例关系。
提问:这些实际问题中是否存在某种数学规律?2.呈现(10分钟)教师引导学生回顾正比例函数的知识,然后给出反比例函数的定义。
北师大版数学九年级上册6.1反比例函数教案
1.教学重点
-反比例函数的定义及其表达式y = k/x的理解。
-反比例函数图像的形状及其性质,特别是双曲线在不同象限的特点。
-反比例函数系数k对图像的影响,以及在实际问题中的应用。
-利用反比例函数模型解决实际问题的方法和步骤。
举例:讲解反比例函数定义时,要强调k ≠ 0的条件,并通过具体例子使学生理解函数值随自变量变化而变化的规律。在分析图像性质时,通过绘制图像,使学生直观感受双曲线的特点,并明确在不同象限内y值的正负。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
-理解反比例函数图像的双曲线形状及其与Байду номын сангаас数k的关系。
-掌握反比例函数在各个象限内的性质,并能灵活应用于解题。
-在实际问题中,如何建立反比例函数模型,并运用该模型进行数据分析。
举例:在分析图像难点时,学生可能难以理解双曲线的渐近线概念,教师可以通过几何画板等工具动态展示双曲线的变化,帮助学生理解。对于反比例函数在实际问题中的应用,教师可以设计一些典型例题,如“计算两个物体在距离变化下的速度关系”,引导学生如何从问题中抽象出反比例函数关系,并进行求解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(k为常数,k ≠ 0)的函数。它在描述一些变量之间的反比关系时非常重要。
北师大版九年级数学上册第六章教案:6.1 反比例函数
第六章反比例函数1 反比例函数课标要求【知识与技能】经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.【过程与方法】经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.【情感态度】经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生学习数学的兴趣.【教学重点】理解和领会反比例函数的概念.【教学难点】领悟反比例函数的概念.一、情境导入,初步认识我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx +b(其中k,b为常数且k≠0),正比例函数的表达式为y=kx(k为常数且k≠0),在现实生活中,并不是只有这两种类型的表达式,如从A地到B地的路程为1 200 km,某人开车从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1 200,则t=1 200v中,t和v之间肯定不是正比例函数和一次函数关系,那么它们之间究竟是什么关系呢?这就是本节课我们要揭开的奥秘.【教学说明】通过对一次函数和正比例函数的概念、关系式的复习,引出本节课的内容.二、思考探究,获取新知问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1 318 km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1 000 m2的矩形草坪,草坪的长y随宽x 的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.解:(1)t=1 318 v;(2)y=1 000y;(3)S=1.68×104n,其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,S是n的函数.上面的函数关系式,都具有y=kx的形式,其中k是常数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.【归纳结论】一般地,如果两个变量x,y之间可以表示成y=kx(k为常数且k≠0)的形式,那么称y是x的反比例函数.三、运用新知,深化理解1.下列问题中,变量间的对应关系可用怎样的函数式表示?(1)一个游泳池的容积为2 000 m3,注满游泳池所用的时间随注水速度v的变化而变化;(2)某立方体的体积为1 000 cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压强p随物体与地面的接触面积S 的变化而变化.解:(1)t=2 000v;(2)h=1 000S;(3)p=100s.2.下列哪个等式中的y是x的反比例函数:y=4x,yx=3,y=6x+1,xy=123解:只有xy=123是反比例函数.3.已知函数y=kx,当x=1时,y=-3,那么这个函数的关系式是( B )A.y=3xB.y=-3xC.y=13xD.y=-13x4.已知y与x成反比例,当x=3时,y=4,那么y=3时,x的值等于( A ).A.4 B.-4 C.3 D.-35.若函数y=1xm-1(m是常数)是反比例函数,则m=__2__,关系式为y=__1x __.6.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12 000元,首付4 000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为________,________是函数.(2)某种灯的使用寿命为1 000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为________,________是函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为________,________是函数;当S =18时,a 与h 的关系式为________,________是函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为__________,是______函数.解:(1)y =8 000x,反比例; (2)y =1 000x,反比例; (3)S =5h ,正比例,a =36h ,反比例; (4)y =w x,反比例. 7.已知y 是x 的反比例函数,当x =2时,y =6.(1)写出y 与x 的函数关系式;(2)求当x =4时,y 的值.分析:因为y 是x 的反比例函数,所以可设y =kx ,再把x =2和y =6代入上式就可求出常数k 的值.解:(1)设y =kx ,因为x =2时,y =6,所以有6=k 2,解得k =12,因此y =12x. (2)把x =4代入y =12x ,得y =124=3. 【教学说明】学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并及时给予引导.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.课后作业1.布置作业:教材“习题5.1”中第2 、3题.2.完成练习册中本课时练习.教学反思反比例函数概念形成的过程中,大家要充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,逐步建立从概念的感性认识到理性认识.。
2019秋九年级数学上册第六章反比例函数1反比例函数教案2(新版)北师大版
第六章 反比例函数 6.1 反比例函数函数是在探索具体问题中数量关系和变化规律基础上抽象出的重要数学概念,是研究现实世界变化规律的重要数学模型.在前画已学习过“变量之间的关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念,为后继学习产生积极影响.本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念.通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义.由于本节课比较抽象,理解起来比较困难,因此,在学习反比例函数概念的过程中,应充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向. 教学目标:(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念. (二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式. (三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解它的概念. 教学难点:领会反比例函数的意义,理解反比例函数的概念. 教学方法:教师引导学生进行归纳. 教具准备:多媒体课件 教学过程:Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为b kx y +=其中k ,b 为常数且0≠k ,正比例函数的表达式为kx y =,其中k 为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A 地到B 地的路程为1200 km ,某人开车要从A 地到月地,汽车的速度v(km /h)和时间t(h)之间的关系式为vt =1200,则t =v1200中,t 和v 之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘. Ⅱ.新课讲解[师]引我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数? 1.复习函数的定义[师]大家还记得函数的定义吗? [生]记得.在某变化过程中有两个变量x ,y.若给定其中一个变量x 的值,y 都有唯一确定的值与它对应,则称y 是x 的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y =0.4n ,这是一个正比例函数. 等腰三角形的顶角的度数y 与底角的度数x 的关系为y=180-2x ,y 是x 的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式. 2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式. [师]请看下面的问题.电流I ,电阻R ,电压U 之间满足关系式U =IR ,当U =220 V 时. (1)你能用含有R 的代数式表示I 吗?(3)变量I 是R 的函数吗?为什么? 请大家交流后回答.[生](1)能用含有R 的代数式表示I. 由IR=220,得I=R220.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R 越来越大时,电流I 越来越小;当R 越来越小时,I 越来越大. (3)变量I 是R 的函数.由IR =220得I =R220.当给定一个R 的值时,相应地就确定了一个I 值,因此I 是R 的函数.[师]这位同学回答,的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I =R220,当R 变大时,I 变小,灯光较暗;当R 变小时,I 变大,灯光较亮.所以通过改变电阻R 的大小来控制电流I 的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼. 投影片:(§ 6.1 A)京沪高速公路全长约为1262 km ,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km /h)之间有怎样的关系?变量t 是v 的函数吗?为什么? [师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt ,则有t =v1262.当给定一个v 的值时,相应地就确定了一个t 值,根据函数的定义可知t 是v 的函数. [师]从上面的两个例题得出关系式 I=R220和t=v1262.它们是函数吗?它们是正比例函数吗?是一次函数吗? [生]因为给定一个R 的值,相应地就确定了一个I 的值,所以I 是R 的函数;同理可知t 是v 的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k ≠0),一次函数的关系式为y =kx+b(k ,b 为常数且k ≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I =R220与t=v1262可知关系式为y=xk (k 为常数且k ≠0).[师]很好.一般地,如果两个变量x 、y 之间的关系可以表示成y =xk (k 为常数,k ≠0)的形式,那么称y 是x的反比例函数.从y =xk 中可知x 作为分母,所以x 不能为零.3.做一做投影片(§ 6.1 B)1.一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy =20.则有y =x20.变量y 是变量x 的函数.因为给定一个x 的值,相应地就确定了一个y 的值,根据函数的定义可知变量y 是变量x 的函数.再根据反比例函数的表达式可知y 是x 的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=n 2.346.给定一个n 的值,就相应地确定了一个m 的值,因此m 是n 的函数,又m =n2.346符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx 中.要确定关系式的关键是求得非零常数k 的值,因此需要一个条件即可;在一次函数y =kx+b 中,要确定关系式实际上是要求得b 和k 的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k 的值.因此只需要—个条件即可,也就是要有一组x 与y 的值确定k 的值.所以要从表格中进行观察.由x =-1,y =2确定k 的值,然后再根据求出的表达式分别计算.x 或y 的值. [生]设反比例函数的表达式为y=xk(1)当x =-1时,y =2; ∴k =-2.∴表达式为y =-x2(2)当x =-2时,y =1. 当x=-21时,y =4;当x=21时.y=-4;当x =1时,y=-2. 当x =3时,y =-32; 当y =32时,x=-3;当y =-1时,x=2.因此表格中从左到右应填 -3,1,4,-4,-2,2,-32 Ⅲ.课堂练习课本P150随堂练习 Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y =xk (k 为常数.k ≠0),自变量x 不能为零.还能根据定义和表达式判断某两个变最之间的关系是否是函数,是什么函数. Ⅴ.课后作业课本P150习题6.1 Ⅵ.活动与探究已知y-1与成反比例21+x ,且当x =1时,y=4,求y 与x 的函数表达式,并判断是哪类函数?分析:由y 与x 成反比例可知y =xk ,得y-1与21+x 成反比例的关系式为y-1=21+x k =k(x+2),由x =1、y=4确定k 的值. 从而求出表达式.解:由题意可知y-1=k=21+x k k(x+2). 当x =1时.y =4. 所以3k=4-1, k=1.即表达式为y-1=x+2, y=x+3.由上可知y 是x 的一次函数.备课资料 参考例题1.k 为何值时,y=(k+2)x k2-5是反比例函数分析:根据反比例函数表达式的一般形式y =xk (k ≠0)也可以写成y=kx -1≠0),后一种写法中的x 的次数为-1,可知此函数为反比例函数,必须具备两个条件:k+2≠0 k 2-5=-1 二者缺一不可.k+2≠0, k≠-2,解:由得k2-5=-1, k=±2∴k=2.∴当k=2时,y=(k+2)x k2-5是反比例函数.k写成y=kx-1的形式;常见错误:(1)不会把反比例函数的一般式y=x(2)忽略了k+2≠0这个条件.。
北师大版九年级数学上册《6.1反比例函数》教学设计
北师大版九年级数学上《6.1反比例函数》教学设计一、学习目标(一)设置学习目标的依据1.课程标准《反比例函数》属于《数学课程标准》中“数与代数”领域的基本内容。
函数本身是数学学习中的重要内容,而反比例函数则是基础函数之一,它是在学习了图形与坐标和一次函数的基础上,再一次研究具体的初等函数问题,而且对反比例函数的理解以及用函数观念解决实际问题的经验,对今后二次函数以及高中阶段其它函数的学习会奠定扎实的基础。
通过本章的学习使学生进一步理解函数的内涵,并感受反比例函数是刻画现实世界变化规律的数学模型,能应用反比例函数来解决实际问题。
2.教材分析本节的内容主要是反比例函数的概念,教材设计的基本思路是从现实生活中大量的反比例关系中抽象出反比例函数概念,让学生进一步感受函数是反映现实世界中变量关系的一种有效数学模型,逐步从对具体的反比例函数的感性认识上升到对抽象的反比例函数概念的理性认识。
同时,本节内容的学习,直接关系到本章后续内容的学习,也是继续学习其它各类函数的基础。
另外,其中蕴涵的类比、归纳、等数学思想方法,对学生今后研究问题、解决问题以及终身的发展都是非常有益的。
3.学情分析(1)学生在本节课之前已经学习了变量之间的关系和一次函数,对函数已有了初步的认识,在物理学科和生活常识中,学生也已经对具有反比例关系的两个量有所了解,在此基础上讨论反比例函数可以进一步领悟函数的的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,为后续学习二次函数等产生积极影响。
(2)九年级学生小组合作训练有素,能在教师的指导下,进行小组合作、拓展探究。
(3)此阶段学生有比较强烈的自我发展意识,加强学生对中考数学(反比例函数问题)的针对性训练,并渗透学科间知识的融合。
(二)学习目标的确定知识与技能目标:从现实情境和学生已有的知识经验出发,讨论两个变量之间的相互关系,加深对函数概念的理解。
过程与方法目标:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
九年级数学上册 62(反比例函数的图象与性质)教案2 (新版)北师大版 教案
反比例函数的图象与性质教学目标(一)教学知识点1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.2.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.3.逐步提高从函数图象小获取信息的能力,探索并掌握反比例函数的主要性质.(二)能力训练要求通过学生自己动手列表、描点、连线,提高学生的作图能力;通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力.(三)情感与价值观要求让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.教学重点:画反比例函数的图象;并从函数图象中获取信息,探索并研究反比例函数的主要性质.教学难点:反比例函数的图象特点及性质的探究.教学方法:教师引导学生探究法.教具准备:多媒体课件教学过程:Ⅰ.创设问题情境,引入新课[师]我们在前面学习了正比例函数和一次函数的图象,知道它们的图象都是一条直线,正比例函数的图象是过原点的一条直线,在画图象时需找(1,k)点即可,一次函数的图象也是一条直线,是不过原点的一条直线.画图象时只需找(0,b)和(-,0),过这两点作直线即可.那么反比例y=(k≠0)的图象是直线呢?还是曲线,这就需要我们动手去做一做,才能得出结论.本节课就让我们一齐来实践吧.Ⅱ.新课讲解[师]大家还记得画图象的步骤吗?[生]记得.是列表,描点,连线.[师]下面大家试着作反比例函数y =的图象,在 列表时x 取值仿照以前,且要多取几点. [生甲]列表: x -8 -4 -3 -2 -1 - 1 2 3 4 8 y=--1--2-4-88421描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:用光滑的曲线顺次连结各点,即可得到函数y=的图象(如上图). [生乙]我作出的图象和他不一样,是这样的 [生丙]我作出的图象和他们都不一样.(如下图) [师]现在出现三种不同类型的图象,请大家认真思考后选 出正确的图象是哪一个?[生]第一种正确.第二种也正确,只不过取的点较少,又错误的,因为应用光滑的曲线连接,而不是用折线连接. [师]很好.可见大家是动脑子思考过的,这种钻研精神值 得表扬.你认为作反比例函数图象时应注意哪些问题?与同伴进行 交流.[生]其实刚才两位同学所画的图象已给出我们答案了,在列表时,自变量的值可以任意选,但如果选取绝对值相等而符号相反的一对一对的数值,这样既可以简化计算,又便于描点;列表、描点时,要尽量多取一些数值.多描一些点,这样方便连线;在连线时要用“光滑的曲线”,不能用折线.请大家用同样的方法作反比例函数y =x4 的图象.(让学生自己作图,然后出示正确的图象让学生参考) [生]列表 x -8 -4 -3 -2 -1 - 1 2 3 4 8 y=x4-1248-8-4-2-1-描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:用光滑的曲线顺次连接各点,即可得到函数y =x4-的图象,如下图.[师]很好,大家基本上已经掌握了画反比例函数的步骤,以及反比例函数的图象的大致形状.观察y =和y =x4-的图象,它们有什么相同点和不同点?[师]上面是函数y =和y =x4-的图象,请大家对比着探索他们的异同点.[生]相同点:(1)图象都是由两支曲线组成; (2)它们都不与坐标轴相交; (3)它们都不过原点; 不同点:它们所在的象限不同.y =的两支曲线在第一和第三象限;y =x4-的两支曲线在第二和第四象限.[师]很好,完全正确.大家再仔细观察一下每个函数图象是否为对称图形. [生]是轴对称图形,也是中心对称图形.[师]由此看来,反比例函数的图象是两支双曲线,它们要么在第一、三象限,要么在第二、四象限,究竟什么时候在一、三象限,什么时候在二、四象限,大家能肯定吗? [生]可以,当k>0时,图象的两支曲线在第一、三象限内;当k<0时,两支曲线分别位于第二、四象限.[师]大家的观察能力和分析能力很了不起哟,继续努力. Ⅲ.课堂练习 P 134随堂练习 补充练习1.面积是常数S 时,三角形的底y 与高x 的函数关系是什么函数.图象.2. 画出反比例函数y= 或y=x5-的图象Ⅳ.课时小结一、本节课我们学习了画反比例函数的步骤为:列表、描点、连线.进一步巩固了画函数图象的步骤,同时在画反比例函数图象时要注意以下几点:1.列表时自变量的取值应取绝对值相等而符号相反的一对一对的数值,这样既可以简化计算.又便于描点;2.列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线;3.在连线时要用“光滑的曲线”,不能用折线.二、在画出函数y =和y =x4-的图象后.比较它们的异同点.相同点:(1)图象都是由两支曲线组成: (2)它们都不与坐标轴相交; (3)它们都不过原点;(4)它们都是轴对称图形,也是中心对称图形.不同点:它们所在的象限不同,当k>0时,图象的两支曲线分别在第一、三象限内;当k<0时,图象的两支曲线分别位于第二、四象限. Ⅴ.课后作业Ⅵ.活动与探究已知y=y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且当x=2与x=3时,y 的值都等于19.y 与x 间的系数关系式,并求x =4时y 的值. 解:设y 1=k 1x,y 2=22xk . ∴y=y 1+y 2=k 1x+22xk .当x =2时, y =19; 当x =3时,y =1.9. 2k 1+42k =19,∴1+92k =19.k 1=5.解得k 2=36.∴关系式为y =5x+236x. 当x =4时,y =5×4+1636=20+=22。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数
教学过程
Ⅰ.创设问题情境,引入新课
Ⅱ.新课讲解
[师]引我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?
1.复习函数的定义
在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.
[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为(板书):y=kx+b其中k,b为常数且k≠0,正比例函数的表达式为(板书):y=kx,其中k为不为零的常数。
例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n,这是一个正比例函数.
等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.
我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.
2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.
请看下面的问题.课本(P-143)
请大家交流后回答.
[生](1)能用含有R的代数式表示I.
由IR=220,得I=.
(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.
从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.
(3)变量I是R的函数.
由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.
下面大家再思考一个问题.(课本P-143)
[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.
[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.
[师]从上面的两个例题得出关系式: I=和t=.
它们是函数吗?它们是正比例函数吗?是一次函数吗?
[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.
[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b 为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?
[生]可以.由I=与t=可知关系式为y= (k为常数且k≠0).
一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.
从y=中可知x作为分母,所以x不能为零.
3.做一做(课本P-144)
[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx 中.要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要—个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值,然后再根据求出的表达式分别计算.x或y的值.
Ⅲ.课堂练习
(P131)
Ⅳ.课时小结
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数.k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变最之间的关系是否是函数,是什么函数.
Ⅴ.课后作业
习题5.1。